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1 Introduction

Despite ongoing efforts do develop alternative representations, practical calculations of
scattering amplitudes in quantum field theories are still described mostly through Feyn-
man diagrams. As one studies observables at higher orders in perturbation theory in this
framework, one needs to evaluate a huge number of corresponding many-loop Feynman
integrals. The predominant approaches exploit integration by parts (IBP) identities in
momentum space [1, 2] to express all required integrals as linear combinations of a much
smaller number [3–5] of basis integrals, called master integrals (MI). Although this re-
duction procedure may become challenging in practice, it is thus in principle sufficient to
compute and tabulate only one such set of master integrals for a given problem. Due to
the presence of divergences in the integrals, calculations are performed in dimensional reg-
ularization in d = 4 − 2ε dimensions [6, 7], and the master integrals have to be expanded
to a sufficiently high order in the ε-expansion.

In this paper we focus on the evaluation of massless propagator-type integrals in mo-
mentum space, also known as “p-integrals”. The importance of p-integrals is demonstrated
by the success of their application to determine arbitrary renormalization group functions
up to four loops [1, 2], in scalar φ4 theory up to 6 loops [8, 9], and recently to five loops
in QCD [10, 11]. Alternative effective routes to renormalization group functions include
massive vacuum integrals [12–14] and position-space techniques [15]. In this comparison,
the coefficients of the ε-expansions of p-integrals tend to be rather simple and are often
expressible exactly in terms of Riemann zeta values. On the other hand, masslessness in-
troduces infrared divergences, which have to be carefully separated from the sought-after
ultraviolet singularities. This is achieved with the R∗-operation [16–18], which is now in a
very mature state [19, 20] and provides a technique that expresses L-loop renormalization
group functions in terms of poles and finite terms of the ε-expansions of p-integrals with
only L− 1 loops.
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Figure 1. These are three examples of maximal sectors for five-loop p-integrals. The diagrams
have only cubic vertices and 14 internal propagators. The rightmost sector is an example of a
non-planar integral.

As a step towards an extension of the currently very good understanding of the master
p-integrals [21–23] and their IBP reduction [24] at four loops, we compute in this paper
a complete set of master p-integrals at five loops, which should be useful in future deter-
minations of renormalization group functions at the six-loop order. Our results are also
interesting from a structural point of view and give further evidence for general patterns in
the coefficients of ε-expansions of p-integrals, and therefore, about the coefficients of renor-
malization group functions [25, 26]. Concretely, we confirm that finite five-loop p-integrals
in d = 4 dimensions are linear combinations of multiple zeta values of transcendental
weight at most nine, and that, in a well-defined sense, all π-dependent contributions can
be predicted by the π-free terms. We supply our results for the ε-expansions of our master
integrals and other results in the supplementary material attached to this article, the use
and content of each file is described in the README file.

All five-loop p-integrals can be obtained by contracting edges of one of 64 maximal
sectors,1 by which we mean diagrams with only cubic vertices and 14 internal propagators,
as illustrated in figure 1. Note that the planar graphs can also be viewed as propagator
integrals in position-space, and we completely determined those in previous work [27]. Our
calculation presented here confirms these earlier findings for the planar p-integrals, but
provides also the expansions for the non-planar integrals.

A range of methods to compute single-scale massless Feynman integrals has been de-
veloped over time [28]. Relatively recent advances and applications include in particular
dimensional recurrence relations [21, 29], integration over Schwinger parameters [30–33]
and graphical functions [34].

In order to determine all five-loop p-integrals we follow the algorithm introduced at
four loops by Baikov and Chetyrkin [22], which combines the glue-and-cut (GaC) sym-
metry [2] of massless p-integrals with IBP reductions to bootstrap the determination of
master integrals. This elegant algorithm manages to get by without having to actually
compute a lot of complicated integrals explicitly. Instead, it produces so many relations
between the coefficients of the ε-expansions of the p-integrals, that ultimately all get re-
duced to coefficients of only a small number of particularly simple integrals. Concretely,
the constraints turned out to be so strong that the input of recursively one-loop integrals

1A sector encompasses all integrals in a family Pk(a; d) where the set {j : aj = 0} is fixed. Since
setting aj = 0 for an inverse propagator (j < 15) corresponds to contraction of the associated edge in
the underlying graph of the family, different families can share common subsectors (different graphs may
become isomorphic after several contractions).
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(see figure 7), which are easily evaluated to all orders in ε, was sufficient to determine all
master integrals at four loops [22].

