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Abstract In order to improve overall performance with

respect to a classification problem, a path of research

consists in using several classifiers and to fuse their out-

puts. To perform this fusion, some approaches merge

the classifier outputs using a rule of combination. This

requires that the outputs be made comparable before-

hand, which is usually done thanks to a probabilistic

calibration of each classifier. The fusion can also be

performed by concatenating the classifier outputs into

a vector and applying a joint probabilistic calibration

to this vector. Recently, extensions of probabilistic cal-

This paper is an extended and revised version of (Minary
et al. 2017).

Pauline Minary
pauline.minary@reseau.sncf.fr

Frédéric Pichon
frederic.pichon@univ-artois.fr

David Mercier
david.mercier@univ-artois.fr

Eric Lefevre
eric.lefevre@univ-artois.fr

Benjamin Droit
benjamin.droit@reseau.sncf.fr

1Univ. Artois, EA 3926,
Laboratoire de Génie Informatique et d’Automatique de
l’Artois (LGI2A),
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ibration techniques of an individual classifier have been

proposed using evidence theory, in order to better rep-

resent the uncertainties inherent to the calibration pro-

cess. In this paper, we adapt this latter idea to joint

probabilistic calibration techniques, leading to eviden-

tial versions of joint calibration techniques. In addition,

our proposal was tested on generated and real datasets

and the results showed that it either outperforms or is

comparable to state-of-the-art approaches.

Keywords Belief functions · Information fusion ·
Evidential calibration · Classification

1 Introduction

An important path of research in classification consists

in using several classifiers, which are trained with differ-

ent data or based on different training models, instead

of relying on a single one (Kuncheva 2004). Since they

do not necessarily give the same output after observing

a given object, a central issue in this approach consists

in figuring out how to exploit these outputs to classify

this object.

There are different ways of performing the fusion of

some classifier outputs (Kuncheva 2004; Tulyakov et al.

2008). These various fusion methods are usually sepa-

rated into two categories: the non-trainable and train-

able combiners.

In the first category, the outputs returned by the

classifiers after observing a given object are combined

using a predetermined rule of combination. As the used

classifiers are different, their outputs are not scaled with

respect to each other, and thus have to be made com-

parable before being combined. A step called calibra-

tion (Platt 1999) is thus usually performed to trans-

form each output into a probability. In particular, the
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three calibration techniques the most commonly used

are based on binning (Zadrozny and Elkan 2001), iso-

tonic regression (Zadrozny and Elkan 2002) and lo-

gistic regression (Platt 1999). These calibration tech-

niques suffer from an over-fitting problem, especially

when only few training data are available. Within this

scope, Xu et al. (2016) recently proposed a refinement

of the main calibration procedures within a framework

for reasoning under uncertainty called evidence the-

ory (Shafer 1976; Smets and Kennes 1994). This theory

allows Xu et al. to model more precisely the uncertain-

ties inherent to such calibration process and thus to

prevent the over-fitting issue. Xu et al. (2016) used this

refinement to propose an approach of the non-trainable

kind for binary classification problems. This latter ap-

proach consists in: using several SVM classifiers return-

ing confidence scores, calibrating each of the returned

scores using an evidential calibration technique, hence

transforming each of the score into a belief function, and

finally merging them using Dempster’s rule of combi-

nation (Shafer 1976).

The second category regroups the approaches using

the concatenation of the outputs of the classifiers as an

input vector for another classifier. In particular, the ap-

proach defined in (Zhong and Kwok 2013) is a member

of that category as a vector of scores obtained from an

ensemble of classifiers is provided as an input vector

to a probabilistic classifier based on multiple isotonic

regression. Note that such kind of approach may be re-

garded as a probabilistic joint calibration as it learns

how to convert a vector of scores into a probability,

that is it calibrates jointly the classifiers. In addition,

as logistic regression can also be defined with multiple

inputs (Hosmer et al. 2013), one may envisage to extend

this kind of approach to the logistic model.

Both categories present some disadvantages. As al-

ready mentioned, the calibration techniques used in the

non-trainable combiners are prone to an over-fitting

problem. In addition, non-trainable combiners rely on a

fixed rule of combination; as explained by Duin (2002),

a predetermined rule may be the best combination only

under very strict conditions, and an improved result

may be obtained using an approach of the trainable

combiner category. For the trainable combiners, a train-

ing set common to all classifiers is required, and the

combiner must be re-learned each time a new classifier

is added to the system. Furthermore, trainable com-

biner approaches corresponding to a probabilistic joint

calibration may also be prone to the over-fitting prob-

lem inherent to probabilistic calibration.

Within this scope, we propose in this paper to study

the application of the appealing element of Xu et al.’s

approach (Xu et al. 2016), i.e., the evidential extension

of calibration, to joint calibration techniques. As a re-

sult, we obtain methods that transform the vector of

scores returned by the classifiers for a given object into

a belief function.

This paper is organized as follows. First, necessary

background on evidence theory are recalled in Section 2.

In Section 3, probabilistic calibration methods of a sin-

gle classifier are presented, followed by their extension

using the evidence theory. Then, probabilistic joint cal-

ibrations and their extension to the evidential frame-

work that we propose, are exposed in Section 4. In Sec-

tion 5, the proposed approach is compared experimen-

tally to other approaches, and in particular to Xu et al.

non-trainable combiner approach relying on evidential

calibration of individual classifiers and to probabilistic

joint calibration. Finally, conclusion and perspectives

are given in Section 6.

2 Evidence theory

Basic notions of the theory of evidence (Shafer 1976;

Smets and Kennes 1994) are first exposed in Section 2.1.

Applications of this theory to statistical inference and

prediction, which are useful to derive calibration in the

evidential framework, are addressed in Section 2.2 and

2.3.

2.1 Basic notions

Evidence theory, also referred to as belief function the-

ory, is a general framework for modeling uncertainty.

