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ABSTRACT

Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the
results of the analyses of galaxy clustering with photometrically selected galaxies (GCph) and weak lensing. In the next decade, space missions
such as Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with
upcoming ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and
depth of ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GCph and extend the
study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions
based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism
together with these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z
accuracy. We find that bins with an equal width in redshift provide a higher figure of merit (FoM) than equipopulated bins and that increasing the
number of redshift bins from ten to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an
increase in the survey depth provides a higher FoM. However, when we include faint galaxies beyond the limit of the spectroscopic training data,
the resulting FoM decreases because of the spurious photo-zs. When combining GCph and GGL, the number density of the sample, which is set
by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes and high redshift increases the FoM,
even when they are beyond the spectroscopic limit, since the number density increase compensates for the photo-z degradation in this case. We
conclude that there is more information that can be extracted beyond the nominal ten tomographic redshift bins of Euclid and that we should be
cautious when adding faint galaxies into our sample since they can degrade the cosmological constraints.
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1. Introduction

The goal of Stage-IV dark energy surveys (Albrecht et al.
2006), such as Euclid1 (Laureijs et al. 2011) and the Vera C.
Rubin Observatory Legacy Survey of Space and Time2 (Rubin-
LSST; LSST Science Collaboration 2009), is to measure both
the expansion rate of the Universe and the growth of struc-
tures up to redshift z ∼ 2 and beyond. These surveys will
allow us to constrain a large variety of cosmological models
using cosmological probes such as weak gravitational lensing
(WL) and galaxy clustering. Stage-IV surveys can be classi-
fied into spectroscopic and photometric surveys, depending on
whether the redshift of the observed objects is estimated with
spectroscopy or using photometric techniques. The latter can
provide measurements for many more objects than the former
but at the expense of a degraded precision on the redshift esti-
mates, given that photometric surveys observe through multi-
band filters instead of observing the full spectral energy distri-
bution that requires more observational time. Because of this,
galaxy clustering analyses are usually performed with data com-
ing from spectroscopic surveys, while the data obtained from
photometric surveys are generally used for WL analyses. How-
ever, given the current (and future) precision of our measure-
ments, the signal we can extract from galaxy clustering analyses
using photometric surveys is far from being negligible (see e.g.,
Abbott et al. 2018; van Uitert et al. 2018; Euclid Collaboration
2020a; Tutusaus et al. 2020). Therefore, upcoming surveys can
increase their constraining power if they optimize their photo-
metric samples to include galaxy clustering studies in addition
to WL analyses. The main aim of this work is to perform such
an optimization study for the Euclid photometric sample.

The Euclid satellite will observe over a billion galaxies
through an optical and three near-infrared broad bands. Given
the specifications of the satellite, the combination of Euclid
and ground-based surveys can enrich the science exploitation
of both. On the one hand, the WL analysis of Euclid data
requires accurate knowledge of the redshift distributions of the
samples used for the analysis. Euclid photometric data alone
cannot reach the necessary photometric redshift (photo-z) per-
formance and additional ground-based data are required. On
the other hand, Euclid will provide additional information to
ground-based surveys such as very precise shape measurements
– thanks to the high spatial resolution achieved being in space
and avoiding atmospheric distortions – and near-infrared spec-
troscopy. Euclid’s data will help ground-based surveys improve
their deblending of faint objects and improve their photo-
z estimates, which will definitely boost their scientific out-
come. Surveys where these synergies can be established include
the Panoramic Survey Telescope and Rapid Response Sys-
tem3 (PanSTARRS; Chambers et al. 2016), the Canada-France
Imaging Survey4 (CFIS; Ibata et al. 2017), the Hyper Suprime-
Cam Subaru Strategic Program5 (HSC-SSP; Aihara et al. 2017),
the Javalambre-Euclid Deep Imaging Survey (JEDIS), the
Dark Energy Survey6 (DES; Dark Energy Survey Collaboration
2005), and Rubin-LSST (Ivezić et al. 2019). The latter is a Stage
IV experiment which is extremely complementary to Euclid
since it greatly overlaps in area, covers two Euclid deep fields,
and reaches a faint photometric depth that will lead to better

1 https://www.euclid-ec.org
2 https://www.lsst.org
3 https://panstarrs.stsci.edu
4 http://www.cfht.hawaii.edu/Science/CFIS/
5 https://hsc.mtk.nao.ac.jp/ssp/
6 https://www.darkenergysurvey.org

photo-z estimation (Rhodes et al. 2017; Capak et al. 2019). In
this article we consider the addition of ground-based optical pho-
tometry to Euclid in order to assess the optimal photometric
sample for galaxy clustering and galaxy-galaxy lensing (GGL)
analyses.

The optimization of the sample of photometrically selected
galaxies for galaxy clustering analyses has been already stud-
ied in the literature. In Tanoglidis et al. (2019), the authors
focus their analysis on galaxy clustering for the first three years
of DES data. Also for DES but including galaxy-galaxy lens-
ing, Porredon et al. (2021) studies lens galaxy sample selections
based on magnitude cuts as a function of photo-z, balancing den-
sity and photo-z accuracy to optimize cosmological constrains
in the wCDM space. Another example is the recent analysis of
Eifler et al. (2021) on the Nancy Grace Roman Space Telescope
(Spergel et al. 2015) High Latitude Survey (HLS), where the
authors simulate and explore multi-cosmological probes strate-
gies on dark energy and modified gravity to study observational
systematics, such as photo-z. These studies show the importance
of optimizing the galaxy sample for galaxy clustering analysis.
We aim to perform a similar optimization for the Euclid mission.
We note that there have also been several studies optimizing the
spectroscopic sample for galaxy clustering analysis with Euclid
(Samushia et al. 2011; Wang et al. 2010).

We want to optimize the Euclid sample of galaxies detected
with photometric techniques by performing realistic forecasts of
its cosmological performance and observing the improvement
on the cosmological constraining power of different galaxy sam-
ples. When performing galaxy clustering analyses with a pho-
tometric sample there are several effects that need to be taken
into account such as galaxy bias, photo-z uncertainties, or shot
noise, among other effects. Here, we try to follow the procedures
one would perform in a real data analysis when selecting the
samples for the analysis. For that purpose, we use the Euclid
Flagship simulation (Euclid Collaboration, in prep.; Potter et al.
2017). For a given expected limit of the photometric depth, we
select the galaxies included within that magnitude limit and use
a machine learning photo-z method to study the optimal way to
split the catalog into subsamples for the analysis. We generate
realistic redshift distributions, n(z), for the chosen subsamples
and estimate their galaxy bias, b(z). We study the constraining
power of these samples when we modify the number and width
of the tomographic bins, and when we reduce the sample size by
performing a series of cuts in magnitude.

The article is organized as follows. We present Euclid and
ground-based surveys in Sects. 2 and 3, respectively. In Sect. 4,
we introduce the Flagship simulation and describe how we create
photometric samples with different selection criteria. We define
the set of galaxy samples that will be used throughout the arti-
cle and explain how we estimate the photometric redshifts. In
Sect. 5, we detail the forecast formalism and we describe the cos-
mological model in Sect. 6. In Sect. 7, we present the results of
the optimization when changing the number and type of tomo-
graphic bins, and we study the dependency of the cosmologi-
cal constraints on photo-z quality and sample size. Finally, we
present our conclusions in Sect. 8.

2. The Euclid survey

Euclid is an European Space Agency (ESA) M-class space mis-
sion due for launch in 2022. In the wide survey, it will cover
over 15 000 deg2 of the extra-galactic sky with the main aim
of measuring the geometry of the Universe and the growth of
structures up to redshift z ∼ 2 and beyond. Euclid will have
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Table 1. Limiting coadded depth magnitudes for extended sources at 10σ used in each sample.

Ground based All Ground based
Band Optimistic degraded −0.75 degraded −0.75 degraded −1.75

u 25.55 24.8 24.8 23.8
g 26.75 26.0 26.0 25.0

Ground r 26.95 26.2 26.2 25.2
based i 26.25 25.5 25.5 24.5

z 25.45 24.7 24.7 23.7
y 24.15 23.4 23.4 22.4

Euclid

mVIS 24.6 24.6 23.85 24.6
Y 23 23 22.25 23
J 23 23 22.25 23
H 23 23 22.25 23

two instruments on-board: a near-infrared spectro-photometer
(Costille et al. 2018) and an imager at visible wavelengths
(Cropper et al. 2018). The imager of Euclid, called VIS, will
observe galaxies through an optical broad band, mVIS, cov-
ering a wavelength range between 540 and 900 nm, with a
magnitude depth of 24.5 at 10σ for extended sources. The
spectro-photometric instrument, called NISP, has three near-
infrared bands, Y JH, covering a wavelength range between 920
and 2000 nm (Racca et al. 2016, 2018). The nominal survey
exposure is expected to reach a magnitude depth of 24 at 5σ
for point sources. If we convert this depth to 10σ level detec-
tion for extended sources we obtain a magnitude depth of about
23, which is the value we consider in Table 1. The deep survey
will cover 40 deg2 divided in three different fields: the Euclid
Deep Field North and the Euclid Deep Field Fornax of 10 deg2

each, and the Euclid Deep Field South of 20 deg2 (Euclid Col-
laboration, in prep.). In these fields, the magnitude depth will
be two magnitudes deeper than in the wide survey. With its two
instruments, Euclid will perform both a spectroscopic and a pho-
tometric galaxy survey that will allow us to determine cosmolog-
ical parameters using its three main cosmological probes: galaxy
clustering with the spectroscopic sample (GCs), galaxy cluster-
ing with the photometric sample (GCph), and WL. We study how
the selection of the galaxy sample that enters into the analysis
can be optimized to provide the tightest cosmological constraints
focusing on the GCph analysis and its cross-correlation with WL
– also called GGL.