The bottleneck in this strategy resides mostly in the efficiency of IBP reduction rou-
tines, and only recent progress in that field has allowed us to finally apply the GaC strategy
at five loops and to fix all p-integrals at that order. We find that it suffices to input the
expansions of 21 recursively one-loop master integrals, together with only one further in-
tegral. In fact, this single additional input datum can be chosen in form of a very simple
product integral, see figure 8. This demonstrates strikingly that the remarkable power of
the GaC method persists at the five loop order, circumventing completely the daunting
direct evaluation of a large number of very complicated Feynman integrals.

The paper is organized as follows. In section 2 we review the main ideas of the method
and describe how we obtain the relations needed for bootstrapping the p-integrals. In
section 3 we describe an algorithm to determine the convergence of vacuum diagrams. In
section 4 we describe how we performed the IBP reductions needed while in section 5
we describe how we generated the needed vacuum diagrams and how we constructed and
solved the equations needed for the bootstrap procedure. Finally in section 6 we present
and discuss our results.

2 Review of the algorithm

All five-loop massless propagator integrals can be represented by families of the form

Pk(a1, . . . , a20; d) :=
∫ dd`1
πd/2 · · ·

∫ dd`5
πd/2

1
Da1

1 · · ·D
a20
20

(2.1)

where `i denote the loop momenta, and each Di is a quadratic form in these loop mo-
menta and the external momentum p. There are 64 such families, indexed by 1 ≤ k ≤ 64,
each corresponding to a different cubic graph with 14 internal lines, and D1, . . . , D14 en-
code precisely the inverse propagators associated to these lines. The corresponding indices
a1, . . . , a14 will always be positive or zero. The remaining six quadratic forms D15, . . . , D20
will only appear with non-positive indices a15, . . . , a20 ≤ 0 and are needed to encode propa-
gator integrals with numerators. See figure 4 and table 1 for the example of family k = 46.
We work in dimensional regularization with d = 4 − 2ε, so every propagator admits a
Laurent expansion

P (d) = (p2)−ωε(P ) ∑
n∈Z

cn(P )εj (2.2)

whose coefficients cn ∈ R are the numbers we want to determine. Throughout we assume
a positive definite (Euclidean) metric and we set p2 = 1 in our calculations. The depen-
dence on the external momentum p is a power law and thus completely determined by the
exponent

ωε =
20∑
j=1

aj − 5(2− ε). (2.3)

– 3 –
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D1,...,4 D5,...,8 D9,...,12 D13,...,16 D17,...,20

`21 `23 (`1 + `3 + `4 + `5 − p)2 (`1 + `4)2 `2 · `4
(`1 − p)2 `24 (`1 + `3 + `4 − p)2 (`2 − `3 + p)2 `2 · `5
`22 (`3 + `4)2 (`2 − `3 − `5 + p)2 `1 · `3 `3 · `5
(`2 + p)2 `25 (`1 − `2 + `3 + `4 + `5 − p)2 `2 · `3 `4 · `5

Table 1. Inverse propagators D1, . . . , D14 and numerators D15, . . . , D20 for integral family P46.

The algorithm of [22] can be summarized in the following steps:

1. In each family Pk, choose a sufficient number of integer seeds a ∈ Z20 and reduce
each of those p-integrals P to (any preferred choice of) master integrals Mi:

P (d) = r1(P, d)M1(d) + · · ·+ rN (P, d)MN (d) (2.4)

2. Expand both sides of (2.4) in ε to express the Laurent coefficients cn(P ) of each
seed p-integral P = Pk(a; d) in terms of the corresponding coefficients cn(Mi) of the
master integrals.

3. Enforce cn(P ) = 0 for all n < −5.

4. Enforce cn(P ) = 0 for all n < 0 in the case of finite p-integrals.

5. Enforce the identities c0(P ) = c0(P ′) for all pairs of p-integrals P and P ′ that are
related by the glue-and-cut symmetry.

The glue-and-cut symmetry of massless p-integrals explains why sometimes different
finite p-integrals evaluate to the same number in four dimensions. Diagrammatically, this
process takes an L-loop p-integral P and glues its two external legs together, to form an
(L+1)-loop vacuum diagram V (see figure 2 for an example). Conversely, cutting the glued
line from V , we recover P . But if we cut another line of V , we may produce a different
p-integral P ′. The glue-and-cut symmetry [22] states that:

Theorem 1. If the p-integral P (ε) is finite in d = 4 dimensions (ε = 0), and if V is
dimensionless, then any other cut P ′(ε) of V is also finite in d = 4, and P (0) = P ′(0).

