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In measurement-based quantum computing (MBQC), computation is car-
ried out by a sequence of measurements and corrections on an entangled state.
Flow, and related concepts, are powerful techniques for characterising the de-
pendence of the corrections on previous measurement results. We introduce
flow-based methods for quantum computation with continuous variables graph
states, which we call CV-flow. These are inspired by, but not equivalent to,
the notions of causal flow and g-flow for qubit MBQC. We also show that an
MBQC with CV-flow approximates a unitary arbitrarily well in the infinite-
squeezing limit, addressing issues of convergence which are unavoidable in the
infinite-dimensional setting. In developing our proofs, we provide a method for
converting a CV-MBQC computation into a circuit form, analogous to the cir-
cuit extraction method of Miyazaki et al, and an efficient algorithm for finding
CV-flow when it exists based on the qubit version by Mhalla and Perdrix. Our
results and techniques naturally extend to the cases of MBQC for quantum
computation with qudits of prime local dimension.

Causal flow is a graph-theoretical tool for characterising the quantum states used in
measurement-based quantum computation (MBQC) and closely related to the measure-
ment calculus [RB01; RB02; DK06]. Its original purpose was to identify a class of qubit
graph states that can be used to perform a deterministic MBQC despite inherent random-
ness in the outcomes of measurements, but it has since found applications to a wide variety
of problems in quantum information theory.

Along with its generalisation g-flow [DKP07], causal flow has been used to parallelise
quantum circuits by translating them to MBQC [BK09], to construct schemes for the
verification of blind quantum computation [FK17; Man+17], to extract bounds on the
classical simulatability of MBQC [MK14], to prove depth complexity separations between
the circuit and measurement-based models of computation [BK09; MHM15], and to study
trade-offs in adiabatic quantum computation [AMA14]. A relaxation of these notions was
also used in [Mha+14] to further classify which graph states can be used for MBQC. g-flow
can also be viewed as a method for turning protocols with post-selection on the outcomes of
measurements into deterministic protocols without post-selection, which has been useful
for applying ZX-calculus techniques [Bac+21]. This perspective has been used for the
verification of measurement-based quantum computations [DP10], as well as state of the
art quantum circuit optimisation techniques [Dun+20] and even to design new models of
quantum computation [de +20].
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Concurrently, it has become apparent that quantum computing paradigms other than
qubit based models might offer viable alternatives for constructing a quantum computer.
Continuous variables (CV) quantum computation, which has a physical interpretation as
interacting modes of the quantum electromagnetic field, is such a non-standard model for
quantum computation that has recently been gaining traction [LB99; Bv05]. The MBQC
framework has been extended to the CV case, with a surprisingly similar semantics [ZB06;
Men+06], and recent experiments offer the promise of producing entangled graph states of
much larger size than is currently possible with qubits [Yok+13; Yos+16; Asa+19]. Accord-
ingly, some structures transfer naturally from DV to CV, and it is of interest to investigate
if it is possible to define notions of flow for CV-MBQC. However, CV-MBQC comes with
an additional complications: the gate teleportation protocol is an approximation to the
desired unitary gate. This comes about because the unitary can only be understood to be
obtained in the limit of infinite squeezing of a physical protocol. The convergence of this
approximation is implicit in CV teleportation protocols, but the convergence of an MBQC
with arbitrary entanglement topologies is not assured.

In this paper, we define such a notion, converting the results on flow and g-flow from
[Bro+07] to continuous variables, and use it to identify a class of graph states that can be
used for convergent MBQC protocols. In section 1, we review CV quantum computation
and define our computational model. In section 2, we state our CV flow conditions, and
prove that they give rise to a suitable MBQC protocol with auxiliary squeezed states
[Lvo15]. In section 3, we construct a quantum circuit extraction scheme for our flow-based
CV-MBQC protocol, proving convergence in the infinite-squeezing limit. In section 4, we
briefly explain how our techniques adapt to the qudit case, yielding an analogous MBQC
scheme and a corresponding circuit extraction. Finally, appendix B contain a polynomial-
time algorithm for determining if a graph has CV-flow, appendix C a comparison of our
CV flow conditions to the original DV conditions when this makes sense, and appendix D
an example of depth-complexity advantage using CV-MBQC compared to a circuit acting
on the same number of inputs.

1 Preliminaries
Our model is based on measurement-based quantum computation using continuous variable
graph states (CV-MBQC), as described in [ZB06; Men+06; Gu+09]. We first recall some
background relevant for continuous variables quantum computation, and briefly review
CV-MBQC, which is the primary motivation for deriving flow conditions for continuous
variables. We then introduce open graphs and how they relate to the states used in CV-
MBQC.

