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BACKGROUND: Black carbon (BC), a component of fine particulate matter [particles with an aerodynamic diameter ≤2:5 lm (PM2:5)], may contribute
to carcinogenic effects of air pollution. Until recently however, there has been little evidence to evaluate this hypothesis.

OBJECTIVE: This study aimed to estimate the associations between long-term exposure to BC and risk of cancer. This study was conducted within the
French Gazel cohort of 20,625 subjects.

METHODS:We assessed exposure to BC by linking subjects’ histories of residential addresses to a map of European black carbon levels in 2010 with
back- and forward-extrapolation between 1989 and 2015. We used extended Cox models, with attained age as time-scale and time-varying cumulative
exposure to BC, adjusted for relevant sociodemographic and lifestyle variables. To consider latency between exposure and cancer diagnosis, we
implemented a 10-y lag, and as a sensitivity analysis, a lag of 2 y. To isolate the effect of BC from that of total PM2:5, we regressed BC on PM2:5 and
used the residuals as the exposure variable.

RESULTS: During the 26-y follow-up period, there were 3,711 incident cancer cases (all sites combined) and 349 incident lung cancers. Median base-
line exposure in 1989 was 2.65 10−5=m [interquartile range (IQR): 2.23–3.33], which generally slightly decreased over time. Using 10 y as a lag-time
in our models, the adjusted hazard ratio per each IQR increase of the natural log-transformed cumulative BC was 1.17 (95% confidence interval: 1.06,
1.29) for all-sites cancer combined and 1.31 (0.93, 1.83) for lung cancer. Associations with BC residuals were also positive for both outcomes. Using
2 y as a lag-time, the results were similar.
DISCUSSION: Our findings for a cohort of French adults suggest that BC may partly explain the association between PM2:5 and lung cancer.
Additional studies are needed to confirm our results and further disentangle the effects of BC, total PM2:5, and other constituents. https://doi.org/
10.1289/EHP8719

Introduction
Strong evidence over recent decades allowed classifying outdoor
air pollution and fine particulate matter [fine particulate matter
with an aerodynamic diameter ≤2:5 lm (PM2:5)] as carcinogenic
(Loomis et al. 2013; Pedersen et al. 2017; Raaschou-Nielsen et al.
2013; IARC 2016). Yet the separate effects of each PM2:5 com-
ponent (sulfates, nitrate, ammonium, organics, metals, etc.) are
rarely quantified (Beelen et al. 2015; Ostro et al. 2011;
Raaschou-Nielsen et al. 2016). Black carbon (BC), a component
of PM2:5, comes from incomplete combustion processes, mainly
from anthropogenic sources such as fossil fuel or biomass burn-
ing (Chylek et al. 2015; Koelmans et al. 2006). The first health
concerns about exposure to BC appeared decades ago (Mumford

et al. 1990); since then, reports have accumulated linking expo-
sure to BC with increased morbidity and mortality, including
lung cancer mortality (Anenberg et al. 2012; Grahame et al.
2014; Hvidtfeldt et al. 2019; Yang et al. 2019), lower lung func-
tion and slower cognitive development in children (Paunescu
et al. 2019; Sunyer et al. 2015), increased bone loss (Prada et al.
2017), and decreased cognitive functions in the elderly (Colicino
et al. 2017; Wurth et al. 2018). Although evidence has accumu-
lated on toxicity of BC, we still know little about the effects of
chronic low-level exposure on cancer risk, partly because the
paucity of available data on general population long-term expo-
sure to BC left little opportunity for such studies. Recently, the
ELAPSE project estimated annual outdoor BC concentrations
between 1990 and 2015 at fine resolution over Europe (de Hoogh
et al. 2018). In this study, we aimed to investigate the relation-
ships between long-term exposure to BC and incident all-site and
lung cancer in the population-based French cohort Gazel with a
26-y follow-up.

Material and Methods

Study Population
The Gazel cohort enrolled 20,625 participants in 1989 from the
French national gas and energy company, Electricité-de-France
Gaz-de-France (Goldberg et al. 2015). These participants, aged
35–50 y at enrollment, completed a baseline detailed self-
administered questionnaire, then a follow-up questionnaire sent
every year – with a high response rate during the follow-up
(>80% from 1990 to 1992, and >70% from 1993 to 2015).
Participants’ histories of main residential addresses were col-
lected and geocoded for each year since 1989. To minimize
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misclassification while retaining the largest possible number of
participants, we excluded participants with the poorest exposure
coverage [i.e., more than 20% of missing geocodes during their
follow-up (due to stays abroad mainland France)]. This residen-
tial history was collected on an annual basis, so each address cor-
responds to a calendar year. We used last-observation carried
forward to impute any missing addresses for the concerned par-
ticipants. We identified the numbers of residential changes during
the study period by choosing a threshold of 1-km difference
in the geocodes to identify a substantial residential change; dur-
ing the study period, we observed 13,981 of changes of more
than 1 km, for 9,112 participants. Geocoding precision ranged
from postal code (13%) to address level (48%).

We excluded 823 participants with any primary incident can-
cer diagnosed or censored before 1999, to take account of a
potential 10-year lag between exposure and incidence/censoring
(see “Statistical Analyses” section). This approach led to a
slightly different study population for analyses on all-site and
lung cancer. We also excluded 90 participants who were lost on
follow-up (because they definitively left the company) or who
asked to be removed from the study and their data to be deleted.
Our study included participants who died during the follow-up
without a diagnosis of cancer and who were censored at the date
of death. Further, in the lung cancer analysis, we compared lung
cancer cases to subjects not developing any cancer; thus we
excluded participants with other cancers at any time during the
study period (1999–2015) from the study population. Our study
population included 19,348 and 15,694 participants for the analy-
ses on primary incident all-site and primary incident lung cancer
(Figure S1).

