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Abstract—Graph partitioning, a preliminary step of dis-
tributed graph processing, has been attracting increasing
attention in the last decade. A high quality graph partitioning
algorithm should facilitate graph processing by minimizing the
communication overhead and maintaining the load balancing
among distributed computing units. Offline partitioning algo-
rithms usually require the knowledge of a complete graph,and
therefore, are not adaptive to handle massive graph-structured
data. On the contrary, streaming partitioning algorithms take
edges or vertices as a stream and make partitioning decisions on
the fly. However, the streaming manner faces dilemmas from
time to time because of a lack of knowledge. Furthermore,
an unmindful partitioning decision in such a dilemma could
significantly decrease the partition quality. In this paper, we
propose a novel window-based streaming graph partitioning
algorithm (WSGP). WSGP leverages a greedy-based heuris-
tic to perform edge partitioning. When facing a decision
dilemma, WSGP utilizes a size-bounded window to buffer the
edges. When the window is fully filled, an edge is poped
and assigned to a partition. The assignment is decided by
knowledge obtained from both the edges already settled and
the ones still cached in the buffer window. Our experiments
take into account various real-world benchmark graphs. The
experimental results demonstrate that WSGP consistently has a
smaller replication factor than the state-of-the-art algorithms
by up to 23%, at a limited cost in terms of memory and
comprehensive running time.

I. INTRODUCTION

Many complex systems such as social networks, road
networks, or molecular networks, ranging from computer
science to biology, can be naturally represented by graphs.
Analyzing graph-structured data brings opportunities to ex-
plore underlying rich and complex relationships. This has
been widely applied in recommendation, link prediction, and
subgraph matching for instance. However, with the rapid
growth of graph-structured data, it is no more adaptive to
perform graph processing in a single computing unit. As an
example, the graph from the online social network Orkut
(used later in this work) comprises more than 3,000,000
vertices and more than 117,000,000 edges [1].

Processing graphs over distributed systems has attracted
significant interests in the last decade, from both the re-
search and industry communities. In particular, distributed
graph processing systems, such as Pregel [2], GraphLab [3],
Powergraph [4] and GraphX [5], have been proposed and

succeeded to process billion-scale graphs. To perform dis-
tributed graph processing, it is required to partition the graph
first. Edge partitioning currently constitutes the favored
approach for very large graphs in order to balance the load
among distributed computing units.

In this paper, we study the edge partitioning (vertex cut)
problem, where each edge is assigned to a single partition,
such that the graph is divided along vertices. Usually, vertex
cut is modeled through vertex replication. For example, if
two edges share a common vertex but are assigned to two
different partitions, then the common vertex has two replicas,
one on each partition. Such replication inevitably causes
synchronization or communication overhead for distributed
graph processing. Hence, a high quality edge partitioning
approach should minimize the number of produced replicas.
On the other hand, fair load distribution is highly desirable
in distributed systems. Therefore, edge partitioning should
also maintain load balancing by assigning edges evenly over
partitions.

To perform edge partitioning, there are two basic ap-
proaches: offline partitioning and streaming partitioning.
Offline partitioning relies on loading the complete graph
into memory. This way allows for designing high qual-
ity partitioning heuristics, but is lacking of availability to
process large-scale graphs. On the opposite side, streaming
partitioning follows the online setting. Edges arrive as a
stream and the partitioner assigns edges to partitions on
the fly. Compared with offline partitioning, the streaming
manner has a good scalability and a reasonable loss of
partitioning quality.

In this paper, we systematically investigate the streaming
edge partitioning problem, and propose a novel Window-
based Streaming Graph Partitioning approach (WSGP).
WSGP inherits the framework of Oblivious [4] and leverages
new heuristic strategies. Once an edge arrives, Oblivious
makes the assignment according to four rules. Yet, we notice
that in Oblivious it is hard to make a good assignment for
an edge whose pair vertices does not appear in the same
partition. We consider such scenario as a dilemma, whose
existence is due to the fact that the current partial knowledge
is not sufficient. Aiming at such problem, our idea is to
leverage a window to buffer this edge temporarily while
continuing to assign the next incoming edges. The buffering



operation does provide new opportunities to break through
the dilemma, as it allows to collect more knowledge of the
graph. As soon as the window is fully filled, we pop a
buffered edge and carry out the assignment. If this edge
is still in the same dilemma, our new strategy selects the
partition which targets to benefit the assignment of more
edges still buffered in the window, i.e., let more buffered
edges not meet the dilemma again.