Dimensionless here means that the additional edge in V is assigned the index a0 =
d/2− ωε(P ), such that we have ωε(V ) = 0 where

ωε(V ) :=
20∑
j=0

aj − 6(2− ε).

In fact, as long as this condition is fulfilled, the symmetry holds for arbitrary values of the
indices a and for arbitrary ε: P (ε) = P ′(ε) [35]. Indeed, any p-integral P obtained from
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Figure 2. Starting with the five-loop p-integral on the left and glueing the external lines (dashed),
we obtain the six-loop vacuum diagram in the center. This diagram has 12 propagators and no
numerator, leading to a vanishing superficial degree of divergence. Since there are no subdivergences,
we can cut a different propagator (dotted) to produce a distinct five-loop p-integral with the same
value in four dimensions.

cutting V , is equal to the residue of the vacuum integral V at ωε(V ) = 0.2 However, note
that a0 will depend on ε, so in specializing to ε = 0 we gain that a0 becomes an integer,
and hence P ′(0) will again be a p-integral with integer indices.

This symmetry generates an array of identities between c0-coefficients of different p-
integrals. Once they are reduced to master integrals, we get a linear system of equations
which in general allows us to relate the expansions of some master integrals in terms of
the others. The hope is that the remaining undetermined coefficients can all be computed
without difficulty.

The implementation of the algorithm for L-loop p-integrals starts then with the enu-
meration of (L+ 1)-loop vacuum diagrams V . Those are written as∫ dd`1 · · · dd`L+1

Da0
0 · · ·D

an
n

,

with Di a linear combination of scalar products `i · `j , which denotes either an inverse
propagator (ai > 0) or a numerator (ai < 0). The superficial degree of divergence in four
dimensions is then

ω0 =
n∑
k=0

ak − 2(L+ 1) . (2.5)

According to theorem 1, we consider only diagrams with ω0(V ) = 0, which means that they
must contain at least 2(L+ 1) propagators. The six-loop maximal sectors (diagrams with
cubic vertices) have 15 denominators D0, . . . , D14 (corresponding to the 15 edges in the
graph), which means that in that case the candidates for cutting are obtained by adding
a15 + . . . + a20 = 3 numerators. For graphs with less denominators (ai = 0 for one or
more i ≤ 14), we pick accordingly less numerators. Apart from thus assuring ω0(V ) = 0,
we need also to restrict to diagrams which have no subdivergences, so that the p-integrals
resulting from cutting are all finite. Our algorithm for checking the convergence properties
of vacuum diagrams will be explained in section 3.

The following step is the cutting of the valid vacuum diagrams in all possible ways.
The obvious identities are extracted by cutting along the existing denominators. However,

2To make sense of a vacuum Feynman integral, it is in principle necessary to introduce some kinematic
dependence, e.g. by adding some external legs, or assigning masses to some lines. However, the residue of
V at ω = 0 does not depend on any of these choices.
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Figure 3. We split the quartic vertex into a pair of cubic vertices connected by a new propagator
(dashed). Cutting this propagator yields yet another finite p-integral.

one can also obtain constraints by splitting any of the vertices with valence k > 3, see
figure 3. Starting for instance with a valence-k vertex, we can produce two vertices of
valences (k− j+ 1) and (j+ 1), as long as j, (k− j) ≥ 2. These vertices are then connected
by a new propagator (with index ai = 0) which we can cut, thus producing an additional
identity.

Finally, the last step is the IBP reduction (2.4) to master integrals. At five loops
this is quite an arduous task, further details are given in section 4. Once the reduction
is performed and all master integrals have been identified, one just has to perform the
symbolic ε expansion (2.2), impose finiteness of all p-integrals obtained from cutting, and
equate their finite orders. Note that we also impose cn(P ) = 0 for all n < −5, since even
for divergent p-integrals, at five loops they can at worst have poles of order five [16].

3 Convergence

Consider a scalar p-integral, that is, some Pk(a; d) as per (2.1) where a15 = · · · = a20 = 0
(no numerators). Such a p-integral is convergent if, and only if, we have ωε > 0 and the
conditions ∑

e∈g
ae −

d

2 · Lg >

ωε if g connects the external legs and
0 otherwise,

are fulfilled for all non-empty proper subsets g ( {1, . . . , 14} of the edges of the defining
graph [36, 37]. Here, we denote by Lg the loop number (first Betti number) of the subgraph
g. Alternatively, consider the vacuum graph V obtained by gluing the external legs of P
into an additional edge, with a0 chosen such that ωε(V ) = 0. Then the conditions above
can equivalently be stated more symmetrically as

∑
e∈g

ae >
d

2 · Lg (3.1)

for all non-empty subgraphs g ⊆ {0, . . . , 14} of V . It is not necessary to check all of these
conditions separately, however, as many of them turn out to be redundant. It suffices to
verify the constraint only for those subgraphs g that have the property that both g, and
its quotient V/g, are biconnected [38, 39].