3. Ground-based surveys

The single broad band VIS of Euclid cannot sample the spectral
energy distribution in the optical range. Euclid will require com-
plementary observations in the optical from ground-based surveys
to provide the photometry to estimate accurate photometric red-
shifts and achieve the scientific goals of Euclid. Several ground-
based surveys will be needed to cover all the observed area of
Euclid, as Euclid covers both celestial hemispheres and those can-
not be reached from a single observatory on Earth. The ground-
based complementary data will not cover uniformly the Euclid
footprint. It is very likely that there will be at least three distinct
areas in terms of photometric data available. The southern hemi-
sphere is expected to be covered with Rubin-LSST data, while
the northern hemisphere will be covered with a combination of
surveys such as CFIS, PanSTARRS, JEDIS and HSC-SPP. In
addition, some area north of the equator may also be covered by
Rubin-LSST at a shallower depth than in the southern hemisphere.

In this work we include simulated ground-based photometry that
try to encompass the range of possible ground-based depths that
the Euclid analysis will have from the deepest Rubin-LSST data
to the shallower data from other surveys.

Rubin-LSST is expected to start operations in 2022 and over
ten years it will observe over 20 000 deg2 in the southern hemi-
sphere with six optical bands, ugrizy, covering a wavelength
range from 320 to 1050 nm. The idealized final magnitude depth
for coadded images for 5σ point sources are 26.1, 27.4, 27.5,
26.8, 26.1, 24.9, for ugrizy, respectively, based on the Rubin-
LSST design specifications (Ivezić et al. 2019). Among other
scientific themes, Rubin-LSST has been designed to study dark
matter and dark energy using WL, GCph, and supernovae as cos-
mological probes. The Rubin-LSST survey will provide the best
photometry for Euclid-detected galaxies at the time that Euclid
data become available.

Another suitable ground-based candidate to cover the opti-
cal and near-infrared range in the southern sky is the DES pho-
tometric survey. DES completed observations in 2019 after a
six-years program. It covered 5000 deg2 around the southern
Galactic cap through five broad band filters, grizy, with wave-
length ranging from 400 to 1065 nm, and redshift up to 1.4
(Dark Energy Survey Collaboration 2016). The median coadded
magnitude limit depths for 10σ and 2′′ diameter aperture are
24.3, 24.0, 23.3, 22.6, for griz, respectively. These depths corre-
spond to the published values of the first three years of observa-
tions (Sevilla-Noarbe et al. 2021).

4. Generating realistic photometric galaxy samples

The cosmological constraining power of Euclid will depend on
the external data available as it will dictate the photo-z perfor-
mance of the samples to be studied. In order to study the impact
of the available photometry, we create six samples selected with
different photometric depths. For each sample, we compute the
photo-z estimates using machine learning techniques taking into
account the expected spectroscopic redshift distribution of the
training sample. We use these photo-z estimates to split each
sample into tomographic bins for which we can compute their
photo-z distributions and galaxy bias from the simulation. These
n(z) and b(z) are then used to forecast the cosmological perfor-
mance. In this section, we provide a detailed description of how
we obtain the realistic photo-z estimates of the Euclid galaxies
that are later used in the forecast. We first present the cosmo-
logical simulation used to extract the photometry and the galaxy
distributions. We then explain how we generate realizations of
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the photometry for the simulated galaxies taking into account the
expected depth of the Euclid and ground-based data. We finally
present the method used to estimate the photo-z.

4.1. The Flagship simulation

We consider the Flagship galaxy mock catalog of the Euclid
Consortium (Euclid Collaboration, in prep.) to create the differ-
ent samples. The catalog uses the Flagship N-body dark mat-
ter simulation (Potter et al. 2017). Dark matter halos are identi-
fied using ROCKSTAR (Behroozi et al. 2013) and are retained
down to a mass of 2.4 × 1010 h−1 M�, which corresponds to ten
particles. Galaxies are assigned to dark matter halos using halo
abundance matching (HAM) and halo occupation distribution
(HOD) techniques. The cosmological model assumed in the sim-
ulation is a flat ΛCDM model with fiducial values Ωm = 0.319,
Ωb = 0.049, ΩΛ = 0.681, σ8 = 0.83, ns = 0.96, h = 0.67.
The N-body simulation ran in a 3.78 h−1 Gpc box with particle
mass mp = 2.398 × 109 h−1 M�. The galaxy mock generated has
been calibrated using local observational constraints, such as the
luminosity function from Blanton et al. (2003) and Blanton et al.
(2005a) for the faintest galaxies, the galaxy clustering measure-
ments as a function of luminosity and color from Zehavi et al.
(2011), and the color-magnitude diagram as observed in the
New York university value added galaxy catalog (Blanton et al.
2005b). The catalog contains about 3.4 billion galaxies over
5000 deg2 and extends up to redshift z = 2.3.

For this study, we select an area of 402 deg2, which corre-
sponds to galaxies within the range of right ascension 15◦ <
α < 75◦ and declination 62◦ < δ < 90◦. All the photomet-
ric galaxy distributions obtained in this patch are extrapolated to
the 15 000 deg2 of sky that Euclid is expected to observe. The
selected area is large enough to minimize the impact of sample
variance, but small enough to allow for the production of several
galaxy samples in a reasonable amount of time. After the pho-
tometric uncertainty is added to the photometry of each galaxy,
we perform a magnitude cut in mVIS < 25 that leads to a number
density of about 41.5 galaxies per arcmin2.

4.2. Photometric depth

Each galaxy observation leads to a measured value of its mag-
nitude and its associated error. The magnitude depth is usu-
ally given as the magnitude at which the median relative error
has a particular value. In galaxy surveys it is customary to
express the depth at a signal-to-noise of ten for extended objects,
that is, when the value of the noise is one tenth of its signal.
As explained in detail below, we generate realizations of the
photometric errors for a given survey taking into account its
magnitude depth and scaling the values of the errors at other
magnitudes assuming background limited observations, that is,
that the background signal dominates the contribution to the
error.

We simulate four different photometric survey depths.
Table 1 shows their magnitude limits. The first column
corresponds to a combination of Euclid and ground-based pho-
tometric depth expected to be achieved in the southern hemi-
sphere. We label this case as optimistic and it is the deepest
case we study. The magnitude limits for the optical bands are
for extended sources at 10σ, similar to those expected from
Rubin-LSST (LSST Science Collaboration 2009). The values
for Euclid correspond to a 10σ detection level for extended
sources. In addition to the magnitude limits expected in the
south, we also want to investigate how the cosmological

constraints degrade as the depth is reduced. We investigate three
other cases. First, a case were the depth in optical bands are
reduced by a factor of two in signal-to-noise ratio. The sec-
ond column shows the magnitudes limits for this case where
the optical bands are reduced by 0.75 magnitude. This column
represents a possible case where the Rubin-LSST data have a
reduced depth in areas outside its main footprint. Secondly, we
study a case were the limiting fluxes of Euclid are brightened by
0.75 magnitudes, shown in the third column. Lastly, we explore
a case where the ground-based data is degraded by a factor of
five in signal-to-noise but the Euclid space data remains at their
nominal depth values. This broadly represents the depth that
can be achieved from other ground-based data in the northern
hemisphere.

For each survey case, we generate a galaxy catalog drawn
from the Flagship simulation. We assign observed magnitudes
and errors with the following procedure. First, we compute the
expected error for each galaxy, taking into account its magnitude
in the Flagship catalog and the magnitude limit of the survey
as given in Table 1. We assume that the observations are sky
limited (the noise is dominated by the shot noise of the sky) and
therefore we scale the ratio of the signal-to-noise between two
galaxies i and j as the ratio of their fluxes( S

N

)
i
=

( S
N

)
j

fi
f j
, (1)

where fi is the observed flux of galaxy i detected at signal-to-
noise ratio (S/N)i. The magnitude (flux) limits in Table 1 give us
the fluxes corresponding to a signal-to-noise ratio of ten, f10σ,
and therefore we can compute the expected signal-to-noise at
which a galaxy of a given magnitude is detected as( S

N

)
i
= 10

fi
f10σ

. (2)

Using the definition of signal-to-noise, (S/N)i = fi/∆ fi, we can
compute the expected flux error for each galaxy as

∆ fi =
f10σ

10
. (3)

The fluxes in the Flagship catalog correspond to the real fluxes
of each galaxy. Whenever we observe these galaxies in a given
survey, we detect a realization of the real flux. For our study, we
generate realizations of the observed fluxes f ∗i for each survey as

f ∗i = fi + N (µ = 0, σ = f10σ/10) , (4)

where N is a random number from a normal distribution. We
then assign errors to the resulting fluxes according to Eq. (3).
Finally, the new fluxes and their assigned errors are converted
into magnitudes and their respective magnitude errors.

