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Abstract

Current numerical conformal bootstrap techniques carve out islands in theory space by
repeatedly checking whether points are allowed or excluded. We propose a new method
for searching theory space that replaces the binary information “allowed”/“excluded”
with a continuous “navigator” function that is negative in the allowed region and posi-
tive in the excluded region. Such a navigator function allows one to efficiently explore
high-dimensional parameter spaces and smoothly sail towards any islands they may con-
tain. The specific functions we introduce have several attractive features: they are well-
defined in large regions of parameter space, can be computed with standard methods,
and evaluation of their gradient is immediate due to an SDP gradient formula that we
provide. The latter property allows for the use of efficient quasi-Newton optimization
methods, which we illustrate by navigating towards the 3d Ising island.
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1 Introduction and summary

Over the last decade, the numerical conformal bootstrap program1 has relied on the idea [4]
that for any point in CFT parameter space it is possible to check if the point is allowed or
excluded by constructing positive linear functionals. In this work we will dramatically upgrade
this idea, replacing the binary information “allowed/excluded” by a continuous measure of
success, called a “navigator function.” For excluded points, the navigator function will tell us
how far we are from the allowed region. Minimizing the navigator, we will be able to quickly
find the allowed region, starting from an excluded point. For allowed points, the navigator

1Ssee [1] for a thorough review, and [2,3] for pedagogical introductions.
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will tell us how far inside the allowed region we are, and navigator minima will be excellent
predictors for the position of an actual CFT.

To describe what we have in mind in some detail, let X be an infinite-dimensional vector
containing all parameters characterizing a CFT (i.e. all operator dimensions and OPE coef-
ficients, bundled together). We split it as X = (x , y) where x ∈ Rk are parameters we are
especially interested in, and y contains all the rest. We also select a finite subset of the in-
finitely many bootstrap equations.

Most bootstrap computations performed so far proceeded in what one may call “oracle
mode.”2 One picks a sequence of trial vectors x1, x2, . . . and asks for each of them if there is
any y such that X = (x i , y) satisfies the selected subset of bootstrap equations. A bootstrap
solver such as SDPB [5,6] provides an answer: “allowed” or “excluded”. By trying many x i ’s,
one maps out the allowed region.3 Thus, we compute the characteristic function χR of the
allowed region R (i.e. χR(x) = 1 for x ∈ R and χR(x) = 0 otherwise). Experience shows that
the boundary of the allowed region ∂ R is typically smooth, apart from isolated points (kinks).
This can guide the choice of future trial points and speed up the computation.4 By trying many
points, one zooms in on the boundary ∂ R of the allowed region. Importantly, a single oracle
query does not provide any information about whether one is close to or far from ∂ R. Rather,
one knows that one is close to ∂ R if one can find two nearby trial points x i and x i′ such that
they are on two different sides of the boundary.

We will modify this setup so that a single SDPB run computes a continuous function N (x),
called a navigator, which will give a more nuanced measure of success than simply “allowed/
excluded.” To be maximally useful, the navigator should have the following properties:

• N (x) is continuous and differentiable;

• N (x)> 0 outside the allowed region R, and N (x)< 0 inside R. In particular, N (x) = 0
on the boundary ∂ R;5

• N (x) should be defined not just in a tiny neighborhood of the allowed region but glob-
ally;

• The allowed region R should be a basin of attraction of the navigator function from a
sizable neighborhood of R.

Assuming these nice properties, the navigator value will allow us to guess how far we are from
the allowed region. We will also be able to reach the allowed region by starting from some
initial trial point x0 and by minimizing the navigator until we reach a point with negative
N (x). We’d like to be optimistic and hope that the navigator has no local minima away from
the allowed region where such a search may get stuck.

The idea of replacing the binary information of “oracle mode” with continuous informa-
tion from solving an optimization problem is not completely new [9, 10]. Notably Ref. [10]
emphasized the power of this idea to quickly determine the boundary of the allowed region
once its approximate position is known, replacing bisection with the secant method.6 A crucial
difference here is our requirement that the navigator should be defined in a wide region and

2In technical jargon referred to as “feasibility mode.”
3Other typical bootstrap computations are OPE coefficient optimizations. Sometimes these computations allow

to zoom in on actual CFTs, as e.g. c-minimization is conjectured to lead to the 3d Ising CFT [7].
4Other speed-up tricks include the cutting surface algorithm [8], which allows in some cases to use a single

oracle computation to rule out not just one point but a large swath of the parameter space.
5In the Level Set Method of computational geometry, such functions are called “level set functions” or “level set

fields”. Closely related are also “boundary defining functions” of differential geometry, which however are only
required to be defined near the boundary.

6We will see below that the navigator derivative can be evaluated “for free,” allowing to replace the secant
method with the even faster Newton method.
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not only near the boundary, which will greatly increase the list of potential applications. This
requirement is non-trivial and the early navigator avatars [9, 10] don’t satisfy it (see Section
2.1.3).

In this paper we will lay down the systematic theory of navigator functions by showing
three important results:

1. First, we will show that navigators satisfying all of the above properties can indeed be
found for a generic bootstrap problem. We will present both the general principle of
their existence, and several explicit constructions (see Section 2). Please scroll down to
Fig. 1 for a concrete navigator example in the mixed σ-ε bootstrap setup used to isolate
the 3d Ising model. It has all the nice properties, and in particular a single minimum
(within the range we show), located within the 3d Ising island. See Section 3 for more
beautiful navigator plots.

2. Our navigators can be evaluated using standard conformal bootstrap software such as
SDPB. In practical applications that we have in mind, it’s important to know not just
the navigator but also its gradient. Our second important result is a general “SDP gradi-
ent formula,” Eq. (4.16). This formula shows that navigator gradient can be evaluated
essentially for free once the navigator value has been computed using SDPB.

3. We foresee that one of the most important navigator applications will be to quickly look
for allowed points, i.e. to “sail towards the Ising island,” by minimizing the navigator.
Naive minimization strategies, such as the gradient descent, are inefficient, getting stuck
in narrow “valleys” of the navigator surface. Our third important result is to demonstrate
how a quasi-Newton method—the BFGS algorithm [11]—successfully overcomes these
difficulties (Section 5). This algorithm finds first the allowed region, and then the navi-
gator minimum, in a relatively small number of steps.

The paper is structured as follows. Section 2 will explain our two main navigator construc-
tions: the GFF-navigator and the Σ-navigator. (A third construction is in App. B). In Section 3
we will show various plots of these navigators, to gain intuition about their shape. In Section
4 we will derive the SDP gradient formula. In Section 5 we will describe the BFGS algorithm
and its bounding-box modification, to look for an allowed point and the navigator minimum,
and show that it performs well in realistic multiple-correlator setups. In Section 6 we describe
another possible navigator application: extremizing operator dimension within the allowed
region. This represents an attractive alternative to the tiptop algorithm recently introduced
for this purpose in the feasibility setup [12]. In Section 7 we conclude. Appendix C shows
how one can also evaluate the navigator Hessian, in addition to the gradient, and provides
numerical tests of these procedures.

2 Navigator function

Our motivation to look for the navigator function, and its desired properties, have already
been described in the introduction. The crucial requirement is that the navigator should be
finite. Indeed, a navigator which is negative inside the allowed region and equals +∞ outside
would be rather useless for the purposes we have in mind, such as looking for an allowed point
starting from an excluded one. Furthermore, once a finite navigator is constructed, other nice
properties turn out to also be satisfied.

How to get a robustly finite navigator is one of the main ideas of our paper (see Section
2.1.3 for an account of naive attempts which fail). Although the idea is general, we will start
in Section 2.1 by presenting it in the simplest single-correlator setup. We will then move on
to more realistic multiple-correlator problems.
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2.1 Single-correlator problems

Consider the simplest bootstrap setup: scalar gap maximization in a single 4pt function of four
identical scalars [4]. Thus we are solving the bootstrap equation

F0,0(u, v) +
∑

(∆,`)∈S(∆∗)

p∆,`F∆,`(u, v) = 0, p∆,` > 0, (2.1)

where F∆,`(u, v) = v∆φ g∆,`(u, v) − u∆φ g∆,`(v, u). Here ∆φ is the external scalar dimension
which for simplicity is considered fixed (although see footnote 7). The set S(∆∗) is given by:

S(∆∗) = {(∆,`) : `= 0 and ∆>∆∗, or `= 2, 4, . . . and ∆> `+ d − 2} . (2.2)

The variables to be solved for in (2.1) are the set of appearing pairs (∆,`) and the correspond-
ing coefficients p∆,`. We are interested to know what is the maximal ∆∗ such that (2.1) has a
solution.

We would like to define a navigator function N (∆∗) such that it is negative if a solution
exists and is positive if it does not exist. To this end we will consider a modified problem of
the form

F0,0(u, v) +λM(u, v) +
∑

(∆,`)∈S(∆∗)

p∆,`F∆,`(u, v) = 0, p∆,` > 0. (2.3)

We just added an extra term in the l.h.s. with a fixed function M(u, v) and a new parameter
λ. The function M(u, v) will be chosen so that the following crucial property holds:

F For any ∆∗, problem (2.3) has a solution with some λ= λ0(∆∗)> 0. (2.4)

Given this property, the navigator function will be defined as the minimal value of λ such that
(2.3) has a solution:7

N (∆∗) =minλ such that (2.3) has a solution. (2.5)

Property (2.4) then guarantees that the navigator is bounded from above, as we have
N (∆∗) 6 λ0(∆∗). We also see that the navigator is monotonically non-decreasing in the ∆∗
direction, negative in the allowed region and positive outside.8

This described construction does not formally guarantee other nice properties of the navi-
gator that we wish to have (thatN (∆∗) is differentiable, strictly negative in the allowed region,
has no local minima outside the allowed region where minimization can get stuck etc.) It also
does not guarantee that the navigator is finite inside the allowed region (it may be−∞ there).
Nevertheless, explicit navigator functions constructed below using this idea will have all these
additional nice properties, by inspection.

We will now give two examples of functions M(u, v) that have the required property (2.4).

2.1.1 GFF-navigator

We know that for any ∆φ , Eq. (2.1) has a Generalized Free Field (GFF) solution with the
spectrum ∆ = 2∆φ + 2n+ `, n > 0, ` = 0, 2,4, . . ., corresponding to operators of schematic

7Although in this section we consider∆φ fixed, it is trivial to relax this and consider the navigator as a function
of both ∆φ and ∆∗, defined by the same Eq. (2.5). The zero set of N (∆φ ,∆∗) is then a curve which is the upper
bound on ∆∗ as a function of ∆φ . We will not develop this idea further here but we will encounter analogous
situations below in the multiple-correlator context.

8Note that for any ∆∗ the set of λ’s for which (2.3) has a solution is a connected subset of the real axis. This
follows from the fact that a convex linear combination of solutions is again a solution.
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form φ∂ `�nφ. The GFF-navigator is obtained by taking M(u, v) to be the first term in this
solution:

MGFF(u, v) = 2F2∆φ ,0(u, v). (2.6)

Here 2 is the square of the GFF OPE coefficient in the OPE φ×φ 3
p

2O, where O = 1p
2
φ2 is

unit-normalized. The GFF solution to crossing provides a solution to (2.3) with λ= 1 as long
as all GFF operators besides φ2 belong to S(∆∗), which will be the case for ∆∗ 6 2∆φ + 2.
Hence N (∆∗)6 1 for any ∆∗ in this range.

Note that having a finite navigator in the range ∆∗ 6 2∆φ +2 is sufficient for the problem
at hand, since the boundary of the allowed region for (2.1) is known to satisfy this condition.
Alternatively, higher GFF operators which do not satisfy gap assumptions may be added to
the r.h.s. of Eq. (2.6). See App. A for this tweak of the GFF-navigator, important for bootstrap
problems with additional gaps in the spectrum.

2.1.2 Σ-navigator

Another possibility, called the Σ-navigator, results from choosing:

MΣ(u, v) = −
n
∑

i=1

ci F∆i ,`i
(u, v) , (2.7)

where (∆i ,`i) are any n spectrum points in S(∆∗), ci > 0 some fixed positive coefficients,
and n is a sufficiently large number. Since the coefficients ci are, apart from being positive,
essentially arbitrary, there is a lot of freedom in choosing the Σ-navigator.

Consider Eq. (2.3) with this M(u, v). In practice, in the numerical conformal bootstrap
we analyze this equation in Taylor expansion around some point, i.e. we replace functions of
u, v by vectors of Taylor coefficients of some finite length n0. Denoting vectors by boldface
symbols, we have

F0,0 +λMΣ +
∑

(∆,`)∈S(∆∗)

p∆,`F∆,` = 0, p∆,` > 0 . (2.8)

We claim that this equation will generically have a solution with some positive λ as long as the
number of terms n in (2.7) is n > n0. Indeed, generically the vectors F∆i ,`i

are not expected
to be linearly independent. Thus the equation

F0,0 +
n
∑

i=1

x iF∆i ,`i
= 0, (2.9)

will have a solution as longs as x i are allowed to have either sign. We rewrite this solution as

F0,0 +λMΣ +
n
∑

i=1

(x i +λci)F∆i ,`i
= 0. (2.10)

For sufficiently large positive λ = λ0 all the coefficients x i + λ0ci > 0 so this is a solution to
(2.8), proving the above claim. Hence, by the general arguments, the navigator is bounded
from above by λ0.

In the described construction the number of terms n in (2.7) may have to be increased with
the number of conformal block derivatives used in the numerical analysis. Alternatively, we
may replace the sum in (2.7) by an integral with a positive continuous measure in some interval
of ∆’s. Then the same navigator may be used independently of the number of derivatives.

6
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2.1.3 Dual picture

In the dual approach to the numerical conformal bootstrap, the problem of computing the
navigator (2.5) is formulated as follows:

N (∆∗) =maxα(F0,0) over all linear functionals α such that

α(M) = −1,

α(F∆,`)> 0 for all (∆,`) ∈ S(∆∗). (2.11)

Our construction guarantees that the choices (2.6) or (2.7) lead to this problem having a
solution bounded from above for any ∆∗.

From this dual formulation we can see that the Σ-navigator is guaranteed to be finite also
in the allowed region (i.e. it cannot be −∞ there). That’s because for any ∆∗ there is always
some functional which satisfies the positivity condition in (2.11). Rescaling this functional we
may make it also satisfy the normalization condition. This provides a finite lower bound for
the Σ-navigator. For the GFF-navigator this argument clearly fails if ∆∗ 6 2∆φ . In this case
there is no functional α satisfying both the normalization and the positivity conditions. Thus
the GFF-navigator equals −∞ for∆∗ 6 2∆φ .9 This is not so problematic in practice, since this
range is anyway deep inside the allowed region for the single-correlator problem. In principle
the GFF-navigator could become −∞ even for ∆∗ somewhat above 2∆φ , but we have not
seen this happen.