Let ω be a variable whose possible values belong to

the finite set Ω = {ω1, · · · , ωK}. In this theory, uncer-

tainty with respect to the actual value ω0 taken by ω

is represented using a Mass Function (MF) defined as

a mapping mΩ : 2Ω → [0, 1] verifying mΩ(∅) = 0 and∑
A⊆Ω

mΩ (A) = 1. (1)

The quantity mΩ(A) corresponds to the belief commit-

ted exactly to the hypothesis ω0 ∈ A and nothing more

specific. Any subset A of Ω such that mΩ(A) > 0 is

called a focal set of mΩ . When the focal sets are nested,

mΩ is said to be consonant.

Equivalent representations of a mass function exist.

In particular, the belief and plausibility functions are

respectively defined by

BelΩ(A) =
∑
B⊆A

mΩ(B), ∀A ⊆ Ω, (2)

PlΩ(A) =
∑

B∩A6=∅

mΩ(B), ∀A ⊆ Ω. (3)
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The degree of belief BelΩ(A) measures the amount of

evidence strictly in favour of the hypothesis ω0 ∈ A,

while the plausibility PlΩ(A) is the amount of evidence

not contradicting it. The plausibility function restricted

to singletons is called the contour function, denoted plΩ

and defined by

plΩ(ω) = PlΩ({ω}), ∀ω ∈ Ω. (4)

When a mass function is consonant, the plausibility

function can be recovered from its contour function as

follows:

PlΩ(A) = sup
ω∈A

plΩ(ω), ∀A ⊆ Ω. (5)

Given two independent MFs mΩ
1 and mΩ

2 , it is pos-

sible to combine them using Dempster’s rule of combi-

nation. The result of this combination is a MF mΩ
1⊕2

defined by

mΩ
1⊕2(A) =

1

1− κ
∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), ∀A 6= ∅,

(6)

where

κ =
∑

B∩C=∅

mΩ
1 (B)mΩ

2 (C), (7)

represents the degree of conflict between mΩ
1 and mΩ

2 ,

and mΩ
1⊕2(∅) = 0. If κ = 1, there is a total conflict

between the two pieces of evidence and they cannot be

combined.

Different decision strategies exist to make a decision

about the actual value ω0 of ω, given a MFmΩ (Denœux

1997). In particular, the value ω ∈ Ω having the small-

est so-called upper or lower expected costs may be se-

lected. The upper and lower expected costs of some

value ω ∈ Ω, respectively denoted by R∗(ω) and R∗(ω),

are defined as

R∗(ω) =
∑
A⊆Ω

mΩ(A) max
ω′∈A

c(ω, ω′), (8)

R∗(ω) =
∑
A⊆Ω

mΩ(A) min
ω′∈A

c(ω, ω′), (9)

where c(ω, ω′) is the cost of deciding ω when the true

answer is ω′. When the set of focal elements is reduced

to singletons and Ω, and when the costs are taken equal

to 0 if ω = ω′ and 1 otherwise, the upper and lower

expected costs are, respectively, defined as

R∗(ω) = 1−mΩ({ω}), (10)

= 1−BelΩ({ω}).

R∗(ω) = 1−mΩ({ω})−mΩ(Ω), (11)

= 1− PlΩ({ω}).

Choosing the value ω minimizing the lower (resp. up-

per) expected costs is called the optimistic (resp. pes-

simistic) strategy.

To avoid making wrong decisions in the risky cases,

i.e., when the expected costs are high, a reject decision

may be introduced. Formally, a reject cost Rrej ∈ [0, 1]

is introduced and a decision to reject is made when Rrej
is lower than the other expected costs.

2.2 Statistical inference

The theory of evidence can be used for statistical in-

ference. Consider θ ∈ Θ an unknown parameter, x ∈ X
some observed data and fθ(x) the density function gen-

erating the data. Statistical inference consists in making

statements about θ after observing the data x. Shafer

(1976) proposed to represent knowledge about θ given

x by a consonant belief function BelΘx based on the

likelihood function Lx : θ → fθ(x) (see also justifica-

tions by Denœux (2014)), whose contour function is the

normalized likelihood function:

plΘx (θ) =
Lx(θ)

sup
θ′∈Θ

Lx(θ′)
, ∀θ ∈ Θ. (12)

Let us consider an important particular case. As-

sume that we observe a random variable X, which has

a binomial distribution with parameters n ∈ N and

θ ∈ [0, 1], i.e., X ∼ B(n, θ). In that case, we have

fθ(x) =

(
n

x

)
θx(1− θ)n−x. (13)

The likelihood-based belief function has the following

contour function:

plΘx (θ) =
θx(1− θ)n−x

θ̂x(1− θ̂)n−x
, (14)

for all θ ∈ Θ = [0, 1], where θ̂ = x
n is the Maximum

Likelihood Estimate (MLE) of θ. Figure 1 shows the

contour function of the binomial distribution, with n =

30 and x = 10.

2.3 Forecasting

Let us now suppose that we have some knowledge about

θ ∈ Θ after observing some data x, given under a form

of a consonant belief function BelΘx . The aim of fore-

casting is to make statements about a not yet observed

data Y ∈ Y, whose conditional distribution gx,θ(y) given
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Fig. 1: Contour function of a binomial distribution, with

n = 30 and x = 10.

X = x depends on θ. A solution to this problem, pro-

posed by Kanjanatarakul et al. (2014, 2016), consists in

using the fact that BelΘx is equivalent to a random set,

and in using the sampling model of Dempster (Demp-

ster 1966) to deduce a belief function on Y. We detail

these two points below.

Let us recall that the focal sets of BelΘx are the level

sets of plΘx , defined by (Nguyen 2006)

Γx(γ) = {θ ∈ Θ|plΘx (θ) ≥ γ}, ∀γ ∈ [0, 1]. (15)

For instance in Figure 1, for γ = γ0 = 0.4, the set

Γx(γ0) is defined as the set of all values of θ ∈ Θ such

that plΘx (θ) ≥ 0.4, i.e., Γx(γ0) = [a, b] ≈ [0.225, 0.454].

Moreover, the belief function BelΘx is equivalent to the

random set induced by the Lebesgue measure λ on [0, 1]

and the multi-valued mapping Γx : [0, 1]→ Θ (Nguyen

2006). Thus, we have

BelΘx (A) = λ({γ ∈ [0, 1]|Γx(γ) ⊆ A}), (16)

PlΘx (A) = λ({γ ∈ [0, 1]|Γx(γ) ∩A 6= ∅}), (17)

for all A ⊆ Θ.