TheGazel study protocolwas approved by the French authority
for data confidentiality (Commission Nationale de l’Informatique
et des Libertés No. 105,728) and by the Ethics Evaluation
Committee of the Institut national de la santé et de la recherche
médicale (Inserm, National Institute of Health and Medical
Research) (IRB0000388, FWA00005831). The invitation to
participate was sent by post to eligible persons, accompanied by
a document detailing the project, the voluntary nature of their
participation, the data collected, the conditions of security and
confidentiality and the future use of the data. The subjects soli-
cited were invited to complete a questionnaire indicating their
consent.

Cancer Incidence
Incident cancer cases were ascertained from three sources: a)
French national health administrative databases containing listings
of incident cancers (more details below) during the study period
(1999–2015); b) company records which have systematically
recorded all cancers (except nonmelanoma skin cancers) diag-
nosed among their current employees [with pathology reports
and the date of diagnosis, and coded according to the
International Classification of Diseases (ICD)] (Goldberg et al.
1996); and c) cancer diagnoses self-reported by participants via
the follow-up questionnaires from 2008 onward. Participants
who gave consent were contacted for collecting medical informa-
tion to obtain the date of diagnosis and the type of cancer. The
linkage of participants to the French national health administra-
tive databases that record each use of the health system allowed
identifying cancer from data on hospitalizations and from the
“Chronic Diseases” register (diseases including cancer for which
all the treatment is reimbursed) with dates and diagnoses (Tuppin
et al. 2017).

The ICD-10 classification system was used to code the type
of cancer, with the whole ICD-10 chapter except C77–79

(secondary malignant neoplasms) and C44 (nonmelanoma skin
cancers); we used C34 to identify lung cancer.

Exposure Assessment
For each subject of our study population, we estimated BC, PM2:5,
and nitrogen dioxide (NO2) exposure in each year from 1989 to
2005, based on the subject’s residential address linked to data from
land use regression (LUR) models developed at a fine spatial scale
(100× 100m) over Europe (de Hoogh et al. 2018). This linkage
also accounts for any residential address change over the years (see
“Study Population” section). PM2:5 and BC measurement data
came from two sources: PM2:5 absorbance in samples collected in
the ESCAPE project for BC (436 sites), and from regulatory moni-
toring data maintained in the AirBase European database for PM2:5
(543 sites). For the year 2010, LUR models were developed by
regressing themeasured pollutant concentrations against a range of
predictor variables (including land-use variables, road density, and
altitude, as well as satellite-derived and chemical transport mod-
eled pollutant estimates) followed for PM2:5 only by universal krig-
ing to explain spatial autocorrelation in the residuals. The full
model (based on all monitoring sites) explained 72%, 54%, and
59% of PM2:5, BC, and NO2 respectively. Models were further
validated, and shown to be robust, using a five hold out validation
strategy which explained 66, 51, and 57% of the spatial variation in
the respective measured PM2:5, BC, and NO2 concentrations (de
Hoogh et al. 2018). Finally, the estimated concentrations for 2010
were rescaled annually for the years 1990–2015, by European
Nomenclature of Territorial Units for Statistics -1 (NUTS-1)
regions (i.e., European Union–defined administrative regions
within countries) in France, using back- and forward extrapolation.
This rescaling process was based on annual mean estimates (1990–
2015) from the 26× 26 km Danish Eulerian Hemispheric Model,
downscaled from the original 50× 50 km resolution using bilinear
interpolation (Brandt et al. 2012). In addition, in this study, we fur-
ther back-extrapolated PM2:5 exposure to 1989. To visualize spa-
tiotemporal differences in BC exposure over France, we mapped
the differences in BC exposure over France for Gazel nonmover
participants between periods 1995–2000 and 2000–2005. We cal-
culated the relative change in %, for each nonmover participant for
each pair of years. To improve the maps’ readability, we averaged
the results on a 5 × 5 km2 grid.

Covariables
Based on recognized and suspected risk factors, we a priori
selected the following sets of variables as potential confounders
and/or effect modifiers:

Sociodemographic and occupational variables. Sex, educa-
tion (attending school for 6–11 y, 12–13 y, 14–15 y, other second-
ary education, other diploma), and socioeconomic status (SES;
low: blue-collar workers or clerks; medium: first-line supervisors
or sales representatives; high: management), all at baseline. We
also included a synthetic summary of occupational exposure to
nine known lung carcinogens (asbestos, cadmium, chlorinated sol-
vents, chromium, coal gasification, coal-tar pitch, creosotes, crys-
talline silica, and hydrazine) over the whole employment period
[categorized into none, one, two, or at least three carcinogens, from
each Gazel participant’s career-long history linked to the French
job-exposurematrixMATEX (Imbernon 1991)].

Lifestyle variables. Time-varying variables for tobacco (cu-
mulative smoking pack-years), alcohol intake (abstinent, light
drinker, moderate drinker, heavy drinker, unclear pattern), family
status (single or not), body mass index (BMI, weight in kilograms
divided by the square of height in meters). Some questions were
only asked occasionally, such as passive smoking at home or at
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work (yes or no) in 1990 and 1996, or fruit and vegetable intake
(never or less than once a week; once or twice a week; more than
twice a week but not every day; every day or almost) in 1998,
2004, 2009 and 2014. We processed these two variables to make
them time-varying annually, attributing the data collected in 1990
and 1996 to each year between 1989–1995 and 1996–2015,
respectively, for passive smoking, and the data collected in 1998,
2004, 2009, and 2014 to each year between 1989–1998, 1999–
2004, 2005–2010, and 2011–2015, respectively, for fruit and veg-
etable intake.

