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Multiple metastatic clones assessed by an integrative multiomics strategy in clear cell renal carcinoma: a case study
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BACKGROUND

Clear cell renal cell carcinoma (ccRCC) is the most frequent histological subtype of renal cancer, frequently metastatic. Inter-and intra-tumor heterogeneity is a usual landscape in ccRCC [START_REF] Bianchi | Distribution of metastatic sites in renal cell carcinoma: a population-based analysis[END_REF][START_REF] Gerlinger | Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[END_REF][START_REF] Gerlinger | Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregio n sequencing[END_REF], and is the result of a continuous genetic diversity through clonal evolution [START_REF] Fidler | Tumor heterogeneity and the biology of cancer invasion and metastasis[END_REF][START_REF] Turajlic | Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal[END_REF].

The origins of metastatic heterogeneity through clonal evolution could be represented by drugresistant subclones and play a role in resistance to treatment.

To address this issue, we elaborated an experimental scheme in a case-study of a patient, by performing an integrative multiomics clustering strategy combining cytogenetic and transcriptomic technologies. Matched primary and multiple synchronous metastases from different sites, before the interference of any medical treatment, revealed a complex dissemination of multiple tumor clones, which could provide new insights into metastatic interactions.

METHODS

Patient

The four specimens were processed in sterile conditions, and multiple biopsies were taken from each tumor (0.5 cm 3 each). Tumor cell content was assessed for each sample. The study was approved by our local ethics committee.

Array-CGH and GeneChip hybridation and data preprocessing

Array-CGH hybridization and raw data preprocessing. DNA samples were hybridized to Agilent Human Genome CGH microarray 180K (Agilent Technologies, Santa Clara, CA, USA) as described in (Supplementary information, SI). Array-CGH data were normalized, quality controlled (SI), Fig. S1A) and chromosomal imbalances (represented by SNOC regions, for smallest non-overlapping chromosomal regions of deletions or amplifications) were detected as described in SI GeneChip hybridization and data pre-processing. Total RNA samples were hybridized to Human Transcriptome Array 2.0 GeneChips as recommended by the manufacture r (Affymetrix, Santa Clara, USA). The resulting CEL files were normalized, quality controlled (SI, Fig. S1B) as described in SI.

Both ArrayCGH and GeneChip data were uploaded to the NCBI Gene Expression Omnibus (GEO) repository under the accession numbers GSE113205 and GSE113204 [START_REF]Database resources of the National Center for Biotechnology Information[END_REF].

Multiple factor analysis and sample classification

We used the multiple factor analysis (MFA) function implemented in the FactoMineR package [START_REF] Lê | FactoMineR: An R Package for Multivariate Analysis[END_REF] to classify samples based on both array-CGH and transcriptomic normalized data. This method is an extension of the Principal Component Analysis (PCA) and allows studying tables in which individuals (samples) are described by several groups of (quantitative and/or qualitative) variables; i.e. SNOC regions for array-CGH data and gene expression for transcriptomic data. Only SNOC regions showing at least a variation range of 10% across samples and genes showing a minimal signal intensity fold change of 1.5 across all samples were used for MFA. The first components explaining >90% of the information (variances) were retained (Fig. 1, panel B). A hierarchical clustering based on the selected components was used to estimate the degree of association between samples using the HCPC functio n implemented in FactoMineR (Fig. 1, panel C). Samples within the resulting dendogram tree were then automatically partitioned in classes based on both combined genomic and transcriptomic data using the HCPC unsupervised method with default parameters (the nb.clust parameter was set to -1 so that the tree is automatically cut at the level suggested by HCPC).