The sampling model of Dempster proposes to ex-

press Y using a function ϕ depending on the parameter

θ and some unobserved variable Z ∈ Z, whose proba-

bility distribution µ is known and independent of θ:

Y = ϕ(θ, Z). (18)

From Eqs. (15) and (18), for a given (γ, z) ∈ [0, 1]×
Z, we can assert that Y ∈ ϕ(Γx(γ), z). This can be rep-

resented by a multi-valued mapping Γ ′x : [0, 1] × Z →
Y defined by composing Γx with ϕ, i.e., Γ ′x(γ, z) =

ϕ(Γx(γ), z),∀(γ, z) ∈ [0, 1] × Z. The product measure

λ ⊗ µ on [0, 1] × Z and the multi-valued mapping Γ ′x

induce the belief and plausibility functions on Y, which

are defined by

BelYx (A) = (λ⊗ µ)({(γ, z)|ϕ(Γx(γ), z) ⊆ A}), (19)

PlYx (A) = (λ⊗ µ)({(γ, z)|ϕ(Γx(γ), z) ∩A 6= ∅}), (20)

for all A ⊆ Y.

Let us consider a binary case, which will be useful

hereafter. Let Y ∈ Y = {0, 1} be a random variable

with a Bernoulli distribution, i.e., Y ∼ B(θ). In that

case, the function ϕ can be defined as follows:

Y = ϕ(θ, Z) =

{
1, if Z ≤ θ,
0, otherwise,

(21)

with Z having a uniform distribution on [0, 1]. Assume

that the consonant belief function BelΘx has a unimodal

and continuous contour function plΘx . In that case, each

level set of BelΘx is a closed interval, i.e., Γx(γ) =

[U(γ), V (γ)] (Dempster 1968), and the multi-valued map-

ping Γ ′x defined by composing Γx with ϕ, is given by

Γ ′x(γ, z) = ϕ([U(γ), V (γ)], z) =


{1}, if z ≤ U(γ),

{0}, if z > V (γ),

{0, 1}, otherwise.

(22)

By applying Eq. (19), we get

BelYx ({1}) = (λ⊗ µ)({(γ, z)|z ≤ U(γ)}), (23)

BelYx ({0}) = (λ⊗ µ)({(γ, z)|z > V (γ)}). (24)

Xu et al. (2016) showed that in this situation, the belief

function BelYx and plausibility function PlYx are defined

by

BelYx ({1}) = θ̂ −
∫ θ̂

0

plΘx (u)du, (25)

PlYx ({1}) = θ̂ +

∫ 1

θ̂

plΘx (v)dv, (26)

where θ̂ maximizes plΘx .

Let us consider again the particular case of Section

2.2, where X ∼ B(n, θ). In that case, the contour func-

tion on Θ defined in Eq. (14) is unimodal and continu-

ous, as illustrated in Figure 1. Thus, to represent knowl-

edge about an unobserved data Y ∈ Y, with Y ∼ B(θ),

we can apply Eqs. (25) and (26) and Xu et al. showed

that the obtained belief and plausibility functions boil

down in that case to (Xu et al. 2016):

BelYx ({1}) =


0, if θ̂ = 0,

θ̂ − B(θ̂;x+1,n−x+1)

θ̂x(1−θ̂)n−x
, if 0 < θ̂ < 1,

n
n+1 , if θ̂ = 1,

(27)
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PlYx ({1}) =


1

n+1 , if θ̂ = 0,

θ̂ + B(θ̂;x+1,n−x+1)

θ̂x(1−θ̂)n−x
, if 0 < θ̂ < 1,

1, if θ̂ = 1,

(28)

where B and B are respectively the lower and upper

incomplete beta functions, defined when a and b are

integers and 0 < z < 1 by

B(z; a, b) =

a+b−1∑
j=a

(a− 1)!(b− 1)!

j!(a+ b− 1− j)!
zj(1− z)a+b−1−j ,

(29)

and

B(z; a, b) = B(1− z; b, a). (30)

3 Calibration of a single binary SVM classifier

Let us consider an object, whose true label y is such

that y ∈ Y = {0, 1}, and a confidence score s ∈ R
returned by a classifier after observing this object. To

learn how to interpret what this score represents with

respect to y, a step called calibration may be used. This

step relies on a training set X , which contains n other

objects for which the label is known, and for which

we observed the score that the classifier returned, i.e.,

X = {(s1, y1), ..., (sn, yn)} where si represents the score

given by the classifier for the ith object whose true la-

bel is yi. The calibration procedures commonly used

are the binning (Zadrozny and Elkan 2001), isotonic re-

gression (Zadrozny and Elkan 2002) and logistic regres-

sion (Platt 1999). This paper focuses on binning and lo-

gistic regression as the isotonic regression can be seen as

an intermediary approach between these two (Zadrozny

and Elkan 2002). The probabilistic version of these two

calibrations is described in Section 3.1, followed by their

extension to the evidential framework in Section 3.2.

3.1 Probabilistic calibration of a single classifier

Given a score s ∈ R returned by a classifier after ob-

serving a given object, the aim of the calibration in

the probabilistic framework consists in estimating the

probability distribution PY(·|s).

3.1.1 Binning

The binning approach consists in dividing the score

spaces into BU different bins, for example (−3;−2],

(−2;−1], etc. For each bin j, the number kj of cou-

ples (si, yi) ∈ X such as yi = 1 and si is in bin j, and

the number nj of couples (si, yi) ∈ X such as si is in

bin j can be obtained. Then, for a score s such that s

belongs to bin j, we have

PY(y = 1|s) =
kj
nj
. (31)

3.1.2 Logistic regression

The calibration based on logistic regression proposed

by Platt (1999) is a more elaborate method, which is

based on fitting a sigmoid function h defined by

PY(y = 1|s) ≈ hs(σ) =
1

1 + e(σ0+σ1s)
, (32)

where the parameter σ = (σ0, σ1) ∈ R2 is chosen as the

one maximizing the following likelihood function:

LX (σ) =

n∏
i=1

ptii (1− pi)1−ti , (33)

with

pi =
1

1 + e(σ0+σ1si)
, (34)

and

ti =

{
N++1
N++2 if yi = 1,

1
N−+2 if yi = 0,

(35)

where N+ and N− are respectively the number of pos-

itive and negative samples in the training set X .