This provides an efficient way to select the finite integrals from a list of scalar p-
integrals: for each of the 14 cubic graphs V with six loops and 15 edges corresponding to

– 6 –
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propagators ISPs numerators graphs finite integrals

15 6 56 14 347
14 7 28 22 248
13 8 8 32 206
12 9 1 17 15

Table 2. Counts of non-isomorphic vacuum graphs (see figure 6) by number of edges (propagators).
The third column gives the number (5.1) of logarithmically divergent numerators.

a top-level vacuum integral, we compute once and for all the list of all subgraphs g with
the property that g and V/g are biconnected. This yields a short list (in the worst case
there are 107) of inequalities

∑
e∈g ae > d/2 ·Lg, which can be used to quickly determine if

a scalar p-integral obtained by cutting some edge of V is finite or not. For the remaining
six-loop vacuum integrals (those with less than 15 edges), we proceed analogously.

With this control on scalar integrals, we can also determine the finiteness of integrals
with numerators. Indeed, integrals with numerators can be viewed as linear combina-
tions of scalar integrals in higher dimensions [40]. Concretely, let us introduce Schwinger
parameters xi for each denominator Di in (2.1). Then, the quadratic form

x1D1 + · · ·+ x20D20 = `ᵀA`+ 2Bᵀ`+ C

in the loop momenta ` = (`1, . . . , `5) determines a 5×5 matrix A, a 5-vector B and a scalar
C (all of these depend on x). Define the polynomials U := detA and F := U(BᵀA−1B−C).
The parametric representation [37, 41] of the integral family (2.1) then takes the form

Pk(a; d) = Γ(ωε)

 ∏
j : aj>0

∫ ∞
0

x
aj−1
j dxj
Γ(aj)

 ∏
j : aj≤0

[
− ∂

∂xj

]−aj

xj=0

 δ(1− x1)
Ud/2−ωεFωε

. (3.2)

It is apparent that, after carrying out the derivatives with respect to xj for the numerators
(aj < 0), and bringing the integrand on a common denominator, we can write Pk(a; d) =∑
n bn(ε)Pk(a(n); d′) as a finite linear combination of p-integrals in some raised dimension

d′−d ∈ 2Z≥0 that are scalar (a(n)
j = 0 whenever aj < 0), with raised indices a(n)

j ∈ aj+Z≥0
on the denominators (aj > 0).

The convergence of the integral (3.2) is equivalent to the convergence of each con-
stituent Pk(a(n); d′). We therefore apply the convergence criteria for scalar integrals as
discussed above, in order to decide whether or not a given p-integral Pk(a; d) is finite, i.e.
convergent in d = 4 dimensions. In fact, we carry out the entire analysis via (3.1) on the
level of the vacuum integrals. See table 2 for statistics of the results. A detailed description
will be given in section 5.

The convergence of such an integral implies that cj(Pk(a; d)) = 0 for all singular
coefficients (j < 0) in the ε-expansion (2.2). Furthermore, we know also that the c0 of such
finite p-integrals agree for all cuts of the same vacuum integral. These constraints form
the starting point of the GaC algorithm.

– 7 –
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Figure 4. The integral families for which bad denominators survive the change of basis. The
diagram on the left shows family P46.

4 Reductions

In order to apply the bootstrap procedure explained in section 2, we have to reduce the
integrals involved to MI using IBP relations. These relations are generated by setting to
zero a total derivative,

0 =
∫ dd`1
πd/2 · · ·

dd`L
πd/2

L∑
j=1

∂

∂`µj

kµj
Da1

1 · · ·D
an
n
, (4.1)

where kj is constructed as a linear combination of the external and internal momenta.
With enough of these relations one can utilize the Laporta algorithm [42] to row reduce
the associated linear system. There exist several available computer codes to perform such
reductions [43–46]. In this work we applied the current version of FIRE [43] (coupled
with LiteRed [44]) with some features which are private at the moment but will soon be
made public, as usually. After revealing primary master integrals, we used the recently
developed code [47], which can be used to improve a given basis of master integrals by
getting rid of so-called bad denominators from the coefficients of the IBP reduction.3 By
definition, a factor in the denominator is ‘good’ if it is either a linear function of d and
independent of kinematic variables, or solely a polynomial of the kinematic variables and
thus independent of d. Any other configuration is considered ‘bad’. Applying this code to
the most complicated sectors we obtained a new basis which is free of bad denominators
in all but three of the families,4 which are depicted in figure 4. Since the resolution of this
issue is similar for all three families, we shall focus here only on the leftmost diagram of
figure 4, which corresponds to family P46 defined by (2.1) for the inverse propagators and
numerators shown in table 1.

