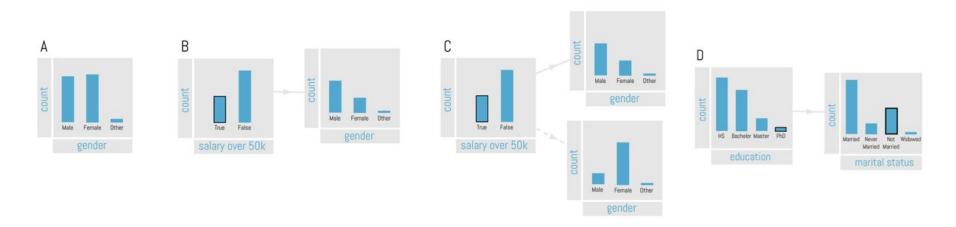


The Travelling Analyst Problem Orienteering applied to exploratory data analysis


<u>Alexandre Chanson</u> - Nicolas Labroche - Patrick Marcel - Vincent T'Kindt

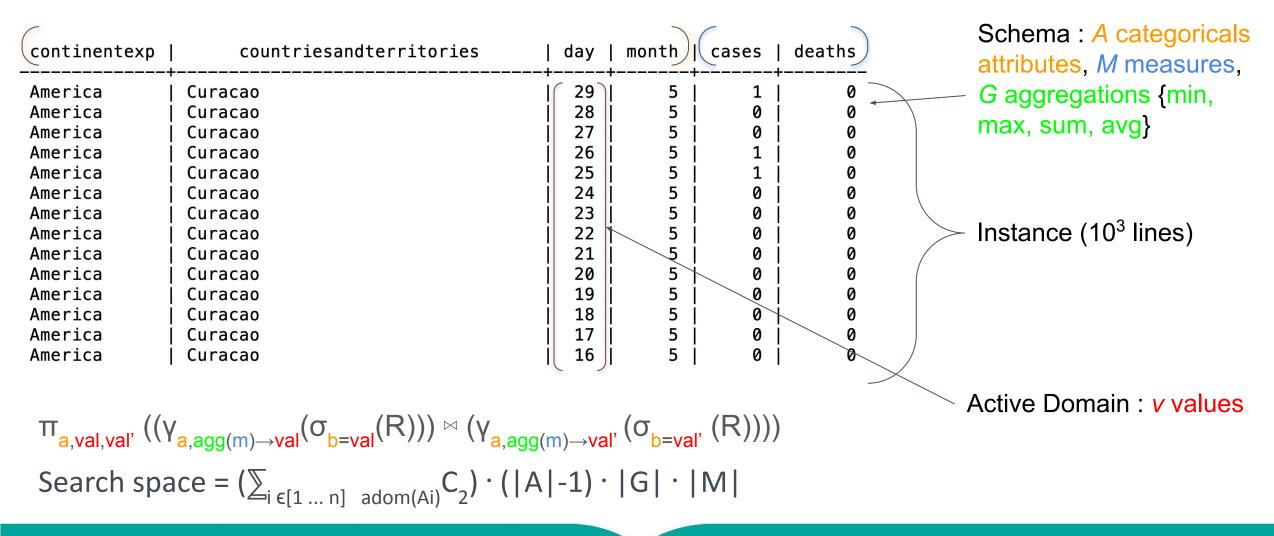
Exploratory Data Analysis

Interactive analysis of large volumes of data

- Outcome: a sequence of meaningful queries
- **Challenge** : how to produce this sequence automatically?