Our contributions are summarized as follows:
• We perform a comprehensive study on different stream-

ing edge partitioning algorithms. We characterize the
features and identify the key problems.

• We propose WSGP a new window-based streaming
partitioning approach. WSGP enables the partitioner to
synthetically use knowledge obtained from both the
edges already settled and still cached, and this approach
succeeds in avoiding bad assignments.

• We carry out the evaluation with different types of real-
world graphs. The experimental results demonstrate that
our new approach outperforms existing streaming edge
partitioning algorithms in terms of the replication fac-
tor, at the cost of a acceptable processing time overhead
and a limited additional memory consumption.

The rest of this paper is organized as follows. Section II
sketches out the related work. Section III introduces the
notations and gives a formal problem definition. In Sec-
tion IV, a new window-based streaming partition algorithm
is proposed and analyzed. The experimental setup and results
are discussed in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK

Graph partitioning is a well-known fundamental problem
in many parallel and distributed applications [2], [6], [7].
There are two graph partitioning variants: edge partitioning
(vertex cut) and vertex partitioning (edge cut). Edge parti-
tioning results in partitions that are edge disjoint while vertex
partitioning results in partitions that are vertex disjoint.
Figure 1 depicts an example showing their differences. We
can see that both partitioning variants bring in additional
costs, e.g., in Figure 1(a) vertex v2 is replicated and in
Figure 1(b) two edges are cut. In another aspect, load
balancing also affects the efficiency of downstream tasks
execution due to Liebig’s law, such that graph partitioning
in a general not only targets to minimize the partitioning
costs, but also to maintain load balancing. For optimizing
both objectives, the two variants are known to be NP-hard
problems [8]–[10]. In the following, we first sketch typical
vertex partitioning approaches and then introduce the latest
development on edge partitioning.

A. Vertex Partitioning

Pregel [2] and GraphLab [3] are two distributed graph
processing systems that leverage a vertex-program which is
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Figure 1: Edge Partitioning vs. Vertex Partitioning

executed on each vertex and can interact through shared-
memory or messages. Both Pregel and GraphLab depend
on vertex partitioning to minimize communication costs and
ensure load balancing. However, in the case of natural graphs
(e.g., power-law graphs), Pregel and GraphLab are forced
to resort to hash-based partitioning which can extremely
decrease the system performance.

LDG [11], [12] and Fennel [7] also follow the vertex
partitioning paradigm but take a stream of vertices as input.
LDG uses a greedy heuristic that tries to assign neighboring
vertices to the same partition. Fennel leverages a heuristic
which combines locality-centric measures with load balanc-
ing factors [12]. Both LDG and Fennel require the total
number of vertices as an a priori. Hence, both of them could
be considered as bounded streaming algorithms.

J.E. Gonzalez et al. [4] argued that edge partitioning is
more adaptive for partitioning natural graphs. They also
pointed out that for a given edge-cut with g replicas, any
vertex cut along the same partition boundary has strictly
fewer than g mirrors. In recent years, more researches has
focused on studying edge partitioning.

B. Edge Partitioning

C. Zhang et al. [13] proposed NE an edge partitioning
heuristic whose key idea is neighborhood expansion. NE
selects edge gradually to fully fill each partition and this
approach performs quite well. M. Hanai et al. [14] pro-
posed a follow-up study. They reformed NE to distribute its
approach, this proposition can process trillion-edge graphs
and achieves better performance in terms of running time.
However, both of them depend on the knowledge of the
complete graph.

Streaming based edge partitioning does not rely on know-
ing the complete graph. Z. Abbas et al. [15] did an exper-
imental study of several typical streaming edge partitioning
methods including Hash, Grid [16], PDS [16], DBH [17],
Oblivious [4] and HDRF [18]. Hash is an intuitional method
that decides the partition by simply computing a hash
function. Hash is adept at maintaining load balancing but can
lead to a large number of vertex replicas. Grid and PDS are



also hash based methods. The difference is that they require
additional constrains. For example, Grid needs all partition
IDs arranged in a square matrix, while PDS involves Perfect
Difference Sets which requires p2+p+1 partitions (p being
prime). Existing studies [15] showed that only relying on
hash function is difficult to have a good partitioning result.
DBH prioritizes cutting the vertices having highest degree
and employs hash for partitioning. With its heuristic cutting
high degree vertices, DBH outperforms pure hash based
methods. Different from Hash, Grid, PDS and DBH, our
new proposed WSGP does not depend on any hash function
to assign the edges.