Contextual variables. For all participants and every year, we
calculated the distance to the nearest major road. At the munici-
pality level, we obtained the population density in 1989, 2000,
and 2010, from which we derived a urban classification: urban
(high population density), semiurban (intermediate pop density),
and rural (low population density). The population density cut-
offs are based on the European urban/rural classification. To
define whether the participants had lived solely in urban, semiur-
ban, rural area, or in mixed areas over all the follow-up, we used
the information from the 3 y for which we obtained such data.
Also at the municipality level, we obtained the French depriva-
tion index (Rey et al. 2009) calculated for 2009 for all partici-
pants who were still alive and therefore geocoded in 2009. To
take into account participants who died before this variable could
be calculated in 2009, we categorized the values from the French
deprivation index into tertiles and added the missing values as a
category so as to not lose any participant in the analyses because
of this variable.

Imputations
For baseline variables, missing values ranged from 0% to 2.1% for
sex and education, respectively. Throughout the follow-up, miss-
ing data ranged from 21% to 29% for alcohol consumption and
BMI variables, respectively. We imputed all variables (except air
pollution exposure and contextual variables) longitudinally for
each participant using multiple imputations by chained equations
from the R packages MICE and MICEADDS (van Buuren and
Groothuis-Oudshoorn 2011), iterating 10 datasets 10 times with
good convergence. All the variables described above were used as
predictors. For the geographic variables (exposure to pollutants,
deprivation index, distance to the road or urban classification),
because the other predictors cannot predict them accurately, we
recreated the initial missing values in our final dataset.We used the
functions “2l:pmm” and “2l:only:pmm” for time-varying and
time-independent variables, respectively. Following the MICE
package manual (https://cran.r-project.org/web/packages/mice/
mice.pdf), we assessed convergence visually using Figure S2; the
streams are supposed to mingle well and without showing a clear
trend. Only for fruit and vegetable intake did we observe a poor
mingling of the streams, due to the correlation between the
responses to this question asked in 1999, 2004, 2009 and 2014.
Because we aimed at pooling these values into one time-dependent
categorical variable, we discarded this issue. Model-based esti-
mateswere pooled following Rubin’s rules.

Statistical Analyses
We used extended Cox models with BC as a time-dependent vari-
able, with attained age as underlying time scale, to validate the pro-
portional hazard assumption, while annually describing the
exposure to air pollutants. We estimated the associations between
incident cancer and BC, as a single pollutant, or taking PM2:5 into
account, following an approach based on residuals (Mostofsky
et al. 2012). Since we have a rare opportunity to utilize a long time-
series of BC exposure to study the long-term association with

cancer incidence, we used cumulative exposures for each partici-
pant from baseline to incidence or censoring and adjusted for cal-
endar time and age at inclusion (Pencina et al. 2007).

• 1. Single-pollutant approach: We included cumulative time-
dependent black carbon exposure or cumulative time-
dependent PM2:5 exposure or cumulative time-dependent
NO2 exposure separately as a single pollutant in our main
model. For these three pollutants, we used a spline function
with 3 degrees of freedom (df) to test for nonlinearity. Based
on visual inspection, the response to exposures approxi-
mately followed a natural logarithm-shaped curve for all-site
cancer incidence (Figure S3), but not for cumulative NO2
and lung cancer. To consider these nonlinear relationships,
and to facilitate interpreting the results of the Cox models,
we natural log-transformed the cumulative annual BC and
PM2:5 time-dependent exposures for both outcomes, and
NO2 time-dependent exposure for all-site cancer only.

• 2. Residual approach for black carbon: The Spearman’s cor-
relation coefficient between PM2:5 and BC was 0.74.
Including both of those exposure variables in a regression
model can distort the true effects of one or both of those vari-
ables. As an attempt to isolate the effect of BC from that of
PM2:5, we followed the approach of Mostofsky et al. (2012),
who suggested using the residuals of a regression between
the constituent of PM2:5 and PM2:5 total mass. To do so, we
first regressed BC (dependent variable) on PM2:5 (independ-
ent variable). The residuals of this regression should repre-
sent the variations of BC independently of PM2:5. When
correctly specified, the residuals should be uncorrelated with
PM2:5. We included BC as natural log-transformed cumula-
tive exposures in the regression, and cumulative PM2:5 using
a spline function with 4 df. This specification decorrelated
the BC residuals from the cumulative PM2:5 exposure. In
Cox models using BC residuals as exposure, the coefficient
represents the risk associated with higher levels of cumula-
tive black carbon exposure, while holding cumulative PM2:5
exposure constant. We did not further adjust for PM2:5,
because it would provide information to interpret the effect
of the other constituents of PM2:5, which was not the aim of
this study. To test the independence of the effects of BC
from those of NO2, we did the same analysis using the resid-
uals of a regression between BC and NO2 because BC and
NO2 were also highly correlated (Spearman’s correlation
coefficient of 0.89) and precluded a bi-pollutant analysis
with the two pollutants in the same model.
We provided hazard ratios for one interquartile range (IQR)

of all variables of exposure to air pollution (after natural log-
transforming cumulative BC and PM2:5 for both outcomes, as
well as for cumulative NO2 for all-site cancer), and of the resid-
ual variables.

To consider cancer latency, it is customary, especially when
using time-varying variables in the statistical analyses, to dis-
count exposures that occurred recently, because these are
unlikely to have affected the cancer risk (Rothman et al. 2008).
Thus, we implemented a 10-y lag period during which exposure
was not counted for any time-dependent variables except for pas-
sive smoking and for fruit and vegetable consumption, which al-
ready included a time-lag due to the way these variables were
collected and interpolated (therefore using passive smoking val-
ues in 1996 only). The inclusion of contextual variables was
explored only in sensitivity analyses. We used several levels of
adjustment when using BC as exposure: a) Model 1 included sex,
and calendar time and age at inclusion as continuous variables; b)
Model 2 also included cumulative smoking pack-years and pas-
sive smoking (yes/no as defined in 1996); and c) Model 3 (main
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model) was additionally adjusted for baseline education, SES,
and occupational exposure to lung carcinogens and for time-
varying alcohol consumption, family status, BMI, and fruit and
vegetable consumption. We used the main model to derive esti-
mates of the associations between PM2:5, NO2, or BC residuals
and incident cancer. We calculated the Akaike Information
Criterion (AIC) of each model, according to the level of adjust-
ment or according to the exposure included.