4.3. Samples

We estimate the expected cosmological constraints using the
galaxy clustering analysis of tomographic bins defined with
photo-z (see Sect. 5). The magnitude limit of a given sample
will give us the galaxies that form the overall sample, while the
photo-z algorithm will split that sample into tomographic bins
and will provide an estimate of the redshift distributions within
these tomographic bins. We can better understand the uncer-
tainties in the method using simulations where we know the
true redshift distributions. So far, we have defined four differ-
ent samples based on the available photometry representing the
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Fig. 1. Fraction of simulated objects with successful spectroscopic red-
shift as a function of mVIS. The lines represent the completeness fraction
of the spectroscopic training samples. The blue line corresponds to the
fraction of objects for a random training subsample that is fully repre-
sentative of the sample under study. In black we show an expectation
of the spectroscopic completeness for future ground-based surveys in
mVIS (see text). In orange we present the completeness of a training
sample with an n(z) similar to the currently available spectroscopic data
(see text). The number of objects included in each training set is not
represented by the normalization of the different curves in this figure
(see Fig. 2 for the redshift distributions). Although our photometric
samples go up to mVIS = 25, we cut the spectroscopic training sam-
ples at mVIS < 24.5 because realistic redshifts have not been reliably
determined beyond that magnitude limit yet.

four cases defined in Table 1. The photo-z performance depends
on the photometric depth and the spectroscopic data available
to train the method. Now, we generate study cases depending
on the spectroscopic data available to train the photo-z. We use
three different spectroscopic samples with different complete-
ness profiles as a function of magnitude. First, we consider an
idealized case where the spectroscopic training sample is a ran-
dom subsample of the whole sample and thus it is fully represen-
tative (blue line in Fig. 1). Secondly, we consider a case where
the spectroscopic sample completeness as a function of magni-
tude follows the expectations from spectrographs on 8-m class
telescopes (Newman et al. 2015). This case is shown in black in
Fig. 1. This is intended to mimic the spectroscopic incomplete-
ness as a function of magnitude of surveys such as zCOSMOS
(Lilly et al. 2007), VVDS (Le Févre et al. 2013), and DEEP2
(Newman et al. 2013) at least in its shape, although maybe opti-
mistic in its normalization. Finally, we consider a last case where
the spectroscopic completeness is similar to the current available
spectroscopic surveys, as those listed in Gschwend et al. (2018).
We compute how the completeness in spectroscopic data as a
function of redshift translates into completeness in mVIS (orange
line in Fig. 1). These cases are explained in more detail later in
this section. It is worth mentioning that we only consider galax-
ies and not stars in the samples under study. With the high spa-
tial resolution of Euclid, the contamination in the sample due to
stars is expected to be minimal. We have also assumed that the
effects of Galactic extinction are corrected in the data reduction
pipelines and therefore ignore Galactic extinction. These factors
can be include in the future to add another layer of realism to the
analysis.

We combine the four cases of photometric limits with the
three cases of different spectroscopic data available to train the
photo-z techniques to generate six galaxy samples for our study.
With these six samples we try to encompass a wide range of

Table 2. Cases under study.

Sample name Photometric Spectroscopic
limit training

Case 1: Optimistic 1 Subsample
Case 2: Fiducial 1 Compl. drop
Case 3: Mid-depth 2 Compl. drop
Case 4: Mid-depth Euclid 3 Compl. drop
Case 5: Shallow depth 4 Compl. drop
Case 6: Inhomogeneous spec 4 Inho. spec-z

Notes. The photometric limit value corresponds to the column number
of Table 1 whose magnitude limit depths are used to define each photo-
metric sample. The spectroscopic training sample used to determine the
photo-z can be a representative subsample, a sample with a complete-
ness drop in mVIS, or a sample with an inhomogeneous spectroscopic
redshift distribution as shown in Fig. 1.

scenarios to try to understand how the cosmological constraints
vary depending on the sample available. These combinations of
photometric limits and spectroscopic data are chosen to cover the
more probable options that will be available with future data. We
detail these six cases in the following subsections. Table 2 sum-
marizes all the cases we consider. All our samples have galaxies
down to a magnitude limit of mVIS = 25. For our shallower sur-
vey (column four in Table 1), galaxies near this mVIS selection
limit have larger errors. It is also important to mention that in all
cases we assume the magnitude limit in each band to be isotropic
– homogeneous on the sky. This will definitely not be the case
for Euclid, since ground-based data will consist on a compila-
tion of different surveys pointing at different regions of the sky,
with different depths and systematic uncertainties. For instance,
Rubin-LSST focuses on the southern hemisphere, while Euclid
will also observe the northern one. A more detailed analysis tak-
ing into account the depth anisotropy of the ground-based data
is left for future work. A possible approach would be to generate
several sets of ground-based photometry according to the spe-
cific limitations of each ground-based instrument and region of
the sky covered, in order to reproduce the expected anisotropy of
the photometry. Then we would mix the different sets of ground-
based photometry, add them to the Euclid photometry in order to
determine the photometric redshifts, and redo the optimization
analysis as performed in this article.

4.3.1. Case 1: Optimistic

This case uses the deepest magnitude limit and a highly idealized
spectroscopic training sample. The sample has magnitudes and
errors generated as described in Sect. 4.2 with the Euclid and
ground-based photometric depth limits shown in the first column
of Table 1. The photo-z are estimated using a training set that
is a complete and representative subsample in both redshift and
magnitude of the whole sample.

4.3.2. Case 2: Fiducial

We take this case to be our fiducial sample. We use the deepest
photometry as in the optimistic case 1 but the photo-z estima-
tion now makes use of a training sample that has a completeness
drop at faint magnitudes that resembles the incompleteness of
spectroscopic surveys carried out with spectrographs in 8m-class
telescopes such as Rubin-LSST (see Newman et al. 2015). We
show the completeness drop in the spectroscopic training sample
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in Fig. 1 (black line). While the completeness as a function of
magnitude intends to be realistic of current spectroscopic capa-
bilities, we make the simplifying assumption that this incom-
pleteness does not depend on any galaxy property except its
magnitude, and therefore we randomly subsample the whole
distribution only taking into account the probability of being
selected based on the galaxy magnitude.

4.3.3. Case 3: Ground-based mid-depth photometry

We define another sample trained with the same spectroscopic
training sample completeness as in the fiducial case but with
shallower ground-based magnitude limits in the photometry. The
ground-based magnitude limit is a factor of two shallower in
signal-to-noise ratio than in cases 1–2. This corresponds to the
second column in Table 1. This case is intended to represent
areas on the sky between the celestial equator and low north-
ern declinations where Rubin-LSST data at shallower depth may
be available.

4.3.4. Case 4: Euclid mid-depth photometry

To explore the possibilities of available photometry, especially
the importance of deep near-infrared photometry, we define a
case in which both the Euclid and ground-based photometric
depth is reduced by 0.75 magnitudes (third column in Table 1).
The spectroscopic training sample completeness is the same as
in cases 2 and 3.

4.3.5. Case 5: Ground-based shallow depth photometry

The complementary ground-based photometry expected to be
available in the northern hemisphere is shallower than the mag-
nitude limits used in our previous cases. We define a sample to
roughly represent and cover this option by considering a ground-
based flux limit 1.75 magnitudes brighter compared to our opti-
mistic case (fourth column in Table 1). To compute the photo-z,
we use a spectroscopic training set with the same completeness
in mVIS as in cases 2, 3, and 4.

4.3.6. Case 6: Inhomogeneous spectroscopic sample

In this last sample, we want to study the case in which the spec-
troscopic training sample is very heterogeneous and composed
of the combination of many surveys targeting galaxies with dif-
ferent selection criteria and with different spectroscopic facili-
ties. We choose a spectroscopic training set that tries to model
the n(z) of current available spectroscopic data coming from sur-
veys as those listed in Gschwend et al. (2018). Given that some
of these surveys have different color selection cuts and magni-
tude limit depths, the combined redshift distribution is not homo-
geneous presenting peaks and troughs, which cause strong biases
in the photo-z estimation due to over and under-represented
galaxies at different redshift ranges (see e.g., Zhou et al. 2021).
We want to remark that we only try to reproduce the n(z) of the
overall spectroscopic sample. We do not try to gather this spec-
troscopic sample applying the same selection criteria of the dif-
ferent surveys used. We consider that this is not necessary for our
purposes as we are only interested in the overall trend induced
by using an inhomogeneous spectroscopic training sample. We
create the spectroscopic training sample by randomly selecting
galaxies based on their redshift to reproduce the overall targeted
redshift distribution. Given that the Flagship simulation area we
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Fig. 2. True redshift distributions of the training samples used to run
DNF in all six cases. The training samples include magnitudes brighter
than mVIS = 24.5. The true redshift comes from the Flagship simula-
tion. The four training samples with almost identical true redshift distri-
butions have the same completeness drop in mVIS and only differ in the
photometric quality. The numbers of training objects for the six samples
are about 3.4 · 105, 1.8 · 105, 1.8 · 105, 1.8 · 105, 1.8 · 105, and 8.4 · 104

from top to bottom labels in the legend, respectively.

are using (see Sect. 4.1) is smaller than the surveys sampling the
nearby universe, our simulated spectroscopic training does not
exactly reproduced our overall redshift distribution at low red-
shifts. The resulting completeness as a function of the mVIS of
this spectroscopic redshift sample can be seen in Fig. 1 (orange
line). The modeled n(z) is shown in Fig. 2 (orange line). With
this case, which intends to represent the currently available data,
we can draw a lower bound on the photo-z accuracy that can be
expected for Euclid. In this case, we use the same photometric
magnitude limits as in case 5.

The realism of our training samples is limited in the sense
that we only try to reproduce the completeness in mVIS or the
shape of the n(z) distribution. We do not take into account
any dependence of the training samples on other characteris-
tics such as galaxy type or the presence of emission lines, which
would have an impact on the determination of the photo-z. The
selection of specific galaxies, such as luminous red galaxies, to
achieve a sample with better photo-z is used to increase the sig-
nal for example in galaxy clustering analysis in DES (see e.g.,
Rozo et al. 2016; Elvin-Poole et al. 2018). Normally, selecting a
subsample with better photo-z performance implies reducing the
number density and one has to study the trade off between both
effects. We leave such a study to future work.