Oblivious [4] and HDRF [18] are closer to our work.
As a general approach, Oblivious uses greedy heuristic to
make the current optimal assignment according to the known
partial knowledge. When Oblivious meets a dilemma, it
simply performs the assignment by only considering load
balancing. Different from Oblivious, HDRF prefers to cut
vertices with high degrees when meeting a dilemma. After
deciding the cutting preference, HDRF makes the final
assignment in order to maintain load balancing. Our WSGP
also uses a greedy algorithm. Different from Oblivious
and HDRF, WSGP leverages a bounded window to buffer
the edge temporarily when facing an assignment dilemma.
When processing a buffered edge, WSGP does the assign-
ment aiming at producing less replicas for the successive
assignments of edges still buffered in the window.

Our work is also related ADWISE [19] as the common idea
consists in involving a window to buffer edges. However,
both ways of window utilization differ. ADWISE puts every
edge into the window. Once the window is fully filled,
a greedy strategy integrating a balancing factor, a degree-
awareness factor and a clustering factor is performed to
decide the assignment. According to our study, this strategy
that buffer each vertex is not good for partitioning efficiency.
Hence, in our approach, we consider to buffer only the edges
facing a special dilemma. Meanwhile, for the way to use
information collected by the window, we propose a new
greedy strategy aiming at producing less replicas, which also
differ from ADWISE strategy.

III. NOTATIONS AND PROBLEM FORMULATION

In this section, we first provide necessary notations and
then formulate the streaming edge partitioning problem.

A. Notations

We consider G = (V,E) the undirected graph waiting
to be processed, where V is a set of vertices and E is the
set of edges. To facilitate our presentation, we usually use
lowercase like u (or v, x, y, ...) to express a vertex and use
eu,v to represent an edge connecting two vertices u and v. A
partition of edges P = (P1, P2, ..., Pk) is defined as a family
of pairwise disjoint edge sets, i.e., ∀i 6= j, Pi ∩ Pj = ∅ and

P1 ∪ P2 ∪ ... ∪ Pk = E. Each partition Pi (i = 1, ..., k) is a
subset of edges denoted as Pi = {ex,y|ex,y ∈ E∧x, y ∈ V }.

Let A(u) be the set of partitions (A(u) ⊆ P ) where each
vertex u ∈ V is replicated. The replication factor RF is
defined to be the average number of replicas per vertex [20]:

RF =
1

|V |
∑
u∈V
|A(u)| (1)

A partitioning of edges P is σ balanced if:

max
Pi∈P

|Pi| < σ
|E|
|P |

, (2)

where |E| is the total number of edges of G, |P | = k
represents the total number of partitions, and σ ≥ 1 is the
factor describing the maximum acceptable imbalance.

B. Problem Formulation

In streaming edge partitioning, a sequence of edges eu,v ,
ex,y , ... (that could be in any order) arrive in a stream-
ing manner. An edge partitioning algorithm claimed to be
streaming should not foreknow the sequence order and has
to assign every edge to a given partition Pi on the fly.

In this paper, we focus on a k-way σ balanced streaming
edge partitioning problem which divides the edge set E into
k disjoint parts and aims at minimizing the replication factor
RF , meanwhile, maintaining the load of each partition σ
balanced. The formulation is given in the following:

minimize RF ; (3)

s.t., max
Pi∈P

|Pi| < σ
|E|
|P |

(4)

IV. STREAMING EDGE PARTITIONING

A. Analysis

Our algorithm WSGP follows the framework of Oblivious
[4] which leverages a greedy approach to assign edges on
the fly. Once an edge e(u,v) arrives, Oblivious decides the
assignment for e(u,v) according to the following four cases:

1) Case 1: If A(u) ∩A(v) 6= ∅, e(u,v) is assigned to the
minimum loaded partition in A(u) ∩A(v).

2) Case 2: If A(u) = ∅ and A(v) 6= ∅, e(u,v) is placed
to the minimum loaded partition in A(v). And vice
versa, if A(u) 6= ∅ and A(v) = ∅, e(u,v) is placed to
the minimum loaded partition in A(u).

3) Case 3: If A(u) = ∅ and A(v) = ∅, e(u,v) is placed
to the minimum loaded partition in |P |.

4) Case 4: If A(u) 6= ∅, A(v) 6= ∅ and A(u)∩A(v) = ∅,
e(u,v) is assigned to the minimum loaded partition in
A(u) ∪A(v).