It is instructive to compare the above dual formulation with how one computes the maximal
allowed value pmax

∆0,`0
of the squared OPE coefficient for an operator (∆0,`0) present in the

spectrum [9,13]:

pmax
∆0,`0

= −maxα(F0,0) over all linear functionals α such that

α(F∆0,`0
) = 1,

α(F∆,`)> 0 for all (∆,`) ∈ S(∆∗). (2.12)

Comparing (2.12) with (2.11), one may wonder if one could perhaps define a navigator sim-
pler than in our proposals, namely as

N (∆∗) = −pmax
∆0,`0

(?) (2.13)

for some appropriate choice of (∆0,`0) in S(∆∗). E.g. what if one tries `0 = 0 and ∆0 a little
above the boundary of the allowed region? It turns out however that such simple-minded
choices of functional normalization are inadequate. Namely, they give a finite navigator only
in a rather small neighborhood of the boundary of the allowed region, which moreover gets
smaller and smaller as one increases the number of derivatives used in the conformal bootstrap
computation.10 If one already knows quite well where the boundary is (e.g. via bisection),
then using this navigator one can quickly determine it even more precisely. But if one starts
far away from the boundary, this navigator would not help. Our Σ-navigator proposal shows
that to get a robustly bounded navigator one needs to modify this idea by normalizing not on a
single conformal block in the allowed region as in (2.12) but on a positive linear combination
of many blocks as in (2.7).

Analogously, one could have hoped to get a bounded navigator by normalizing the func-
tional to −1 on a single conformal block in the region outside S(∆∗). But again, one finds that

9This is also obvious from the primal definition (2.6).
10Ref. [10] considered an early version of navigator function corresponding to normalizing one particular com-

ponent of the functional to 1. This navigator prototype suffered from the same problem of being finite only in a
small region. We are grateful to Tom Hartman and Amir Tajdini for enlightening communications concerning their
findings, which sparked our search for a robust navigator function.
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choosing `0 = 0 and ∆0 a little below the boundary of the allowed region gives a navigator
which is finite only in a small neighborhood of the boundary of the allowed region. Instead,
our GFF-navigator proposal shows that if∆0 is lowered all the way to 2∆φ , which is quite a bit
lower than the boundary of the allowed region, then the navigator becomes robustly bounded
from above.

2.2 Multiple-correlator problems

We will now discuss how the navigator function construction generalizes to bootstrap problems
involving several correlation functions. The main idea will be the same: we just need to add
a new term so that crossing can always be obeyed, and minimize its coefficient.

We will consider the example of three 4pt functions 〈σσσσ〉, 〈σσεε〉 and 〈εεεε〉where σ
and ε are an odd and even scalars in a Z2-invariant CFT (such as the critical 3d Ising model).
This system of correlators leads to 5 independent crossing relations [14]:

∑

O+
Tr
�

PO ~V+,∆,`

�

+
∑

O−
pO ~V−,∆,` = 0 , (2.14)

PO =
�

λσσO λεεO
�

⊗
�

λσσO
λεεO

�

, pO = λ
2
σεO , (2.15)

where ~V−,∆,` is a 5-vector of functions while ~V+,∆,` is a 5-vector of 2×2 symmetric matrices of
functions of u, v:

~V+,∆,` =



































�

Fσσ,σσ
−,∆,` 0

0 0

�

�

0 0
0 Fεε,εε−,∆,`

�

�

0 0
0 0

�

�

0 1
2 Fσσ,εε
−,∆,`

1
2 Fσσ,εε
−,∆,` 0

�

�

0 1
2 Fσσ,εε
+,∆,`

1
2 Fσσ,εε
+,∆,` 0

�



































, ~V−,∆,` =













0
0

Fσε,σε−,∆,`
(−1)`Fεσ,σε

−,∆,`
−(−1)`Fεσ,σε

+,∆,`













. (2.16)

See [14] for the expressions of the functions F i j,kl
±,∆,`(u, v). The first sum in (2.14) runs over the

Z2-even operators O+ in the OPEs σ×σ and ε×ε (whose spin is necessarily even), while the
second sum in (2.14) is over all Z2-odd operators O− in the OPE σ× ε (which can have any
spin).

As usual, we will treat separately the unit operator contribution

~V0,0 = Tr
�

P0,0 ~V+,0,0

�

, P0,0 =

�

1 1
1 1

�

. (2.17)

Furthermore, we will group the contributions of ε and σ using the relation λσσε = λσεσ. We
will work in d = 3 and assume that all other scalars apart from ε and σ are irrelevant, so all
remaining O± will satisfy the spectrum restrictions:

S+ = {(∆, 0) :∆> 3} ∪ {(∆,`) : `= 2,4, 6, . . . and ∆> `+ 1}, (2.18)

S− = {(∆, 0) :∆> 3} ∪ {(∆,`) : `= 1,2, 3, . . . and ∆> `+ 1}. (2.19)
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Then we can write (2.14) as

~V0,0 + Tr

�

P∆ε,0

�

~V+,∆ε,0 +

�

1 0
0 0

�

~V−,∆σ,0

��

+
∑

(∆,`)∈S+

Tr
�

P∆,` ~V+,∆,`

�

+
∑

(∆,`)∈S−

p∆,` ~V−,∆,` = 0 . (2.20)

If the point (∆σ,∆ε) is allowed, this equation must have a solution with P∆ε,0, P∆,` < 0,
p∆,` > 0. As discovered in [14],11 this condition gives rise to an allowed region in the (∆σ,∆ε)
plane consisting of a small island containing the 3d Ising CFT and a larger detached “con-
tinent.” We will first discuss how this can be reproduced using a two-parameter navigator
N (∆σ,∆ε). See Section 2.2.1 below for how to include the third parameter θ parametrizing
the ratio of the OPE coefficients λσσε/λεεε.

Analogously to (2.3), we consider the modification of (2.20) adding to the l.h.s. an extra
term λ ~M where λ ∈ R and ~M is a particular 5-vector of functions of u, v:

~V0,0 +λ ~M + Tr

�

P∆ε,0

�

~V+,∆ε,0 +

�

1 0
0 0

�

~V−,∆σ,0

��

+
∑

(∆,`)∈S+

Tr
�

P∆,` ~V+,∆,`

�

+
∑

(∆,`)∈S−

p∆,` ~V−,∆,` = 0 . (2.21)

In general ~M will also have some dependence on ∆σ and ∆ε (just like all the other vectors
in the equation). We will be looking for solutions of (2.21) with P∆ε,0, P∆,` < 0 and p∆,` > 0.
Analogously to (2.4) and (2.5), the navigator N (∆σ,∆ε) is defined as the minimal λ such
that a solution exists:

N (∆σ,∆ε) =minλ such that (2.21) has a solution, (2.22)

while ~M has to be chosen such that there is always some solution for a sufficiently large λ. This
then provides an upper bound for the navigator and in particular guarantees that N < +∞.

The GFF-navigator idea from Section 2.1.1 generalizes to the present multiple-correlator
setup. Indeed, we always have a GFF solution to crossing in which σ and ε are indepen-
dent GFFs. The vector ~M is constructed from the contributions of (unit-normalized) operators

1p
2

:σ2 : ∈ σ×σ, 1p
2

:ε2 : ∈ ε× ε, :σε: ∈ σ× ε:

~MGFF = Tr

��

2 0
0 0

�

~V+,2∆σ,0

�

+ Tr

��

0 0
0 2

�

~V+,2∆ε,0

�

+ ~V−,∆σ+∆ε,0 . (2.23)

With this ~M , Eq. (2.21) has a solution with λ = 1, P∆ε,0 = 0 and P∆,` and p∆,` coming
from the rest of the GFF spectrum in the σ × σ, ε × ε, σ × ε OPE. This guarantees that
NGFF(∆σ,∆ε)6 1.12

To describe Σ-navigators we choose two finite sets R± ⊂ S± of (∆,`) pairs, and the linear
equation

~V0,0 +
∑

(∆,`)∈R+

Tr
�

X∆,`~V+,∆,`

�

+
∑

(∆,`)∈R−

x∆,`~V−,∆,` = 0 , (2.24)

11Ref. [14] did not impose the constraint λσσε = λσεσ so their allowed region was somewhat larger than the
one we will find. See [15], Eq. (2.3) for the setup we are describing here.

12We used here the fact that all the GFF operators apart from σ2, ε2, σε satisfy the S± constraints, assuming
as we are that ∆σ,∆ε > 1/2. This is obvious for operators of spin ` > 1 where we only impose the unitarity
bounds. In the scalar sector, the next GFF operators are schematically σ�σ, ε�ε and σ�ε, all of which have
dimension above 3. If there were additional GFF operators violating gap assumptions, their contributions would
have to be added to (2.23). See App. A for an example. There it is also explained how to deal with the case where
the navigator function depends on the magnitude of a squared OPE coefficient.
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where the variables X∆,` and x∆,` don’t have to satisfy any positivity requirement. As in Section
2.1.2, the boldface symbols mean that we have switched to working at some finite order in
Taylor expansion. Taking into account the structure of ~V0,0, ~V±,∆,`, ~V+,∆,`, and the fact that the

functions F i j,kl
±,∆,`(u, v) are generically linearly independent (as follows from their expressions

in [14]), Eq. (2.24) has a solution as long as R± include sufficiently many points.13 We won’t
need to know anything about the solution apart from the fact that it exists.

So let us pick any two such sets R± with sufficiently many points, and define

~MΣ = −
∑

(∆,`)∈R+

Tr
�

C∆,` ~V+,∆,`

�

−
∑

(∆,`)∈R−

c∆,` ~V−,∆,` , (2.25)

with some strictly positive fixed coefficients C∆,` � 0, c∆,` > 0. For any such ~MΣ, Eq. (2.21)
has a solution with some positive λ, by the same argument as in Section 2.1.2. Hence the
corresponding Σ-navigator defined via (2.22) will be bounded from above.

As a final comment, we would like to recall another problem with the feasibility-mode
searches which is resolved by our navigators. Feasibility-mode SDPB runs may not converge
due to precision issues for points that can already be excluded using the bootstrap of crossing
equations involving only a subset of the correlators [16]. E.g. this sometimes happens for
points outside the 3d Ising island which are excluded by a single-correlator constraint. The
navigators presented in this section converge in all the cases we tested, including the exact
Ising setup that does exhibit this problem when run in feasibility-mode. Thus, navigators also
provide a more robust method of checking the feasibility of any point.

2.2.1 Including the angles

As shown in [15], the allowed region in the 3-correlator bootstrap can be further reduced by
treating the P∆ε,0 term in (2.20) differently from the other P∆,`. This is possible since we are
assuming ε is non-degenerate. Writing λσσε = λε cosθ , λεεε = λε sinθ , pε = λ2

ε > 0, we can
then specialize Eq. (2.20) as

~V0,0 + pε ~Vε(θ ) +
∑

(∆,`)∈S+

Tr
�

P∆,` ~V+,∆,`

�

+
∑

(∆,`)∈S−

p∆,` ~V−,∆,` = 0 , (2.26)

~Vε(θ ) = Tr

��

c2
θ

cθ sθ
cθ s2

θ
sθ

�

~V+,∆ε,0 +

�

c2
θ

0
0 0

�

~V−,∆σ,0

�

. (2.27)

The original numerical implementation of this setup [15] involved scanning over the angle θ in
addition to∆σ and∆ε, which was computationally laborious. Significant progress in reducing
the computational cost has been recently achieved via the cutting surface algorithm [8].

In this paper we will show how this setup can be analyzed even more efficiently using
the navigator function. The construction is almost the same as above. We simply add to the
l.h.s. of (2.20) the term λ ~M and define the navigator N (∆σ,∆ε,θ ) as the minimal value of
λ for which the so modified equation has a solution with pε > 0, P∆,` < 0, p∆,` > 0. We can
choose ~MGFF as in (2.23), or ~MΣ as in (2.25), with R± ⊂ S±. The numerical results will be
shown below.

2.2.2 Dual picture

The primal definition of the navigator function given above was convenient for clarifying the
condition under which the navigator is bounded from above. For the actual numerical compu-
tation, we translate the primal definition to an equivalent dual formulation. As an example,

13Generically it will suffice to take |R+| =min(t1, t2, t4 + t5), |R−| = t3, where t i is the number of Taylor coeffi-
cients retained for line i = 1 . . . 5 of the original equation (2.14).
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for the 2-parameter navigator N (∆σ,∆ε), Eq. (2.22), the dual definition takes the form:

N (∆σ,∆ε) =max ~α · ~V0,0 over all linear functionals ~α such that

~α · ~M = −1 , (2.28)

~α ·
�

~V+,∆ε,0 +

�

1 0
0 0

�

~V−,∆σ,0

�

< 0 , (2.29)

~α · ~V+,∆,` < 0 for all (∆,`) ∈ S+ , (2.30)

~α · ~V−,∆,` > 0 for all (∆,`) ∈ S− . (2.31)

For the 3-parameter navigator N (∆σ,∆ε,θ ) from Section 2.2.1 we have to simply replace
condition (2.29) with (see (2.27))

~α · ~Vε(θ )> 0 . (2.32)

We recall that the above dual problems can be then transformed into a polynomial matrix
problem using rational approximations of conformal blocks expanded up to some finite deriva-
tive order around the z = z̄ = 1/2 point. This polynomial matrix problem is then transformed
into a semidefinite programming problem, which can be solved by SDPB [5,6].

In App. B we describe an alternative construction of the navigator function, which turns
the feasibility problem into an optimization problem not at the level of crossing equations, but
after the problem has already been dualized and translated into an SDP. We have not used that
construction in this work, but it may turn out useful in future applications.

3 Visualizing the GFF-navigator

In the previous section we provided a formal definition of navigator functions. Their actual
numerical evaluation can be performed using SDPB. Since navigator evaluation involves maxi-
mization, it will be comparable in cost to an OPE coefficient maximization, and more expensive
than say testing feasibility of a point. Of course, we hope that this extra cost will be offset due
to additional information provided by the navigator. And indeed, in subsequent sections we
will see that complicated bootstrap tasks can be achieved with relatively few navigator evalu-
ations.

Before we go to those applications, in this section we will explicitly visualize the various
navigator functions of Section 2. We will do this to get some intuition about their “shape,”
and to check that they are sufficiently well behaved to allow application of minimization al-
gorithms. Visualization will be done by performing fine scans in all variables. We emphasize
again that in realistic applications we will not need to perform such expensive visualization
scans.

We will focus on the 2- and 3-parameter GFF-navigators N (∆σ,∆ε) and N (∆σ,∆ε,θ )
from Sections 2.2 and 2.2.1. Numerical evaluation is done using the dual formulations given
in Section 2.2.2, where we need to put ~M = ~MGFF from Eq. (2.23). We will not show plots for
the Σ-navigators, although we have checked that they behave similarly to the GFF-navigators.