Yet, it is usually easier to maximize the log-likelihood

instead, which is defined by

`X (σ) = logLX (σ) (36)

=

n∑
i

(
tilog(pi) + (1− ti)log(1− pi)

)
. (37)

Since the logarithm function is a strictly increasing func-

tion, maximizing the logarithm of the likelihood is the

same as maximizing the likelihood. The parameter σ

maximizing this log-likelihood function can be approxi-

mated using iterative methods such as gradient descent.

As the log-likelihood function of the logistic regression

is concave (Minka 2003), all local maxima are global

maxima and thus, an unique solution is found for σ.

We may notice that the less training samples are

available, the more the estimated probabilities are un-

certain. Within this scope, Xu et al. (2016) proposed

to refine the above calibrations using the theory of evi-

dence, in order to better handle the uncertainties. The

following section recalls the evidential versions of the

binning and logistic regression calibration procedures.
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3.2 Evidential calibration of a single classifier

Xu et al. have recently extended the probabilistic cali-

bration methods to the evidential framework (Xu et al.

2016). In their approach, the calibration of a given score

s is seen as a prediction problem of a Bernoulli variable

Y ∈ Y = {0, 1} with parameter θ, where uncertainty on

θ depends on s. They studied different models to esti-

mate the uncertainty on θ, and highlighted in particu-

lar the benefits of the so-called likelihood-based model.

Thus, this paper focuses on the evidential extension

of binning and logistic regression calibrations based on

this likelihood model. These evidential calibration pro-

cedures yields a MF mY(·|s) (rather than a probability

distribution), equivalently represented by the belief and

plausibility functions BelY(·|s) and PlY(·|s).

3.2.1 Binning

For a given bin j, binning can be seen as a binomial

experiment, where the number of examples nj corre-

sponds to the number of trials and the number of pos-

itive examples kj represents the number of successes.

Thus, it corresponds to the particular case of estima-

tion considered in Section 2.2, and used for forecasting

in Section 2.3. Considering that the given score s is in

bin j, the likelihood-based contour function defined in

Eq. (14) becomes

plΘX (θ|s) =
θkj (1− θ)nj−kj

θ̂kj (1− θ̂)nj−kj
, (38)

where θ̂ =
kj
nj

is the Maximum Likelihood Estimate

(MLE) of θ. The belief and plausibility functionsBelY(·|s)
and PlY(·|s) are then simply obtained using Eq. (27)

and (28) with x = kj and n = nj .

3.2.2 Logistic regression

Logistic-based calibration can also be extended in the

evidential framework through the likelihood model. Xu

et al. (2016) express uncertainty on the parameter σ =

(σ0, σ1) of the sigmoid function, by a consonant belief

function BelΣ , whose contour function is defined by

plΣX (σ) =
LX (σ)

LX (σ̂)
, ∀σ ∈ Σ, (39)

where σ̂ = (σ̂0, σ̂1) is the MLE of σ and LX is the like-

lihood function defined in Eq. (33). The corresponding

plausibility function is defined as

PlΣX (A) = sup
σ∈A

plΣX (σ), ∀A ⊆ Σ. (40)

As seen in Section 2.3, the belief and plausibility func-

tions on Y can be deduced from the contour function

plΘX defined on Θ. Xu et al. showed in (Xu et al. 2016)

that this function plΘX can be computed from PlΣX . In-

deed, as θ is defined by θ = hs(σ), we get

plΘX (θ|s) =

{
0 if θ ∈ {0, 1},
P lΣX (h−1s (θ)) otherwise,

(41)

with

h−1s (θ) = {(σ0, σ1) ∈ Σ|hs(σ) = θ} , (42)

=

{
(σ0, σ1) ∈ Σ| 1

1 + exp(σ0 + σ1s)
= θ

}
,

(43)

=
{

(σ0, σ1) ∈ Σ|σ0 = ln(θ−1 − 1)− σ1s
}
. (44)

Finally, Eqs. (41) and (44) yield the following function

plΘX (θ|s) = sup
σ1∈R

plΣX (ln(θ−1− 1)−σ1s, σ1), ∀θ ∈ [0, 1].

(45)

The value plΘX (θ|s) can be obtained by an iterative max-

imization algorithm, for all θ ∈ [0, 1]. The belief and

plausibility functions BelY(·|s) and PlY(·|s) can then

be calculated using Eqs. (25) and (26).

4 An evidential joint calibration approach

In a context of multiple classifiers, one may indepen-

dently calibrate the score given by each classifier after

observing an object, and merge them using a prede-

termined rule of combination. In particular, this kind

of process is followed by Xu et al. (2016), where scores

provided by binary SVM classifiers are transformed into

belief functions using evidential calibration and com-

bined using Dempster’s rule of combination. We refer

hereafter to this latter approach as the disjoint method.

We propose in this paper to use the multivariable

versions of the techniques underlying the calibrations,

and to apply it to the outputs of multiple classifiers, i.e.,

to perform a joint calibration of the scores provided by

the binary SVM classifiers. More specifically, in order to

better handle the uncertainties of the calibration pro-

cess, we propose to perform the joint calibration in the

evidential framework.

For a given object, we take as input the score vector

s = (s1, s2, ..., sJ), with sj the score returned by the

jth classifier after observing the object. The required

training set is defined by X ′ = {(s11, s21, ..., sJ1, y1), ...,

(s1n, s2n, ..., sJn, yn)}, where sji corresponds to the score

given by the jth classifier for the ith test sample, and

yi the true label of this sample.
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We first expose in Section 4.1 the multivariable ver-

sion of binning calibration, followed by the multivari-

able version of the calibration based on logistic regres-

sion in Section 4.2.