4.4. Photometric redshifts

The cosmological tomographic analysis of a photometric survey
divides the whole sample into redshift bins selected with a photo-
z technique. In our study, we want to follow as close as possible
the methodological steps that one would carry out in real sur-
veys. For that purpose, we compute the photo-zs of all our study
cases described in Table 2. We use the directional neighborhood
fitting (DNF; De Vicente et al. 2016) training-based algorithm to
estimate realistic photo-z estimates of our simulated galaxies.
The exact choice of the machine learning training set method
is not important for our analysis as most methods of this type
perform similarly to the precision levels we are interested in (see
e.g., Euclid Collaboration 2020b; Sánchez et al. 2014).

DNF estimates the photo-z of a galaxy based on its close-
ness in observable space to a set of training galaxies whose red-
shifts are known. The main feature of DNF is that the metric
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Fig. 3. Top: zmean photometric redshift distributions obtained with DNF
for the six photometric samples up to mVIS = 25. The zmean photo-z
estimate returned by DNF is the value resulting from the mean of the
nearest neighbors redshifts. Lower: photometric redshift distributions
obtained with DNF for the zmc statistic, which for each galaxy is a one-
point sampling of the redshift probability distribution estimated from
the nearest neighbor (see text for details). All samples have the same
number density of 41.5 galaxies per arcmin2.

that defines the distance or closeness between objects is given
by a directional neighborhood metric, which is the product of
a Euclidean and an angular neighborhood metrics. This metric
ensures that neighboring objects are close in color and magni-
tude space. The algorithm fits a linear adjustment, a hyperplane,
to the directional neighborhood of a galaxy to get an estimation
of the photo-z. This photo-z estimate is called zmean, which is
the average of the redshifts from the neighborhood. The residual
of the fit is considered as the estimation of the photo-z error. In
addition, DNF also produces another photometric redshift esti-
mate, zmc that is a Monte Carlo draw from the nearest neigh-
bor in the DNF metric for each object. Therefore, it can be
considered as a one-point sampling of the photo-z probability
density distribution. As such, it is not a good individual photo-
z estimate of the object, but when all the estimates in a galaxy
sample are stacked it can recover the overall probability den-
sity distribution of the sample (Rau et al. 2017). When working
with tomographic bins, we classify the galaxies into different
bins using their zmean and we obtain the photometric distribution,
n(z), within each bin by stacking their zmc. This is an approach
used by DES in analyzing their first year data results (e.g.,
Hoyle et al. 2018; Crocce et al. 2019; Camacho et al. 2019) pro-
viding redshift distributions that are validated with other inde-
pendent assessment methods. Therefore, we define the n(z) by
stacking the zmc estimator instead of the true redshift of the sim-
ulation to make the photo-z distribution close to what would
be obtained in a real data analysis with the assurance that the
method has been validated.

We select a patch of sky of 3.35 deg2 to create the samples
to train DNF. These training samples have the magnitudes and
errors computed with the same magnitude limits as the sample
whose photo-z we want to compute (see Table 1). We generate
three types of spectroscopic training samples. For all of them, we
limit the spectroscopic training sample to galaxies brighter than
mVIS = 24.5 as there are few objects whose redshift has been
reliably determined beyond that magnitude limit. The spectro-
scopic training samples are described in Sect. 4.3.

The true redshift distributions of the spectroscopic training
set used to train DNF for each of the sample cases considered
here are shown in Fig. 2. In blue, we present the redshift distri-
bution of case 1 with the first spectroscopic training sample that
it is fully complete as a function of magnitude. We show in black
the resulting N(z) of case 2. Cases 3–5 (olive, red and orange
colors in Figs. 2 and 3) have the same training sample com-
pleteness as a function of magnitude. The drop in completeness
at faint magnitudes translates into a decrease of objects at high
redshift. Last, we present the resulting redshift distribution with
the third spectroscopic training set in orange. Gathering multiple
selection criteria from different spectroscopic surveys leads to an
inhomogeneous redshift distribution for the spectroscopic train-
ing sample. In Fig. 3, we show the overall photo-z distributions
of zmean (top panel) and zmc (bottom panel) values obtained for
the full sample for each of the six cases. We see how an inhomo-
geneous N(z) in the training sample leads to an inhomogeneous
distribution of the photo-z. We assign magnitude errors in each
sample based on the limiting magnitude at 10σ, according to
Table 1 and following Eq. (3). This leads to magnitude errors
that change from one sample to another and differences in their
corresponding photo-z distributions.

The photo-zs obtained with DNF as a function of true red-
shift for the six samples up to mVIS < 24.5 are shown in Fig. 4.
This figure gives us an indication of how the photo-z scatter
decreases with deeper photometry. Photometric samples go up to
mVIS = 25. However, we cut the spectroscopic training sample
at mVIS = 24.5 to be more realistic. The lack of objects between
24.5 and 25.0 in the training sample forces the algorithm to
extrapolate beyond that magnitude, and thus noisier photomet-
ric redshifts are obtained. In Fig. 4, we show galaxies only down
to mVIS < 24.5 to reduce the noise and make the figure clearer.

To quantify the photo-z precision for the different samples,
we use two typical metrics: the normalized median absolute
deviation and the percentage of outliers. The former is defined
as:

σz = 1.4826 ·median (|∆z −median (∆z)) , (5)

where

∆z =
zspec − zphot

1 + zspec
. (6)

We consider outliers those objects with |∆z| > 0.15. In Table 3,
we show the values obtained for these two metrics for each pho-
tometric sample.

5. Building forecasts for Euclid

So far, we have seen how the photometric depth and the spec-
troscopic training sample determine the overall redshift distri-
butions of the resulting samples. We have selected six cases to
cover a range of possible scenarios that we may encounter in the
analysis of Euclid data complemented with ground-based sur-
veys. Once the galaxy distributions for the photometric cases

A44, page 7 of 21



A&A 655, A44 (2021)

Fig. 4. Scatter plot of both photometric redshifts given by DNF, zmean (top row) and zmc (bottom row), as a function of true redshift for all the
samples described in Sect. 4.3 up to mVIS < 24.5. The σz of photo-z for these sample at mVIS < 24.5 is from left to right: 0.063, 0.049, 0.046,
0.036, 0.032, 0.029.

Table 3. Photo-z metrics of each photometric sample and cut in mVIS (as explained in Sect. 7.2).

Normalized median absolute deviation (σz)
mVIS Shallow depth inho. Shallow depth Mid depth Euclid Mid depth Fiducial Optimistic

25 0.090 0.066 0.061 0.046 0.040 0.036
24.5 0.063 0.049 0.046 0.036 0.032 0.029
24 0.049 0.039 0.038 0.031 0.028 0.026
23.5 0.041 0.033 0.034 0.027 0.025 0.024
23 0.036 0.029 0.030 0.024 0.023 0.022

Fraction of outliers (%)
25 25.8 16.1 14.4 9.0 6.9 5.1
24.5 12.9 7.5 6.3 3.3 2.2 1.5
24 5.5 3.6 3.0 1.6 1.0 0.8
23.5 2.8 1.9 1.7 0.8 0.6 0.5
23 1.6 1.0 0.9 0.4 0.3 0.3

under study have been obtained, we want to propagate the photo-
z accuracy in determining tomographic subsamples to the final
constraints on the cosmological parameters in order to under-
stand how to optimize the photometric sample for galaxy clus-
tering analyses.

We follow the forecasting prescription presented in
Euclid Collaboration (2020a, hereafter EC20). We consider the
same Fisher matrix formalism and make use of the CosmoSIS7

code validated for Euclid specifications therein. Our observ-
able is the tomographically binned projected angular power
spectrum, Ci j(`), where ` denotes the angular multipole, and
i, j stand for pairs of tomographic redshift bins. This formal-
ism is the same for WL, galaxy clustering (with the photo-
metric sample), and GGL with the only difference being the
kernels used in the projection from the power spectrum of mat-
ter perturbations to the spherical harmonic-space observable.
We focus on the GCph cosmological probe, as well as its com-
bination with GGL. We consider auto- and cross-correlations
between the photometric bins for GCph and the combination of
probes. The projection to Ci j(`) is performed under the Lim-
ber, flat-sky, and spatially flat approximations (Kitching et al.

7 https://bitbucket.org/joezuntz/cosmosis/wiki/Home

2017; Kilbinger et al. 2017; Taylor et al. 2018). We also ignore
redshift-space distortions, magnification, and other relativis-
tic effects (Deshpande et al. 2020). To minimize the impact of
neglecting relativistic effects, more relevant at large scales, in
our analysis we consider multipole scales from ` ≥ 10 to
` ≤ 750, which corresponds to the more conservative scenario in
EC20.