2-parameter case. We start with Fig. 1 showing N (∆σ,∆ε) in an extended region around
the 3d Ising island at the derivative order Λ = 11. We can see from it that the region of
negative navigator value matches in size the Λ = 11 allowed region of [14], Figs. 3 and 4.14

On this scale the navigator is observed to be smooth (see however below) and approaching
its predicted asymptotic value Nmax = 1 far away from allowed regions. There is clearly a
valley coming from the top right of Fig. 1(left), narrowing to a tight gorge as it approaches

14Our Λ= 11 corresponds to nmax = 6 in [14]. The slight difference in shape between our island and that of [14]
is because we have imposed the OPE equality λσσε = λσεσ in our setup, see footnote 11.
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Figure 1: Example of a navigator function N (∆σ,∆ε) for the 3d Ising setup. Left:
Heat map of the navigator function. The negative region, corresponding to the Ising
model island, is depicted in white. (Note that this image, and similarly other heat
maps in this paper, appears pixelated due to the finite resolution of our scan. The
actual island has a piecewise smooth boundary.) Right: Surface plot of the navigator
function.

its minimum inside the island. The surface has only one local minimum located in the plotted
region and, as expected, it is inside the island. This feature will be essential when we discuss
navigator minimization strategies in Section 5. Indeed, local minima in the disallowed region
would have required more computationally expensive optimization methods than the BFGS
algorithm discussed there.

In addition to the island, the allowed region found in [14] also included a detached “con-
tinent” at larger values of ∆σ, beyond the range of Fig. 1. This continent is of course also
found to be a region of negative navigator. Our navigator minimization strategies will use a
bounding box, see Section 5.2, to make sure that we sail to the island and not to the continent.

Figure 2: (∆σ,∆ε) slice of the 3-parameter GFF navigator N (∆σ,∆ε,θ = 0.96926)
at Λ= 11. Left: Heat map of this 2d slice. Right: Surface plot of the 2d slice.

3-parameter case. To get an idea of the shape of N (∆σ,∆ε,θ ), we will show two-
dimensional slices for fixed values of one of the 3 parameters. Thus, in Fig. 2 we fix θ = 0.96926
(the central value from [15]), and let (∆σ,∆ε) vary in a region close to the navigator mini-
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mum. The surface shape is similar to the two-parameter navigator surface in Fig. 1.15

Figure 3: Top row: 2d slice of the 3-parameter GFF-navigator for fixed
∆σ = 0.5181489 around the Ising island at Λ = 11. Bottom row: Same, but for
fixed ∆ε = 1.412625.

Furthermore, in Fig. 3 we show 2d slices of the 3-parameter navigator arising for a fixed∆σ
and ∆ε. Although the precise shapes here are somewhat different, all three 2d slice surfaces
are found to be smooth at this scale and free of local minima in the disallowed region (i.e.
where the navigator is positive). This is a good sign that optimization algorithms should be
able to quickly converge towards the Ising island given a reasonably precise initial guess.

Variation with Λ. Here we will explore how navigator shape changes with the derivative
order Λ. By design, the navigator function monotonically increases pointwise with Λ,
i.e. NΛ2

(x) > NΛ1
(x) for Λ2 > Λ1. This generalizes the fact that the allowed region shrinks

with Λ. It is interesting to know how this increase happens. E.g. does the navigator surface
move up with Λ uniformly or not? To answer this question, we show in Fig. 4 the 2d slice of
the 3-parameter navigator at fixed θ = 0.96926 with Λ = 19, comparing it to Λ = 11 from
Fig. 2. We see that the navigator surface has indeed moved up, but in non-uniform fashion.
Most notably, the surface along one of the nearly flat “valley” directions gets lifted up much
more than near the minimum. As a result, the minimum became more pronounced, which is
a good sign.

15The surface plot in Fig. 2 is rotated opposite to Fig. 1, to facilitate comparison to Fig. 4 below.
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Figure 4: Top: Surface plot of the Λ= 19 2d slice (orange) compared to the Λ= 11
2d slice from Fig. 2 (blue) Bottom left: Heat map of the (∆σ,∆ε) slice of the 3-
parameter GFF navigatorN (∆σ,∆ε,θ = 0.96926) around the Ising island atΛ= 19.
Bottom right: Heat map of the difference between Λ= 19 and Λ= 11.

3.1 Derivative of the navigator

The visualizations show navigator functions that are seemingly smooth and free of local min-
ima. Both these properties would be very helpful for the numerical minimization algorithms,
but they did not automatically follow from the definition of the navigator functions and we
cannot guarantee that they hold in other setups. In fact, in the course of our investigations
we found that even the navigator function under consideration is not entirely smooth: more
precisely, we believe that it is not everywhere C2.

Our evidence is provided in figure 5. In this figure we consider a GFF navigator function
with Λ= 11 for∆σ = 0.51831848513294, as a function of∆ε. (The chosen values of∆σ and
∆ε are in the vicinity of the minimum that we found using the techniques described below.
Notice that the navigator is negative along the entirety of the cross-section in figure 5 and so
we are inside the Ising island. We also imposed the OPE relation λσσε = λσεσ but left the ratio
λεεε/λσεσ unspecified.) We plot both the navigator function itself as well as its first derivative
in the ∆ε direction. The kink in the latter plot strongly suggests that there is a discontinuity
in the second derivative of the navigator. Indeed, the straight lines on either side of the kink
allow us to reliably estimate the second derivative with finite differences: we find the value to
be 767.762901557722(1) on the left and 219229.421457(1) on the right. Furthermore, using
the two points closest to the kink we can estimate that the third derivative would have to be
at least 1023 if the navigator function were smooth, which seems highly unlikely.

Although we have only shown a single cross section plot, it is likely that the non-smoothness
persists along a line (segment) in the (∆σ,∆ε) plane. It would be interesting to understand its
origin and whether there is a connection with the physics of the problem. Some preliminary
investigations indicate that the discontinuity might be due to rearrangements of the extremal
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Figure 5: Top: Plot of N(∆σ,∆ε) v.s. ∆ε where N is the navigator function, and a
zoom-in plot around the minimum. Bottom: Plot of the derivative of the navigator
function with respect to ∂∆εN(∆σ,∆ε) as a function of ∆ε and a zoom-in plot in the
scale of 10−18 around the kink.
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spectrum, but a detailed investigation is beyond the scope of this work.
Fortunately we will see below that the jump in the second derivative does not appear to

inhibit the functioning of our minimization algorithm. We will comment more on this in the
section 5.3.

4 Gradient at primal-dual optimality

In order to find points x where N (x)< 0 we will use a numerical minimization algorithm. The
convergence rate of such algorithms is significantly improved if we also provide it with deriva-
tive information. In this section we therefore outline a procedure to compute the gradient
∇N (x).

Naively, one might think that gradient evaluation would involve computational overhead.
For example, evaluating it via finite differences would require k additional SDPB runs where
k is the number of variables on which the navigator depends. However this naive expectation
is wrong: the main result of this section will be that ∇N (x) can be evaluated at negligible
computational cost if we have already evaluated the function N (x) itself. The underlying
reason is that the evaluation of N (x) is an extremization problem, and at extremality the first-
order variation can be computed using only the original, unperturbed solution. This remains
true even for constrained minimization problems, as is the case for us, when solved via primal-
dual algorithms such as in SDPB, because primal and dual variables play the role of each other’s
Lagrange multipliers. To explain this in more detail we first have to introduce the semidefinite
programming problem that underlies the computation of N (x).

4.1 Semidefinite programming reminder

Now we will explain how to compute the gradient of the objective in the above setup. As
mentioned above, the evaluation of N (x) is computationally analogous to an OPE extrem-
ization problem that is often encountered in numerical bootstrap studies. Let us recall that,
using a rational approximation for conformal blocks [17], these extremization problems be-
come semidefinite programs with a particular structure of the constraint matrices. We will use
the notation of [5], using which the problem can be written as:

D : maximize bT y over y ∈ Rn, Y ∈ SK

such that Y � 0 and

B y + Tr(A∗Y ) = c ,

(4.1)

with SK the space of symmetric matrices of size K . Note that c ∈ RP is a vector, B ∈ (Rn)P a
rectangular matrix, and the A∗ = (A1, . . . , AP) ∈ (SK)P is a vector of matrices.16

In the language of convex optimization the program (4.1) is called a dual program (D),
and the corresponding primal program P is given by:17

P : minimize cT x over x ∈ RP

such that X (x) := x T A∗ � 0 and

BT x = b .

(4.2)

16Although this notation suffices for our purposes, in actuality the matrices involved all have a block structure
and the number of non-zero components is significantly lower than a naive counting would suggest.

17We have opted to keep in this section the notation of [5] (excepting setting C = 0 in Eq. (2.3) and (2.21)
of [5]). This unfortunately produces a clash of notation: in this section x denotes the vector of free variables in
the primal semidefinite program, whereas in the rest of the paper x is the argument of the navigator function. We
stress that these are unrelated quantities.
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Note that x T A∗ ≡
∑P

p=1 xpAp, so that X (x) ∈ SK .
We need a few more definitions. A vector x is said to be primal feasible if all the conditions

in (4.2) are obeyed, even if optimality is not necessarily achieved. In the same vein a pair
(y, Y ) can be dual feasible if it obeys all the conditions in (4.1). The duality gap is defined as
the difference between the objectives:

D(x , y) := cT x − bT y . (4.3)

If x is primal feasible and (y, Y ) is dual feasible, then the duality gap is nonnegative:

D(x , y) = Tr
�

(x T A∗)Y
�

= Tr(X Y )> 0 , (4.4)

by the positive semidefiniteness of X and Y . So for any primal feasible point x the value of
cT x provides an upper bound for the dual optimum, and similarly for any dual feasible point
(y, Y ) the value of bT y provides a lower bound for the primal optimum.

Now suppose one finds primal and dual feasible points with D(x , y) = 0. Then clearly both
the primal and dual problem have been solved and brought to extremality, because neither
objective has any room left to improve. It is a non-trivial fact of life that this condition is not
only sufficient but also necessary for optimality in a generic semidefinite program (see [5]
and references therein for details). In other words, rather than solving the primal or dual
extremization problem, we can equivalently solve

Tr (A∗Y ) + B y = c ,

BT x = b ,

X = x T A∗ ,

X Y = 0 ,

X , Y � 0 ,

(4.5)

and then the optimal value of (4.1) and (4.2) is given by bT y = cT x . Notice that the fourth
equation in (4.5) states that X Y = 0 as a matrix equation. We call this the complementar-
ity condition, and it follows from the vanishing duality gap, i.e. Tr(X Y ) = 0, together with
X , Y � 0.

4.2 SDP gradient formula

Suppose we have found a primal-dual optimal point (x , y, X , Y ) such that the equations (4.5)
are solved. To compute the gradient of the objective we change the parameters in the problem
a little bit,

(b, c, B, A∗)→ (b, c, B, A∗) + (d b, dc, dB, dA∗) , (4.6)

and ask how the objective will change. So we need to investigate the corresponding linearized
problem. The change in the solution

(x , y, X , Y )→ (x , y, X , Y ) + (d x , d y, dX , dY ) (4.7)

must obey the linearized version of the optimality equations (4.5):

Tr(dA∗ Y ) + Tr(A∗ dY ) + B d y + dB y = dc ,

dBT x + BT d x = d b ,

dX = d x T A∗ + x T dA∗ ,

dX Y + X dY = 0 ,

X + dX , Y + dY � 0 .

(4.8)
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Our goal will be to compute the change in the dual objective, which is given by:

d(bT y) = d bT y + bT d y . (4.9)

In fact, since the duality gap remains zero we find d(cT x) = d(bT y) and one could equally
well have computed the change in the primal objective.

We start by showing a useful auxiliary result. The dX Y + X dY = 0 in (4.8) implies of
course that Tr(dX Y ) + Tr(X dY ) = 0. We claim that a stronger result is true, namely that the
two terms vanish independently:

Tr(dX Y ) = Tr(X dY ) = 0 . (4.10)

The proof is as follows. If X Y = 0 and X , Y � 0 then X and Y must have some zero eigenvalues.
We can choose a basis where X is an upper block matrix

X =

�

X11 0
0 0

�

, (4.11)

with X11 � 0. Then any symmetric Y obeying X Y = 0 must look like

Y =

�

0 0
0 Y22

�

, (4.12)

with Y22 � 0 because Y � 0. If we now write the variations as

dX =

�

dX11 dX12
dX T

12 dX22

�

, dY =

�

dY11 dY12
dY T

12 dY22

�

, (4.13)

then

dX Y =

�

0 dX12Y22
0 dX22Y22

�

, X dY =

�

X11dY11 X11dY12
0 0

�

. (4.14)

Now it becomes clear that the condition dX Y + X dY = 0 implies that X11dY11 = 0 and
dX22Y22 = 0, which in turn implies (4.10).

Let us return to the change in the dual objective as given in equation (4.9). Using the
linearized optimality equations it can be written as:

d bT y + bT d y = d bT y + x T Bd y

= d bT y + x T (dc − Tr(dA∗ Y )− Tr(A∗ dY )− dB y)

= d bT y + x T dc − x T Tr(dA∗ Y )− x T Tr(A∗ dY )− x T dB y.

(4.15)

At this point we recall that x T A∗ = X . Moreover we have just shown Tr(X dY ) = 0. So the
term proportional to dY in (4.15) vanishes, and we obtain:

d(bT y) = d(cT x) = d bT y + dcT x − x T dB y − x T Tr(dA∗ Y ) . (4.16)

This “SDP gradient formula” constitutes one of the main points of our paper. It shows that the
variation of the objective function of semidefinite programs (4.1) and (4.2) can be computed
just from the variation of the data (d b, dc, dB, dA∗) provided that we know the primal-dual
solution (x , y, X , Y ). A remarkable fact is that we have eliminated all the dependence on
(d x , d y, dX , dY ) from this formula.

In this work we will apply Eq. (4.16) to the navigator function. Once the navigator has
been evaluated for some parameter values, Eq. (4.16) computes the gradient at the same point
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with negligible extra computational cost (see Section 4.2.1 below for how we organized the
computation in practice). It’s worth pointing out that this observation holds also for more
familiar conformal bootstrap problems such as the OPE coefficient maximization. Such prob-
lems have been analyzed for years using primal-dual methods, but the existence of the “SDP
gradient formula” has never been suspected by the people in the bootstrap community.