4.1 Joint binning

The idea consists in dividing the score space into multi-

dimensional bins (cells), or more precisely into J- di-

mensional bins with J the number of classifiers. Let

us illustrate the building of these cells with a 2D sce-

nario, i.e., when only two classifiers are considered. If

the first classifier has score values between -3 and 3 and

the second classifier has score values between -2 and 1,

the score space is [−3, 3]× [−2, 1]. This score space can

be divided in different ways. In particular, a number of

bins per classifier can be chosen and the score space can

be divided uniformly based on this number. An illus-

tration of this naive scheme is given in Figure 2, where

the number of bins by classifier, denoted BM , is chosen

equal to 5.

Fig. 2: Example of score space for joint binning, with

J = 2 and BM = 5.

Given a cell c, the number kc of tuples (s1i, ..., sJi, yi)

∈ X ′ such that yi = 1 and (s1i, s2i, ..., sJi) belongs to

cell c, and the number nc of tuples such that (s1i, ..., sJi)

belongs to cell c, can be obtained. For a given input vec-

tor s = (s1, s2, ..., sJ) such that s belongs to the cell c,

we have

PY(y = 1|s) =
kc
nc
. (46)

For instance, let us consider that we have s = (0.5,−1),

i.e., after observing a given example the first classifier

returns the score 0.5 and the second −1. The proba-

bility associated to this object can thus be found by

looking into the corresponding cell c, which is the one

marked by a cross in Figure 2.

This probabilistic joint approach of binning can be

extended to the evidential framework. Similarly to the

single classifier case, the label y of a given score vector

s can be seen as a realization of a random variable with

a Bernoulli distribution, and binning can be seen as a

binomial experiment for each cell. If the score vector s is

in cell c, the belief and plausibility functions associated

to this score vector can be calculated using the following

equations:

BelY({1}|s) =


0, if θ̂ = 0,

θ̂ − B(θ̂;kc+1,nc−kc+1)

θ̂kc (1−θ̂)nc−kc
, if 0 < θ̂ < 1,

nc

nc+1 , if θ̂ = 1,

(47)

PlY({1}|s) =


1

nc+1 , if θ̂ = 0,

θ̂ + B(θ̂;kc+1,nc−kc+1)

θ̂kc (1−θ̂)nc−kc
, if 0 < θ̂ < 1,

1, if θ̂ = 1,

(48)

with θ̂ = kc
nc

.

4.2 Joint logistic regression

The logistic regression, exposed in Section 3, is used to

calibrate a score given by a single classifier. Yet, the

logistic model works as well when more than one input

is available: it is then called a multivariable (or multi-

ple) logistic regression (Hosmer et al. 2013). It has been

widely used in many applications, such as for instance

in medicine field (Bagley et al. 2001). We propose to use

this multiple version of logistic regression and apply it

to the vector of scores returned by different classifiers

for a given object, in order to calibrate this vector.

Given a vector of scores s = (s1, s2, ..., sJ), the prob-

abilistic joint calibration based on multiple logistic re-

gression is defined by

PY(y = 1|s) =
1

1 + exp(σ0 + σ1s1 + σ2s2 + ...+ σJsJ)
,

(49)

where the parameter σ= (σ0, ..., σJ) ∈ RJ+1 is obtained

by maximizing the likelihood function LX ′ defined by

LX ′(σ) =

n∏
i=1

ptii (1− pi)1−ti , (50)

with

pi =
1

1 + exp(σ0 + σ1s1i + ...+ σJsJi)
, (51)
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and

ti =

{
N++1
N++2 if yi = 1,

1
N−+2 if yi = 0,

(52)

where N+ and N− are respectively the number of pos-

itive and negative samples in the training set X ′. The

log-likelihood can be used instead of the likelihood, and

an unique solution is found for σ.

We propose to extend this joint logistic-based cal-

ibration to the evidential framework by following the

same likelihood-based reasoning as for the single clas-

sifier case. The knowledge about σ= (σ0, ..., σJ) can be

represented by a consonant belief function whose con-

tour function is defined by

plΣX ′ =
LX ′(σ)

LX ′(σ̂)
, ∀σ ∈ Σ. (53)

Furthermore, plΘX ′ can be computed from PlΣX ′ :

plΘX ′(θ|s) =

{
0 if θ ∈ {0, 1},
P lΣX ′(h

−1
s (θ)) otherwise,

(54)

with

h−1
s (θ) = {(σ0, σ1, ..., σJ ) ∈ Σ|hs(σ) = θ} , (55)

=

{
(σ0, ..., σJ ) ∈ Σ|

1

1 + exp(σ0 + σ1s1 + ...+ σJsJ )
= θ

}
,

(56)

=
{

(σ0, ..., σJ ) ∈ Σ|σ0 = ln(θ−1 − 1)− σ1s1 − ...− σJsJ
}
.

(57)

Thus, the contour function plΘX ′(θ|s) is defined by

plΘX ′(θ|s) =

sup
σ1,...,σJ∈R

plΣX ′(ln(θ−1−1)−σ1s1− ...−σJsJ , σ1, ..., σJ),

(58)

for all θ ∈ [0, 1]. The vector of parameters (σ1, σ2, ..., σJ)

which maximizes plΣX ′ can be approximated using an

iterative maximization algorithm (the computational

complexity of such algorithm is O(nJ) per iteration).

Then, the belief and plausibility functions BelY(·|s) and

PlY(·|s) can be obtained trough Eq. (25) and (26).

5 Experiments

In this section, the performance of our proposed evi-

dential joint calibration approach is compared to those

of other approaches using different datasets, which are

presented in Section 5.1. In Section 5.2, our approach

is compared to the disjoint approach of Xu et al.. Both

binning and logistic regression calibrations are studied.

Then, in Section 5.3, these latter two calibrations are

compared to a conceptually similar approach, that is a

trainable combiner based on an evidential classifier, i.e.,

a classifier returning a mass function after observing an

object. Finally, we focus on the calibration based on

multiple logistic regression and we compare the proba-

bilistic and evidential versions of this joint calibration

in Section 5.4.

5.1 Datasets

The experiments are conducted on five binary classi-

fication problems provided by UCI repository (Bache

and Lichman 2013). They are all of different sizes, and

their sample vectors have various number of features.

This is presented in Table 1.

Dataset # instance vectors # features
Australian 690 14
Diabetes 768 8

Heart 270 13
Ionosphere 351 34

Sonar 208 60

Table 1: Number of instance vectors and number of fea-
tures by vector for different datasets from UCI.