We used multiple imputations by chained equations to conduct
all the analyses (see section below) unless specified otherwise.

Sensitivity analyses were conducted for BC or PM2:5 sepa-
rately (single-pollutant models) by: a) implementing a 2-y lag pe-
riod with the same study population as that of the analysis
implementing the 10-y lag period; and, after again implementing
a 10-y lag period; by b) further adjusting for the French depriva-
tion index; c) restricting the study population to the participants
with address-level geocodes throughout their follow-up; d)
restricting the study population to the participants with at least
20 y of follow-up (thus an exposure window of at least 10 y); and
e) considering three other ways to deal with missing data: con-
ducting these analyses with complete cases only, considering
missing values as a category (therefore categorizing continuous
variables by quartiles), or imputing missing data as the median
(for continuous variables) or the mode (for categorical variables).
As a further sensitivity analysis to explore the nonlinear relation-
ship of the association between BC exposure and all-site cancer,
we developed a two-piece linear model, by including an interac-
tion term between BC exposure and a Boolean variable with the
most appropriate cut-off found out to be at 24 10−5=m (as visually
observed in Figure S3 and with the maximum likelihood among
values from 15 to 30 10−5=m).

For all-site cancer, to search for any effect modification by
sex, smoking status, urban classification, and distance to the near-
est major road, we used the single-pollutant models for BC or
PM2:5 separately in single-pollutant models restricted to the fol-
lowing subsets: female or male, ever or never smokers, solely
urban or solely semiurban or solely rural during the follow-up,
and closer or farther than 500m from the nearest major road over
all the follow-up. Stratified analyses were not done for the analy-
ses on lung cancer due to the small number of cases.

We conducted all the analyses with R (version 3.5.1;
R Development Core Team 2018) with the SURVIVAL package
(Therneau 2015; Therneau and Grambsch 2000).

Results

Study Population and Exposure
Study population characteristics are shown in Table 1. More than
70% were men. Mean age at baseline was 43.5, and median
follow-up period was 27 y. Among those who eventually got can-
cer, the mean baseline age was 44.5 y, and the median follow-up
until diagnosis was about 21 y. Most had 11 y or fewer of school-
ing, and most were employed in intermediate level jobs. Slightly
fewer than half had been regular smokers at some time. Former
and current smokers had cumulated 15.4 pack-years on average
at baseline; those diagnosed with incident all-site or lung cancer
cumulated 18 and 32 pack-years at baseline, respectively. We
classified 71.4% participants as light drinkers, and 8.8% as heavy
drinkers. Almost 70% of the participants ate fruit and vegetables
almost every day and we calculated a median BMI of 24.3.

The exposure assessment yielded BC concentrations ranging
between 0.7 and 8.9 10−5=m with a median of 1.9 between 1989
and 2015 (Table 2) with a modest decline over time (Figure 1)
that differed slightly between regions (Supplementary Figure S4).
The cumulative exposure ranged between 1.5 and 104.1 10−5=m

with a median of 19.7. The exposure assessment yielded PM2:5
concentrations ranging from 2.6 to 57.3 lg=m3 with a median of
21.6 between 1989 and 2015, and a cumulative exposure ranging
between 3.0 and 691.8 lg=m3 with a median of 252.8 (Figure 1;
Table 2).

Between 1989 and 2015, a total of 4,354 incident primary
cancers (excluding nonmelanoma skin cancers) were diagnosed
in the cohort, of which 410 were lung cancers. Our analysis
lagged exposures by 10 y and thus included cancers diagnosed
from 1999 onward only (n=3,711 for all-site cancers; n=349
for lung cancers.). (See Table S1 for diagnoses by calendar year.)
All-site cancer cases included prostate (1,301 cases, 34%), breast
(378 cases, 10%), and colorectal (362 cases, 9%); other cases
counted for less than 8% each (Table S2).

Associations between Long-Term Exposure to Black Carbon
and Cancer Incidence
All-site cancer. Using the single-pollutant model, BC exposure
was significantly associated with increased cancer incidence in
single-pollutant models (Table 3), with a hazard ratio (HR) of 1.17
[95% confidence interval (CI): 1.06, 1.29] for one IQR increase in
ln-transformed cumulative BC exposure using the main model.
Results were similar for models adjusted only for age, calendar
time, and sex (Model 1), or models that also included smoking
pack-years and passive smoking (Model 2). AICs were similar
among the three models, but the smallest for the main model.
Long-term PM2:5 exposure was also significantly associated with
all-site cancer, with a HR of 1.20 (95% CI: 1.06, 1.34) using the
main model for one IQR increase in ln-transformed cumulative
PM2:5 exposure, but the association with long-term NO2 exposure
was smaller and statistically nonsignificant, with a HR of 1.05
(95% CI: 0.97, 1.14) for one IQR increase in ln-transformed cumu-
lative NO2. The BC residual approach (using the residuals of the
cumulative BC exposure regressed on the cumulative PM2:5 expo-
sure) yielded a HR of 1.05 (95%CI: 1.00, 1.11) for an IQR increase
of the residuals. This means that, holding total PM2:5 constant, an
increase in BC and closely linked constituents (and consequently, a
decrease in other PM2:5 constituents) was associated with a non-
significant increase in the risk of incident all-site cancer. We esti-
mated a similar and significant HR of 1.05 (95% CI: 1.02, 1.10)
using the residuals of BC regressed on NO2. AICs were similar for
fully adjusted models of all-site cancer in relation to the different
exposure variables, but slightly smaller for the model of cumula-
tive BC exposure.