There is one important caveat to the preceding derivation. Although the solution (d x , d y,
dX , dY ) to the linearized optimality equations does not appear in equation (4.16), we did
need to assume that it existed in the intermediate steps. On the other hand, it is not guar-
anteed that the equations in (4.8) always have a solution. Fortunately this question has been
analyzed in the semidefinite programming literature: for example, the paper [18] proves that
the linearized equations for the semidefinite programs considered here will have a solution if
X +Y � 0, which in our notation is equivalent to the requirement that Y22 � 0 rather than just
Y22 � 0. The paper [19] shows that this is in fact a generic property of the optimal matrices
in semidefinite programs. We therefore expect the navigator functions to be generically C1,
which is also confirmed experimentally by the smooth plots shown in the previous section.

4.2.1 Practical details for navigator gradient evaluation

As was shown in the previous section the change of the objective under a small perturbation of
a bootstrap problem can be computed using only the solution to the initial problem (x , y, X , Y )
and the differences between the data (d b, dc, dB, dA∗) defining the SDP. In this short technical
section we describe the precise workflow using available codes. In order to be able to com-
pute the gradient, one should first run SDPB on the original problem specified by (b, c, B, A∗)
using the option –writeSolution="x,y,X,Y" to save the full solution to a file. The values
(d b, dc, dB, dA∗) can either be obtained by taking the difference between the perturbed and
unperturbed bootstrap problem on the level of the polynomial matrix problem (PMP) and con-
verting that to an SDP using pvm2sdp or by first converting both PMP’s to SDP’s and taking
the difference between the resulting (b, c, B, A) and (b′, c′, B′, A′). For the computations in this
paper we did the latter. A dedicated tool called approx_objective that takes one optimal
checkpoint containing (x , y, X , Y ), one unperturbed SDP-file and one perturbed SDP-file18 as
input and outputs the corresponding change in the objective has been packaged with SDPB as
of version 2.5.

When converting the PMP to an SDP, we can choose to keep the bilinear basis, sample
points, and sample scalings (see [5]) the same for both the perturbed and the unperturbed
SDP. With such choices, we automatically have dA∗ = 0 and the gradient formula simplifies to
d(bT y) = d bT y +
+ dcT x − x T dB y .

4.3 Lagrangian perspective

In this section we give an alternative derivation of the SDP gradient formula. This deriva-
tion may look like a trick, but it provides an interesting perspective on why we were able to
eliminate the variation (d x , d y, dX , dY ) from the change d(bT y) in the dual objective.

Consider the following Lagrange function:

L(x , y, X , Y ) = cT x + bT y − x T B y + Tr
�

(X − x T A∗)Y
�

−µ logdet X , (4.17)

with µ > 0 a parameter, and it is understood that X � 0. As is readily verified, the stationarity
equations of this Lagrangian with respect to x , y and Y yield exactly the primal and dual fea-
sibility conditions, i.e. the first three conditions in (4.5). Demanding stationarity with respect

18The file is expected to contain (b, c, B, A∗) in the format produced by pvm2sdp.
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to X yields:
X Y = µI , (4.18)

with I the identity matrix. We can think of the last term −µ logdet X in (4.17) as a barrier
function that guarantees that X , Y � 0. In the limit µ ↓ 0 the barrier disappears and we recover
the original complementarity condition.19 As is well known (e.g. [20]), the barrier function
− logdet X is convex.

We denote by (x(µ), y(µ), X (µ), Y (µ)) the stationary point of the Lagrange function, i.e. the
solution of all the feasibility conditions and of the deformed complementarity condition X Y = µI .
Apart from degenerate situations, this solution exists; it is also unique.20 The value of the La-
grange function at this solution is given by:

L(µ) = cT x(µ)−µ logdet X (µ), (4.19)

since the constraints multiplying y and Y are obeyed by assumption. Furthermore, since the
Lagrange function is stationary with respect to (x , y, X , Y ), its variation with respect to the
parameters (b, c, B, A∗) is immediate:

d L(µ) = dcT x(µ) + d bT y(µ)− x(µ)T dB y(µ)− x(µ)T Tr(dA∗ Y (µ)). (4.20)

Now we can ask what happens if we take µ very small. Since the original semidefinite program
is assumed to have a solution, we expect (x(µ), y(µ), X (µ), Y (µ)) to smoothly approach that
solution as we send µ ↓ 0. Clearly, the variation of the Lagrangian (4.20) at the stationary
point will then approach the right-hand side of our previous result (4.16). What of the value
of the Lagrangian (4.19) itself? We know that X becomes singular and so det(X ) will diverge.
However, for Y = µX−1 to remain finite the eigenvalues of X cannot vanish faster than linearly
with µ. We conclude that −µ log det X = O(µ logµ), the additional term in equation (4.19)
vanishes in the limit, and so limµ↓0 L(µ) = cT x . Together with equation (4.20) this reproduces
(4.16).

This derivation elucidates the absence of (d x , d y, dX , dY ) from the variation of the objec-
tive. To summarize, the point is to replace the original constrained problem with an uncon-
strained one, involving a barrier function times a regulator µ. The unconstrained variation
involves only variation of the data, and not of the solution itself. The constrained variation is
recovered in the µ ↓ 0 limit and also has this property.

In Appendix C we push this logic one step further and explain how it can be used to compute
the second variation of the objective, which one may call the “SDP Hessian formula.” Also there
we provide numerical tests of the SDP gradient and Hessian formulas. Having the Hessian
as opposed to just the gradient could further speed up the minimization algorithms to be
described in the next section, allowing to use Newton rather than quasi-Newton methods, but
exploring this is postponed to future work.

19The modified complementarity condition (4.18) is also at the heart of primal-dual interior point algorithms as
used in SDPB. Keeping µ finite and therefore X , Y strictly positive is useful to avoid getting stuck at the boundary
where X and Y are singular. In the course of the algorithm the value of µ is then gradually reduced to zero in
order to obtain a solution that obeys the original complementarity condition. See [5] for details.

20Let M be the convex set of all x obeying bT = x T B and x T A∗ = X (x) � 0. On this set we consider the convex
and smooth function t(x) = cT x −µ log det X . Generically the sublevel sets of this function are bounded. Indeed,
any unbounded direction inside M can be parametrized as x0 +λ x̂ with x0 ∈ M , and x̂ T B = 0 and with λ→∞.
If the original primal minimization problem is bounded, we have cT x̂ > 0 for all directions. Generically we have
a stronger condition cT x̂ > 0, in which case we eventually exit all sublevel sets for any such direction. Therefore
t(x) must have a minimum inside M , and by convexity it is unique. At this point ∇t(x) = c − µTr

�

A∗X
−1
�

is
orthogonal to M . But the directions orthogonal to M are spanned by the gradient of the constraints, so by the
columns of the matrix B. There must then exists some coefficients y such that ∇t(x) = B y , which solve the last
remaining equation.
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5 Navigator minimization

A central task in the numerical bootstrap is the search for a feasible point. This corresponds to
finding a point where the navigator function is negative. In addition, we may also be interested
in finding the minimum of the navigator function, since its location might be close to the true
CFT (we will show shortly that this indeed seems to be the case).

Given an n-dimensional search space, the search for a local minimum of the navigator
function N (x) is a standard optimization problem. As explained in Section 4, the gradient of
the navigator function is cheap to compute. Quasi-Newton methods can make good use of this
cheap gradient. Recall that Newton’s method requires computing a gradient and a Hessian at
each point in the search. By contrast, quasi-Newton methods approximate the Hessian using
gradient information.21 In this work, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm ( [21], Sec. 6.1) which is a well documented and widely used quasi-Newton method.

Figure 6: Rendering of f (N (∆σ,∆ε)), i.e. the 2-parameter GFF navigator to which
was applied the fractional linear transformation (5.1). The derivative order used
here is Λ= 11.

The BFGS algorithm maintains an approximation to the Hessian, which it updates using
gradient information at each step. This update enforces positive-definiteness of the Hessian.
Thus, it can only provide a truthful representation of the Hessian if the objective function is
convex. In the examples studied in this paper, we have found that the navigator function is
convex close to its minimum. However, this is not true further away from the minimum (for
example, the GFF navigator tends to its asymptotic value 1 in a concave manner far away
from allowed regions). This can lead to failure of the BFGS algorithm or less than optimal
convergence. Therefore it is helpful to compose the navigator function with a monotonic
function so that it becomes convex in a larger region but maintains the same minima. For
example, if the maximal value of the navigator N (x) is Nmax (e.g. Nmax = 1 by construction
for the GFF navigator), we can instead minimize

f (x) =
N (x)

1−N (x)/Nmax
. (5.1)

21In Appendix C we explain that it also possible to compute the Hessian of the navigator. However in this work
we will only use the gradient information.
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Note that f (x) < 0 if and only if N (x) < 0, so that the allowed region is unchanged after
this transformation. It’s also easy to show that f (x) is convex in a larger region than N (x).22

Intuitively, the main idea is that f (x)≈N (x) where N (x)≈ 0, while at large x , where N (x)
approaches its asymptotic limit and hence is not convex, f (x) instead grows and has a chance
to be convex. E.g. if Nmax −N (x) = O(|x |−a) at large x , then f (x) grows as |x |a, which is
convex for a > 1.23

To see how this works in practice, consider the GFF-navigator plotted in Fig. 1, which is
clearly not convex. Fig. 6 shows the result of applying to it transformation (5.1) withNmax = 1.
We can see that the fractional linear transformation indeed improves the convexity of the
objective function fed to BFGS. The function in Fig. 6 is still not globally convex, but it is
locally convex, or close to it, in a much larger region than the original function in Fig. 1. We
will see below that this transformation indeed results in more appropriate step lengths in the
initial line searches and that BFGS has a higher rate of success of finding the Ising model
minimum, even when starting in regions of relative flatness of the untransformed navigator.

In our studies we will use the standard implementation of the BFGS algorithm which can
be found in the SciPy library [22], with some minor modifications. In Section 5.1, we review
the BFGS method. We describe our modifications and their motivation in Section 5.2. We will
see in Section 5.3 that the resulting algorithm gives good results when applied to the 3d Ising
model case. Finally, we will comment in Section 5.4 on further possible improvements on our
modified BFGS algorithm.

5.1 BFGS algorithm

Let f (x) be the objective function to be minimized. The BFGS algorithm attempts to minimize
f (x) by taking successive steps x0 −→ x1 −→ . . . −→ xk −→ . . . , where step k is taken using the
information from an approximated quadratic model of the function at xk. This approximate
quadratic model is

f (xk +∆x)≈ f (xk) +∇ f (xk)
T∆x +

1
2
∆xTBk∆x , (5.2)

where Bk is an approximation to the Hessian at xk. After BFGS takes the kth step xk −→ xk+1,
it determines the approximate Hessian at xk+1 by updating the one at xk using only gradient
information at xk and xk+1. For the full updating formula, see (6.19) of [21], Sec. 6. The
minimum of the quadratic model (5.2) is the so-called “Newton step”

pk = −B−1
k ∇ f (xk) . (5.3)

In Newton’s method, at each iteration the Newton step would be taken, so that xk+1 = xk+pk.
In BFGS, the Newton step is replaced by a line search in the direction of pk. An exact line search
would correspond to

xk+1 = arg min
α>0
φ(α), φ(α) := f (xk +αpk) . (5.4)

In practice, one uses an inexact line search, which means that one looks for an “approximate”
minimum ofφ(α) at α > 0. It turns out that a rather rough approximation is sufficient for good
performance of the algorithm. A typical termination criterion is the “strong Wolfe conditions:”

φ(α)6 φ(0) +µαφ′(0) , (5.5)
�

�φ′(α)
�

�6 η
�

�φ′(0)
�

� . (5.6)

22For example, in the 1D case, we have f ′′(x)> 0 iff N ′′(x)[Nmax −N (x)] + [N ′(x)]2 > 0.
23If it turns out e.g. that N (x) approaches its asymptotic limit as an inverse power of x , but with a < 1, one

could consider the modified function f (x) = N (x)
(1−N (x)/Nmax)

k with k > 1.
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The first condition enforces that the function decreases sufficiently. The parameter µ control-
ling this is usually chosen to be very small. We used the default value µ= 10−4 implemented
in SciPy. The second condition demands that the gradient decreases sufficiently. This is usu-
ally called the curvature condition, and it guarantees that the BFGS update to the Hessian
maintains positive-definiteness,24 which in turn implies that pk+1 will be a decrease direction,
allowing the algorithm to proceed. The parameter η controlling the demanded decrease is
usually chosen somewhat below 1. We used the default value η = 0.9, with satisfactory re-
sults. The SciPy BFGS algorithm used in this paper relies on the Moré-Thuente line search
algorithm [24], a standard and robust algorithm for finding points obeying the strong Wolfe
conditions.

Once an “accepted” point, i.e. a point obeying these conditions, is found, the Hessian is
updated,25 and the BFGS algorithm proceeds with its next step. The algorithm terminates
once the norm of the gradient gets smaller than some value gtol supplied by the user (we used
gtol = 10−5).

It’s worth pointing out that in the line searches, the Newton step α= 1 is used as the initial
guess. Once the Hessian has been well-approximated (as may happen towards the end of the
minimization run), the first step α = 1 will usually be accepted, and a convergence similar
to that of Newton’s method is expected. On the contrary, α = 1 may not be a good guess
at the beginning of the run unless we have an idea of the typical size of the region in which
the minimum is expected to lie. This is provided via a bounding box in our modified BFGS
algorithm described below.

5.2 Modified BFGS algorithm

The BFGS algorithm requires an initial guess for the Hessian at the first step B0. This guess
is usually taken to be the identity, which does not take into account the different scalings of
the different variables. This is often okay because the BFGS algorithm recovers scale informa-
tion after a sufficient number of steps have been taken, i.e. once the Hessian approximation
becomes accurate in all directions. However, we still found that if some idea of the scale of
the problem is known, e.g. if we have a vague idea about the location of the allowed region, it
is best to incorporate this information into the initial Hessian. By setting a well-scaled initial
Hessian, an appropriate step length in the initial line searches can be achieved. (Recall that
the initial line search step is always α = 1 in the direction of pk, and the length as well as
the direction of this search clearly depends on Bk via (5.3).) This will ensure that the BFGS
algorithm explores the vicinity of the starting point rather than a much larger space—a crucial
feature in cases where we are interested in one specific nearby local minimum. For example,
when we want to study the 3d Ising model, we are not interested in studying the navigator
in the big allowed “continent” found at large ∆σ [14]. We found that the BFGS algorithm
may end up in this much larger feasible region unless an appropriately scaled initial Hessian
is supplied.

One trick to set an appropriately scaled initial Hessian (based on [21], p.142) is the fol-
lowing: Compute the gradient at the initial point, and set B0 to

B0 = ‖∇ f (x0)‖diag
� 1

α1
0

, · · · ,
1
αn

0

�

. (5.7)

24This condition in particular trivially implies (xk+1 − xk) · (∇ f (xk+1) − ∇ f (xk)) > 0. The latter condition
guarantees that the BFGS Hessian update preserve positive definiteness; one should be able to convince oneself
that this is the case by inspection of (6.17) in [21]. See [23], Theorem 3.2.2 and the top of p.56 for a proof and
discussion.