We also simulated a dataset composed of 360 ran-

domly generated instance vectors from a multivariate

normal distribution, with means µ0 = (−1, 0) in class 0

and µ1 = (1, 1) in class 1, and with a covariance matrix

equals to

[
1 0.5

0.5 1

]
for both classes. Each instance vec-

tor has two features. An illustration of these data on

the feature space are represented in Figure 3, where x

and y represent respectively the first and second feature

of each instance vector.

5.2 Comparison with Xu et al.’s approach (Xu et al.

2016)

The following experiment follows the same protocol as

the first experiment detailed in (Xu et al. 2016). For
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Fig. 3: Illustration of 360 instance vectors of the simu-

lated dataset.

each dataset, three SVM classifiers are trained on non-

overlapping subsets, using the LIBSVM library (Chang

and Lin 2011). The numbers of examples used for train-

ing and testing for each dataset are described in Table

2. For the first two classifiers, the number of training ex-

Dataset #Train 1 #Train 2 #Train 3 #Test
Australian 30 70 10-60-190 400
Diabetes 30 70 10-50-200 468

Heart 20 40 10-50-140 70
Ionosphere 20 40 10-80-190 101

Sonar 20 40 10-40-90 58
Simulated 20 40 10-50-200 100

Table 2: Number of examples used for training and test-

ing.

amples is fixed while different training set sizes are con-

sidered for the third one. The training set of each clas-

sifier is partitioned into two equal sized-subsets. One

of these subsets is for training the classifier, and in Xu

et al.’s approach the second subset is for training the

calibration of the classifier. In the proposed approach,

the joint calibration is trained using the set composed

of the concatenation of each second subset of each clas-

sifier.

For each sample belonging to the test set, the three

classifiers return a score. In Xu et al.’s approach, each of

these scores is calibrated using the trained calibration

of its corresponding classifier, and the three obtained

mass functions are merged into a final mass function

using Dempster’s rule. In our proposed approach, the

scores are grouped into a score vector and this vector

is calibrated using a joint calibration, which directly

returns a final mass function. In both cases, the deci-

sion corresponds to the singleton with the highest belief,

since we use {0, 1} costs without the possibility to re-

ject, in which case upper and lower expected costs lead

to the same decision. The error rate is calculated on the

test set and corresponds to the number of samples mis-

classified over the number of tested samples. The whole

process is repeated for 100 rounds of random partition-

ing, thus the final error rate corresponds to the average

of 100 calculated error rates.

For the binning calibration, we may remark that

there are in total a number of BU × J bins in the dis-

joint case against (BM )J bins for the joint binning. In

order to fairly compare our approach to the disjoint

one, the number of bins for each classifier is chosen such

that each method has the same total number of bins.

In particular, as J = 3, we chose respectively BU = 9

and BM = 3 for disjoint and joint approaches.

Figure 4 shows the results of the experiments for

binning and logistic-based approaches, in the eviden-

tial framework, and for disjoint and joint cases. Re-

sults of the probabilistic version of joint calibrations

are also given. As it can be noticed, the approaches

based on the logistic regression are always better than

those based on binning, as their obtained error rates

are lower. For binning approaches, the joint case is not

always better than the disjoint case, but it might come

from the chosen value for BM ; with a higher value, the

results might be better. For logistic regression, the ev-

idential joint approach always presents better results

than the evidential disjoint approach. It can also be no-

ticed that the probabilistic and evidential joint versions

nearly give the same results in this experiment. Com-

parison between probabilistic and evidential versions of

calibration based on multiple logistic regression will be

performed in Section 5.4.

5.3 Comparison with evidential trainable combiner

approach

In the previous experiment, we compared our approach

to its probabilistic version and to the so-called disjoint

method, which belongs to the non trainable combiner

category. In this section, we perform the same exper-

iment but with the aim of comparing our results to

those of approaches of the same category, i.e., to ev-

idential trainable combiners. Indeed, there exist other

approaches similar to ours to be compared to, and in

particular some methods which can take a score vector

as input and return a belief function on the class of a

given observed object.

The first evidential trainable combiner that we con-

sider in this experiment relies on the evidential classi-

fier described in (Denœux and Smets 2006) and based

on the Generalized Bayesian Theorem (GBT) (Smets

1993).
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(a) Australian. (b) Diabetes.

(c) Heart. (d) Ionosphere.

(e) Sonar. (f) Simulated data.

Fig. 4: Average error rates using binning and logistic regression, with joint (referred to as “multi” in the figures)

and disjoint approaches and with both probabilistic and evidential frameworks. The X-axis corresponds to the

number of training examples used to train the third classifier.
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Let us consider a classification problem with Ω =

{wk}Kk=1 the finite set of classes. After observing the

feature vector x of an object, the aim is to obtain a

belief function about the class label of this object, based

on a training set L = {(x1, y1), ..., (xn, yn)} where xi
represents the feature vector of the ith object, whose

true label is yi. The application of the GBT gives the

following MF on Ω about the class of x (Denœux and

Smets 2006):

mΩ(A|x) =
∏
wk∈A

Pl[wk](x)
∏
wk∈A

(1− Pl[wk](x)), (59)

∀A ⊆ Ω, where A denotes the complement of A, and

Pl[wk](x) represents the plausibility of observing x un-

der the hypothesis that the true class is ωk. In par-

ticular, Denœux and Smets (2006) have considered a

special case, where

Pl[wk](x) =
N(x, k)

N(k)
, (60)

with N(x, k) the number of samples in L from class wk
contained in a ball Sr of radius r and centered on x,

and N(k) the total number of samples from class wk in

L.

We note that it may happen that mΩ(∅|x) > 0, and

in that case the MF mΩ(·|x) can be transformed into

a normalized MF MΩ(·|x) using the operation defined

by

MΩ(A|x) =
mΩ(A|x)

1−mΩ(∅|x)
, ∀A ⊆ Ω,A 6= ∅, (61)

and MΩ(∅|x) = 0.

