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Abstract. In this paper, a proposition is made to learn the parameters of evi-
dential contextual correction mechanisms from a learning set composed of soft
labelled data, that is data where the true class of each object is only partially
known. The method consists in optimizing a measure of discrepancy between the
values of the corrected contour function and the ground truth also represented
by a contour function. The advantages of this method are illustrated by tests on
synthetic and real data.
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1 Introduction

In Dempster-Shafer theory [15, 17], the correction of a source of information, a sen-
sor for example, is classically done using the discounting operation introduced by
Shafer [15], but also by so-called contextual correction mechanisms [10, 13] taking into
account more refined knowledge about the quality of a source.

These mechanisms, called contextual discounting, negating and reinforcement [13],
can be derived from the notions of reliability (or relevance), which concerns the com-
petence of a source to answer the question of interest, and truthfulness [12, 13] indi-
cating the source’s ability to say what it knows (it may also be linked with the notion
of bias of a source). The contextual discounting is an extension of the discounting op-
eration, which corresponds to a partially reliable and totally truthful source. The con-
textual negating is an extension of the negating operation [13, 12], which corresponds
to the case of a totally reliable but partially truthful source, the extreme case being the
negation of a source [5]. At last, the contextual reinforcement is an extension of the
reinforcement, a dual operation of the discounting [11, 13].

In this paper, the problem of learning the parameters of these correction mechanisms
from soft labels, meaning partially labelled data, is tackled. More specifically, in our
case, soft labels indicate the true class of each object in an imprecise manner through a
contour function.

A method for learning these corrections from labelled data (hard labels), where
the truth is perfectly known for each element of the learning set, has already been intro-
duced in [13]. It consists in minimizing a measure of discrepancy between the corrected
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contour functions and the ground truths over elements of a learning set. In this paper,
it is shown that this same measure can be used to learn from soft labels, and tests on
synthetic and real data illustrate its advantages to 1) improve a classifier even if the
data is only partially labelled; and 2) obtain better performances than learning these
corrections from approximate hard labels approaching the only available soft labels.

This paper is organized as follows. In Section 2, the basic concepts and notations
used in this paper are presented. Then, in Section 3, the three applied contextual correc-
tions as well as their learning from hard labels are exposed. The proposition to extend
this method to soft labels is introduced. Tests of this method on synthetic and real data
are presented in Section 4. At last, a discussion and future works are given in Section 5.

2 Belief functions: basic concepts used

Only the basic concepts used are presented in this section (See for example [15, 17, 3]
for further details on the belief function framework).

From a frame of discernment Ω = {ω1, ..., ωK}, a mass function (MF), noted mΩ

or m if no ambiguity, is defined from 2Ω to [0, 1], and verify
∑
A⊆Ωm

Ω(A) = 1.
The focal elements of a MF m are the subsets A of Ω such that m(A) > 0.
A MFm is in one-to-one correspondence with a plausibility function Pl defined for

all A ⊆ Ω by

Pl(A) =
∑

B∩A 6=∅

m(B). (1)

The contour function pl of a MF m is defined for all ω ∈ Ω by

pl : Ω → [0, 1]
ω 7→ pl(ω) = Pl({ω}) . (2)

It is the restriction of the plausibility function to all the singletons of Ω.
The knowledge of the reliability of a source is classically taken into account by

the operation called discounting [15, 16]. Let us suppose a source S provides a piece
of information represented by a MF mS . With β ∈ [0, 1] the degree of belief of the
reliability of the source, the discounting of mS is defined by the MF m s.t.

m(A) = β mS(A) + (1− β)mΩ(A) , (3)

for all A ⊆ Ω, where mΩ represents the total ignorance, i.e. the MF defined by
mΩ(Ω) = 1.

Several justifications for this mechanism can be found in [16, 10, 13].
The contour function of the MF m resulting from the discounting (3) is defined for

all ω ∈ Ω by (see for example [13, Prop. 11])

pl(ω) = 1− (1− plS(ω))β , (4)

with plS the contour function of mS .
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3 Contextual corrections and learning from labelled data

In this Section, the contextual corrections we used are first exposed, then their learning
from hard labels. The proposition to extend this method to soft labels is then introduced.