Case 1 and Case 2 apply reasonable greedy strategies to
selected the optimal partition according the current state. In
case 3, both vertices u and v appear for the first time, i.e.,
there is no known information to assign e(u,v) towards RF
minimization. Hence, the assignment can be done by only



1: Input e(x,y);
2: if |w| = MaxSize then
3: e(u,v) ← w.pop();
4: if A(u) ∩A(v) 6= ∅ then
5: j ← argminPi∈A(u)∩A(v)(|Pi|);
6: else
7: j ← score(u, v);
8: end if
9: Pj ← Pj ∪ e(u,v);

10: N(u)← N(u)\v;
11: N(v)← N(v)\u;
12: end if
13: w ← w ∪ e(x,y);
14: N(x)← N(x) ∪ {y};
15: N(y)← N(y) ∪ {x};

Figure 2: Window-based Edge Allocation (WEA)

considering load balancing. In Case 4, both vertices u and
v appeared before. However u and v do not have replicas
in the same partition as A(u) ∩ A(v) = ∅. We consider
Case 4 as an assignment dilemma, since no matter how to
do the partition, the partitioner either increases u’s replicas
by one or increases v’s replicas by one. In such a dilemma,
Oblivious considers the minimum loaded partition, i.e., and
totally ignores RF in this case. Different from Oblivious,
to break the symmetry, HDRF [18] chooses to sacrifice the
one with the larger degree.

Our idea is different from both of these approaches: we
consider taking advantage of memory to cache edges like
e(u,v) temporarily. When we try to assign e(u,v) for the
second time, the situation is different because we can utilize
information from both the already processed edges and the
ones still cached to break the symmetry. According to this
key idea, we propose a novel Window-based Streaming
Graph Partitioning algorithm (WSGP).

B. Window-based Algorithm

WSGP leverages a window to cache those edges whose
partitions are hard to be decided yet. In a nutshell, once a
new edge e(u,v) arrives, there are four cases to deal with
e(u,v):

1) Case 1, Case 2, Case 3 inherits from Oblivious;
2) Case 4: If A(u) 6= ∅, A(v) 6= ∅ and A(u)∩A(v) = ∅,

call the method WEA(e(u,v)) to tackle e(u,v).

Before elaborating Window-based Edge Allocation
(WEA), let us introduce the data structure for constructing
the window w. Generally, w buffers each edge e(u,v) com-
ing from Case 4. The cardinality |w| of w is defined as
the number of edges it has buffered. For easily obtaining
information from w, we also maintain a partial neighbor list
for each vertex appearing in w. More precisely, if e(u,v) has
been buffered in w, we then maintain two sets N(u) and
N(v). Take N(u) as an example, it records u’s neighbors
that also appears in w. For example, in Figure 4, there is a
window buffering of six edges. At a given time depicted on

1: Input u, v;
2: for each Pi ∈ A(u) do
3: rank(Pi) =

∑
x∈N(v)

g(x, Pi);
4: end for
5: m1 ← max rank(Pi), where Pi ∈ A(u);
6: S1 ← {Pi|Pi ∈ A(u) ∧ rank(Pi) = m1};
7: for each Pi ∈ A(v) do
8: rank(Pi) =

∑
x∈N(u)

g(x, Pi);
9: end for

10: m2 ← max rank(Pi), where Pi ∈ A(v);
11: S2 ← {Pi|Pi ∈ A(v) ∧ rank(Pi) = m2};
12: S ← S1 ∪ S2;
13: id← argmax{rank(Pi) + Pbal(Pi)}, where Pi ∈ S;
14: return id;

Figure 3: The pseudo code of method score

top of the Figure 4, N(u) includes three vertices v, x, and
y, and N(v) includes one vertex u.

The pseudo code of WEA is provided in Figure 2. WEA
takes an edge e(x,y) as its input (line 1). If w still has an
empty space to accommodate one more edge, WEA buffers
e(x,y) in w (line 13) and updates N(x) and N(y) (lines 14-
15) immediately. Otherwise, WEA pops out an edge e(u,v)
(line 3) to compute its partition (lines 4-11) and then buffers
e(x,y). For the popped edge e(u,v), WEA first tests whether
Case 1 is satisfied (line 4). If so, e(u,v) is assigned to the
minimum loaded partition in A(u)∩A(v) (line 5). Note that
when e(u,v) arrives in the system, Case 4 is satisfied, such
that e(u,v) is buffered in w. The buffering of e(u,v) actually
changes the order of edge assignments, such that when e(u,v)
is popped, we can have Case 1 that is satisfied. If the test in
line 4 is not passed, the method score is called to return the
partition for e(u,v) (line 7). Once the assignment is decided,
e(u,v) is settled (line 9) and then the dual sets N(u), N(v)
are updated (lines 10-11).