25Note that the line search will also involve evaluating the function and its gradient at several intermediate
points along the direction pk, until a point satisfying the strong Wolfe conditions is found. In the BFGS algorithm,
information from those intermediate points is not used in any way to improve the Hessian.
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Then, from (5.3), the initial Newton step α= 1 will result in probing the function at
x0−diag(α1

0, · · · ,αn
0)·

∇ f (x0)
‖∇ f (x0)‖

. Hence the parameters αi
0 have the meaning of the characteristic

desired |∆x i| during the initial step of the first line search. Alternatively, one could use the
procedure described in Appendix C to explicitly compute the initial Hessian. However we do
not advise this, since the Hessian for a point far away from the minimum could very well not
provide an accurate scale for the problem, nor is the Hessian far away from the minimum
likely to provide a more accurate starting point for the approximation of the Hessian at the
minimum than an appropriately scaled diagonal matrix.26

Apart from specifying the initial Hessian, some minor modifications have to be made in
order to apply the BFGS algorithm to conformal bootstrap problems. Firstly, the navigator
function is naturally defined only in certain regions and not globally. Consider for example
the case of the 3d Ising model. The navigator function is naturally defined only for∆σ and∆ε
above the unitarity bound. Similarly, when demanding the existence of exactly one relevant
parity odd and even singlet, we restrict the domain of N (∆σ,∆ε) to values ∆σ or ∆ε below
3. Additionally, as discussed above, one might only be interested in minima or negative values
that are located in a certain region around the starting point.

Hence, we ask the user to provide a bounding box for the search space, past which we do
not allow the search to move. This constraint is implemented by altering the line search such
that if a step outside of the bounding box would be taken, the maximal step in the same direc-
tion within the boundaries is taken instead. If this point on the edge is accepted, i.e. obeys the
strong Wolfe conditions, we check whether the new search direction points inside or outside
of the bounding box. If the new search direction points outside of the bounding box, but the
gradient descent direction lies inside, the search direction is taken to be the gradient descent
direction for the next step. If neither the initial search direction nor the negative gradient lie
inside the bounding box, the search is terminated. The user should then either try a different
initial point or change the bounding box.27

The provided bounding box is also used to specify the desired step lengths in the initial
Hessian of (5.7). We found satisfactory results by setting the desired step lengths in each
direction to be 20% of the supplied bounding box.

It is fair to ask how the user will know which bounding box to specify. We assume that the
user has some idea of the range of parameters they want to explore. Results obtained at lower
derivative order Λ can also be used for guidance, as well as estimates of CFT data coming from
other methods such as RG or Monte Carlo simulations.

The BFGS algorithm including these modifications is summarized as Algorithm 1.

5.3 Minimization results

To illustrate the effectiveness of our minimization algorithm, we apply it to the classic confor-
mal bootstrap problem of finding an allowed point corresponding to the 3d Ising model using
the system of correlators {〈σσσσ〉, 〈σσεε〉, 〈εεεε〉}, which contains the lowest dimensional
Z2-odd scalar σ and the lowest dimensional Z2-even scalar ε, under the assumption that those
operators are the only relevant ones, as described in Section 2.2. We will see that the navigator
function enables us to locate an allowed point with a relatively small number of SDPB calls.
Finding an allowed point naively by checking feasibility for a dense grid of points covering the
search space would take orders of magnitude more SDPB calls.

26On the contrary, having access to the exact rather than BFGS-approximated Hessian is expected to speed up
the last stage of the minimization run, although we have not took advantage of this possibility in this work.

27Note that if this happens, it may mean that that boundary includes some part of the attraction basin for a
minimum that lies outside the bounding box. In this case an alteration of the relevant boundary is probably
advised.

24

https://scipost.org
https://scipost.org/SciPostPhys.11.3.072


SciPost Phys. 11, 072 (2021)

Input: A navigator function N (x), an initial guess x0, the bounding box coordinates
bi

min, bi
max and a value gtol.

Output: The final point x f and the termination message.
begin

f (x) = N (x)
1−N (x)/Nmax

αi
0 = 0.2× (bi

max − bi
min)

B0 = ‖∇ f (x0)‖diag( 1
αx

0
, 1
α

y
0
, · · · )

p0 = −B−1
0 ∇ f (x0)

while ‖∇ f (xk)‖> gtol do
α= linesearch( f , xk, pk, Bk)
xk+1 = xk +αpk
The hessian Bk is updated to Bk+1
The search direction pk is updated to pk+1
if xk+1 is at the boundary then

if pk+1 points back inside the bounding box then
continue

else
if −∇ f (xk+1) points back inside the bounding box then

pk+1 = −∇ f (xk+1)
else

return xk+1 and the termination message “Out of the bounding box”
end

end
end
Optional: if f (xk+1)< 0 then

return xk+1 and the termination message “Found a negative point”
end

end
return xk and the termination message “Minimum found: gradient is smaller than
the tolerance”

end

Algorithm 1: Modified BFGS algorithm

Of course, in a decade of feasibility searches many useful tricks have been found to speed
them up.28 Still, we foresee that navigator-function methods will offer even better perfor-
mance. They should eventually allow computations in more complicated setups involving an
even higher number of parameters to scan over, such as e.g. bootstrapping the full system of
σ,ε,ε′ 4pt functions, which were not possible to treat so far via feasibility-based methods.

5.3.1 2-parameter searches

We start with the 2-parameter case which is easier to visualize. So we minimize N (∆σ,∆ε)
of Section 2.2. We use Λ = 11 and the bounding box [0.510, 0.530] × [1.30,1.50], i.e. the
same range as in Fig. 1. Running our algorithm for 10 different starting points chosen at
random within this bounding box, the number FC of function calls to reach a point of negative
navigator value was 9 6 FC 6 31, while FC = 19.3 on average. All runs terminated at

28E.g. for Ising and O(N) we can use the fact that they live close to the kink in a single correlator bound, for
Ising we can use c-minimization [7], OPE scans can be replaced with the cutting surface algorithm [8], etc.
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essentially the same point (with an error controlled by gtol)

x f = (∆σ,∆ε) = (0.5182861212(4), 1.41521640889(6)),

N(x f ) = −0.00267253307546000(2),
(5.8)

where the tiny error bars show the largest difference observed between different runs. We
conclude that the minimum is unique and all the runs terminate near it.

Figure 7: A representative run of our algorithm, see Section 5.3.1. Only the relevant
part of the bounding box [0.510, 0.530]×[1.30, 1.50] is shown. Black dot: the initial
point x0. Red dots: points xk accepted by the line searches as satisfying the strong
Wolfe condition. Blue dots: intermediate points where the function was evaluated
during the line searches. Black cross: position of the found minimum. Background:
contour plot of the navigator functionN (∆σ,∆ε) (darker colors correspond to higher
function values, and the white area to the negative navigator, i.e. the Ising island).
This run took 29 function evaluations to reach the island, and 66 function evaluations
to reach the minimum within the specified gtol (see Fig. 8). Only the first 38 points
are marked, the rest being too closely spaced to be distinguishable.

A representative run is shown in Fig. 7, where the numbered points correspond to the
path taken by our modified BFGS algorithm. Convergence rate in this run is illustrated in
Fig. 8(left) where we plot the navigator values Ni returned by subsequent function calls, until
the negative navigator region is reached. This plot can be correlated with the navigator shape
in Fig. 1, which features an arrow-shaped valley around the Ising island (see Section 3). Thus,
Fig. 8(left) shows a period of modest progress in the minimization of N (∆σ,∆ε), in some
sense looking for the the valley. This is followed by a period of fast decrease once the valley is
found (at around i = 25).

Another way to evaluate the convergence rate is shown in Fig. 8(right), where we plot for
the same run the distance



x i − x f



 between the point x i and the eventually found minimum
x f . This measure of convergence is appropriate also for the region where N (x) < 0. This
plots show a period of greatly accelerated convergence towards the end of the run. Indeed, we
expect Newton-like, i.e. superlinear,29 convergence in the final stages of the BFGS algorithm.

29Recall that superlinear means εi+1 = o(εi) where εi is the error after step i. The Newton method has quadratic
convergence, εi+1 = O(ε2

i ), while for the BFGS only weaker theorems showing superlinear convergence are avail-
able [21]. One-dimensional bisection in this notation has linear convergence, εi+1 6 αεi with α < 1.
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Similar plots for six more runs are collected in App. E.1.30
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Figure 8: These plots refer to the run of our modified BFGS algorithm shown in
Fig. 7, and use the same color code for the dots. Left: Navigator value Ni at the i-th
function call. Only the function calls before reaching the negative navigator region
are shown in this logarithmic plot. Naturally, function values decrease monotonically
along the red dots (points accepted by the line searches), while this condition does
not have to hold for the blue dots. Right: Logarithmic plot of



x i − x f



 at the i-th
function call.

Figure 9: This plot shows that minimum (5.8) of the Λ= 11 navigator (black cross)
is very close to the best available estimate of the true location of the Ising model [15]
(green cross), considering the size of the Λ= 11 Ising island (white region).

Finally, we observe that minimum (5.8) of the Λ = 11 navigator function gives a good
prediction for the actual location of the Ising model, as compared to a generic point in the
Ising island. Indeed, the distance between this minimum and the best prediction from [15]
(3-parameter scan at Λ= 43) is only ∼ 10% of the size of the Λ= 11 island, see Fig. 9.

5.3.2 3-parameter searches

We will present next the tests for the three-parameter navigator N (∆σ,∆ε,θ ). We used
Λ = 19, the bounding box [0.510,0.530] × [1.30,1.50] × [0.8,1.1], and 20 random initial

30Once the navigator function is negative, we often observe a bit of a plateau, for example between iterations
30-60 in Fig. 8. At that point we are relatively close to the minimum, but the long sequences of blue dots indicate
that the BFGS quadratic model of the navigator function is not yet accurate. It is quite possible that this is caused
by the non-C2 locus that we identified above, and it would certainly be interesting to investigate this further. Either
way, the algorithm eventually recovers and then continues to converge rapidly to the minimum.
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points within it.

Figure 10: BFGS runs starting at 20 random points from of the bounding box
[0.510,0.530]× [1.30,1.50]× [0.8,1.1], at Λ = 19. Initial points are black. Except
for two runs that terminated at the boundary (one of them is in the lower right), all
the others converged to the same minimum inside the Ising island (see the tiny black
shape in the the magnified inset).

These runs are shown in Fig. 10. Eighteen of them successfully converged to the same
minimum inside the Λ= 19 Ising island:

x f = (∆σ,∆ε,θ ) = (0.5181536110(7), 1.412692879(8), 0.969334757(6)),

N(x f ) = −0.0000208827730(5).
(5.9)

A typical successful run is shown separately in Fig. 11.
Two runs terminated at the boundary of the bounding box with both the subsequent BFGS

search direction and the gradient pointing outside, according to the safe-guarding procedure
(see Algorithm 1). This suggests that these points were being attracted by a minimum outside
the bounding box. By inspection, these runs started close to the edge of the bounding box in
regions where the navigator surface is non-convex even after applying transformation (5.1).

Limiting to the successful runs, it took on average 50.3 function calls to reach the negative
navigator region. Of course, the Λ= 19 island is orders of magnitude smaller in all directions
than the bounding box. This demonstrates our point that the navigator minimization method
is capable of finding a small isolated island given even a rough estimate of its location. We
will comment in Section 5.4 on an iterative way to speed up high-Λ calculations.

Using the run in Fig. 11 as an example, we show its rate of convergence in Fig. 12, following
the same conventions as in Fig. 8. Comparing Figs. 11 and 12, it’s easy to reconstruct what
is going on. The initial line searches are spent finding the bottom of the valley. Once this
is found, the algorithm quickly manages to follow the valley towards the negative navigator
region. Similar plots for six more runs from Fig. 10 are collected in App. E.2.

It’s worth pointing out that in both Fig. 8(right) and Fig. 12 we see two periods of acceler-
ated convergence: one when the negative region is approached and another towards the end
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Figure 11: A typical BFGS run from Fig. 10 (only a part of the bounding box is
shown). First, the search is seen to be looking for the “valley”, and once it has found
it, converges rapidly to the Ising island.

of the run. The slower rate of convergence in between might be due to the function exhibiting
some local concavity, or due to a large change in the local Hessian. We have not investigated
this in detail.
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Figure 12: These plots refer to the run of our modified BFGS algorithm shown in
Fig. 11, and follow the same convention as Fig. 8, with Ni on the left and



x i − x f





on the right.

5.4 Other algorithms and possible improvements

We have shown in the previous section that navigator minimization using our modified BFGS
algorithm offers a robust and efficient method for finding an allowed point. However, there
are bound to be avenues for improvement. We will remark on some potential improvements
in this section. We hope that the algorithm presented here sets a good benchmark to which
future algorithms will be compared.

In order to efficiently find an allowed point at high values of Λ, one could imagine an
iterative procedure where the navigator minimum point at a lower derivative order is used
as an initial point for a minimization run at a higher derivative order (perhaps reducing the
bounding box, or inheriting the Hessian estimate from the lowerΛ BFGS run). This is expected
to perform well for two reasons. First, because the navigator minimum provides an excellent
estimate of the position of the Ising model, see Section 5.3.1, and hopefully also of other
CFTs. Second, because of the accelerated convergence properties of the BFGS algorithm after
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reaching the convex region around the minimum (see Figs. 8 and 12). Using the exact Hessian
computed as explained in Appendix C may be also especially beneficial in the convex region
around the minimum.

In the above, we did not make use of the fact that the minimum of the navigator occurs
close to N (x) = 0, and that in some cases, one will only be interested in reaching any negative
point rather than the minimum. This information could be e.g. incorporated in the initial guess
for the Hessian, by scaling the identity matrix such that the initial step aims towards zero of
N (x) in a first-order expansion around the initial point (instead of scaling it so that the initial
step explores some percentage of the bounding box, as done here)

As discussed before, we have also found that the navigator function is not globally convex.
We have found that in our case, this problem can be mitigated by minimizing another related,
more convex function instead, Eq. (5.1). Even in regions of non-convexity of this transformed
function, we have found that line searches provided robustness to the algorithm. Still, other
bootstrap problems may require more care when dealing with non-convexity. In such cases,
algorithms where the updating formula for the approximate Hessian does not enforce positive-
definiteness could be advantageous, see [25].