The fact that some bad denominators survive might be explained by the existence of a
hidden relation between master integrals. Unfortunately, the recipes based on symmetries
presented in [50] did not help us find them. In order to reveal this hidden relation we
analyzed IBP reductions for a set of integrals with all but one of the exponents ai set to
0 or 1, while the remaining exponent is equal to 2. By running FIRE on integrals with
thirteen positive indices in two different ways, with the option no_presolve and without
it, we then obtained two equivalent yet distinct reductions. By equating the corresponding

3See also alternative competitive code presented in [48, 49].
4There could be other simpler sectors for which this happens but this simplification was not necessary

to obtain the reduction.

– 8 –

https://bitbucket.org/feynmanIntegrals/fire/
https://bitbucket.org/feynmanIntegrals/fire/


J
H
E
P
0
9
(
2
0
2
1
)
0
9
8

Figure 5. The diagrams on the left and center are rejected since they would produce p-integrals
with tadpoles after the cutting procedure. The condition for removal is the existence of a zero-
momentum edge (manifest in the center diagram but revealed on the left only after blow-up of the
higher-valence vertex). Meanwhile the rightmost diagram is rejected because it produces integrals
with a double propagator.

results we then find the new relation, which has the form

P46(1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0; d)

= 1
3d− 11

[
(8d− 28)P46(0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0; d)

−(5d− 25)P46(1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0; d)
+(d− 5)P46(0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0; d)

]
+ . . .

(4.2)

where dots stand for 37 master integrals with less than eleven positive indices. The complete
relation can be found in the supplementary file ExtraRelation.m.

After taking into account this additional relation and using the option rules we observe
that all the bad denominators disappear and the IBP reduction becomes faster and requires
less RAM. The corresponding relations in the other two families of figure 4 can be obtained
from this one, since the relevant subsector is shared by all three families.5

By construction, this additional relation follows from IBP relations and symmetries
which come into the game with LiteRed [44] so that there is nothing mysterious in it.
However, it looks reasonable to try to describe this and similar relations in a more natural
language.

5 Details of our calculation

Using the computer program SAGE[51], we found 102 six-loop vacuum diagrams with at
least 12 propagators, 99 of which are connected. Removing graphs with zero-momentum
edges or double propagators (see figure 5 for more details), we are left with 85 diagrams
which are viable for cutting, some of which are depicted in figure 6.

In order to have zero superficial degree of divergence ω0, defined in (2.5), the diagrams
with (12 + x) propagators must be accompanied by x numerators. The complete basis of
scalar products has 21 elements at this loop order, therefore the numerator can be any
polynomial of degree x built from the (9− x) irreducible scalar products (ISPs) available.
In practice we avoided the complex search for all generic convergent numerators, and
instead we only tested convergence for each monomial. We have many available integrals

5Within FIRE, one can use the function FindRules for obtaining the mapping.
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Figure 6. Examples of vacuum diagrams at six loops with 12, 13, 14 and 15 denominators (reading
from left to right and top to bottom). The larger the number of propagators, the larger the number
of numerators we must include to ensure vanishing ω0.

nevertheless, since each diagram with (12 + x) propagators produces

(9− x)x/x! (5.1)

distinct numerators, with (a)x the Pochhammer symbol. However, since the IBP reduc-
tions are very demanding at this loop order, we neglected all vacuum diagrams with 15
denominators and degree 3 numerators, and checked only the convergence properties of the
remaining 889 = 28 ·22+8 ·32+1 ·17 integrals in table 2, finding that 469 = 248+206+15
of them are free of divergences.

The attentive reader will wonder how it is possible to fix the expansions of master
p-integrals with 14 denominators if we cut only vacuum diagrams with 14 denominators or
less. The trick resides in the splitting of higher-valence vertices, which effectively increases
the number of propagators by one. Note also that we checked convergence for numerators
which are written as products of ISPs, hence the number of finite integrals in table 2 depend
on our choice of ISPs. We considered two options, a difference basis given by (`i − `j)2,
and a dot basis formed by `i · `j (for example see D15, . . . , D20 in table 1), with `1, . . . , `5
the loop momenta. The analysis at lower loops showed that the latter produced more
convergent integrals, and therefore more equations, and so we considered the dot basis for
the bootstrap at five loops.