When considering GGL, its power spectrum contains contri-
butions from galaxy clustering and cosmic shear, but also from
intrinsic galaxy alignments (IA). We assume the latter is caused
by a change in galaxy ellipticity that is linear in the density
field. Such modeling is appropriate for large scales (Troxel et al.
2018), similar to the ones considered in this analysis, but more
complex models should be used for the very small scales (see
e.g., Blazek et al. 2019; Fortuna et al. 2021). Under this linear
assumption, we can define the density-intrinsic and intrinsic-
intrinsic three-dimensional power spectra, PδI and PII, respec-
tively. They can be related to the density power spectrum Pδδ

with PδI = −A(z)Pδδ and PII = A(z)2Pδδ. We follow EC20 in
parameterizing A as

A(z) =
AIACIAΩmFIA(z)

D(z)
, (7)
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Fig. 5. Left panel: galaxy bias as a function of redshift. Dots correspond to the measured values in the Flagship simulation for different magnitude
cuts and the solid lines are a fit following Eq. (11). We plot with squares the bias values obtained for z = 2 to indicate that at that redshift there
are few objects and thus the values are slightly less reliable. At mVIS < 23 there were not enough objects at z = 2 to compute the bias in Flagship.
Right panel: ratio between the HSC bias, bHSC, from N20 and the Flagship bias for each magnitude-limited sample. To assess the 1σ uncertainty
of bHSC along the redshift range, we generate a set of Gaussian random numbers for the free parameter α, b1, and b0 of bHSC with their values as
mean and their errors as standard deviation. Then we evaluate bHSC in the redshift range for all the set of free parameters previously generated. We
pick the maximum and minimum bHSC at each redshift. This corresponds to the shaded regions.

where CIA is a normalization parameter that we set as CIA =
0.0134, D(z) is the growth factor, and AIA is a nuisance param-
eter fixing the amplitude of the IA contribution.

We model the redshift dependence of the IA contribution as

FIA = (1 + z)ηIA

[
〈L〉(z)
L∗(z)

]βIA

, (8)

with 〈L〉(z)/L∗(z) being the redshift-dependent ratio between the
average source luminosity and the characteristic scale of the
luminosity function (Hirata et al. 2007; Bridle & King 2007).
For a detailed explanation on IA modeling see Samuroff et al.
(2019). We use the same ratio of luminosities for every galaxy
sample. However, this ratio should in principle depend on the
specific galaxy population. Since we select galaxies according
to a mVIS cut and not according to a particular galaxy type, we
expect that the luminosity ratio does not change significantly
between galaxy samples and therefore use the same ratio for
simplicity. We set the fiducial values for the intrinsic alignments
nuisance parameters to

{AIA, ηIA, βIA} = {1.72,−0.41, 2.17}, (9)

in agreement with the recent fit to the IA contribution in
the Horizon-AGN simulation (Chisari et al. 2015), although the
amplitudeAIA might be smaller in practice (Fortuna et al. 2021).

When considering GCph and GGL, one of the primary
sources of uncertainty is the relation between the galaxy dis-
tribution and the underlying total matter distribution, that is the
galaxy bias (Kaiser 1987). We consider a linear galaxy bias relat-
ing the galaxy density fluctuation to the matter density fluctua-
tion with a simple linear relation

δg(x, z) = b(z)δm(x, z), (10)

where we neglect any possible scale dependence. A linear
bias approximation is sufficiently accurate for large scales
(Abbott et al. 2018). However, when adding very small scales into
the analysis, a more detailed modeling of the galaxy bias is

required (see e.g., Sánchez et al. 2016). One of the approaches to
this modeling is through perturbation theory, which introduces a
nonlinear and nonlocal galaxy bias (Desjacques et al. 2018).

We consider a constant galaxy bias in each tomographic bin.
We get their fiducial values by fitting the directly measured bias
in Flagship to the function

b(z) =
AzB

1 + z
+ C, (11)

where A, B, and C are nuisance parameters. We select five sub-
samples with mVIS limiting magnitudes: 25, 24.5, 24, 23.5, and
23 from the Flagship galaxy sample. We compute the bias val-
ues as a function of redshift for each of these magnitude-limited
subsamples using directly the true redshift of Flagship at red-
shifts 0.5, 1, 1.5, and 2. As an approximation, we use the same
galaxy bias for each of the six photometric samples and change
the fiducial according to the magnitude limit cut. The obtained
bias and fitted functions are shown in the left panel of Fig. 5.
To fit the bias-redshift relation we choose to use all galaxy bias
values computed with the Flagship simulation, although values
at z = 2 are less reliable. The value of the bias at z = 1.5 falls
outside the bias-redshift fit for the mVIS < 23 sample. However,
we recomputed the bias fit neglecting the value at z = 2 and
including the value at z = 1.5, but no significant changes were
appreciated, therefore we keep the bias computed using the fits
shown in Fig. 5.

To validate the bias obtained with Flagship, we compare our
bias values to the ones obtained from the Hyper Suprime-Cam
Subaru Strategic Program (HSC-SSP) data release 1 (DR1) by
Nicola et al. (2020, N20 hereafter). The HSC survey has compa-
rable survey depth and uses similar ground-based bands to the
ones considered in this work. N20 fit galaxy bias on magnitude-
limited galaxy samples down to i < 24.5. We compare their val-
ues to ours in the right panel of Fig. 5. We extrapolate their bias
down to i < 25 for our faintest magnitude bin. Strictly speaking,
we are comparing i-band magnitude-selected samples from N20
to our mVIS-band magnitude-selected samples. We have checked
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in Flagship that the bias values for both i-band and mVIS-band
selected samples cut at the same magnitude limit do not change
by more than 10% and therefore our comparison is meaningful.
N20 assume that bias can be split into two separated terms of
redshift and limiting magnitude, and define it as

bHSC(z,mlim) = b̄(mlim)Dα(z), (12)

where α is a variable that takes into account the inverse rela-
tion between the growth factor and galaxy bias. By fitting α and
b̄(mlim) in a multistep weighted process they find

α = −1.30 ± 0.19,

b̄(mlim) = b1(mlim − 24) + b0, (13)

where b1 = −0.0624 ± 0.0070 and b0 = 0.8346 ± 0.161. For
a detailed explanation see Sect. 4.6 in N20. We compute D(z)
for our sample and use our mVIS magnitude cuts as mlim along
with their fitted parameters to get a bias to compare. The ratio
between the HSC bias, bHSC, and ours, b(z), is shown in the right
panel of Fig. 5. In N20, they compute their bias up to redshift
1.25, so we have extrapolated their behavior to higher redshifts
for the comparison at z > 1.25. The values of the bias in Flag-
ship stay within 1σ of the HSC values, bHSC (shaded area in the
right panel of Fig. 5), confirming that the bias values we use are
consistent with the HSC observations.

We consider the same redshift distributions for both GCph
and GGL. In practice, this is an oversimplification, since these
two probes will probably apply different selection criteria when
determining their samples. GGL for instance will give some
importance to the shape measurements of the galaxies. But for
the present Fisher matrix analysis, since we do not want to make
assumptions on the shear measurement, we limit ourselves to use
the same sample for both probes, as it was done in EC20.

6. Cosmological model

We optimize the photometric sample of Euclid considering the
baseline cosmological model presented in EC20: a spatially
flat Universe filled with cold dark matter and dark energy. We
approximate the dark energy equation of state parameter with
the CPL (Chevallier & Polarski 2001; Linder 2005) parameteri-
zation

w(z) = w0 + wa
z

1 + z
. (14)

The cosmological model is fully specified by the dark energy
parameters, w0 and wa, the total matter and baryon density today,
Ωm and Ωb, the dimensionless Hubble constant, h, the spec-
tral index, ns, and the RMS of matter fluctuations on spheres
of 8 h−1 Mpc radius, σ8. We assume a dynamically evolving,
minimally-coupled scalar field, with sound speed equal to the
speed of light and vanishing anisotropic stress as dark energy.
Therefore, we neglect any dark energy perturbations in our anal-
ysis. We also allow the equation of state of dark energy to cross
w(z) = −1 using the Hu & Sawicki (2007) prescription.

The fiducial values of the cosmological parameters are given
by

{Ωm,Ωb,w0,wa, h, ns, σ8}

= {0.32, 0.05,−1, 0, 0.67, 0.96, 0.816}. (15)

Moreover, we fix the sum of neutrino masses to
∑

mν = 0.06 eV.
The linear growth factor depends on both redshift and scale when
neutrinos are massive, but we follow EC20 in neglecting this

effect, given the small fiducial value considered. Therefore, we
compute the growth factor accounting for massive neutrinos, but
neglect any scale dependence. The fiducial values used in this
analysis are compatible with the fiducial cosmology of the Flag-
ship simulation presented in Sect. 4.1 except for σ8. This can
be explained by the fact that the Flagship simulation does not
account for massive neutrinos and therefore considers a slightly
larger value for σ8. However, since we are only extracting the
galaxy bias and the galaxy distributions from Flagship and we
are computing Fisher forecasts, this difference in the fiducial σ8
value does not have any impact on our results.

We quantify the performance of photometric galaxy sam-
ples in constraining cosmological parameters through the met-
ric figure of merit (FoM), as defined in Albrecht et al. (2006)
but with the parameterization defined in EC20. Our FoM is pro-
portional to the inverse of the area of the error ellipse in the
parameter plane of w0 and wa defined by the marginalized Fisher
submatrix, F̃w0wa ,

FoMw0wa =

√
det

(
F̃w0wa

)
. (16)

We use the FoM defined above throughout this article. The
higher the FoM value, the higher the cosmological constraining
power.