The association between cumulative BC and all-site cancer
incidence (single-pollutant model) was similar when we imple-
mented a 2-y lag period instead of a 10-y lag period (Table S3).
The association between cumulative BC and all-site cancer was
also similar in sensitivity analyses with further adjustment for the
deprivation index and when restricting our analysis to address-
level geocoded participants (1,664 cases vs. 3,711 cases), but
stronger when restricting our study population to the participants
followed at least 20 y (i.e., with a minimal exposure window of
10 y, 1,962 cases, HR 1.40; 95% CI: 1.20, 1.64 for one IQR
increase) (Figure 2, Table S4). Using a missing data category or
imputing missing data as the median/mode provided similar asso-
ciations, whereas using the complete cases data did not yield any
substantial association. Using a two-piece linear model, we found
the most optimal cut-off at 24 10−5=m of cumulative black carbon;
below and above this cut-off, we estimated HRs of 1.22 (95% CI:
1.07, 1.40) and of 1.08 (95%CI: 1.00, 1.17), respectively.

The main association between long-term BC exposure and
all-site cancer was also stable in population subsets defined by
sex, smoking status, and distance to the nearest major road
(Figure 2; Table S4). We estimated slightly different associations
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Table 1. Baseline characteristics in 1989 (unless stated otherwise) of the study population for all 19,348 participants and according to their all-site cancer status
over the period 1999–2015.

Individuals with a diagnosed cancer (all-site):

p-ValueNo Yes

Number 15,637 3,711
Follow-up time (y) 27.0 [27.0, 27.0] 20.3 [17.1, 23.7] <0:001
Age (y) 43.5 [41.0, 46.5] 44.5 [42.0, 47.0] <0:001
Sex <0:001
Male 11,147 (71.3) 2,956 (79.7)
Female 4,490 (28.7) 755 (20.3)

Smoking status <0:001
Never smoker 6,859 (44.2) 1,425 (38.8)
Former smoker 4,442 (28.6) 1,075 (29.2)
Current smoker 4,210 (27.1) 1,177 (32.0)
Unknown 126 34

Cumulative pack-yearsa 15.0 [7.5, 25.7] 17.7 [8.5, 29.6] <0:001
Unknown 361 92

Passive smoking 0.93
Yes 10,623 (78.1) 2,507 (78.0)
No 2,980 (21.9) 707 (22.0)
Unknown 2,034 497

Education 0.136
≤11 y 11,238 (73.5) 2,720 (74.8)
12–13 y 1,144 (7.5) 227 (6.2)
14–15 y 887 (5.8) 207 (5.7)
Other secondary education 1,668 (10.9) 398 (10.9)
Other diploma 357 (2.3) 83 (2.3)
Unknown 343 76

Occupational exposureb <0:001
None 9,443 (60.4) 2,100 (56.6)
One 1,319 (8.4) 328 (8.8)
Two 1,697 (10.9) 448 (12.1)
Three or more 3,178 (20.3) 835 (22.5)

Alcohol use <0:001
Abstinent 391 (2.5) 104 (2.8)
Light drinker 11,170 (71.4) 2,421 (65.3)
Moderate drinker 2,386 (15.3) 654 (17.6)
Heavy drinker 1,370 (8.8) 448 (12.1)
Unclear pattern 317 (2.0) 83 (2.2)
Unknown 3 1

Family status (not single) 0.09
Not single 13,722 (89.0) 3,288 (90.0)
Single 1,696 (11.0) 366 (10.0)
Unknown 219 57

Socioeconomic status 0.011
Low (blue-collar workers or clerks) 2,762 (17.7) 621 (16.7)
Intermediate (first-line supervisors) 9,179 (58.8) 2,130 (57.4)
High (management) 3,677 (23.5) 958 (25.8)
Unknown 19 2

Body mass indexc 24.3 [22.3, 26.3] 24.7 [22.8, 26.7] <0:001
Unknown 2,253 533

Fruit and vegetable consumption 0.123
Never or less than once a week 81 (0.7) 27 (1.0)
Once or twice a week 794 (7.0) 211 (7.7)
More than twice a week, not every day 2,562 (22.6) 641 (23.5)
Every day or almost 7,912 (69.7) 1,851 (67.8)
Unknown 4,288 981

Distance to the nearest major road (km)d 0.8 [0.3, 1.6] 0.8 [0.3, 1.6] 0.407
Deprivation indexe 0.983
High 4,994 (33.3) 1,211 (33.5)
Intermediate 4,986 (33.3) 1,199 (33.1)
Low 5,007 (33.4) 1,209 (33.4)
Unknown 650 92

Urban classificationf 0.720
Solely urban 3,911 (25.0) 926 (25.0)
Solely semiurban 3,713 (23.7) 878 (23.7)
Solely rural 2,921 (18.7) 722 (19.5)
Mixed 5,092 (32.6) 1,185 (31.9)

Note: Number (percentage) or median (25th and 75th percentiles). All-site cancer cases were defined as the whole ICD-10 chapter except C77–79 (secondary malignant neoplasms)
and C44 (nonmelanoma skin cancers). Participants were excluded from the analysis if they were diagnosed with cancer before 1999.
aCalculated only for current and former smokers.
bTo nine lung carcinogens over the whole employment period.
cIn 1990.
dUpdated annually. Median distance over the follow-up.
eCalculated only for the residence in 2009 and for participants who were still alive then. Participants with “unknown” status were those who died before 2009.
fUrban classification obtained only in 1989, 2000, and 2010.
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according to the population density with higher HRs among rural
and semiurban than among urban participants. For PM2:5, the
main association was also stable in population subsets, with a
slightly decreasing values from urban to rural participants, con-
trarily to the results of BC.