3.1 Contextual corrections of a mass function

For the sake of simplicity, we only recall here the contour functions expressions result-
ing from the applications of contextual discounting, reinforcement and negating mech-
anisms in the case of K contexts where K is the number of elements in Ω.

It is shown in [13] that these expressions are rich enough to minimize the discrep-
ancy measure used to learn the parameters of these corrections, this measure being
presented in Section 3.2.

Let us suppose a source S providing a piece of information mS .
The contour function resulting from the contextual discounting (CD) of mS and a

set of contexts composed of the singletons of Ω is given by

pl(ω) = 1− (1− plS(ω))β{ω} , (5)

for all ω ∈ Ω, with the K parameters β{ω} which may vary in [0, 1].
For the contextual reinforcement (CR) and the contextual negating (CN), the contour

functions are respectively given, from a set of contexts composed of the complementary
of each singleton of Ω, by

pl(ω) = plS(ω)β{ω} , (6)

and
pl(ω) = 0.5 + (plS(ω)− 0.5)(2β{ω} − 1) , (7)

for all ω ∈ Ω, with the K parameters β{ω} able to vary in [0, 1].

3.2 Learning from hard labels

Let us suppose a source of information providing a MF mS concerning the true class of
an object among a set of possible classes Ω.

If we have a learning set composed of n instances (or objects) the true values of
which are known, we can learn the parameters of a correction by minimizing a discrep-
ancy measure between the output of the classifier which is corrected (a correction is
applied to mS) and the ground truth [7, 10, 13].

Introduced in [10], the following measureEpl yields a simple optimization problem
(a linear least-squares optimization problem, see [13, Prop. 12, 14 et 16]) to learn the
vectors βCD, βCR and βCN composed of the K parameters of corrections CD, CR
and CN:

Epl(β) =

n∑
i=1

K∑
k=1

(pli(ωk)− δi,k)2 , (8)

where pli is the contour function regarding the class of the instance i resulting from
a contextual correction (CD, CR or CN) of the MF provided by the source for this
instance, and δi,k is the indicator function of the truth of all the instances i ∈ {1, . . . , n},
i.e. δi,k = 1 if the class of the instance i is ωk, otherwise δi,k = 0.
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3.3 Learning from soft labels

In this paper, we consider the case where the truth is no longer given precisely by the
values δi,k, but only in an imprecise manner by a contour function δ̃i s.t.

δ̃i : Ω → [0, 1]

ωk 7→ δ̃i(ωk) = δ̃i,k .
(9)

The contour function δ̃i gives information about the true class in Ω of the instance i.
Knowing then the truth only partially, we propose to learn the corrections parame-

ters using the following discrepancy measure Ẽpl, extending directly (8):

Ẽpl(β) =
n∑
i=1

K∑
k=1

(pli(ωk)− δ̃i,k)2 . (10)

The discrepancy measure Ẽpl also yields, for each correction (CD, CR et CN), a linear
least-squares optimization problem. For example, for CD, Ẽpl can be written by

Ẽpl(β) = ‖Qβ − d̃‖2 (11)

with

Q =

 diag(pl1 − 1)
...

diag(pln − 1)

 , d̃ =

 δ̃1 − 1
...

δ̃n − 1

 (12)

where diag(v) is a square diagonal matrix whose diagonal is composed of the elements
of the vector v, and where for all i ∈ {1, . . . , n}, δ̃i is the column vector composed of
the values of the contour function δ̃i, meaning δ̃i = (δ̃i,1, . . . , δ̃i,K)T .

In the following, this learning proposition is tested with generated and real data.

4 Tests on generated and real data

We first expose how soft labels can be generated from hard labels to make the tests
exposed afterwards on synthetic and real data.

4.1 Generating soft labels from hard labels

It is not easy to find partially labelled data in the literature. Thus, as in [1, 14, 8, 9], we
have built our partially labelled data sets (soft labels) from perfect truths (hard labels)
using the procedure described in Algorithm 1 (where Bêta,B, and U means respec-
tively Bêta, Bernoulli and uniform distributions).