The pseudo code of the method score is provided in
Figure 3. score takes the pair vertices of e(u,v) as the inputs
(line 1). As now A(u) and A(v) have no intersection, we
shall choose the best partition from A(u) ∪ A(v) to be the
target partition. Hence, we scan each partition in A(u)∪A(v)
to get their ranks (lines 2-4, 7-9). We pick a partition Pi from
A(u) as an example. Pi’s rank is counted by the number of
vertices that appear both in Pi and N(v), which could be
formulated by g(x, Pi) as follows:

g(x, Pi) =

{
1, if Pi ∈ A(x);

0, otherwise.

Note that such a heuristic aims at getting benefits from
using the window scheme: once e(u,v)’s partition is decided,
it should facilitate as much as possible edges also buffered
in the window to get their partitions, since they are not in a
dilemma situation anymore.
m1 records the highest rank of partitions from A(u) (line

5). Then all the partitions from A(u) ranked by m1 are
logged in to an auxiliary set S1 (line 6). Lines 7-11 perform
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a similar ranking process for partitions from A(v). For all
partitions selected (logged in S, line 12), we then combine
them with the balance factor Pbal to make the final decision
(line 13). The id of the target partition is returned (line 14).

Pbal(Pi) = λ×
maxPj∈P |Pj | − |Pi|

maxPj∈P |Pj | −minPj∈P |Pj |+ ε
(5)

The above equation (5) calculates Pbal(Pi), where ε is a
constant used to avoid the denominator equals to 0 and λ is
used to define the importance of load balancing.

Figure 4 depicts an example showing the process after
an edge e(u,v) is popped. In this example, w contains
six edges, from which we can get N(u) = {v, x, y}
and N(v) = {u, z}. Right now A(v) = {P1, P3} and
A(u) = {P2, P4}, such that e(u,v) will be located on one of
the four partitions. In Figure 4, we use a dash line to express
e(u,v)’s four possible assignments. Considering that e(u,v) is
assigned to P1. We can see that one vertex x appears in both
N(v) and P1. According to our strategy, rank(P1) = 1.
Analogously, we can get that rank(P2) = 0, rank(P3) = 2
and rank(P4) = 1. Therefore, in line 12, S = {P2, P3, P4}
is obtained in this case. If the balance factor Pbal does not
play a major role, then id = 3 is obtained in line 13.

Note that if there are no more edges arriving, WSGP
successively pops edge from w and then carries out the
assignment by directly executing lines 4-12 in Figure2.

C. The costs of WSGP

We analyze the time complexity of WSGP through a
comparison with Oblivious, i.e., focusing on the extra over-
head for settling each edge. Oblivious is a one-pass stream-
ing algorithm guaranteeing that each edge is processed
only once. WSGP could be seen as a two-pass streaming
algorithm as each buffered edge needs to be processed
again. Hence, the extra overhead of WSGP comes from
the operations after an edge is popped. Let us take edge
e(u,v) as an example. After e(u,v) is popped, the major

time consumption arises from computing rank for each
candidate partition (lines 2-3, 7-9, Figure 3), which could
be modeled by |A(u)||N(v)|+ |A(v)||N(u)|. Therefore, the
extra overhead for settling each edge is upper-bounded by
O(|w||P |), as |A(u)| ≤ |P |, |A(v)| ≤ |P |, |N(v)| � |w|
and |N(u)| � |w|.

V. EVALUATION

This section presents the experimental results for WSGP
approach compared with other streaming edge partitioning
(SEP) algorithms. The evaluation was performed on different
degree distribution graphs.

A. Datasets

Many graph datasets are used in previous work [13], [15],
[19], [21]. In order to build a fair and comparable result,
we selected the four most common real-world graphs that
capture different characteristics for degree distribution. We
also used two additional graphs in order to compare with
the results extracted from other articles. Table. I shows the
statistics of the 4 datasets.

Table I: Statistics for real-world datasets

Dataset |V | |E|
dblp [1] 317,080 1,049,866

web-google [23] 875,713 4,322,051
com-liveJournal [22] 3,997,962 34,681,189

com-orkut [1] 3,072,441 117,185,083

Figure 5 provides the degree of vertices, the number of
vertices with the same degree, the percentage of each degree
and a regression line of degree distribution. We observed that
DBLP and WEB-GOOGLE datasets have many low degree
vertices. Compared with DBLP and WEB-GOOGLE, COM-
LIVEJOURNAL and COM-ORKUT have less low degree ver-
tices and follow a heavy-tailed distribution.