We then systematically cut each of the 469 finite vacuum diagrams in all possible ways,
either through an existing propagator, or by splitting a higher-valence vertex, as explained
in section 2. In the end we obtained 7647 equations relating different cuttings of the vacuum
diagrams. Each cut produces a single finite p-integral with a given numerator which is
inherited from that of the vacuum diagram, but one needs to embed the integral into one
of the 64 five-loop maximal sectors (diagrams with cubic vertices). Therefore, one must
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decompose the numerator into the basis of the chosen maximal sector, which effectively
produces a linear combination of many divergent p-integrals that need to be reduced.

Once we run the IBP reductions for each of the 64 families, we obtain a set of master
integrals for each of them. However, some of the integrals are common to several families.
For example, the watermelon diagram inevitably appears in the reductions of all 64 maximal
sectors. While it is easy to find relations between subsectors of different families, one
must be careful when a given sector has more than one master integral. The reduction
routine outputs in that case master integrals with a double denominator, but the precise
prescription for its positioning depends on the family upon consideration. In order to
avoid redundancies one must therefore set a convention for the sector that provides the
preferred integral, and then map to it all variants arising from other families with a different
double-denominator position.

After all such considerations, we find that at five loops there are 281 master integrals
from 245 distinct sectors. There are 30 sectors with 2 master integrals, and also 3 sectors
containing 3 master integrals each. Only 16 of the integral families Pk from (2.1) contain
master integrals in the top sector (that means ai > 0 for all propagators 1 ≤ i ≤ 14), but
12 of these families do contain more than one master integral in the top sector.

In principle it would have been possible to miss some master integrals, since the max-
imal sectors of a few integral families are not probed by any of the integrals produced
through the cutting procedure. However, we have used Azurite [52] to confirm that there
are no extra master integrals in any of those sectors. Furthermore, and since we applied the
glue-and-cut algorithm to integrals with at most 2 numerators, we have also used Azurite
to reduce all maximal sectors with degree 3 and verified the absence of new master integrals.

It is clear that the linear system of equations will impose a myriad of relations between
the expansions of the different master integrals. However, the key point is whether we
can fix all expansions in terms of coefficients that we can easily evaluate. At four loops
this turned out to be possible, with all master integrals given in terms of the expansions
of recursively one-loop integrals. This class of diagrams can be evaluated exactly by a
recursive application of the one-loop bubble integration

1
εG(1, 1)

∫ dd`
πd/2

1
`2a(p− `)2b = (p2)d/2−a−b G(a, b)

εG(1, 1) , (5.2)

with G defined as

G(a, b) = Γ(a+ b− d/2)Γ(d/2− a)Γ(d/2− b)
Γ(a)Γ(b)Γ(d− a− b) . (5.3)

Note that we used the freedom in the definition of dimensional regularization to normalize
integrations according to the G-scheme [53]. Using the functional equation Γ(a + 1) =
aΓ(a), the ε-expansion of G(a, b)/G(1, 1) consists, at any order, of rational linear combina-
tions of Riemann zeta values: for example, near a = 1, the expansion can be obtained from

Γ(2− ε− a)
Γ(a)

/Γ(1− ε)
Γ(1) = exp

[ ∞∑
k=2

ζ(k)
k

(
(ε+ a− 1)n − (1− a)n − εn

)]
. (5.4)
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Figure 7. Three examples of recursively one-loop master integrals. Each loop variable can be
integrated one by one, and in the end we obtain an exact expression for each of these integrals as
a function of the spacetime dimension d.

Meanwhile, at five loops there are 21 recursively one-loop master integrals appearing
in the IBP reductions of p-integrals (see figure 7 for some examples). Equation (5.2) can
then be used to obtain their expansions explicitly, so that we provide some inputs to the
linear system of equations. In our case, however, these integrals cannot provide sufficient
information to fix all expansions up to transcendental weight 9. Namely, at five loops there
is for the first time a contribution from a multiple zeta value (MZV) of weight 8. MZVs
are defined as

ζ(n1, . . . , nr) =
∑

1≤k1<···<kr

1
kn1

1 · · · k
nr
r
∈ R>0, (5.5)

where the indices n1, . . . , nr−1 ≥ 1 and nr ≥ 2 denote integers, and their sum n1 + · · ·+nr
is referred to as the transcendental weight. Up to weight 7, all such MZV can be written
as rational linear combinations of products of Riemann zeta values (r=1). But at weight
8, such relations still leave a 1-dimensional quotient space, generated e.g. by ζ(3, 5), that
conjecturally cannot be reduced in this way, and can hence never be obtained from the
expansion of (5.3), since the latter only contains Riemann zeta values from (5.4). As ζ(3, 5)
has long been known to appear at five-loop order in massless propagators [54, 55], it is thus
clear that we will need further inputs, beyond recursively one-loop integrals.