Learning contextual corrections from soft labels 5

Algorithm 1 Soft labels generation
Input: hard labels δi with i ∈ {1, . . . , n}, where for each i, the integer k ∈ {1, . . . ,K} s.t.
δi,k = 1 is denoted by ki.
Output: soft labels δ̃i with i ∈ {1, . . . , n}.
1: procedure HARDTOSOFTLABELS

2: for each instance i do
3: Draw pi ∼ Bêta(µ = .5, v = .04)
4: Draw bi ∼ B(pi)
5: if bi = 1 then
6: Draw ki ∼ U{1,...,K}

7: δ̃i,ki ← 1
8: δ̃i,k ← pi for all k 6= ki

Algorithm 1 allows one to obtain soft labels that are all the more imprecise as the
most plausible class is false.

4.2 Tests performed

The chosen evidential classifier used as a source of information is the eviential k-nearest
neighbor classifier (EkNN) introduced by Denœux in [2] with k = 3. We could have
chosen another one with other settings, it can be seen as a black box.

The first test set we consider is composed of synthetic data composed of 3 classes
built from 3 bivariate normal distributions with respective means µω1

= (1, 2), µω2
=

(2, 1) and µω3
= (0, 0), and a common covariance matrix Σ s.t.

Σ =

[
1 0.5
0.5 1

]
. (13)

For each class, 100 instances have been generated. They are illustrated in Figure 1.

Fig. 1. Illustration of the generated dataset (3 classes, 2 attributes).
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We have then considered several real data sets from the UCI database [6] composed
of numerical attributes as the EkNN classifier is used. Theses data sets are described in
Table 1.

Table 1. Characteristics of the UCI dataset used (number of instances without missing data,
number of classes, number of numerical attributes used)

Data # Instances # Classes # Attributes
Ionosphere 350 2 34

Iris 150 3 4
Sonar 208 2 60
Vowel 990 11 9
Wine 178 3 13

For each dataset, a 10-repeated 10-fold cross validation has been undertaken as
follows:

– the group containing one tenth of the data is considered as the test set (the instances
labels being made imprecise using Algorithm 1),

– the other 9 groups form the learning set, which is randomly divided into two groups
of equal size:
• one group to learn the EkNN classifier (learnt from hard truths),
• one group to learn the parameters of the correction mechanisms from soft labels

(the labels of the dataset are made imprecise using Algorithm 1).

For learning the parameters of contextual corrections, two strategies are compared.

1. In the first strategy, we use the optimization of Equation (8) from the closest hard
truths from the soft truths (the most plausible class is chosen). Corrections with this
strategy are denoted by CD, CR and CN.

2. In the second strategy, Equation (10) is directly optimized from soft labels (cf Sec-
tion 3.3). The resulting corrections using this second strategy are denoted by CDsl,
CRsl and CNsl.

The performances of the systems (the classifier alone and the corrections - CD, CR
or CN - of this classifier according to the two strategies described above) are measured
using Ẽpl (10), where δ̃ represents the partially known truth. This measure corresponds
to the sum over the test instances of the differences, in the least squares sense, between
the truths being sought and the system outputs.

The performances Ẽpl (10) obtained from UCI and generated data for the classifier
and its corrections are summed up in Table 2 for each type of correction. Standard
deviations are indicated in brackets.

From the results presented in Table 2, we can remark that, for CD, the second strat-
egy (CDsl) consisting in learning directly from the soft labels, allows one to obtain
lower differences Ẽpl from the truth on the test set than the first strategy (CD) where
the correction parameters are learnt from approximate hard labels. We can also remark
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Table 2. Performances Ẽpl obtained for the classifier alone and the classifier corrected with CD,
CR and CN using both strategies. Standard deviations are indicated in brackets.