B. Partition tool and Environment setup

In order to study the performance of the state-of-the-
art SEP algorithms and compare them to our approach,
we build a low cost window streaming partitioner WStool
based on the approach provided in [21]. The motivation
of developing such a stand-alone partition tool is to run
the SEP algorithms in an isolate environment with efficient
implementation, not only avoiding any extra overhead of
resource management and scheduling from the downstream
graph computing systems [2], [5], [22], but also minimizing
the running time.

Table II: Preprocessing time of VGP (seconds)

dblp web-Google com-LiveJournal com-Orkut
1 7 81 327

There are three major differences compared with the
HDRF partitioner VGP [21]. Firstly, VGP needs to load
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Figure 5: Characteristics for real-world datasets

the full graph into memory such that it is not suitable to
process the large-scale graphs. Table II shows the prepro-
cessing time of VGP. Our implementation WStool loads and
processes each edge on the fly. Hence, compared with VGP,
WStool removes the preprocessing time and reduces memory
footprint. Secondly, we implemented a more efficient data-
structure (e.g. bitset) to store the information of replicas that
allows to further reduce memory footprint and speedup the
calculation. Lastly, we also eliminated the lock mechanism
which is used for parallel processing. In this paper, all
experiments used one thread.

The number of partitions is set to 30 except the exper-
iments dedicated to varying this parameter. Figure 6 plots
the running time (without preprocessing time) of WStool and
VGP partitioner for a variety of real-world datasets.
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Figure 6: Graph partitioning time of VGP and WStool

As expected, WStool processes much faster than VGP. In
this paper, all experiments are deployed on a single server
with the following specifications: 2 × Intel(R) Xeon(R)
CPU @ 3.2GHz, 96GB of RAM, Ubuntu 18.04. WStool is
implemented with Java 1.8.

C. Metrics
We used two metrics to measure the quality of graph

partitioning algorithms: Replication Factor (RF ) and Load
Balancing Index (LBI).

Replication Factor: this metric is defined in Equation 1
(in Section III.A). RF describes the average number of

replicas per vertex. RF corresponds to the communication
overhead for synchronization in graph computing phase.
Generally, graph computing phase is composed of multiple
iterations. Each vertex exchanges information by message
passing or memory sharing in each iteration [4]). So the
higher the RF is, the more messages arise over the network,
which slows down the whole computing phase.

Load Balancing Index: this metric is defined as follows:

LBI =
max |Pi|
|E|
|P |

(6)

A partition can be seen as an isolate computing node in
computing phase. A node hosts a portion of edges received
from the partitioning procedure. The node having the largest
number of edges decides the max processing time.

D. Input Order

The streaming partitioning algorithms have a common
feature that their performance is particularly sensitive to the
input edge order, such that it is difficult to propose an “one-
fit-for-all” streaming partitioning algorithm. For example, if
the input edges arrive according to a BFS (Breadth First
Search) or a DFS (Depth First Search) order, the greedy-
based algorithms that prefer to assign successive edges into
a single partition, can provide a bad RF . Enlarging the bal-
ance factor [21] is a possible way to break the tie. However,
we believe that for a particular order of edges, the best
choice is to design a particular partitioning method. To avoid
the ordering problem discussed above, we shuffled each
dataset randomly before running the experiments. Moreover,
we tested several random orders and the results show little
difference.

E. Window size

In this section, we evaluate the proposed WSGP algorithm
with different window sizes and compare its performance
with other SEP algorithms on real-world graphs.

Replication factor: Figure 7 shows the replication factor
of Oblivious, HDRF and WSGP algorithms in different win-
dow size settings (the x-axis is the percentage of the buffered
edges). Oblivious and HDRF have different partitioning
qualities in the four datasets. In general, HDRF outperforms
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Figure 7: Replication factor in different windows sizes

Oblivious. However, Oblivious has a lower replication factor
than HDRF on COM-ORKUT.

As for WSGP, when the window size approaches to 0,
WSGP shows a similar behavior to Oblivious. By increasing
the window size, WSGP is able to get more information
that helps to make good partitioning decisions. In general,
the larger the window size is, the better performance WSGP
achieves. Note that, the slope of the replication factor curve
is slowly decreasing. In our experiments, when the window
size is around in average 25%|E|, the slope of the replication
factor curve approaches to 0.