Comparison Queries

select t1.continentexp as "Continent", April as "April", May as "May"
from
(select month, continentexp, sum(cases) as April
from covid
where month = '4'
group by month, continentexp) t1,
(select month, continentexp, sum(cases) as May
from covid
where month = '5'
group by month, continentexp) t2
where t1.continentexp = t2.continentexp;


$$\begin{array}{l} \Pi_{a,val,val'} \left(\left(\gamma_{a,agg(m) \rightarrow val} (\sigma_{b=val}(R)) \right) \bowtie \left(\gamma_{a,agg(m) \rightarrow val'} (\sigma_{b=val'}(R)) \right) \right) \end{array}$$

sum of cases Continent | April | May

Europe	863874	608110
0ceania	2812	467
America	1104862	1404912
Africa	31598	92626
Asia	333821	537584

Comparison is a common activity for data analysts (Zgraggen 2018)

Comparison queries - Limit the search space

S

Problem statement

Given all possible comparison queries on a database :

- Find <u>the sequence</u> of queries
- Maximizing interestingness
- Such that it can be <u>executed in limited time</u> budget
- The <u>distance</u> over the sequence is <u>minimal</u>.
- The distance can be turned into an epsilon-bound.
- The execution time is given by DBMS

Distance between queries

Metric adapted from [Aligon 14]

Q1

Age Group	Average	Average deaths	
	India	UK	
0-18	4	2	
18-25	43	12	
25-50	641	607	
50-65	3000	3777	
65+	5600	4286	

	Age Group	Average deaths	
		Germany	UK
-	0-18	4	2
	18-25	43	12
	25-50	641	607
	50-65	3000	3777
	65+	5600	4286

Q2

Q3

Eye color	Average deaths	
	Germany	UK
Blue	23	34
Green	43	45
Brown	567	345

Intuitively, d(Q1, Q2) < d(Q1, Q3)

Interest of a query

Interest = p-value of statistical tests validating the query result as evidence of an insight (Zgraggen 18)

Age Group	Average deaths	
	India	UK
0-18	4	2
18-25	43	12
25-50	641	607
50-65	3000	3777
65+	5600	4286

- Insight -> H0"Deaths are independent of Age"
- One evidence: average deaths in UK and India by Age Group
- Verification -> Statistical test
- Interest -> 1 p-value

Problem Formulation

- Extension of the Orienteering Problem, with a service time
- Model based on formulations from (Kara 16, Gunawan 16)

Data

 $c_{i,j}$ the distance between queries, q_i and q_j . (Positive integer)

 t_i denotes the execution time of q_i (Positive integer)

 v_i is the interestingness score associated with q_i (real number in [0,1])

Variables

 $\mathbf{x}_{i,j}, (i,j) \in 1..n, x_{i,j} = 1$ if q_i comes directly before q_j in the solution, 0 otherwise $\mathbf{x}_{0,i}, i \in 1..n, x_{i,j} = 1$ if q_i is the first query of the solution, 0 otherwise $\mathbf{x}_{i,n+1}, i \in 1..n, x_{i,j} = 1$ if q_i is the last query of the solution, 0 otherwise $\mathbf{s}_i, i \in 1..n$: boolean variables denoting the presence of q_i in the solution. $\mathbf{u}_i, i \in 1..n$: integer variables used in subtour elimination constraints.