Statistical filtration and cluster analysis

Array-CGH data analysis. The statistical filtration of the SNOC regions displaying a significant gain or loss between sample classes (C1-C3) (Fig. S2A) was performed using the Annotation, Mapping, Expression and Network (AMEN) suite of tools [START_REF] Chalmel | The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology[END_REF]. Briefly, we first filtered SNOC regions with a minimal gain or loss of at least 10% across classes. Finally, a statistical test implemented in the LIMMA package (F-value adjusted with the false discovery rate method: P ≤ 0.05) was used to identify significantly differential regions across sample classes [START_REF] Ritchie | limma powers differentia l expression analyses for RNA-sequencing and microarray studies[END_REF]. The resulting SNOC regions were then clustered into groups using the k-means algorithm implemented in AMEN. The ability of these clusters to discriminate between SNOC regions was verified using a silhouette plot. The resulting patterns were ordered according to peak gain or loss levels in the distinct sample classes (Fig. S2,panel A).

Transcriptomic data analysis. Similar to Array-CGH data analysis, the statistical filtration of the genes differentially expressed (DE) among the three sample classes (C1-C3) (Fig. S2B) was performed using AMEN [START_REF] Chalmel | The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology[END_REF]. Briefly, we first filtered genes with at least one signal above the background expression cutoff (BEC = 0.189, corresponding to the overall median intensity) and with a minimal fold change of 1.5 across sample classes. Finally, a statistical test implemented in the LIMMA package (F-value adjusted with the false discovery rate method: P ≤ 0.05) was used to identify significantly DE genes across sample classes [START_REF] Ritchie | limma powers differentia l expression analyses for RNA-sequencing and microarray studies[END_REF]. The resulting genes were then partitioned into gene expression clusters using the k-means method implemented in R. The ability of these clusters to discriminate between genes was verified using a silhouette plot. The resulting patterns were ordered according to peak expression levels in the distinct sample classes (Table S1; Fig. S2,panel B).

Functional analysis

An enrichment analysis was used to measure the association between each gene expression cluster (G1-G3) and gene ontology terms (biological process and cellular component) [START_REF] Ashburner | Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[END_REF].

Briefly, enrichments were estimated by calculating the Fisher exact probability using the Gaussian hypergeometric test implemented in the AMEN suite [START_REF] Lê | FactoMineR: An R Package for Multivariate Analysis[END_REF]. A given annotation term was considered enriched in a group of genes when the adjusted P-value (adjusted with the false discovery rate method) was ≤ 0.05 and the number of genes in this group bearing this annotation term was ≥5 (Table S2).

RESULTS

Patient outcome and histology

The patient developed these synchronous tumors in her late 60s. Further metastases occurred 6 months after surgery. No immunotherapy was conducted. Anti-angiogenic therapy commenced in 2016, but was stopped due to severe adverse effects. Progressive disease was confirmed radiologically and the patient died later that year.

We analyzed fourteen spatially separated samples (Fig. 1, panel A; Fig S3), originating from the primary kidney tumor (five samples p1 to p5), a vena cava tumor thrombus (two samples m1 and m2) and bilateral metastatic adrenal glands (four samples m3 to m6 from the right adrenal and three samples m7 to m9 from the left adrenal). All samples were of overall high grade (WHO/ISUP 3 or 4) even though primary samples were predominantly grade 2.

However, the morphological aspect of tumor cells was different, especially in sample p2 and some metastases, more frequently composed of rhabdoid and large pleomorphic cells, with abundant cytoplasm and tumor necrosis (Fig S3). All samples showed the same inactivating mutation of VHL and a variable loss of the short arm of chromosome 3 (SI).

The integrative omics approach combining genomic and transcriptomic data enabled the characterization of three sample classes.