We now apply this classifier to our binary problem,

by taking the same inputs as for our approach. In par-

ticular, after observing a given object, the feature vec-

tor is now the vector of scores s = (s1, ..., sJ) obtained

by J classifiers, and the training set L is now X ′. Using

the definition of the MF given in Eq. (59) and the con-

sidered particular case of Eq. (60), we obtain the MF

mY(·|s) defined by

mY({0}|s) =
N(s, 0)

N(0)
× (1− N(s, 1)

N(1)
), (62)

mY({1}|s) =
N(s, 1)

N(1)
× (1− N(s, 0)

N(0)
), (63)

mY({0, 1}|s) =
N(s, 1)

N(1)
× N(s, 0)

N(0)
, (64)

and

mY(∅|s) = (1− N(s, 0)

N(0)
)× (1− N(s, 1)

N(1)
), (65)

with N(s, k) the number of samples in X ′ from class k

(equal to 0 or 1), contained in a ball Sr of radius r and

centered on s. This MF is then normalized similarly as

mΩ(·|x) is normalized using Eq. (61).

We may notice that using a ball Sr to build the MFs

has some similarities with our multivariable version of

binning. Let us illustrate this statement with a simple

example, using the dataset Diabetes and with J = 2.

Figure 5 shows the scores returned by two trained clas-

sifiers for each sample of a given calibration training

set. The X-axis corresponds to the scores given by the

first classifier and Y-axis by the second one. A test sam-

ple is illustrated by a blue asterisk, and corresponds to

s = (s1, s2) the values of the scores returned by the two

classifiers. The continuous green lines correspond to the

bounds of the joint binning, with BM = 3, and the red

circle represents the ball Sr of the GBT-based classifier,

with r = 1 and centered on s. To build the MF mY(·|s),

the joint binning uses the training samples belonging

to the bin containing s, while the GBT-based classifier

uses the ones contained by the ball Sr.

Fig. 5: Illustration of the multidimensional bins and the

ball Sr, using Diabetes data.

The second evidential trainable combiner that we

consider is the evidential κ Nearest Neighbor (κNN)

classification rule (Denœux 1995), whose parameters

are optimized using the procedure described in (Zouhal

and Denœux 1998). Let us consider the same classifi-

cation problem as for GBT-based approach, i.e., ob-

taining a belief function about the class label of an ob-

served object with feature vector x, based on a training
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set L = {(x1, y1), . . . , (xn, yn)} where xi represents the

feature vector of the ith object, whose true label is yi.

If x is close to xi according to some distance measure

d, then it is reasonable to believe that both vectors be-

long to the same class. More generally, the closer xi is

to x, the more reasons to believe that the class of x

is the same as the one of xi. This piece of information

brought by the ith object about the class of the ob-

served object may be represented by a MF mΩ
i defined

by (Denœux 1995):

mΩ
i ({ωk}) = αφk(di), (66)

mΩ
i (Ω) = 1− αφk(di), (67)

mΩ
i (A) = 0, ∀A ∈ 2Ω\{Ω, {ωk}}, (68)

where ωk is the class yi of the ith object, di = d(x,xi) is

the distance between the feature vector of the observed

object and the feature vector of the ith object, α is a

parameter such that 0 < α < 1 and φk is a decreasing

function verifying φk(0) = 1 and limd→∞φk(d) = 0. A

common choice for φk is given by (Denœux 1995):

φk(d) = exp(−αkd2), (69)

where αk > 0 is a parameter associated to class ωk.

Thus, a MF may then be obtained for each sample

of the training set L. Denœux (Denœux 1995) proposed

to pool by Dempster’s rule the evidence of the κ nearest

neighbors, 1 ≤ κ ≤ n, of the observed object in order to

obtain a MF mΩ(·|x) about its class. Let κx denote the

set of the κ nearest objects of x in L. The MF mΩ(·|x)

is then defined as

mΩ(A|x) = (⊕xi∈κxm
Ω
i )(A), ∀A ⊆ Ω. (70)

When applying this classifier to our binary problem,

the feature vector x is now the vector of scores s =

(s1, ..., sJ) obtained by J classifiers, and the training

set L is now X ′.
We performed the experiment with r = 1 for the

GBT-based approach and κ = 15 for the evidential

κNN approach1 as some preliminary tests showed that

the best results were obtained with these values.

Figure 6 shows the error rates for the GBT and

κNN-based approaches, compared to those obtained with

our evidential multivariable versions of binning and lo-

gistic regression. As it can be noticed, the results ob-

tained with the GBT and the κNN-based classifiers are

better than those obtained with the binning approach.

1 We used the software for the evidential κNN
classifier with parameter optimization available at:
https://www.hds.utc.fr/∼tdenoeux/dokuwiki/en/software/k-
nn

It can be explained by the fact that in the binning ap-

proach the bounds of the multi-dimensional bins are

fixed, and any test sample belonging to the same multi-

dimensional bin has the same associated MF, no matter

where the sample is positioned in the bin. By contrast,

for the GBT classifier, the ball is centered on the con-

sidered test sample, so the neighborhood of the test

sample is taken into account in a better way. A simi-

lar explanation can be provided for the κNN classifier.

Furthermore, with other values of r and of κ, or with

other size and number of our multi-dimensional bins,

the obtained results may vary significantly, as these ap-

proaches highly rely on these parameters. Finally, we

can see that the evidential joint calibration using lo-

gistic regression is always better than the GBT and

κNN-based approaches in our experiments.

5.4 Comparison between evidential and probabilistic

joint calibrations based on logistic regression

As seen in Sections 5.2 and 5.3, the evidential joint

logistic-based calibration always presents the best re-

sults. Yet, we also noted (in Section 5.2) that the per-

formance of the probabilistic version of this calibration

were nearly the same. Thus, in this section, probabilis-

tic and evidential versions of the calibration based on

the multiple logistic regression are further compared.

To do that, we introduce the possibility of a third de-

cision for the system given a test sample, by allowing a

reject option. Hence, for a given test sample, three pos-

sible decisions can be rendered: 0, 1, or R. This option

R expresses doubt and is used for some examples that

are hard to classify. In addition, as recalled in Section

2.1, there are different decision-making criteria in the

evidential framework and thus the evidential approach

has two possible strategies of decision, either pessimistic

or optimistic.