Data EkNN CD CDsl CR CRsl CN CNsl
Generated Data 23.8 (3.8) 16.6 (2.8) 7.9 (1.5) 26.8 (3.0) 23.5 (3.7) 11.5 (1.6) 9.8 (0.6)

Ionosphere 16.2 (2.5) 9.6 (2.2) 5.3 (1.0) 17.2 (1.9) 15.9 (2.3) 9.3 (1.3) 8.4 (0.9)
Iris 12.5 (2.4) 8.4 (2.1) 3.3 (0.9) 13.1 (2.0) 12.3 (2.2) 6.7 (1.5) 4.8 (0.5)

Sonar 7.8 (2.0) 6.3 (1.9) 3.5 (0.9) 9.0 (1.6) 7.7 (1.9) 5.1 (0.8) 5.0 (0.9)
Vowel 279 (24) 278 (23) 62 (5) 310 (21) 279 (24) 240 (21) 65 (5)
Wine 13.3 (2.6) 10.4 (2.3) 4.3 (1.0) 15.0 (2.1) 13.3 (2.5) 7.2 (1.6) 5.7 (0.6)

that this strategy yields lower differences Ẽpl than the classifier alone, illustrating, in
these experiments, the usefulness of soft labels even if hard labels are not available,
which can be interesting in some applications.

The same conclusions can be drawn for CN.
For CR, the second strategy is also better than the first one but we can note that

unlike the other corrections, there is no improvement for the first strategy in comparison
to the classifier alone (the second strategy having also some close performances to the
classifier alone).

5 Discussion and future works

We have shown that contextual corrections may lead to improved performances in the
sense of measure Ẽpl, which relies on the plausibility values returned by the systems for
each class for each instance. We also note that by using the same experiments as those in
Section 4.2 but evaluating the performances using a simple 0-1 error criterion, where for
each instance the most plausible class is compared to the true class, the performances
remain globally identical for the classifier alone as well as all the corrections (the most
plausible class being often the same for the classifier and each correction).

For future works, we are considering the use of other performance measures, which
would also take fully into account the uncertainty and the imprecision of the outputs.
For example, we would like to study those introduced by Zaffalon et al. [18].

It would also be possible to test other classifiers than the EkNN. We could also test
the advantage of these correction mechanisms in classifiers fusion problems.

At last, we also intend to investigate the learning from soft labels using another
measure than Ẽpl and in particular the evidential likelihood introduced by Denœux [4]
and already used to develop a CD-based EkNN [9].
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1. E. Côme, L. Oukhellou, T. Denœux, P. Aknin. Learning from partially supervised data using
mixture models and belief functions. Pattern Recognition, 42(3):334348, 2009.

2. T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE
Transactions on Systems, Man, and Cybernetics, 25(5):804-813, 1995.

3. T. Denœux. Conjunctive and disjunctive combination of belief functions induced by nondis-
tinct bodies of evidence. Artificial Intelligence, 172:234-264, 2008.

4. T. Denœux. Maximum likelihood estimation from uncertain data in the belief function frame-
work. IEEE Transactions on Knowledge and Data Engineering, 25(1):119130, 2013.

5. D. Dubois, H. Prade. A set-theoretic view of belief functions: logical operations and approxi-
mations by fuzzy sets. International Journal of General Systems, 12(3):193-226, 1986.

6. D. Dua, C. Graff. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine,
CA: University of California, School of Information and Computer Science, 2019.

7. Z. Elouedi, K. Mellouli, P. Smets. The Evaluation of Sensors Reliability and Their Tuning for
Multisensor Data Fusion within the Transferable Belief Model. Proceedings of the 6th Euro-
pean Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU’2001, pp. 350-361, Toulouse, 2001.

8. O. Kanjanatarakul, S. Kuson, T. Denœux. An Evidential K-Nearest Neighbor Classifier Based
on Contextual Discounting and Likelihood Maximization. Proceedings of the 5th International
Conference on Belief Functions, BELIEF’2018, pp. 155-162, Compigne, 17-21 September,
2018.

9. O. Kanjanatarakul, S. Kuson, T. Denœux. A New Evidential K-Nearest Neighbor Rule based
on Contextual Discounting with Partially Supervised learning. International Journal of Ap-
proximate Reasoning, 113:287-302, 2019.

10. D. Mercier, B. Quost, T. Denœux. Refined Modeling of Sensor Reliability in the Belief Func-
tion Framework Using Contextual Discounting. Information Fusion, 9(2):246-258, 2008.
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