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ABSTRACT

We consider analysis and design of distributed filters for continuous-
time stochastic systems, where the partial information about the
states is measured by a distributed set of sensor units. These units
are represented by nodes in an undirected and connected graph,
whose edges represent the communication links between sensor
units. It is stipulated that the communication between sensor nodes
is time-sampled randomly and the sampling process is described by
a Poisson counter. Our proposed filtering algorithm for each sensor
node is a stochastic hybrid system: It comprises a continuous-time
differential equation, and at random time instants when commu-
nication takes place, each sensor node updates its state estimate
based on the information received by its neighbors. For this setup,
we compute the expectation of the error covariance matrix for each
node which is governed by a matrix differential equation, and relate
its convergence with the mean sampling rate.

CCS CONCEPTS

• Mathematics of computing → Mathematical analysis; • Net-
works → Network algorithms; • Computing methodologies →
Distributed algorithms.
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1 INTRODUCTION

Modern engineering systems often involve integration of several
components, due to which it becomes difficult to monitor all the out-
put measurements of the system in a single processing unit. This has
led to the increasing research in the area of distributed algorithms,
and in particular for state estimation, and filtering, in dynamical

systems. Distributed filtering allows us to disintegrate a centralized
output into several components, and then associate a filtering al-
gorithm with each of these smaller components, see Figure 1 for a
conventional layout of such architectures. In the usual operation of
distributed filters, it is assumed that the sensor units, represented
by the nodes in a graph, communicate the information about their
own estimate to their neighbors (determined by the graph topology)
at all times. In our work, however, we put constraints on the com-
munication between these dynamic agents, which represent the
individual filtering units. In particular, we assume that each link in
the graph is activated at random time-instants and the random pro-
cess, which determines the discrete-times at which two neighbors
communicate, is described by a Poisson counter. For this problem
setup, we propose filtering algorithm in the form of a stochastic hy-
brid system. Such framework has been advocated in [1] for control
problems over networks with communication constraints. Some
historical developments on the use of Poisson counters for sampling
process are provided in [4]. The results proposed in this work build
on the centralized filtering case studied in [5]. Our analysis of the
asymptotic behavior of the error covariances borrows tools from
the stability of networked systems with heterogenous agents [2].

2 PROBLEM SETUP

We consider the dynamical system

d𝑥 = 𝐴𝑥 d𝑡 + 𝐵 d𝜔 (1)

where (𝑥 (𝑡))𝑡⩾0 is an R𝑛-valued diffusion process describing the
state. It is assumed that, for each 𝑡 ⩾ 0, (𝜔 (𝑡))𝑡⩾0 is an R𝑚-valued
standard Wiener process with the property that E[d𝜔 (𝑡) d𝜔 (𝑡)⊤] =
𝐼𝑚×𝑚 , for each 𝑡 ⩾ 0. The matrices 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are
taken as constant, and the process (𝜔 (𝑡))𝑡⩾0 does not depend on
the state. The solutions of the stochastic differential equation (1)
are interpreted in the sense of Itô stochastic integral.

Measurements via distributed sensors. The measurements associated
with system (1) are obtained from a set of 𝑁 sensors which are

d𝑥 = 𝐴𝑥d𝑡 + 𝐵d𝜔,
d𝑦 = 𝐻𝑥d𝑡 + d𝑣

𝑦1

𝑦𝑁

𝑦1 𝑦2

𝑦3𝑦𝑁

Graph of Sensor Network

Figure 1: Layout of Distributed Filters
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distributed in their localization. Each of these sensors provides a
partial measurement about the state described as,

d𝑦𝑖 = 𝐻𝑖𝑥 d𝑡 + d𝑣𝑖 , 𝑖 = 1, . . . , 𝑁 , (2)

with 𝐻𝑖 ∈ R𝑝𝑖×𝑛 , and we let
∑𝑁
𝑖=1 𝑝𝑖 =: 𝑝 . That is, for each node,

(𝑦𝑖 (𝑡))𝑡⩾0 describes an R𝑝𝑖 -valued continuous-time observation
process. In the observation equation (2), 𝑣𝑖 is a standard Wiener
process, taking values in R𝑝𝑖 , and E[d𝑣𝑖 (𝑡) d𝑣𝑖 (𝑡)⊤] = 𝑉𝑖 ∈ R𝑝𝑖×𝑝𝑖 ,
for each 𝑡 ⩾ 0, with 𝑉𝑖 assumed to be positive definite.

Communication Process. The sensor nodes are connected via a graph
G = (V, E), whereV = {1, . . . , 𝑁 } is the set of graph nodes, and E
contains all the edges defined by the pairs (𝑖, 𝑗), 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ V . We
assume that the graph is undirected and connected. The neighbors
of a node 𝑖 ∈ V are denoted by N𝑖 := { 𝑗 ∈ V | (𝑖, 𝑗) ∈ E}, and we
adopt the convention that 𝑖 ∉ N𝑖 . It is assumed that there exists a
monotone strictly increasing and divergent sequence (𝜏𝑘 )𝑘∈N ⊂
[0, +∞[ with 𝜏0 B 0, and

• at each time instant 𝜏𝑘 , all sensor nodes 𝑖 ∈ V transmit the
value of their state estimate to their neighbors N𝑖 .

In this note, we are interested in the case where the sampling times
(𝜏𝑘 )𝑘∈N are generated randomly. Formally, we define

𝑁𝑡 B sup
{
𝑘 ∈ N

�� 𝜏𝑘 ⩽ 𝑡
}

for 𝑡 ⩾ 0

and stipulate in addition that

• (𝑁𝑡 )𝑡⩾0 is a Poisson process of intensity 𝜆 > 0 satisfying
𝜏𝑁𝑡

−−−−−→
𝑡↑+∞

+∞ almost surely.