At this point the linear system of equations obtained from the cutting procedure has
been written in terms of the master integrals. We input the expansions of all recursively
one-loop integrals, which we can evaluate explicitly according to equation (5.2). How-
ever, before we consider the relations introduced by different cuttings, we can already
extract some constraints from an analysis of the IBP identities themselves. While five-
loop p-integrals diverge at most as ε−5, one finds that some of the coefficients ri in the
reductions (2.4) also contain poles in ε. Requiring the cancellation of those (spurious)
poles of order ε−6 and worse, fixes already 563 coefficients in the expansions of the master
integrals. Then we impose that all 8116 p-integrals obtained from distinct cuttings of the
finite vacuum diagrams are finite, which further fixes 1300 coefficients. Finally, looking at
the 7647 equations which relate the finite orders of those p-integrals, we are able to fix
another 259 coefficients.

In total we were able to fix 2122 coefficients using the expansions of the 21 recur-
sively one-loop integrals, which themselves contain only 264 coefficients. In the end, the
expansions of all master integrals up to transcendental weight 9 depend only on 2 unde-
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Figure 8. This five-loop master integral is a product of two-and three-loop master integrals.
The knowledge of its expansion, together with the recursively one-loop integrals, is sufficient to
determine the expansions of all remaining master integrals.

termined coefficients. As explained above, they encode the dependence on the expected
MZV of weight 8. Fortunately, these undetermined coefficients are present in the ex-
pansions of many integrals, including 21 which are products of lower-loop masters. All
lower-loop master integrals were computed up to transcendental weight twelve,6 and so we
can easily determine the expansions of all five-loop master integrals which are a product
of lower-loop integrals.

In fact, the last 2 undetermined coefficients can be extracted from the expansion of
the p-integral depicted in figure 8. Using (5.2), the missing information is thus contained
in known higher order corrections to the two-loop master integral [55, 56].

6 Results

In this work we have demonstrated that the glue-and-cut algorithm still provides an ex-
tremely powerful way of determining master p-integrals at the five-loop order. Following
the strategy developed at lower loops, we input the expansions of 21 recursively one-loop
integrals, which can be evaluated easily to arbitrary orders in ε. As predicted in [22] this
type of integrals are not enough to fix completely the solution. In fact the system of
equations obtained then fixes the expansions of the remaining 260 master-integrals, up to
transcendental weight 9, in terms of a single master integral. This master integral can then
be chosen as the product of planar lower-loop diagrams, one of which can be written as
the difference of two 3F2 hypergeometric functions [55, 57–59] and fixes the multiple zeta
value contribution.

As we have mentioned in section 5, with our choice of master integrals,7 some coeffi-
cients ri(P, 4−2ε) of the IBP reductions (2.4) occasionally have poles at ε = 0. These poles
are called spurious poles in [22]. Such poles do not necessarily cause a problem, since the
GaC constraints determine each master integral Mi all the way up to the order qi where
terms of transcendental weight 9 first appear. However, and unlike the four-loop case, we
observe instances where the maximal power of a spurious pole is greater than the order
qi to which the master integral is fixed. A general master integral will have the following
expansion:

Mi(ε) =
qi∑

n=−5
cn(Mi)εn +

∑
n>qi

cn(Mi)εn ,

6At four loops, this was done in [21].
7Complete details are provided in the supplementary material.
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where the first terms with n ≤ qi are fully fixed via GaC equations in terms of zeta
values {ζ(k), ζ(k, j)} of transcendental weight ≤ 9. The higher orders n > qi are not
fully determined, but nevertheless the GaC constraints provide several relations among
these higher order coefficients between different master integrals. We have incorporated
this information in our results by solving these equations, so that some of the higher
order coefficients c>qi(Mi) are expressed as linear combinations of coefficients c>qj (Mj)
of other master integrals. We find that these GaC constraints on the higher orders are
sufficient to determine c≤0(P ) for any P -integral: after IBP reduction of P to our basis of
master integrals, all remaining undetermined degrees of freedom arising from higher order
coefficients c>qj (Mj) cancel out from the coefficients c≤0(P ).