We have opted in our algorithm to constrain the search space in a rudimentary way via the
bounding box, and found this to be adequate for our needs. With that being said, there exist
a myriad of other algorithms for constrained optimization that could offer more robustness
with the way they deal with constraints. Here we mention two included in SciPy: L-BFGS-B,
a bounded limited memory version of the BFGS method optimized for dealing with problems
with search spaces with a large number of dimensions, and SLSQP, allowing general, as op-
posed to box, constraints. See [21] for more information on constrained optimization.

Similarly, there are many unexplored avenues for parallelization. One could imagine par-
allelizing the line search, or using an inherently parallel optimization algorithm, in the spirit
of particle swarms [26]. Particle swarm algorithms that we have seen do not make use of
gradient information. Since we have gradients for free (Section 4), it would be desirable to
develop a similar algorithm taking advantage of the gradients.

6 An application: exploring the tip of an island

In order to connect the Ising island to physical observables it is important to know its ex-
treme points. For example, the left- and rightmost point of the island provide a rigorous lower
and upper bound on the critical exponent η = 2∆σ + 2 − d. In previous applications such
bounds were often found by simply mapping out the entire island, using a higher-dimensional
analogue of a binary search based on a Delaunay triangulation, and then locating its extremal
points. A more systematic triangulation algorithm, suitable for parallelization, was introduced
in [12] and used to determine the instability of the O(3) fixed point.

In future bootstrap applications one might want to study more complicated systems of
correlators and this inevitably means the introduction of new parameters. If we wish to locate
the extremal point of an island in such a higher-dimensional space then any triangulation
algorithm based on a sequence of feasible and infeasible points will scale extremely poorly.
A constrained optimization algorithm based on a navigator function is much less sensitive to
the dimensionality of the parameter space and will perform much better. We therefore expect
that the use of a navigator function is essential for the high-precision determination of critical
exponents in the future.

In the next section we present a simple algorithm inspired by these general ideas. We will
then maximize ∆σ in the Ising island as an illustration.
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6.1 A constrained optimization algorithm

Suppose we want to locate an extremal point of the allowed region in the direction specified
by a vector n. The problem is then:

maximize nT x over all x such that N (x)6 0 . (6.1)

We will use optimality conditions

N (x) = 0 and

�

I −
nnT

nT n

�

∇N (x) = 0 , (6.2)

where the latter equation sets to zero all components of the gradient orthogonal to n. We
propose to work towards a solution of these equations in a manner inspired by the quasi-
Newton method from Section 5. We will now explain the full algorithm (see Algorithm 2
below for a summary).

As in Section 5 we will use a quadratic model around a point xk:

N (x)≈N (2)(x) :=N (xk) +∇N (xk)(x − xk) +
1
2
(x − xk)

T Bk(x − xk) . (6.3)

The function and the gradient at xk are assumed known, while Bk can be either the exact Hes-
sian at xk (computed as explained in Appendix C), or an approximation like the one obtained
from the BFGS method. In the following we will assume that Bk � 0.

Substituting the quadratic model in (6.2) we find a simple system involving one quadratic
and many linear equations, which can be solved exactly, yielding two solutions.31 These are
real if xk in the allowed region, so that N (xk) < 0, and by continuity also in some domain
outside the feasible region. In this case the surface N (2)(x) = 0 is an ellipsoid, and the second
condition in (6.2) picks out the extremal points of this ellipsoid along the n direction. Some
distance away from the allowed region the ellipsoid shrinks to zero size and the solutions
become complex-conjugate. We denote by x# the real solution which has the largest value
of nT x , when the solutions are real. When the solutions are complex conjugate, we let x#
denote their real part (and then x# turns out to simply correspond to the minimum of the
model function).

Denote pk = x#− xk; this is our search direction. The next point xk+1 is then found using a
line search along pk starting from xk. We use the initial step length α= 1, however the rest of
the line search algorithm is not the Moré-Thuente algorithm used in BFGS. This should not be
surprising since we are now solving a different problem. Instead of minimizingN (x)we would
now like to maximize nT x while moving along a trajectory remaining close to the boundary of
the allowed region (but not exactly along the boundary). One could think that a safe choice
would be to remain always inside the allowed region (a sort of interior point algorithm). We
have found however that a much faster algorithm results if we allow the algorithm to choose
points on both sides of the boundary. To make sure that the algorithm does not veer off too
much away from the boundary, we impose

N (xk+1)6 λrel|N (xk)|, (6.4)

with a parameter λrel > 0. Clearly λrel < 1 would be safer but might slow down the algorithm
in the later stages. We found it advantageous to use λrel somewhat above 1, e.g. λrel = 2 works
well.

31This is where our algorithm differs significantly from conventional constrained optimization algorithms like
sequential quadratic programming methods or interior point methods (see e.g. [21]). The latter solve a linear
system at each step in order to be applicable very generally. Such a linearization is unnecessary here because we
only have a single quadratic equation.
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So (6.4) is our line search termination condition. In practice, this condition with λrel = 2
is not very constraining and the initial step α = 1 is almost always accepted if we start with
a good initial Hessian. (E.g. in the run shown in Section 6.2 this happened for 100% of the
steps.) In the cases that the initial step α= 1 does not obey Eq. (6.4), we proceed as follows.
We construct cubic polynomial approximation P(α), fitted to match the value and gradient at
the initial point and the previous line search point. If xk is in the feasible region we choose
the next α by solving P(α) = 0, and if not then by minimizing P(α). Iterating this, eventually
we find an α such that xk+1 = xk +αpk satisfies (6.4).

Once we have accepted xk+1, we construct a new quadratic model around this point. In
particular, if the approximate Hessian is used, then Bk is updated as in BFGS. However, the
update is carried out only if the curvature condition is obeyed at xk+1; as explained in footnote
24 this is sufficient to ensure that Bk+1 � 0. If the curvature condition is not satisfied, then the
Hessian is not updated.

We then repeat the process. The algorithm terminates if the conditions (6.2) are obeyed
within a certain tolerance.

Input: A navigator function N (x), a vector n indicating the maximizing direction, a
precision goal gtol and a line search parameter λrel.

Output: The final point x f .
begin

Use Algorithm 1 to construct a feasible point x0 and Hessian estimate B0
xlastBFGS = x0
BlastBFGS = B0

while ‖
�

I − (nT n)−1nnT
�

∇N (xk)‖> gtol or |N (xk)|> gtol do
pk = search_direction(xk, n,N (xk),∇N (xk), Bk)
α= 1
while N (xk +αpk)> λrel|N (xk)| do

P(α) is interpolating polynomial obtained from N (xk), N (xk +αpk) and
their gradients

if N (xk)< 0 then
find α such that P(α) = 0

else
find α such that P(α) is minimized

end
end
xk+1 = xk +αpk
if (xk+1 − xlastBFGS)T (∇N (xk+1)−∇N (xlastBFGS))> 0 then

Bk+1 = BFGS_update(xk, Bk; xlastBFGS, BlastBFGS)
xlastBFGS = xk+1
BlastBFGS = Bk+1

else
Bk+1 = Bk

end
end
Return xk.

end

Algorithm 2: An algorithm for finding the extremal point of an island.
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6.2 The tip of the Ising island

As an example, let’s apply the above algorithm to find the maximal value of ∆σ within the
Ising allowed island N (∆σ,∆ε) 6 0 where N is the 2-parameter navigator for the Ising 3-
correlator setup at derivative order Λ = 11.32 The search was started from the navigator
minimum reached via a BFGS run, and with the initial Hessian approximation B0 inherited
from BFGS, which is expected to be close to the true Hessian. The algorithm path is shown
in Fig. 13. The algorithm took 17 steps to reach the tip of the island, i.e. the point with
maximal ∆σ. Termination condition max(|N (∆σ,∆ε)|, |∂∆εN (∆σ,∆ε)|) 6 gtol was satisfied
with gtol = 10−27.

For comparison, Fig. 13 also show the blue allowed region obtained from the Delaunay
triangulation method. We finely sampled the zoomed-in region around the very tip of the
island, with a total number of sampled points being around 480 33. In contrast, our algorithm
takes only 10 steps to locate the maximal ∆σ point more accurately than the triangulation
resolution. The line search never had to be activated, the initial try α= 1 having been accepted
in 100% of the steps.

In Fig. 14 we show the convergence rate towards the minimum. These plots demonstrate
superlinear convergence towards the end of the run, as should be expected from this type of
algorithm.

We would like to warn the reader about a difference in spirit between our Algorithms
1 and 2. Algorithm 1 for navigator minimization is backed up by decades of experience in
numerical optimization, and should be widely applicable without major modifications. On
the other hand, Algorithm 2 is our own custom-made procedure. It served well the purpose
to demonstrate the point that the navigator can be used to find extremal values of allowed
parameters, but it has a somewhat tentative character and is expected to evolve more in the
future.

For example, the Ising island is admittedly a simple model with a convex island and a
single local maximum of ∆σ. If the island does not have such a nice shape, Algorithm 2
can get stuck in a local optimum instead of the global optimum. In more realistic cases it
is therefore important to have a rough idea of the shape of the island, and then perhaps an
admixture of triangulation-based methods and navigator methods might be the best approach.

7 Conclusions and future directions

We have presented in this work a powerful alternative to the scanning-based approach em-
ployed so far in the numerical conformal bootstrap program. This came from the realization
that there exist functions, for which we have coined the term “navigator functions,” which
measure how far a given point is from the boundary between allowed and disallowed regions
and can thus be used to efficiently find an allowed point as well as the boundary of an allowed
region. We have explicitly constructed two such navigator functions. It was shown that the
computation of these navigator functions can be written as a semi-definite programming prob-
lem of the same form as an OPE maximization. Adding the generalized free field solution to
the crossing equation has led us in Section 2.1.1 to the definition of the GFF navigator. The

32In this test, unlike in Section 3, we have not imposed the OPE relation λσσε = λσεσ, i.e. the navigator was
defined imposing positivity separately on the two terms in (2.29), which is precisely the setup in [14]. There is no
particular reason for this difference with Section 3.

33To test the feasibility of those points, we only require SDPB to find primal/dual jumps. In general such a run is
quicker than a typical SDPB run for an optimal solution. However, in terms of total number of SDPB iterations, we
find that the 480 feasibility runs correspond to around 4705 SDPB iterations, while the 17 optimal runs correspond
to around 1080 SDPB iterations. We still conclude that our method has a significant advantage.
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Figure 13: Magenta path: A run of Algorithm 2, see the text, with a zoom-in on the
right. Blue region: the Ising island from the Delaunay method with black/red being
the allowed/excluded points.
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Figure 14: These plots refer to the run of our Constrained BFGS algorithm shown
in Fig. 13. Left: Logarithmic plot of |∂∆εN (∆σ,∆ε)| at the i-th function call. Right:
Logarithmic plot of



x i − x f



 at the i-th function call. Note that line search never
had to be activated, as the initial step α = 1 always satisfied condition (6.4) with
λrel = 2 used in this run.

Σ-navigator was introduced in Section 2.1.2 as an another equally valid option.34

With the help of such functions, we have shown it is possible to quickly locate allowed
regions in parameter space by ways of minimization. We have presented in Algorithm 1 a
modified BFGS algorithm which does so quite efficiently. To prove this, we set out to study the
canonical bootstrap problem of the 3d Ising model. First we showed that the navigator is (C1)
smooth and has no local minima in the disallowed region. With both a two-dimensional search
space at Λ= 11, and a three-dimensional search space at Λ= 19, we have shown that it took
on average a few dozen SDPB calls to find the Ising island (19.3 for the former, 50.3 for the
latter), starting only from very conservative estimates of the parameters. This is competitive
with previous methods for isolating islands and bounding CFT data. Moreover, these previous

34While the GFF-navigator is naturally normalized, the Σ-navigator has its own set of advantages. It is actually
easier to set up, since one does not have to work out the GFF OPE coefficients. In addition, there is not one but
infinitely many Σ-navigators, corresponding to different choices of terms in the r.h.s. of (2.7) or (2.25), and this
flexibility may prove useful in the future. At present, we see no definite reason to prefer one or the other navigator.
For comparison, we performed some of the reported computations using both navigators (e.g. section 6.2), and
they performed equally well.
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methods suffered from exponential scaling with the dimensionality of the search space. This
constituted a major bottleneck for the kinds of problems that could be tackled: realistically only
setups with a handful of free parameters could be considered. We expect that the scaling of the
minimization-based navigator method with the number of parameters will greatly outperform
scanning methods.

Crucially, efficient minimization of a navigator function, for example with the BFGS algo-
rithm presented in this paper, requires the knowledge of derivatives of the navigator function.
We have derived the “SDP gradient formula,” Eq. (4.16), which gives the variation of the objec-
tive function of an SDP as only a function of the variation of the SDP input parameters around
the point where the derivative is requested. This means that computing derivatives does not
require additional SDPB runs, making one function and gradient evaluation in a BFGS run just
about equivalent in cost to one OPE maximization.

We also tested the efficiency of the navigator method to search for extremal parameter val-
ues allowed by the bootstrap constraints. So, we presented in Section 6 a way to find optimal
bounds on CFT data using a custom-made constrained-optimization routine. The algorithm
was able to walk in and around the allowed region and converge in 17 steps to the maximal
allowed ∆σ, determining it to an accuracy of ∼ 10−35.35 A similar triangulation-based search
only achieves an accuracy of 10−6 even after testing over 400 points, see Fig. 14. Again we
expect that the increase in performance can only become greater as the dimensionality of the
search space increases.

We feel that the applications shown in this paper demonstrate only a small part of the
power the navigator method, and we are hopeful that the future will show it to be a great
addition to the toolbox of all bootstrap enthusiasts.

We would like to conclude by mentioning here some of the ideas that we are going to start
exploring immediately ourselves using this new tool. Indeed, these applications, out of reach
of traditional bootstrap techniques, were among our chief motivations to start thinking hard
about the navigator function.

One class of situations where navigator is going to be useful is when we know a solution
to bootstrap constraints for some value of a parameter (such as space dimension d or the
symmetry group rank N) and we would like to perform a deformation in this parameter. We
imagine doing this by considering a navigator function depending on the dimensions of several
exchanged operators, and imposing sparsity of the exchanged spectrum. Among other things,
this should allow a more robust determination of critical values of parameters when bootstrap
solutions disappear, than the more traditional approach of looking for kinks and trying to see
when those kinks get rounded off. One long-standing problem which could benefit from this
approach is determining the upper critical dimension of the 3-state Potts model. Including
exchanged operator dimensions among the arguments of the navigator function could also
provide a useful (and more rigorous) alternative to estimating the spectrum using the extremal
functional method [7,9,27].