Model

objective

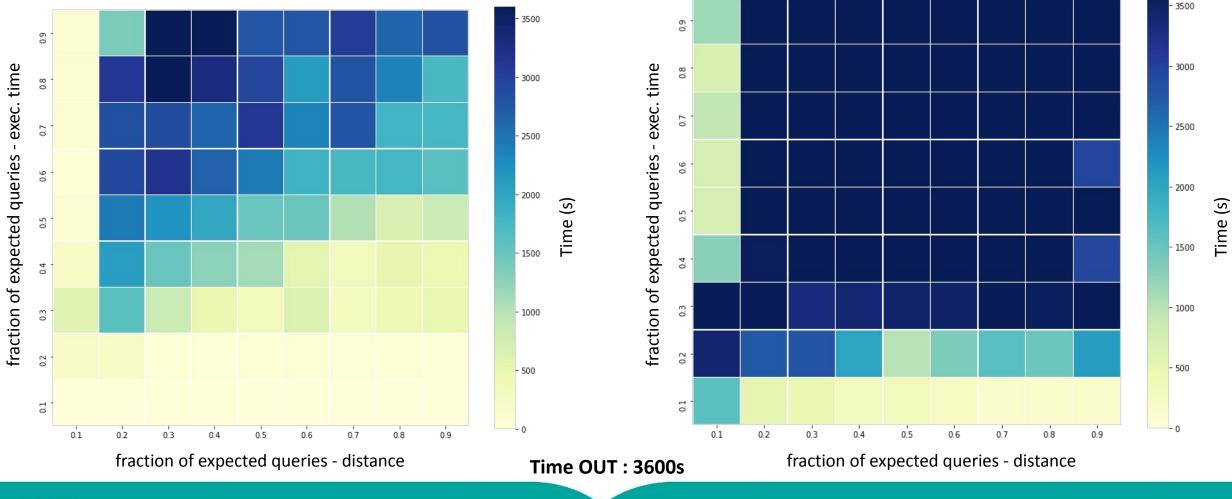
$$max \sum_{i=1}^{n} v_i s_i \tag{1}$$

under constraints

$$\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} c_{i,j} x_{i,j} \leq \epsilon_d \qquad (2) \qquad \sum_{j=1, j \neq i}^{n+1} (x_{i,j}) - s_i = 0, \forall i \in 1..n \qquad (5)$$
$$\sum_{i=1}^{n} t_i s_i \leq \epsilon_t \qquad (3) \qquad \sum_{j=1}^{n} x_{0j} = \sum_{i=1}^{n} x_{i,n+1} = 1 \qquad (6)$$

$$\sum_{i=0, j \neq i}^{n} (x_{i,j}) - s_j = 0, \forall j \in 1..n \quad (4)$$

 $2 \le u_i \le n, i \in 1..n , u_i - u_j + 1 \le (n-1)(1 - x_{ij}), (i,j) \in 1..n$ (7)


Influence of epsilon-constraints

- Distances (integer) drawn from uniform distribution U(1,10)
- Interestingness (real) drawn from U(0,1)
- time (integer) drawn from U(5,50)
- Epsilon constraints expressed as a fraction of expected queries
 based on distribution mean

Influence of epsilon-constraints

Time to Solve for 300 queries

Linux 5.11.13-200, CPLEX 20.10, Xeon 5118 (Single threaded), 64 GB

Constraint generation strategy

- Constraint generation strategy for subtour elimination (Pferschy 17)
 - Preliminary experiments shows substantial speedups on hard instances

Perspectives

- Exact solution is still tractable for smallest real instances (> 10³ queries)
- Mathheuristics (VPLS) for large instance (> 10⁴ queries)
- ⁻ 'Faster' Heuristics for larger instances of the problem (> 10⁶ queries)
- Addressing more generic query pattern (> 10⁹ queries)
- Extension of the problem where a limited disk space can be used (indexing) to speed up some queries

References

Aligon 14 : Similarity measures for OLAP sessions, Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, Elisa Turricchia, Knowledge and information systems 2014

Kara 16: New formulations for the orienteering problem, Imdat Kara, Papatya Sevgin Bicakci, and Tusan Derya, Procedia Economics and Finance, 39:849–854, 2016

Zgraggen 18: Investigating the Effect of the Multiple Comparisons Problem in Visual Analysis, Emanuel Zgraggen, Zheguang Zhao, Robert Zeleznik, and Tim Kraska, In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems

Gunawan 16: Orienteering problem : A survey of recent variants, solution approaches and applications, A. Gunawan, H. C. Lau, and P. Vansteenwegen, E.J.O.R., 255(2), 2016

Pferschy 17: Generating subtour elimination constraints for the TSP from pure integer solutions, Ulrich Pferschy & Rostislav Staněk, Central European Journal of Operations Research 2017

Thank You for Listening

The Travelling Analyst Problem

<u>Alexandre Chanson</u> - <u>chanson@univ-tours.fr</u> - github.com/AlexChanson