Lung cancer. We estimated a positive association between
long-term BC exposure and lung incident cancer with a HR of
1.31 (95% CI: 0.93, 1.83) for one IQR increase in ln-transformed
cumulative BC exposure, supported by the BC residual approach
that yielded a significant HR of 1.24 (95% CI: 1.05, 1.47) for one
IQR increase (Table 3). This means that, holding total PM2:5 con-
stant, we estimated an increased risk of incident lung cancer for
an increased content in BC. In comparison with the main model
estimate, the association between lung cancer and one IQR
increase in ln-transformed cumulative BC was positive but
weaker when adjusted only for age, time, and sex (Model 1, HR
1.19; 95% CI: 0.87, 1.63) and was weakest for Model 2 (with
additional adjustment for cumulative pack-years of smoking and
secondhand smoking, HR 1.07; 95% CI: 0.77, 1.47) (Table 3).
AICs were similar, but smallest for the main model. Long-term
PM2:5 exposure was not associated with lung cancer, with a HR
of 1.01 (95% CI: 0.68, 1.51) for one IQR increase in ln-
transformed cumulative PM2:5 exposure; long-term NO2 expo-
sure was also not associated with lung cancer, with an HR of
1.06 (95% CI: 0.88, 1.27) for one IQR increase of the cumulative
NO2 exposure. However, the residuals of BC regressed on NO2
were associated with an increased risk of lung cancer, with a HR
of 1.14 (95% CI: 1.01, 1.28). This means that, holding NO2 levels
constant, we estimated an increased risk of incident lung cancer
for increased levels of BC. AICs were similar for fully adjusted
models of lung cancer in relation to the different exposure varia-
bles, but AICs were smallest for the models of BC residuals.

Associations between lung cancer and cumulative BC and BC
residuals were positive but closer to the null when exposures
were lagged for 2 y instead of 10 y (e.g., for black carbon: HR
1.21; 95% CI: 0.85, 1.71, compared with HR of 1.31 for a 10-y
lag) (Table S3). For cumulative PM2:5, the association with lung
cancer was stronger but still nonsignificant when exposures were
lagged for 2 y (HR 1.08; 95% CI: 0.68, 1.72, compared with HR
1.01 for a 10-y lag). The estimated associations between lung
cancer and cumulative BC or cumulative PM2:5 were similar to
the main model when additionally adjusted for the deprivation
index, but HRs were stronger when the analysis was restricted to
participants with address-level geocodes (110 vs. 349 cases, HR
1.66; 95% CI: 0.85, 3.24 for BC) and to those with ≥20 y of
follow-up (meaning a minimal exposure window of 10 y) (225
cases, HR 1.67; 95% CI: 1.05, 2.66 for BC) (Figure 3, Table S5).
Associations were also stronger when missing covariate data
were modeled using a missing indicator category and when miss-
ing data were imputed as the mean value, but the association
became inverse when based on a complete-case analysis (101
cases, HR 0.71; 95% CI: 0.35, 1.43 for BC).

Discussion
In the French Gazel cohort, a predominantly male population of
French adults who were employees of the national gas and energy
company, long-term BC exposure was positively associated with
incident all-site cancer and lung cancer based on single-pollutant
models of cumulative exposure, and on models of BC residuals
used to estimate the effect of BC as a PM2:5 constituent, while
holding the effect of total PM2:5 constant. Associations were also
positive for BC residuals regressed on NO2. In general, results
were robust to sensitivity analyses, and we found no substantial
effect modification by sex, smoking, or urban classification.T
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TheGazel cohort provides a relatively large andwell character-
ized study population with many variables collected throughout
the follow-up. BC, PM2:5, and NO2 exposures were estimated
using a validated LURmodel, at fine scale and over a long time pe-
riod using an accepted methodology to back- and forward extrapo-
late exposures between 1990 and 2015. We used time-dependent
Cox models. We handled confounding by total PM2:5 exposure or
by NO2 via a residual approach that yielded findings corroborating
the inference that BC could at least partially explain the health
effects of total PM2:5 and also seemingly independently fromNO2.

Though not always statistically significant, the analyses generally
yielded point estimates above the null, and the analysis using the
residuals of black carbon regressed on PM2:5 or on NO2 provided
significant associations. Further, associations with all cancers were
similar when we implemented a 2-y lag instead of a 10-y lag, but
HRs for lung cancer and BC (cumulative and residuals) were closer
to the null when exposureswere lagged by only 2 y, and confidence
intervals were wider than for corresponding estimates using a 10-y
lag. This 2-y lag could have induced more misclassification, there-
fore yielding point estimates closer to the null; we hypothesize that
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Figure 1. Black carbon (top) and PM2:5 (bottom) concentrations between 1989 and 2015 at residential addresses of 19,348 participants of the French Gazel
cohort. Black carbon (10−5=m) and PM2:5 (lg=m3) are depicted by yearly boxplots in black (minimum, 25th percentile, median, 75th percentile, outliers calcu-
lated as 75th percentile plus 1.5 times the interquartile range, and maximum) and violin plots in gray (two rotated kernel density plots depicting the probability
of each exposure level and informing on the skewedness of the distribution).
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Figure 2. Associations between cumulative black carbon (left) and PM2:5 (right) and all-site incident cancer in the main, sensitivity, and stratified analyses in
the Gazel cohort, with the number of identified cancer cases among the number of participant-year over the follow-up. Hazard ratios and confidence intervals
expressed for one IQR increase in ln-transformed cumulative exposure to black carbon or PM2:5 in separate single-pollutant Cox model with attained age as
underlying time-scale and time-dependent variables, adjusted for sex, cumulative smoking pack-years, passive smoking, alcohol use, BMI, education, socioeco-
nomic status, family status, fruit and vegetable consumption, occupational exposure to lung carcinogens, age at inclusion, and calendar time. Exposures were
lagged 10 y. Participants were excluded from the analysis if they were diagnosed with cancer before 1999. See Table S4 for corresponding numeric data.
Unless specified otherwise, these model-based estimates were computed using MICE to address missing data and were pooled following Rubin’s rules. Note:
BMI, body mass index; IQR, interquartile range.

Table 3. Associations between black carbon, black carbon residuals, and PM2:5 with incident all-site and lung cancer in the Gazel cohort as HR and their 95%
CI.