The use of the navigator function to quickly find extremal allowed values (Section 6) will
benefit all cutting-edge bootstrap computations. One problem on our to-do list is to bootstrap
the system of correlators in O(3) symmetric CFTs involving lowest scalar primaries in vector
(φ), scalar (s), rank-2 tensor (t), and rank-4 tensor (t4) O(3) representations. This setup
extends that of [12] by including t4 as an external operator. The physics interest in doing so is
that it will allow access to the OPE coefficient λt4,t4,t4

, and other data needed to study the RG
flow leading from the O(3) fixed point to the cubic fixed point in conformal perturbation theory
(see [12], Section 5). The parameter space for this problem is 13-dimensional (4 ∆’s and 9
OPE coefficients), out of reach of traditional approaches, but we expect that the navigator

35The order of magnitude for the difference of last two points in ∆σ is around 10−35. Another estimation is that
N (x)/‖∇N (x)‖ for the last point is around 10−37.
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function will put it within reach.
As a final example, we expect that the navigator functions will allow an exploration of

hybrid methods where the numerical bootstrap data is complemented with analytical data at
high spins obtained from the light-cone bootstrap, as suggested in Section 9.1 of [28]. We
imagine a navigator function depending on many parameters accurately parametrizing one or
more Regge trajectories. In this context a navigator function will be very useful not only to
localize an allowed point, but also because the minimum of the navigator offers a natural “most
feasible point” that can be used to compare different parametrizations. Although this method
is not entirely rigorous, it might lead to more precise estimates of the numerical bounds.

Acknowledgements

We thank Tom Hartman for important conversations that sparked this exploration. We thank
Walter Landry for discussions and for collaboration on the program approx_objective for
computing variations of the objective function. NS thanks Shixin Zhang, Yinchen He for in-
spiring discussions. NS thanks his parents for support during the COVID-19 pandemic.

MR is supported by Mitsubishi Heavy Industries (MHI-ENS Chair). BS is supported by a
Fonds de Recherche du Québec – Nature et technologies B1X Master’s scholarship. DSD is sup-
ported by Simons Foundation grant #488657 (Simons Collaboration on the Nonperturbative
Bootstrap) and a DOE Early Career Award under grant no. DE-SC0019085. BvR is supported
by Simons Foundation grant #488659 (Simons Collaboration on the Nonperturbative boot-
strap). NS is supported by European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 758903). SR is sup-
ported by the Simons Foundation grant 488655 and 733758 (Simons Collaboration on the
Nonperturbative Bootstrap), and by Mitsubishi Heavy Industries as an ENS-MHI Chair holder.

Some of the computations in this work were performed on the Caltech High Performance
Cluster, partially supported by a grant from the Gordon and Betty Moore Foundation. This
work also used the Extreme Science and Engineering Discovery Environment (XSEDE) Comet
Cluster at the San Diego Supercomputing Center (SDSC) through allocation PHY190023,
which is supported by National Science Foundation grant number ACI-1548562. The com-
putations in this paper were partially run on the Symmetry cluster of Perimeter institute and
on the Hopper cluster of the École Polytechnique.

A Tweaks of the GFF-navigator

As mentioned in Section 2.1.1 and footnote 12, the GFF-navigator definition has to be tweaked
in presence of additional GFF operators violating gap assumptions. These modifications will
be discussed here. In addition we will explain how to deal with the case where the navigator
function depends on the magnitude of a squared OPE coefficient.

A relevant example in the single-correlator setup of Section 2.1.1 is to assume a gap in
the scalar spectrum above ∆∗. E.g. suppose that all further scalars above the one at ∆∗ are
required to be above ∆gap. This corresponds to changing the constraint ∆ > ∆∗ for ` = 0 in
(2.2) to “∆=∆∗ or∆>∆gap.” We can still define the navigator by the same Eq. (2.5). In this
case we don’t in general expect the navigator to be monotonic in the ∆∗ direction. For large
∆gap, definition (2.6) of MGFF will have to be modified, including all scalar GFF conformal
block contributions below ∆gap:

MGFF(u, v) =
∑

n>0 : 2∆φ+2n6∆gap

cnF2∆φ+2n,0(u, v), (A.1)
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where cn are explicitly known coefficients (c0 = 2). These are contributions of GFF operators
of schematic form φ�nφ.

For the 3-correlator setup, let us discuss how the GFF-navigator definition (2.23) should
be modified in the case of gap assumptions in the spectrum of ` > 1 operators. As a concrete
example, let us define the navigator N (∆σ,∆ε, cT ) where cT is the 2pt function coefficient
of the canonically normalized stress-tensor. The cT parametrizes the OPE coefficients of the
corresponding unit-normalized ∆= 3, `= 2 primary O+ as:

λσσO = K3
∆σp

cT
, λεεO = K3

∆εp
cT

, (A.2)

where Kd is a known d-dependent constant. To isolate the stress tensor, we need to impose a
gap assumption on the higher-dimension `= 2 O+ operators. We will assume that all of them
have ∆ > ∆gap where ∆gap > 3 is some fixed parameter. E.g. let us choose ∆gap = 5, which
allows the 3d Ising CFT.36

For this problem, the analogue of Eq. (2.21) will be

~V0,0 +λ ~M + Tr

�

P∆ε,0

�

~V+,∆ε,0 +

�

1 0
0 0

�

~V−,∆σ,0

��

+
(K3)2

cT
Tr

��

∆2
σ ∆σ∆ε

∆σ∆ε ∆2
ε

�

~V+,3,2

�

+
∑

(∆,`)∈S+

Tr
�

P∆,` ~V+,∆,`

�

+
∑

(∆,`)∈S−

p∆,` ~V−,∆,` = 0 , (A.3)

where the stress tensor contribution is now isolated, and S+ compared to (2.18) implements
the stronger requirement that ∆>∆gap for `= 2.

To define the GFF navigator, we will proceed analogously to (A.1) and include in ~MGFF
additional terms corresponding to all GFF primaries violating the gap assumptions. In the
case at hand, we have to check the spin-2 GFF operators of the schematic form σ∂ ∂�nσ and
ε∂ ∂�nε. For ∆gap = 5 and ∆σ,∆ε around the 3d Ising island, only the n = 0 operators of
this form are below the gap. So we take

~MGFF = Tr

��

2 0
0 0

�

~V+,2∆σ,0

�

+ Tr

��

c(∆σ) 0
0 0

�

~V+,2∆σ+2,2

�

+ Tr

��

0 0
0 2

�

~V+,2∆ε,0

�

+ Tr

��

0 0
0 c(∆ε)

�

~V+,2∆ε+2,2

�

+ ~V−,∆σ+∆ε,0

−
(K3)2

cT
Tr

��

∆2
σ ∆σ∆ε

∆σ∆ε ∆2
ε

�

~V+,3,2

�

, (A.4)

where c(∆φ) is the (explicitly known) coefficient of the ∆ = 2∆φ + 2, ` = 2 conformal block
in the decomposition of the GFF 4pt function 〈φφφφ〉.

The first two lines in (A.4) are the analogue of (A.1). The last line is an additional small
modification needed due to the presence of OPE coefficient parameter cT among navigator
function variables. It is the negative of the stress tensor contribution in (A.3). Including this
piece into ~MGFF is needed to guarantee that problem (A.3) has a solution with λ = 1 for any
fixed value of cT . This in turn guarantees that the navigator N (∆σ,∆ε, cT ) is bounded from
above by 1 for any value of its arguments.

36Recall that the 3d Ising CFT has ∆T ′ = 5.50915(44) [28].
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B Feasibility as optimization

In this appendix we discuss the problem of finding a navigator function from the more ab-
stract semidefinite programming perspective. We will assume the reader is familiar with the
semidefinite programming terminology of Section 4.1 in the main text. As we review there,
a general numerical bootstrap problem of the opimization type can be formulated as the dual
problem given in Eq. (4.1) on p.15. For a feasibility problem, on the other hand, the question
is merely whether there exist any y and Y that obey the constraints. In that case the standard
approach is to set b = 0 in (4.1) and run SDPB until one of two termination conditions are
met:

• If a dual feasible point (y, Y ) is found, terminate with ‘success’;

• If a primal feasible point x is found and cT x < 0, then terminate with ‘failure’.

The last termination condition is explained by the duality gap: if b = 0 then D(x , y) = cT x ,
which can only be negative (for a primal feasible x) if no dual feasible point exists.37

The above two termination conditions correspond to the binary oracle output discussed
in Section 1: “success” means that the point is excluded (CFT does not exist), while “failure”
means that the point is allowed (CFT may exist).

To pass from this to a navigator function, we need to reformulate the feasibility search as an
optimization problem. The commonly adopted approach to do so is to use slack variables that
relax the constraints. As discussed in the main text, in the context of the conformal bootstrap
one can add an additional term to the crossing equations, in such a way that these equations
can always be obeyed if the coefficient of this extra term is positive. The minimization of the
coefficient of this term is then a potential navigator function: if it is positive we are in the
‘success’ region and if negative we are in the ‘failure’ region.

We will now describe an alternative navigator function construction, which does not rely
on the physical intuition of the crossing symmetry equations. Instead, we will start with a
general feasibility semidefinite program of the type (4.1) with b = 0, and transform it into an
optimization SDP.

As a first attempt, consider replacing the condition Y � 0 in (4.1) with a maximization
problem:

Y � 0 =⇒ maximize ν ∈ R such that Y − νI � 0, (B.1)

with I the identity matrix. With this transformation the ‘success’ and ‘failure’ cases mentioned
above respectively correspond to ν > 0 and ν < 0 at optimality, and (in the conventions of the
main text) we can take ν at optimality as a candidate navigator function.

Unfortunately the modification (B.1) is not guaranteed to give a finite navigator in the
“success” region. E.g. suppose there exists a Y ′ � 0 such that Tr

�

A∗Y
′
�

= 0. In the ‘success’
region one can add this Y ′ to any feasible solution Y with arbitrarily large coefficient. This
would then imply that ν→ +∞ at optimality. We therefore cannot exclude a divergence in
this candidate navigator function unless we know that the program does not allow such Y ′.

To guarantee boundedness in the ‘success’ region, we apply the same idea, but on the
primal side, that its, by modifying the primal problem (4.2). For simplicity, let us first assume
that there always exists an x such that

BT x = 0, cT x < 0 , (B.2)

37With b = 0 the primal problem is completely homogeneous in the sense that the constraints are invariant
under rescalings x → λx with non-negative λ. In particular, there is an obviously primal feasible point x = 0.
Since this point teaches us nothing about dual feasibility, the inequality in the second termination condition has to
be strict. Furthermore, if we were to ignore the above termination conditions and run the program to optimality
then we would either find x → 0 (in the ‘success’ case) or x diverges such that cT x →−∞ (in the ‘failure’ case).
We thank Petr Kravchuk for a discussion of these issues.
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meaning we only need to introduce a slack variable for the positive semidefiniteness condition.
In that case the right problem to solve is:

minimize ν over x ∈ RP ,ν ∈ R

such that X (x) := x T A∗ + νI � 0,

BT x = 0,

cT x = −1.

(B.3)

This is a standard primal semidefinite programming problem, and we can run it to optimality
without special termination conditions. The value of ν at optimality is the navigator function.
In the ‘success’ region it is guaranteed to be positive (and finite) and then it is likely to be as
good a navigator function as the ones used in the main text.

The dual version of the program in (B.3) is:

maximize − ξ over y ∈ Rn, Y ∈ SK ,ξ ∈ R
such that Y � 0,

− c ξ= B y + Tr(A∗Y ),

Tr(Y ) = 1.

(B.4)

As usual, the introduction of free variables on one side yields additional constraints on the
other side. In this case the trace condition on Y guarantees the boundedness of the problem,
and the parameter ξ allows for the re-scaling of a feasible (y, Y ) such that this constraint can
be met.

Let us also discuss boundedness (from below) in the ‘failure’ region of (B.3). We do not
have a first-principles argument for boundedness everywhere:38 for the same reasons as above,
the navigator function of (B.3) diverges in the ‘failure’ region if there exists a x ′ which obeys

(x ′)T A∗ � 0, BT x ′ = 0, cT x ′ = 0. (B.5)

Fortunately, in conformal bootstrap applications this is unlikely. To see this, recall that the
formulation (4.1) with c and b arises only after eliminating one component of y from a nor-
malization condition nT y = 1 for some normalization vector n, which is typically the identity
operator. Reinstating this normalization condition as a separate constraint to (4.1) one finds
that unboundedness of the modification (B.4) can really only occur if there is a solution to
the crossing symmetry equations (with positive coefficients) without an identity operator. Al-
though this is known to be the case for problems in d = 2 and d = 1, it is an unlikely possibility
in most numerical bootstrap problems and then (B.4) is also bounded in the ‘failure’ region.
The corresponding navigator therefore obeys the same manifest properties as those used in
the main text.

Finally let us consider the case where the equality constraints in the primal problem cannot
obviously be met. In that case not all is lost: one can simply replace them with

BT x = b+ ν1−λ, λ > 0, (B.6)

with 1 = (1,1, . . . 1) a constant vector, and proceed by minimizing ν +
∑

i λi . As before, a
positive value at optimality means that no feasible point exists and so we still have a good
candidate for a navigator function in the ‘success’ region.

38Of course the problem becomes trivially bounded if we impose that ν > −1 in the primal problem. This
is however all but guaranteed to result in a non-smooth (and locally constant) navigator function in the primal
feasible region, which is of limited use for our purposes.
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The navigator functions introduced in this appendix are more general since they work for
any feasibility problem of the type described in Eq. (4.1) with b = 0. On the other hand, for
numerical conformal bootstrap applications they offer little upside compared to the GFF and
Σ-navigators discussed in the main text. Furthermore they also suffer from a practical disad-
vantage. To see this, note that the GFF and Σ-navigators are readily implemented with the
usual conformal bootstrap software: programs like sdp2input or pvm2sdp can be used to
translate the problems into a format acceptable by SDPB, which e.g. involves setting up ma-
trices B and A∗, and SDPB then does the rest of the computation. Unfortunately this workflow
does not quite work for the navigator function described in Eq. (B.4). The main problem is
that SDPB is meant to solve problems where the matrices Ap have rank one and the constraint
Tr(Y ) = 1 is not of this form.39

C Comments on variations of the objective

In section 4, we found a simple formula (4.16) for the linear-order variation in the objective
function under changing the SDP. In this appendix, we give a formula for the quadratic-order
variation as well, and explain how it can be computed easily using machinery already present
in SDPB. We also present numerical checks of both the linear and quadratic variations, deter-
mining how their errors scale with the duality gap.40

C.1 A formula for the quadratic variation

Consider changing an SDP by (b, c, B, A) → (b, c, B, A) + (d b, dc, dB, dA). For simplicity, we
assume dA= 0. (In practice, we can ensure this by keeping constant the “bilinear basis” and
“sample scalings” discussed in [5].) The linear-order change in the objective at optimality is

d L = d bT y + dcT x − x T dB y, (C.1)

where L is the Lagrange function (4.17).
As explained in section 4.3, d L is independent of (d x , d y, dX , dY ) because the variation of

the Lagrange function with respect to (x , y, X , Y ) vanishes at optimality. The same reasoning
implies that the quadratic variation in the objective should be linear in (d x , d y, dX , dY ). To
compute it, we will work at finite µ. Afterwards, we consider the µ→ 0 limit of the resulting
expression and assess the size of finite-µ corrections.