The map 𝑡 ↦→ 𝑁𝑡 increments by 1 at random times, and it provides
a description of the number of samples up to and including time 𝑡 .

3 ALGORITHM AND MAIN RESULT

Filtering Algorithm. Based on the aforementioned communication
architecture, we propose the following algorithm to be implemented
by each sensor node:

d𝑥𝑖 (𝑡) = (𝐴 − 𝐿𝑖𝐻𝑖 )𝑥𝑖 (𝑡)d𝑡 + 𝐿𝑖d𝑦𝑖 (𝑡) (3)

over the intervals [𝜏𝑁𝑡
, 𝜏𝑁𝑡+1 [, with 𝐿𝑖 being some constant mat-

rix. At sampling times, when the sensor node 𝑖 ∈ V receives the
information from its neighbors, we update the estimate as follows:

𝑥𝑖 (𝜏+𝑁𝑡
) = 𝑥𝑖 (𝜏−𝑁𝑡

) + 𝜖
∑
𝑗 ∈N𝑖

(𝑥 𝑗 (𝜏−𝑁𝑡
) − 𝑥𝑖 (𝜏−𝑁𝑡

)) (4a)

= 𝜋𝑖𝑖𝑥𝑖 (𝜏−𝑁𝑡
) +

∑
𝑗 ∈N𝑖

𝜋𝑖 𝑗𝑥 𝑗 (𝜏−𝑁𝑡
), (4b)

where 𝜋𝑖 𝑗 ∈ [0, 1] is the (𝑖, 𝑗)-th element of the symmetric doubly
stochastic matrix Π := 𝐼𝑁×𝑁 − 𝜖L, with L being the Laplacian of
the communication graph G, and 0 < 𝜖 ⩽ min𝑖∈V 1

|N𝑖 | . Each of
these filters is a stochastic hybrid system with continuous evolu-
tion described by (3) between sampling times, and the jump rule
(4) executed at random sampling instants where we update the
estimate 𝑥𝑖 as the convex combination of itself and its neighbors.
The communication based on the underlying graph results in a
particular interconnection of these hybrid systems.

To state our main result concerning the performance bounds
of the filters (3)-(4), we let Y𝑖

𝑡 :=
{
(d𝑦𝑖 (𝑠), 𝑥 𝑗 (𝜏𝑁𝑠

)) | 𝑠 ⩽ 𝑡, 𝑗 ∈ N𝑖

}

denote the information available to node 𝑖 ∈ V up to time 𝑡 , and
introduce two matrices 𝐿 ∈ R𝑛×𝑝 and 𝐻 ∈ R𝑝×𝑛 as follows:

𝐿 :=
1
𝑁

[
𝐿1 . . . 𝐿𝑁

]
, 𝐻 :=

[
𝐻⊤
1 . . . 𝐻⊤

𝑁

]⊤
. (5)

Consequently, we see that 𝐴 − 𝐿𝐻 = 𝐴 − 1
𝑁

∑𝑛
𝑖=1 𝐿𝑖𝐻𝑖 . The result

providing bounds on error covariance matrices appears below and
its proof can be found in [3].

Theorem 3.1. Consider system (1) with distributed measurements
(2). Suppose that the corresponding hybrid filters (3), (4) represent the
nodes of a directed and connected graph, where the communication
between neighbors takes place at random times generated by a Poisson
process of intensity 𝜆 > 0. Then, the following items hold:

(1) For each 𝜆 > 0, and 𝑖 = 1, . . . , 𝑁 , it holds that

E[(𝑥 (𝑡) − 𝑥𝑖 (𝑡)) (𝑥 (𝑡) − 𝑥𝑖 (𝑡))⊤ | Y𝑖
𝑡 ] ⩽ P𝑖 (𝑡), (6)

where the matrix-valued function P𝑖 : [0,∞[→ R𝑛×𝑛 satisfies
the differential equation

¤P𝑖 = (𝐴 − 𝐿𝑖𝐻𝑖 )P𝑖 + P𝑖 (𝐴 − 𝐿𝑖𝐻𝑖 )⊤ + 𝐵𝐵⊤ + 𝐿𝑖𝑉𝑖𝐿
⊤
𝑖

+ 𝜆
∑
𝑗 ∈N𝑖

𝜋𝑖 𝑗 (P𝑗 − P𝑖 ) . (7)

(2) If the gains 𝐿𝑖 are chosen such that the matrix (𝐴−𝐿𝐻 ) is Hurwitz,
then for every 𝜀 > 0, there exists 𝜆 > 0 sufficiently large, such
that the corresponding solution of (7) satisfies

lim sup
𝑡→∞

∥P𝑖 (𝑡) − 𝑆 ∥ ⩽ 𝜀,

where 𝑆 is the symmetric positive semidefinite matrix satisfying

0 = (𝐴 − 𝐿𝐻 ) 𝑆 + 𝑆 (𝐴 − 𝐿𝐻 )⊤ + 𝐵𝐵⊤ + 1
𝑁

𝑁∑
𝑖=1

𝐿𝑖𝑉𝑖𝐿
⊤
𝑖 . (8)

4 PERSPECTIVES

Several research directions emerging from the result in Theorem 3.1
are being investigated. First one is the possibility of replacing the
static gains in filtering equation (3) of each sensor nodewith optimal
gains. Minimizing the mean square estimation error makes the
injection gains dependent on the covariance matrix, which brings
nonlinearity in (7) and this needs to be analyzed carefully. The
second immediate concern is to consider a wider class of random
processes for communication between individual sensor nodes.
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