Notation. We use |X| to denote the cardinality of the set X.
Sans-serif font will denote linear operators on a Hilbert space: A,B, . . . ,X,Y,Z, and A∗

the Hermitian adjoint of A. I is the identity operator. Cursive fonts are used for completely
positive trace non-increasing maps (quantum channels): A ,B, . . .

1.1 Computational model
In CV quantum computation, the basic building block is the qumode1, a complex, count-
ably infinite-dimensional, separable Hilbert space H = L2(R,C) which takes the place of

1This terminology comes from quantum optics, where we can identify each quantisation mode of the
quantum electromagnetic field with a space L2(R).
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the qubit. H is a space of square integrable complex valued functions: an element of φ ∈ H
is a function R→ C such that ∫

x∈R
|φ(x)|2 <∞, (1)

and where the Hilbert inner product is

〈ψ, φ〉 :=
∫
x∈R

ψ̄(x)φ(x), (2)

with corresponding norm ‖ψ‖H :=
√
〈ψ,ψ〉.

Each qumode is equipped with a pair of unbounded linear position and momentum
operators Q and P, which are defined on the dense subspace S ⊆ H of Schwartz functions2,
along with any inhomogeneous polynomial thereof:

for any φ ∈ S , Qφ(x) := xφ(x) and Pφ(x) := −idφ(x)
dx . (3)

From these, we can define the corresponding translation operators (continuously extendable
to all H):

for any s ∈ R, X(s) := exp(−isP) and Z(s) := exp(isQ), (4)

such that

X(s)QX(−s) = Q + sI; (5)
Z(s)PZ(−s) = P + sI. (6)

In fact, all four of these operators are defined by the exponential Weyl commutation rela-
tions (up to unitary equivalence, by the Stone-von Neumann theorem, see [Hal13] section
14):

for any s, t ∈ R, X(s)Z(t) = eistZ(t)X(s), (7)
which generalise the canonical commutation relations, and further related by the Fourier
transform operator F : H → H:

FQF∗ = P and FPF∗ = −Q. (8)

Following Lloyd and Braunstein [LB99; Bv05], the state of a set of N qumodes can be
used to encode information and perform computations just as one would with a register of
qubits, using unitaries from the set

{F, exp(isQj), exp
(
isQ2

j

)
, exp

(
isQ3

j

)
, exp(isQjQk) | s ∈ R, j, k ∈ {1, ..., N}}, (9)

and where states are obtained with the usual tensor product of Hilbert spaces. The indices
j, k indicate on which subsystems in the tensor product the operators act. For brevity and
by analogy with DV, we write:

CZj,k(s) := exp(isQjQk), (10)
CXj,k(s) := exp(isQjPk) = Fk CZj,k(s) F∗k, (11)

Uk(α, β, γ) := exp(iαQk) exp
(
iβQ2

k

)
exp

(
iγQ3

k

)
. (12)

2This is a technical condition which ensures that for any real polynomial p in Q and P, pφ remains a
square-integrable function, something which is not true in general. The natural setting for this discussion
is the rigged Hilbert space, or Gel’fand triple, S ⊆ H ⊆ S ∗, where S ∗ is the continuous dual of Schwartz
space or space of tempered distributions. We refer the interested reader to the classic book by Gel’fand
and Shilov [GS64], and also to [GG02; CGd19] and the references therein for a recent discussion of its
application to quantum mechanics.
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This model of computation is strong enough to encode qubit quantum computation
[GKP01], and is universal in the sense that any unitary can be approximated by combina-
tons of applications of (10) - (12) [LB99].

Mixed states

Even ignoring inevitable experimental noise, since the teleportation procedures that we
consider are not unitary in general, but only in an ideal limit, we need to work with mixed
states. In continuous variables, there are further mathematical technicalities involved with
defining density operators, which we deal with here [SH08; Hal13].

Let H be a separable Hilbert space, and B(H) be the algebra of bounded operators on
H. We say that a self-adjoint, positive operator A ∈ B(H) is trace-class if for an arbitrary
choice of basis {ei} of H, we have ∑

n∈N
〈en,Aen〉 < +∞. (13)

An arbitrary A ∈ B(H) is itself trace-class if the positive self-adjoint operator
√

A∗A,
defined using the functional spectral calculus, is trace-class.

The set of trace-class operators forms a Banach algebra T(H) with norm given by the
trace:

for any A ∈ D(H), tr(A) :=
∑
n∈N
〈en,
√

A∗Aen〉, (14)

and an operator ρ ∈ T(H) is called a density operator if tr(ρ) = 1. We denote D(H)
the set of density operators, and for any state ψ ∈ H, the projector ρψ : φ 7→ 〈ψ, φ〉ψ is
a density operator such that tr(ρψ) = ‖ψ‖2. The set D(H) thus corresponds to a set of
quantum states which extends the space H, and if a density operator takes the form ρψ
for some ψ ∈ H, we say it is a pure state, otherwise it is a mixed state.