Given this uncommon collection with no drug interference, samples were assessed for molecular heterogeneity. While clustering omic dataset separately can reveal patterns in the data, integrative clustering combining several omics has the potential to expose more finetuned structures that are not revealed by examining only a single data type [START_REF] Rappoport | Multi-omic and multi-view clustering algorithms: review and cancer benchmark[END_REF]. The fourteen samples were all analyzed by ArrayCGH and GeneChip microarrays (SI). The multiple factor analysis (MFA) based on both combined genomic and transcriptomic data followed by an unsupervised clustering method automatically partitioned samples into three classes (termed C1-C3). The resulting factor map and dendrogram tree are illustrated in Figure 1 (panels B and C). As shown in panel C, C1 is only composed of primary samples (p1, p3 and p5), whereas C2 (p4; m1, m3, m8 and m9) and C3 (p2; m2, m4, m5, m6 and m7) are composed of only one primary sample, and all metastatic samples originating from the three metastatic sites.

Significant chromosomal imbalances between sample classes contribute to genetic intratumor heterogeneity

The detailed genomic analysis of the fourteen samples identified 468 chromosomal imbalance s (CIs) (SI). The vast majority of CIs corresponded to region losses compared to the control DNA. The mean number of chromosomal imbalances in metastases and primary tumors was not significantly different (149 and 143 respectively). Further statistical analysis revealed that among the 468 CIs, 91 showed significant imbalances between the three sample classes C1, C2 and C3. These were partitioned into three chromosomal region patterns (R1-R3) (Fig. 2, upper part). The R1 group was composed of 36 regions lost in C1, C2 and, to a lesser extent,

C3 (Fig S4).

The three sample classes are associated with distinct transcriptional patterns

We identified 1,008 genes showing a significant differential expression (DE) between the three sample classes (SI). These DE genes were further clustered into three gene expression groups (G1-3) (Fig. 2, lower part).

The G1 group, containing 185 genes, showed a peak expression in class C1 comprised only of primary samples. Functional analysis revealed that this group is significantly associated with genes involved in immune response and T cell activation, but also in chemotaxis and plasma membrane proteins. The G2 group, comprising 427 genes, had a high expression in C1 but more importantly in class C2 compared to C3. This group is significantly enriched in genes involved in B cell mediated immunity, and phagocytosis, fatty acid oxidation, cell adhesion, kidney development and tryptophan metabolism. Finally, the G3 group, containing 396 genes with a peak expression in C3 compared to the two other classes, is significantly associated with various biological functions such as angiogenesis, extracellular matrix organizatio n, chemotaxis, cell adhesion, as well as kidney, neuron and bone development.

DISCUSSION

This case study describes a rare collection of samples from primary-thrombus-metastatic pretherapeutic tumors, as most metastatic patients undergo medical treatment before surgica l excision. An integrative and unsupervised clustering strategy combining genomic and transcriptomic data revealed three heterogeneous sample classes, suggesting a linea ge relationship between the "aggressive" subclones found in metastases. Although some divergence exists between genomic and transcriptomic data, the combined analysis of the two techniques separated two clones in the primary tumor that resemble metastatic samples, with molecular heterogeneity in each site.

The spatial distribution analysis revealed that all metastatic sites were polyclonal, each containing simultaneously both subclonal populations from C2 and C3. Further functio na l analyses demonstrated that genes differentially expressed in the two subclones are associated with distinct biological functions [START_REF] Aceto | Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[END_REF]. Two types of aggressive clones (multip le dissemination), could be retraced back to the primary tumor. One hypothesis could be a polyclonal seeding with interactions between each sub-population. [START_REF] Massagué | Metastatic Colonization[END_REF][START_REF] Gundem | The evolutionary history of lethal metastatic prostate cancer[END_REF] (Fig 3 ).

A metastasis at a certain time is a snapshot of a group of cells that have overcome the barriers against metastatic dissemination. Dominant clones appear at an early phase in tumorigenes is, and minor clones which could be phenotypically different could be observed after late dissemination [START_REF] Marusyk | Intra-tumour heterogeneity: a looking glass for cancer?[END_REF]. These clones could be mixed or separated, and the clonal architecture of a given tumor varies with time [START_REF] Burrell | The causes and consequences of genetic heterogeneity in cancer evolution[END_REF]. However, in most models every lineage is separate and the notion of complex multiple clones acting together in a same metastasis is rarely considered.