7. Results

In this section, we carry out a series of tests to optimize the
sample selection for GCph analyses. We want to determine the
best number and type of tomographic bins to constrain cosmo-
logical parameters. We explore the influence of the accuracy in
the photo-z estimation and sample size in providing cosmolog-
ical constraints. We split the data in tomographic redshift bins
in order to have more control in the variations of sample size
and photo-z accuracy to better understand their impact in con-
straining cosmological parameters. We use the FoM defined in
Eq. (16) to quantify the constraining power on the cosmolog-
ical parameters. In addition, we also compute the FoM when
combining GCph with GGL, assuming the same photo-z sam-
ple, which implies the same photo-z binning and number den-
sity. When computing the cosmological constraining power for
GCph + GGL, we marginalize over the galaxy bias of each
tomographic bin and intrinsic alignment parameters, whereas for
GCph alone the galaxy bias parameters are fixed to their fiducial
values. The main reason for this choice is that, under the linear
galaxy bias approximation, there is a large degeneracy between
the galaxy bias and σ8. In this case, the Gaussianity assumption
of the Fisher matrix approach breaks down and its constraints on
the cosmological parameters are not reliable. Therefore, we fix
the galaxy bias to break this degeneracy when considering GCph
alone. When we combine GCph with GGL, the additional infor-
mation brought by the latter is enough to break such degeneracy
and constrain σ8 and the galaxy bias at the same time.

7.1. Optimizing the type and number of tomographic bins

We bin galaxies into different numbers of redshift bins to study
the impact of the number of redshift bins on the cosmolog-
ical parameter inference. When we define redshifts bins, we
choose galaxies within the redshift range [0, 2] since the max-
imum lightcone outputs generated in Flagship are at z = 2.3
and we prefer to avoid working at the limit of the simulation.
We check the effect of using bins with the same redshift width
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Fig. 6. FoM as a function of the number of bins for GCph (solid) and
GCph + GGL (dashed), and for bins with the same redshift width (blue)
and with the same number of objects (red). The redshift width of the
bins when they have the same width is shown in the top x axis. The
FoMs are normalized to the FoM at ten bins, FoMref, which corresponds
to the specifications for the number of bins used to compute the fore-
casts in EC20 and denoted by a vertical-dashed line. A vertical-dotted
line shows the 13 bins used as our fiducial choice.

and bins with the same number of objects (equipopulated). We
also see the difference when using only GCph or both GCph and
GGL probes. This analysis is performed using our fiducial sam-
ple (case 2) up to mVIS < 24.5. We compute the FoM for all the
cases mentioned and show the results in Fig. 6. The FoM are nor-
malized to ten bins since this is the default number used to com-
pute the forecasts in EC20. In Fig. 6, we do not directly compare
the FoM between GCph and GCph+ GGL since the assumption
used in both cases are different (galaxy bias is fixed for GCph
alone while it is free for GCph+ GGL), so the constraining power
are not comparable. As a reference, for 13 bins with an equal
width the FoM is 713 for GCph and 411 for the combination of
probes.

As seen in Fig. 6, the general tendency of the FoM is to
increase with the number of bins. EC20 used ten tomographic
bins as their fiducial value. For bins with an equal width in red-
shift, the FoM increase when moving from ten to 13 (15, 17) bins
is 35.4% (54.3%, 72.8%) and 15.4% (27.1%, 33.2%), for GCph
only and for GCph + GGL, respectively. The FoM improvement
we get from going to even more bins does not compensate the
increase in computational time needed for the analysis. This is
especially true when using both probes, where we notice that the
curve flattens while in GCph the FoM continues to increase since
the bias is fixed and thus the amount of information that can
be extracted is larger than expected in practice. Moreover, our
photo-z treatment may start to be too simplistic to realistically
deal with too many photometric redshift bins. The FoM satu-
rates with the increasing number of bins because it is not pos-
sible to extract more information on radial clustering when the
width of the bins is smaller than the photo-z precision. At this
limit, the uncertainty at which bin a particular galaxy belongs is
greatly increased. For GCph + GGL the curves flatten at lower
number of bins since systematic effects in the marginalization of
galaxy bias and intrinsic alignment free parameters also affect
the cosmological information that can be extracted. Therefore,
we choose 13 to be our fiducial number of bins as a conservative
choice.

In addition, we choose bins with an equal width in redshift
as the optimal way of partitioning the sample since we observe
that, overall, for GCph the FoM is larger in this case than in the
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Fig. 7. FoM as a function of the number of bins with an equal width for
GCph (solid) and GCph + GGL (dashed) for the mid depth Euclid and the
inhomogeneous spectroscopic sample in addition to the fiducial sample,
as in Fig. 6.
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equipopulated one. For 13 bins with an equal width the FoM is
713 while it is 547 for equipopulated bins8, which is an increase
of 30%. For the GCph + GGL combined analysis, the FoM does
not appreciably change between the use of bins with an equal
width and equipopulated ones. At 13 bins, which is the fiducial
choice, the FoM difference of using bins with an equal width or
equipopulated ones is negligible.

To further confirm that the choice of increasing the fiducial
number of bins is beneficial, we checked the evolution of the
FoMs as a function of the number of bins for samples with worse
photo-zs than the fiducial sample. In Fig. 7, we observe the same
tendency as in Fig. 6. In this case, when moving from ten to
13 (15) bins, the FoM for GCph increases by 31% (45.5%) and
26.5% (41%) for the mid depth Euclid and the inhomogeneous
spectroscopic sample, respectively. For GCph + GGL, the FoM
increase is 14.3% (23.5%) and 15% (24%) for the same sam-
ples, respectively. The improvement of the FoM for samples with
worse photo-zs is lower than for the fiducial sample, as expected.

We choose to use the 13 bins with an equal width configu-
ration to analyze the dependency of cosmological constraints on
the photo-z quality and size of the sample. In Fig. 8, we show the

8 We recall that the galaxy bias is fixed when considering GCph alone,
which provides these large absolute values for the FoMs.

A44, page 11 of 21



A&A 655, A44 (2021)

Shallo
w

depth

inho.
Shallo

w

depth
Mid

depth

Euclid
Mid

depth Fiducia
l

Optim
isti

c

mVIS

< 25.0

mVIS

< 24.5

mVIS

< 24.0

mVIS

< 23.5

mVIS

< 23.0

GCph

Shallo
w

depth

inho.
Shallo

w

depth
Mid

depth

Euclid
Mid

depth Fiducia
l

Optim
isti

c

mVIS

< 25.0

mVIS

< 24.5

mVIS

< 24.0

mVIS

< 23.5

mVIS

< 23.0

GCph + GGL

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li
ze

d
F
o
M

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
ze

d
F
o
M

Fig. 9. FoM for the samples defined in Sect. 4.3 with different photo-z accuracy and sample size. The size has been reduced by performing a series
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Table 4. Values of the FoM for samples defined in Sect. 4.3 with different photo-z accuracy and sample size (same cases as in Fig. 9).

GCph
mVIS Shallow depth inho. Shallow depth Mid depth Euclid Mid depth Fiducial Optimistic

25 0.57 0.82 0.84 0.93 0.96 0.98
24.5 0.67 0.90 0.91 0.98 1.00 1.02
24 0.59 0.74 0.77 0.81 0.82 0.83
23.5 0.46 0.59 0.59 0.61 0.62 0.64
23 0.39 0.48 0.50 0.52 0.51 0.51

GCph and GGL
25 0.85 1.24 1.29 1.37 1.24 1.30
24.5 0.75 0.98 1.01 1.01 1.00 0.98
24 0.46 0.53 0.55 0.54 0.52 0.54
23.5 0.27 0.30 0.30 0.29 0.28 0.30
23 0.17 0.17 0.18 0.20 0.17 0.18

Notes. The results are normalized to the FoM of the fiducial sample with mVIS < 24.5. For reference, the unnormalized value of our fiducial sample
is 713 for GCph and 411 for GCph + GGL. Galaxy bias and intrinsic alignments nuisance parameters are free in the latter, which provides a lower
FoM than in GCph alone.

redshift distributions for this configuration for our fiducial case
2 sample.

7.2. FoM dependency on photometric redshift quality and
number density

Another aspect we want to study is the effect of the trade-off
between photo-z accuracy and number density on the constrain-
ing power of cosmological parameters. For that purpose, we take
the six photometric samples defined in Sect. 4.3 and apply five
cuts (25, 24.5, 24, 23.5, and 23) in mVIS to modify the sam-
ple size (leading to a number density of about 41, 29, 18, 12,
and 9 galaxies per arcmin2, respectively). Besides reducing the
number density of the photometric samples, the cut in mVIS also
affects the photo-z distribution and accuracy of the overall sam-
ple. A bright magnitude cut, that eliminates the fainter galaxies,
mostly removes galaxies with higher and thus less reliable red-
shifts. We compute the FoM for all the cases mentioned before
and normalize them to the FoM of our fiducial (case 2) sample at
mVIS < 24.5, for both GCph only and GCph + GGL. To help visu-
alize the results, we present the resulting FoM in a grid format

in Fig. 9 and the values themselves in Table 4. The configuration
of tomographic bins used to perform the analysis is the optimum
one found in the previous section, which is 13 bins with an equal
width in redshift.

First, we discuss the case of GCph alone. As seen in Fig. 9,
in general, the FoM for GCph increases with deeper photometric
data, which improves the photo-z performance (increasing along
the x-axis in the figure). The FoM also increases with number
density, determined by the magnitude limit imposed (increasing
along the y-axis). We notice a larger increase in the FoM with
sample size in those samples where the photo-z quality is bet-
ter (e.g., the optimistic, fiducial, and mid depth ground-based
photometry cases). In these cases, increasing the sample size
from a mVIS cut from 23.5 to 24 and from 24 to 24.5 leads to
an increase of the FoM of about 20%. Clearly, having a fainter
magnitude cut results in larger samples that yield higher FoM
values. This trend is in agreement with the results presented in
Tanoglidis et al. (2019).