Using the simulated dataset previously defined, 290

training examples were generated: three SVM classifiers

were trained with three non-overlapping subsets of 30

training examples of this set, and the joint calibration

using logistic regression was trained with the remain-

ing 200 examples of this set. Then, the same experiment

was performed but the joint logistic-based calibration

was trained with 15 examples instead of 200. The de-

cision frontiers for both the pessimistic and optimistic

strategies and for both cases are illustrated in Figure 7

for Rrej = 0.15.

As it can be seen, the evidential joint calibration

based on the optimistic strategy tends to reject less

the test samples than the two others. It is the exact

opposite for the evidential joint calibration based on

the pessimistic strategy, which decide to reject in more
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(a) Australian.
(b) Diabetes.

(c) Heart. (d) Ionosphere.

(e) Sonar. (f) Simulated data.

Fig. 6: Average error rates using the GBT-based and κNN-based approaches, and using the binning and logistic

regression with evidential joint approaches. The X-axis corresponds to the number of training examples used to

train the third classifier.
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(a) Joint logistic-based calibration trained with 200 training samples

(b) Joint logistic-based calibration trained with 15 training samples

Fig. 7: Decision frontiers in feature space of the probabilistic and evidential joint calibrations based on logistic

regression trained with 200 (7a) and 15 training examples (7b), and with Rrej = 0.15.

cases. The probabilistic approach is between these two.

Furthermore, the frontiers associated to the pessimistic

and optimistic strategies are a lot more distant from

each other in Figure (7b) than in Figure (7a), i.e., when

there are less examples to train the joint calibration and

thus more uncertainties. Probabilistic approach is only

represented by one frontier, so the impact of the un-

certainties is not visible. Thus, the evidential approach

better reflects the uncertainties than the probabilistic

one.

Let us illustrate this point further. The three SVM

classifiers were still trained with three non-overlapping

subsets of 30 training samples, and the calibration with

200 then 15 samples. We calculated the error rate and

accuracy rate for 100 test samples and with Rrej =

0.15. Accuracy rate represents the number of correctly

classified objects over the number of classified objects,

i.e., not over the total number of test examples as some

of them are rejected. The whole process was repeated

for 100 rounds of random partitioning. As it can be seen

in Figure 8, if there are a lot of examples to train the

joint calibration, the obtained error rates are almost

equal. Yet, when less training examples are available,

the two points obtained for the evidential approach are

more distant from each other. This interval reflects the

uncertainties, as when it is larger the uncertainties are

more important. This information cannot be obtained

with the probabilistic calibration, as it is represented

by only one point. Thus, the joint calibration based on

evidence theory better reflects the uncertainties.
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(a) 200 training examples (b) 15 training examples

Fig. 8: Obtained error rates for Rrej = 0.15 and with 200 (8a) and 15 (8b) training examples.

Finally, we performed a similar experiment withRrej
varying from 0 to 1, on five datasets (Australian, Dia-

betes, Heart, Ionosphere, Sonar) of UCI repository (Bache

and Lichman 2013) and on the simulated dataset. The

only difference with the previous experiment is that

the multivariable logistic regression was trained with

45 then 15 samples. Due to the size of Sonar, it was

tested on 50 sample tests instead of 100 for the other

datasets. The whole process was carried out for 100

rounds of random partitioning and Figures 9 and 10

show the obtained results.

As it can be noticed, for a given error rate, the re-

sults obtained with the pessimistic strategy has a higher

(or equal) accuracy rate than the probabilistic calibra-

tion when few training examples are available (right

column). Let us underline that for a fixed error rate,

the accuracy rates obtained with the probabilistic cal-

ibration and the pessimistic strategy are obtained for

different values of Rrej (as seen in the previous experi-

ment, the results of which are given in Figure 8, a given

value of Rrej leads in general to different error rates).

Furthermore, when the number of training examples

is more important (left column of Figures 9 and 10),

the obtained results become similar for the probabilis-

tic and evidential approaches, as should be.

6 Conclusion

In this paper, an evidential joint calibration approach

was proposed in order to handle the scores returned by

multiple SVM classifiers. This approach belongs to the

category of trainable combiners as it takes a score vec-

tor as input and does not need a predetermined rule

of combination. We used evidence theory to prevent

the over-fitting problem and to handle better the un-

certainties associated with calibration techniques. Our

approach was compared to Xu et al.’s disjoint approach,

which independently calibrates the scores of SVM clas-

sifiers using the evidence theory and combines the ob-

tained mass functions using Dempster’s rule of combi-

nation. We compared also our proposed method to two

approaches belonging to the trainable combiner cate-

gory and based on an evidential classifier. In both cases,

the obtained results for our evidential joint calibration

based on logistic regression either are better or are com-

parable to that of the other approaches. Furthermore,

by introducing the possibility to reject a test sample, we

showed the advantages of the evidential multivariable

logistic-based calibration over the probabilistic version:

it models more precisely the uncertainties and it ex-

hibits better performances.

The approach presented in this paper was applied

to the calibration of binary SVM classifiers, but they

may also be applied to any other binary classifiers re-

turning scores. As a matter of fact, future works include

applying the evidential multivariable calibration to the

face blurring application described in (Minary et al.

2016), which involves four different binary classifiers,

and which was solved in (Minary et al. 2016) using

the disjoint approach. The extension of the proposed

evidential joint calibration to the multi-class problem

may also be tackled in future works, following Xu et al.

(2015) which addressed this extension in the single clas-

sifier case.
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(a) Simulated data – 45 training samples (b) Simulated data – 15 training samples

(c) Australian – 45 training samples (d) Australian – 15 training samples

(e) Diabetes – 45 training samples (f) Diabetes – 15 training samples

Fig. 9: Obtained error rates with 45 training samples (left) and 15 training samples (right) for the simulated

dataset, Australian and Diabetes.
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(a) Heart – 45 training samples (b) Heart – 15 training samples

(c) Ionosphere – 45 training samples (d) Ionosphere – 15 training samples

(e) Sonar – 45 training samples (f) Sonar – 15 training samples

Fig. 10: Obtained error rates with 45 training samples (left) and 15 training samples (right) for Heart, Ionosphere

and Sonar.
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