Load balancing index: Table III reports the results of
load balancing index. All algorithms yield a good load
balancing result. For our algorithm WSGP, the load balanc-
ing index increases slightly when the window size grows.
In Table III, we gives the result of WSGP by setting
|w| = 15%|E|. In [21], the authors concluded that the value
of parameter λ(Equation 5) affects the load balancing result.
Note that λ → ∞, the Pbal(Pi) in Equation 5 actually
dominates the score( 3 line 13), our algorithm becomes
meaningless. According to our study, we assign λ = 1.1.

Table III: Load balancing index

dblp web-google com-livejournal com-orkut
Oblivious ≤ 1‰ ≤ 1‰ ≤ 1‰ ≤ 1‰

HDRF ≤ 1‰ ≤ 1‰ ≤ 1‰ ≤ 1‰
WSGP ≤ 1‰ ≤ 1‰ ≤ 1‰ ≤ 8‰

Partitioning time: Figure 8 shows the average throughput
(edges/millisecond) for all algorithms (the x-axis is the per-
centage of the buffered edges). We can see that as the win-
dow size increases, the throughput of WSGP slowly drops
due to more computation needed. Oblivious and HDRF do
not impact by window size and have a better throughput
than WSGP. We consider this as a reasonable tradeoff be-
tween throughput and RF . Many previous work [13], [15],
[19], [21] demonstrated that the communication overhead
in the graph computation phase is strongly affected by the
replication factor achieved: even RF is increased by a little,
the computing time, due to thousands of graph computing
iterations, increases a lot. In particular, reducing communi-
cation cost is rather important in geo-graphically processing.

Therefore, we believe that in the graph partitioning stage it
is worth to have a one time cost to minimize RF : the extra
overhead of WSGP can be well compensated in the following
graph computing phase.

F. The number of partitions

In this section, we evaluated the performance of increasing
the number of partitions on a wide range from 2 to 64. The
window size |w| is fix to 3%|E|.

Replication factor: Figure 9 shows the results in different
number of partitions. The replication factor of all algorithms
show a slowly increasing trend when increasing the number
of partitions. WSGP outperforms all the comparison algo-
rithms. Since WSGP leverages a bounded window to collect
more information from the incoming edges, it greedily max-
imizes the potential data locality. In particular, increasing
the number of partitions, it provides more opportunities for
WSGP to buffer edges in the window. As shown in Figure 9,
the gap between WSGP and oblivious/hdrf are getting larger
when the partition number increases.

Furthermore, we show another example that how the
parameter λ affects RF . We added TWITTER a larger social
graph. Figure 10 shows the results of RF for all algorithms.
With increasing the value of λ, the value of RF of Oblivious
increases significantly, the RF of HDRF and WSGP stay
invariant. We also extends the test to other graphs. The
results consistently report that WSGP is less sensitive to
parameter λ.

Load balancing index: All algorithms yield almost per-
fectly balanced partitions(LBI ≤ 1‰).

Partitioning time: Figure 11 shows the average through-
put (edges/millisecond). All algorithms slow down as the
number of partitions increases. Oblivious and HDRF have
better performance than WSGP as they perform less compu-
tation.

G. ADWISE

In this section, we compare with another window-based
streaming graph partitioning ADWISE [19], WSGP is some-
time better in RF but with much less resources. We used the
same datasets BRAIN [24] and COM-ORKUT from article [19]
as the input stream for fair comparison. The BRAIN dataset
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Figure 8: Throughput in different window sizes
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Figure 9: Replication Factor in different number of partitions
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Figure 10: Twitter dataset

consists of 734,561 vertices and 165,916,089 edges, it is ex-
tremely skewed and follows a power-law degree distribution.
Our experiments follow the configuration provided in [19]
such that the number of partitions |P | = 32 and λ = 1.1.

Since [19] did not mention the window size, we tested
RF under different throughput values. We then picked out
the results which are the closest to the one provided in [19].
Figure 12 shows the results with respect to RF of WSGP
and ADWISE. The results of ADWISE are plotted according
to [19] (from Figures 7 and 8 in Section IV in [19]).

Replication factor: WSGP is worse than ADWISE on
BRAIN and outperforms ADWISE on COM-ORKUT graph.

Load balancing index: Although there is no exact LBI

in [19] for each dataset, the authors indicated LBI ≤ 5%.
WSGP provides well balanced partitions where LBI ≤ 1%.