The trend of increasing FoM as we take fainter magnitude-
limit cuts and increase the number density continues as long as
the photo-z performance is not degraded. Once we push to faint
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depth Euclid (case 4).

magnitudes where there are no objects to train the photomet-
ric redshift algorithms, their performance degrades and the pho-
tometric redshift bins start to be wider. There are many object
that do not belong to the bins and spurious cross-correlations
between different bins appear. As a result, the strength of the
cosmological signal is diminished and the FoM decreases. This
effect can be seen in Fig. 9 for the GCph case (left panel), where
we can appreciate a reduction in the FoM when we move from a
magnitude-limited sample cut at mVIS < 24.5 (second row from
the top) to a magnitude-limited sample cut at mVIS < 25.0 (top
row). With this change, we are increasing the sample, but with
galaxies that cannot be located in redshift as their photo-z can-
not be calibrated. As a result, the clustering strength is diluted
and some spurious cross-correlation signal appears resulting in
a decreased FoM compared to a shallower sample with better
photo-zs.

To illustrate this effect, in Fig. 10 we show the redshift distri-
bution of three tomographic bins for three samples with galaxies
down to mVIS < 24.5, <25, and with galaxies only between 24.5
and 25. Galaxies with mVIS between 24.5 and 25 are mostly out-
side their tomographic bin increasing the width of the distribu-
tion and diluting the signal. We conclude that the GCph probe is
sensitive to the actual location of their tracer galaxies inside their
tomographic bins. Both the photo-z performance and the num-
ber density are important contributing factors when performing
cosmological inference with GCph. When pushing to faint mag-
nitudes, there is no improvement including galaxies that cannot
be located in redshift.

Now, we discuss the case where we add GGL to GCph (right
panel in Fig. 9). We observe that increasing the sample size
(moving along the y-axis) has a more significant impact on the
improvements of the FoM than the photo-z quality (changes
along the x-axis). The greatest improvement, of about 50% for
the best photo-z quality samples, takes place going from mVIS <
24 to 24.5. The second largest improvement is of about 25 – 30%
when adding objects from mVIS < 24.5 to 25. In the GGL case,
source galaxies outside the tomographic bin of the lens galaxy
contribute to the signal. The lensing kernel is quite extended in
redshift and galaxies beyond the lens contribute to the signal
with only a mild dependence on their precise redshift, making
the photo-z performance less important compared to the GCph

only case. On the other hand, the statistical nature of detecting
the lensing signal makes the number density (and therefore the
magnitude-limit cut) a more important factor in determining the
GGL cosmological inference power.

In the FoM grid, we find a counter intuitive behavior for
some samples when combining GCph and GGL (Fig. 9 right
panel). If we compare the mid depth and mid depth Euclid sam-
ples to the fiducial and optimistic samples at the same number
density (along the x-axis), we find that the former pair gives bet-
ter FoM constraints despite having larger photo-z scatter. This
is counter-intuitive as fewer galaxies are properly located in
redshift and still the FoM cosmological constraints are slightly
better. As we mentioned before, whenever the photo-z perfor-
mance degrades, more galaxies supposedly being in our tomo-
graphic bin belong to other bins. This effect can increase the
effective number of sources for our lenses and thus boost the
GGL signal. However, this is at the expense of reducing the cos-
mological constraining power of the GCph probe. The interplay
between these two effects is difficult to gauge. The GGL increase
appears slightly more prominent when pushing to fainter
magnitude limits that produce a sizable increase in number
density.

The representativeness of the training sample also deter-
mines the photo-z performance and thus the cosmological con-
straining power. For GCph, if we check the difference in FoM
between our fiducial sample, trained with a spectroscopic sample
that has a completeness drop at faint mVIS, and the same photo-
metric sample trained with a fully representative training sample
(optimistic sample), we see a gain of about 1–2% in the FoM.
The spectroscopic incompleteness in this case is small and only
affecting faint magnitudes, so the effect on the FoM is also small.
This difference greatly increases when we compare the FoM per-
formance of shallower samples and higher incompleteness in the
spectroscopic training sample. If we compare the shallow depth
sample that was trained with a sample that has a completeness
drop in faint mVIS magnitude to the shallow depth inhomoge-
neous sample that was trained with a sample that is incomplete
in the spectroscopic n(z), the difference between FoMs can be up
to 25% for GCph and 39% for both probes combined.

Finally, we look at the difference due to the ground-based
photometric depth. The difference between our fiducial and shal-
low depth cases may represent the change in depth to be achieved
in the southern and northern hemispheres. For these cases, the
difference in cosmological constraint power is about 10% at
mVIS < 24.5 for GCph. This percentage reduces to 2% if we also
consider GGL.

7.3. Impact on the cosmological parameters constraints

We further investigate the forecasts of the constraints on the cos-
mological parameters by looking at the parameter uncertainties,
σi = ((F−1)ii)

1
2 , given by the square root of the diagonal ele-

ments of the inverse of the Fisher matrix. The uncertainties are
computed for all the photometric samples defined in Sect. 4.3
and for the different sample sizes. For visual clarity, we present
the results in grid form in Figs. 11 and 12.

In Fig. 11, we show the uncertainties for the GCph probe. We
can appreciate that, in general, the uncertainties have a similar
behavior to the FoM, where the sample down to mVIS < 24.5
gives the higher FoM. However, there are parameters, such as
Ωb, wa, and h that do not degrade as much their performance
when going to the deeper mVIS < 25 sample.

In Fig. 12, we show the uncertainties of the cosmological
parameters when we combine the GCph and GGL cosmological
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Fig. 11. Uncertainties of the cosmological parameters for all the cases considered in Sect. 7.2 for GCph.

probes. Again, we see similar trends compared to the FoM case,
but with minor changes in the behavior of how the uncertainties
in some of the parameters vary. The addition of galaxies, increas-
ing the survey depth, and the improvement of the photo-z perfor-
mance produce lower uncertainties in the Ωb and h parameters.
The reduction of the uncertainty obtained when considering the
deepest mVIS < 25 case compared to the mVIS < 24.5 is minimal,
though.

In addition to the values of the FoM and the uncertainties
in the parameters, it is also informative to study the distribution
of those uncertainties and the error contours in the determina-
tion of pairs of parameters. In Fig. 13, we present the confidence
contour plots for our fiducial sample at mVIS < 24.5 and 23.5,
to check how the number density affects the constraining power
and compare them to our shallow sample at mVIS < 24.5, to
see the impact of having a sample with shallower ground-based
photometry. The contours for the GCph case are shown in the
upper panel and the GCph and GGL case in the lower panel. For
both probes we see that the fiducial sample gives the best con-
straints and the largest improvement is gained when the sample
size increases. The increase in constraining power with sample
size is more prominent in the GCph and GGL combined case in

general and for the parameters that characterize dark energy, w0
and wa, in particular.

7.4. Redshift distribution of the photometric redshift bins

To better understand the behavior of the FoM in Sect. 7.2 and
the constraints in Sect. 7.3, we take a closer look at the n(z)
of some of the samples used to perform the study. In the top
panel of Fig. 14, we compare our fiducial photometric sample
for mVIS cuts at <25, <24.5, and <23.5 to see the effects in
the n(z) when changing the magnitude limit and therefore the
sample size. A shallower cut in magnitude removes objects at
higher redshift. In the bottom panel of the figure, we compare
the n(z) for the fiducial, mid depth, and shallow depth samples at
mVIS < 25 to see how the behavior of the n(z) changes with
the depth of the ground-based photometry and therefore with
the photo-z performance. Overall, the shallower the photome-
try, the larger the width of the n(z) distributions, especially at
higher redshift. This effect spuriously dilutes the correlation sig-
nal inside bins and increases the cross-correlation signal between
bins, bringing down the GCph constraining power. On the con-
trary, for the GGL case, the widening of the redshift distributions
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Fig. 12. Uncertainties of the cosmological parameters for all the cases considered in Sect. 7.2 for combined GCph and GGL.

is less important given the width of the lensing kernel. In addi-
tion, the effect of an increase in the number density dominates
the performance of the FoM that in general increases with depth.
In Table A.1, we present quantitatively the number of objects per
bin and the width of the n(z) for the fiducial and shallow photo-
metric samples, and for all the mVIS magnitude cuts.

8. Summary and conclusions

Our primary goal is to study the cosmological constraints that
can be derived from galaxy clustering studies of photometrically
selected samples using the combination of Euclid and ground-
based surveys. For that purpose, we use the figure of merit,
FoM, defined in Eq. (16) as our performance metric. We want to
explore the impact of the ground-based photometry depth as well
as the photo-z performance on the FoM constraints. To explore
the photo-z performance, we vary both the survey depth and the
spectroscopic sample available to train the photometric redshift
algorithms. We use the Flagship simulation to create realizations
of the expected observed magnitudes and their errors for the sur-
vey depths under study. To add a layer of realism to the study,
we compute the photo-z using the machine learning code DNF
in order to obtain a realistic photo-z estimation for each of the

photometric samples under study. We also try to mimic the train-
ing of the photo-z method using spectroscopic samples with dif-
ferent completeness levels. Given the scaled degradation of the
photometric quality among the samples, we obtain a gradient of
photo-z quality. We choose as our fiducial sample the one corre-
sponding to the photometric depth expected to be available in the
southern hemisphere with a survey such as Rubin-LSST. We per-
form our FoM analysis using the same Fisher forecast formalism
as in EC20.