Exposure HR CI Cases Person-years p-Value AIC

All cancers
Cumulative black carbona

Model 1 1.16 1.06, 1.27 3,711 293,210 0.002 66,056
Model 2 1.15 1.05, 1.26 0.003 65,991
Model 3 1.17 1.06, 1.29 0.001 65,978
Black carbon residualsb

Regressed on PM2:5 1.05 1.00, 1.11 0.056 65,984
Regressed on NO2 1.05 1.02, 1.10 0.005 65,980

Cumulative PM2:5
c 1.20 1.06, 1.34 0.003 65,978

Cumulative NO2
d 1.05 0.97, 1.14 0.206 65,986

Lung cancer
Cumulative black carbona

Model 1 1.19 0.87, 1.63 349 254,154 0.275 6,140
Model 2 1.07 0.77, 1.47 0.694 5,880
Model 3 1.31 0.93, 1.83 0.118 5,842
Black carbon residualsb

Regressed on PM2:5 1.24 1.05, 1.47 0.011 5,838
Regressed on NO2 1.14 1.01, 1.28 0.030 6,013

Cumulative PM2:5
c 1.01 0.68, 1.51 0.942 5,845

Cumulative NO2
e 1.06 0.88, 1.27 0.568 6,018

Note: All-site cancer cases were defined as the whole ICD-10 chapter except C77–79 (secondary malignant neoplasms) and C44 (nonmelanoma skin cancers); we used C34 to identify
lung cancer cases. Participants were excluded from the analysis if they were diagnosed with cancer before 1999. Exposures were lagged 10 y. Cox model with attained age as underly-
ing time-scale. Missing covariate data were imputed using MICE. Model-based estimates were pooled following Rubin’s rules. Model 1: adjusted for sex, calendar time, age at inclu-
sion. Model 2: Model 1 plus cumulative smoking pack-years and passive smoking. Model 3 (main model): Model 2 plus alcohol use, body mass index, education, socioeconomic
status, family status, fruit and vegetable consumption, occupational exposure to nine lung carcinogens. AIC. Akaike Information Criterion; CI, confidence interval; HR, hazard ratio.
aHRs are for one IQR increase in ln-transformed cumulative black carbon (IQR=1:0).
bHRs are for IQR increases in ln-transformed cumulative black carbon residuals regressed on ln-transformed cumulative PM2:5 (IQR=0:3) or on ln-transformed cumulative NO2
(IQR=0:2), respectively. Adjusted for Model 3 covariates.
cHRs are for an IQR increase in ln-transformed cumulative PM2:5 (IQR=0:9) adjusted for Model 3 covariates.
dHRs are for an IQR increase in ln-transformed cumulative NO2 (IQR=1:2) adjusted for Model 3 covariates.
eHRs are for an IQR increase in cumulative NO2 (IQR=300 lg=m3) adjusted for Model 3 covariates.
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2 y could be too short a latency period for lung cancer. In addition,
the residual approach needs a careful interpretation: higher levels
of BC mean higher levels of components correlated with BC, and
thus, at constant total PM2:5, this implies lower levels of all other
components that are not correlated with BC. Considering this, for
all-site cancer, we found that the risk estimate yielded using the
residuals regressed on PM2:5 was not significant, contrarily to the
one using BC. This suggests that the association using BC was
probably confounded by total PM2:5 or by co-occurring compo-
nents in PM2:5. On the contrary, in the lung analysis, unexpectedly
we found no association with PM2:5, but we did find an association
with BC (although still nonsignificant), and a significant and sub-
stantial association using the residuals of BC; one hypothesis
would be that BC and its co-occurring components might be suita-
ble chemicals to at least partly explain the association between out-
door air pollution and lung cancer. These co-occurring chemicals
may come from the same sources as BC and constitute primary
components of PM2:5 such as metals, as opposed to secondary
components, such as secondary aerosols made of, e.g., sulfates or
nitrates. We found significant associations using the residuals of
BC regressed on NO2, suggesting that the associations found for
BC were not confounded by NO2. Despite providing novel evi-
dence on BC exposure and incident cancer, our approaches still did
not allow for fully disentangling the effects of BC, its correlated
pollutants, and total PM2:5.

The BC and PM2:5 measurements used in the LURmodel came
from two different measurement networks. Yet we think this would
not likely hamper our findings, because we found a strong correla-
tion between the two exposure estimates—as it is expected from
literature—and reasonable levels for BC. The association between
cumulative BC and all cancers did not appear to differ by distance
to the nearest major road (<500m vs.≥500m). A slightly stronger
association among semiurban and rural dwellers than among urban
dwellers might reflect differences in BC sources, particle sizes, or
coexposures, but may also be explained by randomvariation.

Research on health impacts of ambient BC is quite recent. In
2013, theWorld Health Organization’s (WHO) review of evidence
on health aspects of air pollution (WHO 2013) concluded that

annual exposure to BC could be involved in cardiovascular dis-
eases and cardiopulmonary mortality. Studies published after this
review have corroborated the above-mentioned conclusions, nota-
bly for cardiovascular diseases (Kirrane et al. 2019), and started
unraveling the effects of long-term exposure to BC on respiratory
health (Aaron et al. 2019; Mordukhovich et al. 2015; Rice et al.
2016; Wang et al. 2019; Yang et al. 2018). In their review on the
likeliness of PM2:5 constituents to cause adverse health effects,
Yang et al. (2019) found only two studies dealing with long-term
exposures to BC or organic carbon and respiratory mortality,
which prevented the authors from conducting a meta-analysis.
Indeed, only a few epidemiological studies focused on residential
outdoor long-term exposure to BC. To our knowledge, none dealt
with incident cancer. In their review, Grahame et al. (2014) sug-
gested BC was related to lung cancer mortality, according to stud-
ies investigating diesel effects. Hvidtfeldt et al. (2019) found no
statistically significant association between lung cancer mortality
and BCwith a point estimate close to the null in a population-based
and gender-balanced Danish cohort of approximately 50,000 par-
ticipants with 1,223 cases of lung cancer out of 10,193 total cases.
In most articles and as highlighted by Luben et al. (2017) for cardi-
ovascular mortality, the main challenge consists of disentangling
the effects of BC and those of total PM2:5 (and we think this
remains true whatever the health outcome of interest). Because BC
is part of PM2:5, the above-described associations with health out-
comes intertwine with those of total PM2:5. Additionally, theWHO
warned that the epidemiological findings on BC may not reflect
BC’s effects by itself, but that BC estimates could proxy harmful
co-occurring combustion-derived chemicals (WHO Regional
Office for Europe 2013). Indeed, BC is more influenced by small-
scale sources than PM2:5 is and thereby more linked to local traffic
andwood burning.