For brevity, let us write s = (b, c, B) and z = (x , y, X , Y ). Given a change s → s + ds, the
solution changes as z → z + dz + d2z + . . . , where dz and d2z are linear and quadratic in
ds, respectively, and “. . . ” represent higher order terms in ds. The quadratic change in the
Lagrange function is

d2 L =
∂ L
∂ z

d2z +
1
2
∂ 2 L
∂ z2

dz2 +
∂ L
∂ s∂ z

ds dz +
1
2
∂ 2 L
∂ s2

ds2

=
1
2
∂ 2 L
∂ z2

dz2 +
∂ L
∂ s∂ z

ds dz. (C.2)

39One can probably impose the trace constraint in an SDPB compatible way, by extending y with spurious
variables ŷ . One then needs to set these equal to the diagonal components of Y in the sense that ŷ1 = Y11,
ŷ2 = Y22, etc. This can be done by including one additional equation for each diagonal value of Y by extending
b, c, B and A. Finally, by extending these quantities by one more entry we can impose the trace constraint by
demanding

∑

i ŷi = 1. Alternatively one can use this equation to eliminate one of these extra components instead.
It is unclear whether such an altered semi-definite problem still corresponds to any polynomial matrix problem.

40The quadratic variation of the objective could be used to compute the Hessian of the navigator function,
enabling the use of Newton’s method for finding allowed points and extremizing CFT data. We leave possible
applications of the quadratic variation to future work.

40

https://scipost.org
https://scipost.org/SciPostPhys.11.3.072


SciPost Phys. 11, 072 (2021)

Here, s and z are multidimensional and we suppress indices for brevity. The first term on the
first line vanishes by the optimality equations ∂ L

∂ z = 0, and the last term vanishes because L
is linear in s. The remaining two terms are proportional to each other. To see this, note that
under changing s→ s+ ds, the shifted optimality equations become

0=
∂ L(s, z)
∂ z

�

�

�

�

z→z+dz+d2z+...
s→s+ds

=
∂ L(s, z)
∂ z

+
∂ 2 L(s, z)
∂ s∂ z

ds+
∂ 2 L(s, z)
∂ z2

dz

=
∂ 2 L(s, z)
∂ s∂ z

ds+
∂ 2 L(s, z)
∂ z2

dz. (C.3)

Contracting (C.3) with dz and plugging this result into (C.2), we find

d2 L =
1
2
∂ L
∂ s∂ z

ds dz =
1
2
(d bT d y + dcT d x − d x T dB y − x T dB d y). (C.4)

The variations d x , d y can be computed from the linearized optimality equations (C.3),
which are written in more detail in (4.8). After some rearrangement, we find

�

S −B
BT 0

��

d x
d y

�

=

�

−dc + dB y
d b− dBT x

�

, (C.5)

where Spq = Tr
�

ApX−1AqY
�

is the so-called Schur complement matrix. This is precisely the
equation solved by SDPB in its main optimization algorithm, with a modified right-hand side.
Consequently, it is straightforward to adapt SDPB to determine d x , d y and compute d L and
d2 L. We have implemented this computation in a program approx_objective packaged
with SDPB as of version 2.5.41

C.2 Possible sources of error

We note two possible sources of error in the results for d L and d2 L — one conceptual and one
practical:

(E1) Finite-µ effects. The formulas for d L and d2 L were derived assuming finite µ (so that
the optimization problem is well-posed). Is the µ → 0 limit of these expressions well-
behaved? How big are the finite-µ corrections?

As with the objective function itself, we expect errors in d L and d2 L to be of order
O(µ logµ), provided the SDP is generic. This expectation comes from thinking about
L as a function to be optimized bT y + cT x − x T B y + Tr

�

(X − x T A∗)Y
�

, plus a barrier
function −µ logdet X that imposes that X is positive semidefinite. Near a smooth point
on the boundary of the positive-semidefinite cone, the barrier function effectively moves
the boundary of the cone by a smoothly-varying amount proportional to µ.

As we vary the parameters (b, c, B, A), the optimal solution with µ = 0 moves along the
boundary of the positive semidefinite cone. Similarly, the optimal solution with finite
µ moves along the “effective” boundary a distance µ away. As long as the boundary
is smooth, derivatives of the finite-µ objective will differ from derivatives of the µ = 0
objective by O(µ logµ) (the size of the barrier function).

41We thank Walter Landry for collaboration on approx_objective.
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Table 1: SDPB options for performing centering iterations.

option explanation
–maxIterations=n Control the number of iterations. We take

n= 10 below.
–stepLengthReduction=1 Take full Newton steps instead of decreasing

the step size.
–infeasibleCenteringParameter=1 Ensure that µ stays (nearly) constant in-

stead of changing µ → βµ with each iter-
ation. This option is only effective if SDPB
has both a primal- and dual-infeasible inter-
nal state.

–dualityGapThreshold=0 Ensure a dual-infeasible internal state.
–primalErrorThreshold=0 Ensure a primal-infeasible internal state.
–dualErrorThreshold=0 Ensure SDPB doesn’t terminate early.

(E2) Errors from X Y 6= µI . One of the optimality equations (4.18) is X Y = µI . Under
normal operation, SDPB does not attempt to solve this equation with high precision.
Instead, it performs repeated Newton steps toward solutions of X Y = µ(i) I with values
µ(i) that change with each iteration. This turns the equation X Y = µI into a kind of
moving target. Solutions computed by SDPB will generally have nonzero (but small)
X Y −µI .

It is not a-priori obvious how large errors resulting from nonzero X Y −µI will be. (We
show a numerical example in figure 16.) However, they can be mitigated with a simple
strategy: After SDPB terminates with a primal-dual optimal solution, we can perform
a few extra iterations toward a solution of X Y = µI . In practice, this can be done by
running SDPB from the most recent checkpoint with the options listed in table 1 (in
addition to whatever other options were used in the optimization). Because the locus
X Y = µI is called the “central path,” we call these extra iterations “centering iterations.”

C.3 Numerical checks

To describe our numerical checks of the expressions for d L and d2 L, we need some quick
definitions. Given an SDP s, let f (s) be the optimal value of its objective. We also define

g(s, ds)≡ f (s) + d L + d2 L

= f (s) +
∂ L(s, z)
∂ s

ds+
1
2
∂ L(s, z)
∂ s∂ z

ds dz, (C.6)

where z is the optimum of s, and dz (which is linear in ds) is the solution to equation (C.3).
Note that g is arbitrarily nonlinear in its first argument, but quadratic in its second argument
— in fact, g(s0, s− s0) provides a quadratic approximation to f (s) around a given s0:42

f (s) = g(s0, s− s0) +O((s− s0)
3). (C.7)

Consider now a family of SDP’s s(∆) depending smoothly on a parameter ∆. Consider a
sequence of values ∆0 + δ∆ converging to ∆0, and let us write s0 = s(∆0). Equation (C.7)
with s = s(∆0 +δ∆) implies that

h(δ∆)≡ f (s(∆0 +δ∆))− g(s0, s(∆0 +δ∆)− s0)∼ O(δ∆3), (C.8)

42In other words, g is a 2-jet of f at s0.
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Figure 15: The ratio h(δ∆)/δ∆3 for a family of SDPs describing σ and ε correlators
in the 3d Ising model. Specifically, we studied the GFF navigator function in the 2-
parameter 3d Ising setup described in section 2.2, with fixed ∆ε = 1.4 and varying
∆σ = 0.518+δ∆, where δ∆= 0.01×2−n and n ∈ {0, . . . , 25}, and derivative order
Λ = 11. We see that the difference between the true objective and its quadratic
approximation is cubic in δ∆. The optimizations for this plot were computed with a
duality gap threshold of 10−30, and 10 centering iterations.

where we used that s(∆) depends locally smoothly on ∆. We can use this to check our ex-
pressions for d L and d2 L: we compute h(δ∆) for several values of δ∆ and check whether it
decreases cubically in δ∆.

In figure (15), we plot the ratio h(δ∆)/δ∆3 for a one-parameter family of SDP’s describing
the GFF navigator function for correlators of σ and ε in the 3d Ising model. For small δ∆,
the ratio h(δ∆)/δ∆3 approaches a constant. This is a strong check of our results for d L and
d2 L and our ability to compute them accurately: cubic dependence of h(δ∆) on δ∆ requires
delicate cancellations between the true objectives of s(∆0 + δ∆) and s0, the linear correction
d L, and the quadratic correction d2 L. The SDPB computations in figure 15 were performed
with duality gap threshold D = 10−30, with 10 centering iterations. Evidently these choices
effectively remove both sources of error (E1) and (E2) in this example.43

In figures 16 and 17, we show the effects of (E1) and (E2) on d L and d2 L. Figure 16
was produced with no centering iterations, so it shows the effects of both (E1) and (E2). In
that case, the relative error in d L scales approximately as µ0.8, and the relative error in d2 L
scales as µ0.235. These numbers presumably are not universal: they depend on the whole
history of the optimization procedure in SDPB, and are not uniquely determined by the final
solution. Figure 17 was produced with 10 centering iterations. In that case, the errors in d L
and d2 L both scale linearly with µ, and are much smaller overall. This is strong evidence that
centering iterations effectively mitigate (E2), and it also supports our estimate of the size of
finite-µ effects.

D Parameters for numerics

The computation of the navigator function can be translated to the form of a semidefinite
program (SDP), to solve which we use the arbitrary precision solver SDPB [5, 6]. We used

43More precisely (E1) and (E2) are unimportant for the values of δ∆ shown in the plot. They will become
important again at smaller values of δ∆. To get accurate results for even smaller δ∆, we can decrease µ by further
lowering the duality gap threshold.
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Figure 16: The relative error in d L and d2 L, as a function of the duality gap D
(which is proportional to µ), computed with no centering iterations. We use the setup
described in the caption of figure 15, with δ∆= 0.01×2−25. We define relative error
for a quantity x by |x − xref|/|xref|, where xref is a reference value. Reference values
for this plot were computed with duality gap 10−50 and 30 centering iterations. For
both d L and d2 L, we show best fits to powers of D.

simpleboot [29], PyCFTBoot [30], and sdpb-haskell44 to setup the SDPs. The parame-
ters used for the computations are presented in Table 2. We used the same conformal block
normalization as [1].

For the Λ = 19 results in Section 5.3, we used the Python package PyCFTBoot [30]
to setup the SDP, with parameters (kmax , lmax , nmax , mmax) = (28, 28,1, 9). The parameters
(nmax , mmax) control the number of derivatives used in the (a, b) coordinates (see [30] for
more details). This choice results in the same navigator value as taking (z, z̄) derivatives up
to Λ= 19.

To numerically implement the BFGS Algorithm 1, we have used the BFGS algorithm
minimize(method=‘BFGS’) of Python’s SciPy library, with the additional modifications of
the rescaling of the initial Hessian and the implementation of the bounding box. All parameters
used were the default ones, both for the Moré and Thuente line search SciPy implements and
the actual BFGS algorithm.

E Further plots

Here we collect plots like Figs. 7 and 8 for six additional runs of our modified BFGS algorithm,
for both the two parameter Λ = 11 case discussed in Sec. 5.3.1, and the three parameter
Λ= 19 case discussed in Sec. 5.3.2

E.1 2-parameter searches

44https://gitlab.com/davidsd/sdpb-haskell
45The computations presented in Sections 5.3 and 6 were set up using a version of simpleboot where the

definition of keptPoleOrder was slightly different. Here the poles were kept without modifying the residue to
better approximate the contribution of discarded poles and thus the blocks were less accurate than those used
in [5].
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Figure 17: Errors for d L and d2 L as a function of the duality gap D with the same
setup as figure 17, but where for each optimization we perform 10 centering iter-
ations of SDPB. The errors now decrease linearly with D (which is proportional to
µ). This is consistent with our naive estimate µ logµ in section C.2. (To detect the
logarithm logµ, we would need more data and a more careful fit.)

E.2 3-parameter searches
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Figure 22: Same as Fig. 12(right), for 6 additional runs appearing in Fig. 10. The fig-
ure shows logarithmic plots of



x i − x f



 at the i-th function call for the 6 additional
runs, with the same color code for the dots as in Fig. 12.
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Table 2: Parameters used to setup the SDPs, along with the SDPB parameters. The
definition of these can be found in [5] (where order was 90 and keptPoleOrder
was κ).

Section(s) 3 3 5.3, 6 5.3
Λ 11 19 11 19 (PyCFTBoot, see below)

keptPoleOrder45 8 14 14
order 60 60 27
spins {0, . . . , 21} {0, . . . , 26, 49,50} {0, . . . , 27} {0, . . . , 28}

precision 640 768 768 660
dualityGapThreshold 10−30 10−30 10−20 10−30

primalErrorThreshold 10−30 10−30 10−60 10−30

dualErrorThreshold 10−30 10−30 10−60 10−30

initialMatrixScalePrimal 1020 1040 1020 1020

initialMatrixScaleDual 1020 1040 1020 1020

feasibleCenteringParameter 0.1 0.1 0.1 0.1
infeasibleCenteringParameter 0.3 0.3 0.3 0.3

stepLengthReduction 0.7 0.7 0.7 0.7
maxComplementarity 10100 10100 10100 10100

Figure 18: Six more runs of our algorithm, see Section 5.3.1, in addition to the run
shown in Fig. 7. Plotting conventions are the same as in that figure.
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Figure 19: This plot is analogous to Fig. 8(left). It shows navigator values Ni at the
i-th function call for the 6 runs from Fig. 18, and with the same color code for the
dots.

10 20 30 40 50 60

10
-10

10
-8

10
-6

10
-4

0.01

5 10 15 20 25 30 35

10
-8

10
-6

10
-4

0.01

10 20 30 40 50 60

10
-6

10
-4

0.01

10 20 30 40 50 60 70

10
-10

10
-8

10
-6

10
-4

0.01

10 20 30 40 50 60

10
-6

10
-5

10
-4

0.001

0.010

20 40 60

10
-8

10
-6

10
-4

0.01

Figure 20: This plot is analogous to Fig. 8(right). It shows logarithmic plots of


x i − x f



 at the i-th function call for the 6 runs from Fig. 18, and with the same
color code for the dots.
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Figure 21: Same as Fig. 12(left), for 6 additional runs appearing in Fig. 10. The
figure shows navigator values Ni at the i-th function call for the 6 additional runs,
with the same color code for the dots as in Fig. 12 .
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