Partitioning time: ADWISE spent 281s on BRAIN and
329s on COM-ORKUT. WSGP required 306s on BRAIN and
349s on COM-ORKUT. Yet, it should be highlighted that the
results of ADWISE employ 8 nodes with 8 Intel(R) Xeon(R)
CPU cores (3.0GHz, 6144 KB cache) and 32GB RAM per
node, while WSGP algorithm is processed by a single core
on a single node with only 8.4G memory consumption (see
Section V-B). Thanks to adopt the efficient implementation
WStool and lower complexity of WSGP, the computation
overhead and memory consumption of WSGP is much lower
than ADWISE with a similar running time, which implies
WSGP is more adaptive to process large-scale graphs with
much less resources. Moreover, by increasing the window
size, WSGP can further reduce the RF to 3.88 on BRAIN
with an acceptable time cost (408s).

H. Summary of results

We summarize the results of our WSGP algorithm for the
studied aspects. Using WSGP effectively reduces the number
of replicas. By varying the size of windows and the number
of partitions, WSGP consistently gives a good load balancing
for all graph datasets. The above results rely on a reasonable
window size with an acceptable time cost.

VI. CONCLUSION AND FUTURE WORK

Distributed graph partitioning for very large-size graphs
targets both load balancing among computing units and
runtime minimization. Replicating the high-degree vertices
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Figure 12: Replication factor of WSGP and ADWISE

is a good heuristic and existing work has shown that it
is useful for graph partitioning problem. In this paper, we
demonstrated that there is an alternative way to achieve the
same goal. With the low cost partitioner Wstool, the pro-
posed WSGP algorithm leveraged a size-bounded window
to optimize the decision for edge assignment efficiently. Our
experimental results show that WSGP consistently achieves a
smaller replication factor than the state-of-the-art algorithms
(up to 23%), with a limited impact on memory utilization
and runtime. We consider implementing a parallel version
of our algorithm and integrating it to a distributed graph
computing system as our future work.
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[10] K. Andreev and H. Räcke, “Balanced graph partitioning,”
in Proceedings of the 16th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2004,
pp. 120–124.

[11] I. Stanton, “Streaming balanced graph partitioning algorithms
for random graphs,” in Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Portland, Oregon, USA, January 5-7, 2014, pp. 1287–1301.

[12] I. Stanton and G. Kliot, “Streaming graph partitioning for
large distributed graphs,” in Proceedings of the 18th ACM
International Conference on Knowledge Discovery and Data
Mining (SIGKDD), Beijing, China, August 12-16, 2012, pp.
1222–1230.

[13] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li, “Graph edge
partitioning via neighborhood heuristic,” in Proceedings of the
23rd ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), Halifax, NS, Canada, August
13-17, 2017, pp. 605–614.

[14] M. Hanai, T. Suzumura, W. J. Tan, E. S. Liu, G. Theodoropou-
los, and W. Cai, “Distributed edge partitioning for trillion-
edge graphs,” Proc. VLDB Endow., vol. 12, no. 13, pp. 2379–
2392, 2019.

[15] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Stream-
ing graph partitioning: An experimental study,” Proc. VLDB
Endow., vol. 11, no. 11, pp. 1590–1603, 2018.

[16] N. Jain, G. Liao, and T. L. Willke, “Graphbuilder: scalable
graph etl framework,” in Proceedings of the First Interna-
tional Workshop on Graph Data Management Experiences
and Systems (GRADES), New York, NY, USA, June 24, 2013,
p. 4.

[17] C. Xie, L. Yan, W. Li, and Z. Zhang, “Distributed power-
law graph computing: Theoretical and empirical analysis,” in
Proceedings of the Annual Conference on Neural Informa-
tion Processing Systems (NIPS), December 8-13, Montreal,
Quebec, Canada, 2014, pp. 1673–1681.

[18] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Ia-
coboni, “Hdrf: Stream-based partitioning for power-law
graphs,” in Proceedings of the 24th ACM International Con-
ference on Information and Knowledge Management (CIKM),
Melbourne, VIC, Australia, October 19 - 23, 2015, pp. 243–
252.

[19] C. Mayer, R. Mayer, M. A. Tariq, H. Geppert, and K. Rother-
mel, “ADWISE: Adaptive Window-Based Streaming Edge
Partitioning for High-Speed Graph Processing,” in IEEE
International Conference on Distributed Computing Systems
(ICDCS), 2018.

[20] B. Florian, L. Marc, and V. Milan, “Balanced graph edge par-
tition,” in Proceedings of the 20th ACM International Confer-
ence on Knowledge Discovery and Data Mining (SIGKDD),
2014, pp. 1456–1465.

[21] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Ia-
coboni, “Hdrf: Stream-based partitioning for power-law
graphs,” in Proceedings of the 24th ACM International Con-
ference on Information and Knowledge Management (CIKM),
Melbourne, VIC, Australia, October 19-23, 2015.
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