BC could trigger oxidative stress, inflammation [especially
lung inflammation as described in ANSES (2019)], and DNA
methylation (Niranjan and Thakur 2017), by itself or due to its
co-occurrence with other forms of carbon or with metals.
Chemical analyses of different sizes of PM2:5 revealed that BC
was found in all size bins (Bein et al. 2005); yet black carbon

Figure 3. Associations between cumulative black carbon (left) and PM2:5 (right) and lung incident cancer in the main and sensitivity analyses in the Gazel
cohort, with the number of identified cancer cases among the number of participant-year over the follow-up. Hazard ratios and confidence intervals expressed
for one IQR increase in ln-transformed cumulative exposure to black carbon or PM2:5 in separate single-pollutant Cox model with attained age as underlying
time-scale and time-dependent variables, adjusted for sex, cumulative smoking pack-years, passive smoking, alcohol use, BMI, education, socioeconomic sta-
tus, family status, fruit and vegetable consumption, occupational exposure to lung carcinogens, age at inclusion and calendar time. Exposures were lagged
10 y. Participants were excluded from the analysis if they were diagnosed with cancer before 1999. See Table S5 for corresponding numeric data. Unless speci-
fied otherwise, these model-based estimates were computed using MICE to address missing data and were pooled following Rubin’s rules. Note: BMI, body
mass index; IQR, interquartile range.
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seems mostly concentrated in the finer fractions, that is particu-
late matter with a diameter <1lm or even ultrafine particles with
a diameter <0:1lm (Li et al. 2003; Pérez et al. 2010), those
which go deeper into the lungs. Diesel ultrafine particles include
mostly BC, which can enter lung cells in vitro (Steiner et al.
2016). These very fine particles may reach blood circulation; but
the capability of BC to do so remains only partly understood, as
shown in observational and experimental studies (Saenen et al.
2017; Shimada et al. 2006). On the other hand, metals contained
in such tiny particles (which are often correlated with BC) may
also enter this circulation and trigger the biological effects above
mentioned (Nakane 2012).

Moremeasurements and fine scale exposuremodels are needed
to support studies such as ours in other areas, to increase under-
standing of how BC may affect health and cancer, and to provide
data for policy makers. As suggested by theWHO, BC could act as
a better indicator of exposure to combustion sources than PM2:5
does. As many other studies do, this study emphasizes the need for
disentangling the effects of PM2:5 as a mass, as the sum of various
constituents such as BC, and as the sum of various size bins (such
as ultrafine particles). In particular, we need more tools to do so,
includingmethods complementing the use of residuals.

In Gazel, as in most observational studies on outdoor air pollu-
tion, we could not obtain exposure data for individuals at work or
during their commutes. But even if we could not obtain a complete
lifetime exposure with left-censored participants, we still obtained
up to 16 y of air pollution exposure at residential addresses, taking
into account any residential address change during the follow-up. In
addition, in our sensitivity using participants with at least 20 y of
follow-up (i.e., a minimal exposure window of 10 y), we estimated
associations between cumulative BC and both all-site and lung can-
cer with higher point estimates and lower p-values. Although we
used three different sources to identify cancer cases, 85%were iden-
tified through one of them: the French national health administrative
databases. Furthermore, 80% of cases were identified after 2007,
when there was overlap among all sources, and the case identifica-
tion was consistent between the three sources (national databases,
company health records, and self-reported diagnoses). The number
of all-site cancer cases allowed for a satisfying statistical power, but
the estimated associations with air pollutants may be driven by the
associations between air pollutants and the most frequently identi-
fied cancer sites in our study population (prostate and breast). The
small number of lung cancer cases considerably reduced our statisti-
cal power in the sensitivity analyses and prevented us from conduct-
ing stratified analyses for lung cancer. In addition, for lung cancer,
the model adjusted for age, sex, time, and smoking characteristics
yielded a smaller and nonsignificant association. Smoking is amajor
risk factor for lung cancer yet can be confounded by other covariates
such as SES, which may explain this inconsistent result. For both
cancer types, due to the amount ofmissing data in each of the covari-
ates included in the main model, using complete cases only led to
selecting half of the study population, yielding very different results
as the models using imputed data (with three different imputation
methods) and very likely biased estimates.We aremore confident in
the results using multiple imputations, as generally recommended
(Raghunathan 2004; White and Carlin 2010). Although the Gazel
cohort recruited participants with a range of occupations and
incomes, it was not representative of the general population.
Additional studies are needed to confirm the findings of this study in
other populations and locations.

Conclusions
In this study on BC and the risk of incident cancer in a predomi-
nantly male population of French adults, we found positive asso-
ciations between BC and incident all-site and lung cancers that

were generally consistent across sensitivity analyses. Further, we
used a residual approach to theoretically isolate the effect of BC
from that of PM2:5, and it also provided positive associations.
Therefore, this study suggests BC could at least partly explain the
carcinogenic effects of outdoor air pollution. Further studies on
the long-term associations between cancer risk and BC exposure
are warranted and, in addition to seeking to replicate our findings,
should include more approaches to disentangle the effects of BC
from its co-occurring chemicals and total PM2:5.
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