In a recent paper, genetic heterogeneity in primary samples of ccRCC was identified, with genes like PIK3CA and TP53 that could be specific of higher grades [START_REF] Ferronika | Mutational heterogeneity between different regional tumour grades of clear cell renal cell carcinoma[END_REF]. Some authors have observed the transfer of multiple clones in melanoma, breast and prostate cancers [START_REF] Turajlic | Metastasis as an evolutionary process[END_REF], with polyphyletic dissemination. In this study we confirm these observations in ccRCCs. In a simila r setting, Ferronika et al. studied molecular profiles of metastases and matched primary samples in ccRCC. A subgroup of three primary tumors with minor copy number changes was opposed to a subgroup with a primary tumour, a thrombus, and lung metastases, all with a similar copy number pattern and tetraploid-like characteristics [START_REF] Ferronika | Comprehensive Profiling of Primary and Metastatic ccRCC Reveals a High Homology of the Metastases to a Subregion of the Primary Tumour[END_REF].

Site-specific clones could be a limit to this work, as synchronous adrenal metastases which represent early events, could share more common traits with primary clones than a metachronous metastasis. However, the analysis of late metastases is limited as they are rarely treated by surgical excision, especially before the initiation of any drug treatment.

A multi-patient analysis combining similar sampling strategies with single-cell transcripto mic and genomic approaches would produce a clearer picture of the subclonal evolution in ccRCC patients. This would be of great help in the transition towards a more personalized medicine.

In clinical routine, such experiments would be helpful and could be implemented in clinica l trials, by sampling metastases, and adapting the treatment to the specific aggressive profiles.

Patients with resistance to therapies could benefit a combination of targeted therapies based on more than one aggressive clone. 
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 1 Figure 1. Macroscopic distribution and sample classification using MFA.
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 2 Figure 2. Genomic and transcriptional heatmap of each cluster.
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 3 Figure 3. Hypotheses explaining metastatic dissemination in this ccRCC.
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 S5 Figure S5. Chromosome 7 ploidy in different samples.
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ABSTRACT

The dynamics of metastatic evolution in clear cell renal cell carcinoma (ccRCC) is complex.

We report a case study where tumor heterogeneity resulting from clonal evolution is a frequent feature and could play a role in metastatic dissemination.

We used an integrative multiomics strategy combining genomic and transcriptomic data to classify fourteen specimens from spatially different areas of a kidney tumor and three nonprimary sites including a vein thrombus and two adrenal metastases.

All sites were heterogeneous and polyclonal, each tumor site containing two different aggressive subclonal populations, with differentially expressed genes implicated in distinc t biological functions. These are rare primary-metastatic samples prior to any medical treatment, where we showed a multiple metastatic seeding of two subclonal populations.

Multiple interdependent lineages could be the source of metastatic heterogeneity in ccRCC. By sampling metastases, patients with resistance to therapies could benefit a combination of targeted therapies based on more than one aggressive clone.
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(B) One clone in the primary tumor colonizes each metastatic site. In each metastasis, a separate clonal evolution occurs with the emergence of two aggressive clones. These aggressive clones recolonize each metastasis as well as the primary tumor.

Supplementary Tables and Figures.

Table S1. Statistical filtration of differentially expressed genes. Table S2. Functional analysis. Enriched biological process terms. Statistical tests were used to select SNOC regions (panel A) or genes displaying a significant gain or loss of expression between sample classes (C1-C3). The resulting regions and genes were then clustered into three groups R1 to R3 and G1 to G3 respectively.

Figure S3. Illustration of histological aspects of extracted samples.

Histological analyses showing similarities and differences between tumor samples. High grade cells with pleomorphic nuclei and necrosis can be documented in p2, m2, m5 and m6. Each chromosome is represented horizontally in regards to each cluster and specimen. Gains are in red and losses in blue.