First, we study the optimization of the FoM with respect to
the number and type of tomographic bins. We normalize our
results to the case of ten bins with an equal width in redshift
since this is the specifications used in EC20. For this analysis, we
use the fiducial photometric sample defined in Sect. 4.3. Figure 6
shows the variations in the normalized FoM as a function of the
number and type of bins. We find the best compromise for an
optimal configuration to be:

– Number of bins: A number slightly larger than ten is pre-
ferred. We adopt a default value of 13 bins for our study. For
bins with an equal width, the FoM increases when moving
from ten to 13 bins by 35.4% and 15.4% for GCph only and
for GCph + GGL, respectively. We find that a larger number
of bins still provides an increase in the FoM for the GCph
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Fig. 13. Fisher matrix contours for our fiducial sample down to mVIS < 24.5 (blue) and 23.5 (yellow), and the sample with ground-based photometry
degraded by 1.75 magnitudes (red). Top panel: for GCph. Bottom panel: for GCph and GGL.
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only case. However, the photo-z scatter starts to be compara-
ble to the bin width for such a large number of bins and our
assumptions on how we train and compute the photo-z may
start to be too simplistic.

– Type of bins: equal width. For the GCph case, the FoM
increases by 30% for 13 bins with an equal width com-
pared to equipopulated bins. When combining with GGL,
the difference in the FoM as a function of bin type is almost
negligible.

These results are in nice agreement with Kitching et al. (2019)
where they find similar conclusions of the optimum type of bins
when optimizing the binning of photometric galaxy samples for
cosmic shear analysis. The need of a larger number of bins, espe-
cially with good photo-z accuracy and the inclusion of intrinsic
alignment parameters, to extract all the necessary information
for cosmic shear is also found in Bridle & King (2007). In this
latter study, they also conclude that the model and freedom of the
intrinsic alignment parameters greatly impact the FoM of dark
energy.

We further study the dependence of the FoM on the qual-
ity of the photo-z and the size of the sample. We study possible
scenarios of complementary ground-based data for Euclid that
could be available in the southern and northern hemispheres and
in the region in between. We take several magnitude limit cuts
and generate realizations of the survey using the Flagship sim-
ulation. We also explore different possibilities of spectroscopy
data available to train the photo-z techniques. We end up with a
variety of samples with different number densities and photo-
z performance properties that try to encompass the possible

samples that will be available for Euclid analyses. We compute
the dark energy FoM for all these samples to study its varia-
tion. Our results are summarized in Fig. 9 and Table 4. For the
GCph case, we find a FoM of 713 for our fiducial sample with
mVIS < 24.5 (remember that galaxy bias is fixed for the GCph
case, providing larger absolute values for the FoM than in the
combination of GCph + GGL). The FoM improves with photo-z
quality and sample size. The trend with sample size or magni-
tude depth reverses when adding galaxies in a magnitude range
(between 24.5 and 25 in our case) where photo-zs cannot be cali-
brated and are therefore of poor quality. There is a faster increase
of the FoM with sample size in those samples where the photo-
z performance is better. For example, in the optimistic, fiducial,
and mid depth cases increasing the sample size from mVIS 23.5
to 24 and from 24 to 24.5 leads to an increase in the FoM of
about 20%. When combining GCph and GGL, the FoM for the
fiducial sample at mVIS < 24.5 is 411. The FoM depends more
strongly on the sample size (or survey depth) than on the photo-
z performance. The greatest FoM increase, of about 50%, takes
place when adding galaxies from mVIS < 24 to 24.5. The FoM
has a weak dependence on the photo-z performance. Generally,
it improves with better photo-z accuracy.

The photo-z performance depends on the signal-to-noise of
the photometry available and on the spectroscopic sample used
in the photometric redshift algorithm. In our study, we use a
machine learning technique, DNF. The representativeness of the
training sample has a significant influence on the photo-z qual-
ity. The impact on the FoM is larger when the photometry is
shallower. For the optimistic photometry, the improvement in
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the FoM is minimal, 1–2%, when we train the photo-zs with a
representative subsample or with a subsample with a complete-
ness drop at faint mVIS. This minimum variation is because the
spectroscopic sample incompleteness in the second case only
affects the very faintest galaxies. In the cases where the spec-
troscopy incompleteness is representative of a larger fraction of
the galaxy sample, the FoM variation is larger. For example, for
our shallowest photometric sample, the relative variation in FoM
when trained with an incomplete n(z) and with just a complete-
ness drop only at the faintest mVIS, can be of around 30%.

We also investigate the uncertainties in the constrains on
our cosmological parameter set across the photo-z quality and
sample density space. Cosmological parameters present simi-
lar trends to those of the FoM. But there are small differences
between the different parameters. For GCph, in general the small-
est uncertainty is achieved when we get the highest FoM, which
is the optimistic sample at mVIS < 24.5. However, Ωb, wa and
h get the smallest uncertainties for the same optimistic sam-
ple but for mVIS < 25. The balance between the degradation
of the photo-z and the increase in number density affects these
parameters slightly differently. For GCph combined with GGL,
the uncertainty in the cosmological parameters presents a sim-
ilar behavior to the FoM trends. The lowest uncertainty in the
parameters is achieved when the number density is largest, at
mVIS < 25. The trend with photo-z performance does not influ-
ence the level of uncertainty. In general, the parameters are bet-
ter constrained when the accuracy on the photo-z determination
is higher. However, for some parameters this trend is different in
the deepest sample.

To conclude, there is significant gain in the FoM when using
a larger number of redshift bins than the nominal ten bins choice
of Euclid, especially for GCph. We study the effect that the accu-
racy of the photo-zs and the survey depth have on the FoM. When
using the GCph probe, the FoM increases with survey depth and
with the reduction in photo-z uncertainties. We study the influ-
ence of the training sample in the photo-z performance and its
implications on the FoM. We find than adding faint galaxies
whose redshifts cannot be properly determined because there are
no galaxies of those magnitudes in the training sample decreases
the FoM. For the combination of the GCph and GGL probes,
there is even more gain on the cosmological constraining power
when using larger samples than for GCph alone. The photo-z
quality has slightly less impact on the FoM than for GCph alone.
In general, for the combination of probes, the number density
has a stronger influence on the FoM than the photo-z accuracy.
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Appendix A: Additional table of n(z) of photometric
redshift bins

In Sect. 7.4, we show the n(z) for the fiducial, mid depth, and
shallow samples at mVIS < 25. In this appendix, we present a

detailed table containing the number of galaxies and the disper-
sion of n(z) at each bin for the fiducial and shallow samples for
all magnitude cuts.

Table A.1. Number of objects and dispersion, σ, for each redshift distribution within our fiducial redshift binning and for each mVIS cut.

Fiducial sample
mVIS z bin 0.0–0.15 0.15–0.31 0.31–0.46 0.46–0.62 0.62–0.77 0.77–0.92 0.92–1.08 1.08–1.23 1.23–1.38 1.38–1.54 1.54–1.69 1.69–1.85 1.85–2

25 Num. 1110056 4172539 7690737 7742576 7525914 7295429 6241444 5981201 4223985 2982428 1921137 1449159 976552
σ 0.073 0.103 0.107 0.122 0.141 0.162 0.187 0.183 0.203 0.223 0.249 0.233 0.217

24.5 Num. 1097615 3776899 5964220 5558628 5592743 5403185 4346079 4094858 2607993 1561814 755690 520928 363096
σ 0.068 0.091 0.091 0.098 0.087 0.085 0.09 0.086 0.092 0.102 0.137 0.152 0.156

24 Num. 1043816 3109259 4465491 4274695 4344582 3720890 2404484 1773883 859017 355151 118249 69939 44695
σ 0.061 0.078 0.078 0.079 0.069 0.068 0.07 0.069 0.073 0.082 0.117 0.139 0.145

23.5 Num. 932348 2439621 3418339 3449593 3274820 2360571 1241933 670591 207132 55555 12604 4697 2005
σ 0.055 0.07 0.069 0.069 0.062 0.062 0.065 0.064 0.069 0.088 0.129 0.168 0.189

23 Num. 789691 1902902 2705811 2746874 2269715 1369104 555385 189037 33808 6408 887 253 75
σ 0.051 0.065 0.064 0.063 0.059 0.058 0.063 0.064 0.077 0.105 0.165 0.221 0.151

Shallow sample
25 Num. 978190 3672690 7897148 8034871 7918102 7685291 6333228 5904729 4162337 3054888 1811004 1199176 766188

σ 0.128 0.142 0.15 0.18 0.202 0.218 0.248 0.253 0.291 0.314 0.359 0.367 0.354
24.5 Num. 914714 3258214 6223068 5612186 5749345 5737669 4481509 4082193 2508584 1632392 763071 456446 311625

σ 0.076 0.105 0.117 0.138 0.143 0.145 0.156 0.145 0.165 0.178 0.222 0.238 0.221
24 Num. 896794 2920536 4858119 4171760 4314051 3826551 2414157 1788392 821471 370273 114523 60248 36376

σ 0.067 0.092 0.099 0.103 0.096 0.093 0.099 0.094 0.107 0.125 0.18 0.199 0.185
23.5 Num. 850214 2389463 3699364 3297370 3260529 2395127 1224782 684043 195546 55925 10649 3980 1659

σ 0.062 0.083 0.086 0.083 0.076 0.075 0.079 0.076 0.087 0.101 0.162 0.193 0.198
23 Num. 760306 1879125 2851850 2643698 2273819 1380422 546639 195193 30615 5996 681 260 80

σ 0.057 0.074 0.075 0.071 0.067 0.067 0.071 0.072 0.088 0.106 0.185 0.166 0.229

Notes. The table lists results which correspond to the fiducial sample and the shallow sample whose ground-based photometry is degraded by
1.75. The photo-z of both samples are trained with a spectroscopic sample that has a completeness drop in mVIS.
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