Given that the undetermined coefficients cancel out in the IBP reductions of p-integrals
and that we are we are free to choose any basis of master integrals, we followed the proce-
dure indicated in [60] and constructed a new basis such that the IBP reduction coefficients
never exhibit poles in ε with degree higher than qi. This new basis is obtained by selecting
a master integralMi for which the power of the spurious poles surpasses qi, and replacing it
with one of the p-integrals P whose coefficient ri(P, d) realizes the maximal pole. This pro-
cedure is iterated, until all such spurious poles are resolved.8 The basis thus constructed,
and its relation to our original basis, is provided in the supplementary material.

We checked that the expansions of the planar integrals precisely match the results
obtained in the context of position-space integrals [27]. Similarly, the expansions of all
non-planar product-type integrals agree with those obtained from lower-loop master inte-
grals. Finally, a few orders in the expansions of some genuine five-loop non-planar integrals
which were known from the Fourier transform of position-space results [27] and a φ4 com-
putation [9], were all equally confirmed here. For the finite p-integrals obtained as cuts of
φ4 four-point graphs, our results agree with the periods determined in [61].

We wish also to emphasize that the equations obtained with this method do not dis-
criminate between planar and non-planar graphs, and they often involve p-integrals from
both categories. In that way, it seems highly unlikely that errors could arise only for the
non-planar graphs for which we provide novel results.

Interestingly, we find that the ε-expansions of all master integrals up to transcendental
weight 9, and moreover all coefficients cn(P ) with n ≤ 0 of all p-integrals we considered,
can be written as polynomials (with rational coefficients) in the following five quantities:

ζ̂(3) = ζ(3)+ 3ε
2 ζ(4)− 5ε3

2 ζ(6)+ 21ε5

2 ζ(8) , ζ̂(5) = ζ(5)+ 5ε
2 ζ(6)− 35ε3

4 ζ(8) ,

ζ̂(7) = ζ(7)+ 7ε
2 ζ(8) , ζ̂(3,5) = ζ(3,5)− 29

12ζ(8)− 15ε
2 ζ(4)ζ(5),

and ζ(9) . (6.1)

The same observation and ε-dependent transformation was found previously in the con-
text of position space integrals [27], up to a redefinition of ζ̂(3, 5) following [25] that is

8It is interesting to notice that the number of replaced master integrals is considerably less than the
number of integrals with undetermined higher-order coefficients, which points to a common structure of the
spurious divergent poles in a specific dimension.
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purely a matter of convenience.9 This implies that, up to the ε-order where the master
integrals reach transcendental weight 9, the contributions involving even zeta values are
not independent, but in fact determined completely by the coefficients (in lower ε-orders)
of polynomials in

ζ(3) , ζ(5) , ζ(7) , ζ(3, 5)− 29
12ζ(8) , and ζ(9) . (6.2)

The first such connection, tying ζ(4) = π4

90 to ζ(3) at three loops, was explored in [62]. At
the four-loop level, the correlation of ζ(6) = π6

945 to ζ(3) and ζ(5) was settled in [22], and
extensions of such relations and ε-dependent transformations like (6.1) up to eight loops
(transcendental weight 13) were proposed in [25]. Our work can be viewed, alongside [27],
as a further indication towards the validity of this picture at five loops (transcendental
weight 9), where multiple zeta values enter for the first time, as ζ̂(3, 5). These findings
suggest that the rich number-theoretic structure [63] of convergent (ε = 0) p-integrals
persists also in some form on the level of ε-expansions, which is a domain whose mathe-
matical foundations are still under construction [64]. A systematic understanding of these
ε-dependent transformations of transcendentals has so far been obtained only in the case
of Riemann zeta values [26].

These constraints on the ε-expansions of p-integrals have striking implications for
renormalization group functions, in form of the no-π theorem [65], which predicts the π-
dependent terms (involving even zeta values) in terms of the π-free terms.

Given its success so far, it seems reasonable to expect that the glue-and-cut method
should in principle be applicable also at six loops. However, it requires the ability to reduce
p-integrals to a basis of master integrals, and at six loops that task does not seem feasible
with any of the currently available tools for IBP reduction.

Finally, the p-integrals presented in this paper have different applications, beside the
aforementioned computation of β-functions or anomalous dimensions. For example, they
can also appear as boundary conditions in the context of differential equations when com-
puting higher-point integrals [66–68].
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