However, some of the proofs of convergence we use will depend on stronger assumptions
on the set of states which are allowed. We will need to make use of the fact that the Wigner
function of inputs to a quantum teleportation are Schwartz functions. A theory of these
density operators, Schwartz density operators, was developed in [KKW16], but since all
reasonable physical states are included in this set [BG89], we will simply refer to them as
physical states.

Topologies on the set of quantum operations

A linear map V : T(H)→ T(H) is trace non-increasing if for any ρ ∈ D(H), tr(V [ρ]) 6 1,
and completely positive if the dual map is completely positive.3 Then, a completely posi-
tive, trace non-increasing linear map T(H)→ T(H) implements a physical transformation
on the set of states D(H), called a quantum operation.

The set of all quantum operations T(H)→ T(H) can be given several different topolo-
gies. The simplest is the uniform topology, given by the norm

‖V ‖ = sup
ρ∈D(H)

tr(V [ρ]). (15)

However, as discussed in [SH08; Wil18; PLB18], the uniform topology is inappropriate
for considering the approximation of arbitrary quantum operations in infinite-dimensional

3The dual map of V is the map V ∗ : B(H)→ B(H) given by tr(AV [ρ]) = tr(V ∗[A]ρ) for any ρ ∈ D(H).
It is completely positive if for all n ∈ N, V ∗ ⊗ idn : B(H)⊗ Cn → B(H)⊗ Cn is positive.
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Hilbert spaces. Instead, we use a coarser topology, the strong topology, which is generated
by the family of semi-norms:

for each ρ ∈ D(H), V 7−→ tr(V [ρ]), (16)

and a sequence of quantum operations (Vk)k∈N converges to V in the strong topology if
and only if for every ρ ∈ D(H),

lim
k→∞

Vk[ρ] = V [ρ]. (17)

Thus, the sequence (Vk)k∈N can be viewed as a pointwise approximation to V , and this
is the perspective we take in this paper: we construct an MBQC procedure, associated to
a flow condition, which converges strongly to unitary quantum circuits in the ideal limit
of the approximation.

1.2 MBQC
The workhorse of MBQC (in DV and CV) is gate teleportation, which makes it possible to
apply a unitary operation from a specific set on a qumode by entangling it with another
qumode and measuring. Informally, for an input state φ ∈ H the idealised quantum circuit
for gate teleportation in CV (assuming infinite squeezing, see below) is:

φ • U P m
w

δP • X(wm)S(w)FUφ

The auxiliary input δP is a momentum eigenstate with eigenvalue 0, or Dirac delta distri-
bution centered at x = 0. The two qumode interaction is CZ12(w) (equation (10)), U is
any unitary gate that commutes with CZ12(w) (such as the unitary U(α, β, γ) from equa-
tion (11)), and we measure the first qumode in the P. If we view U as a change of basis
for the measurement, this “gadget” allows us to perform universal computation using only
entanglement and measurements, in the sense of Lloyd and Braunstein [Men+06; KA19].
However, there is an extra gate X(w ·m) on the output of the computation which depends
on the result of the measurement m. We call this the measurement error. In the course
of a computation, it is the role of flow to describe how to correct for these measurement
errors.

The representation of gate teleportation above is an idealisation, and necessarily only
approximates the limit of physically achievable processes. For our needs, we develop this
in detail now. Formally, Dirac deltas are tempered distributions in the Schwartz sense but
cannot be interpreted as input states (even in principle) since the space of distributions
S ∗ is much larger than the state space H. It is necessary to use an approximation: we
use the squeezed state gη parametrized by a positive real squeezing parameter η:

S(η) := exp
(
i
η

2(QP + PQ)
)

and gη := S(η)g0, (18)

where gη is a normalised Gaussian of width 2η2.4 In the limit η → +∞, this state will play
the role of the auxiliary state for the teleportation, but as per the previous discussion,

lim
η→+∞

gη /∈ H, (19)

4From a physical perspective, g0 is the vacuum state uniquely defined by (Q− iP)g0 = 0.
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(a) Open graph

CZ1,2(a)CZ1,3(b)CZ1,4(c)CZ3,4(d)︸ ︷︷ ︸
EG

gη ⊗ gη ⊗ gη ⊗ φ

(b) Graph state

Figure 1: Example of an open graph (a) and the associated graph state (b). Black vertices are to be
measured, white vertices are outputs, and the square vertex represents an input (which we call φ).

i.e. the limit is divergent in state space. However, as we shall see, the teleportation map
does converge to a unitary acting on H.

Then, the circuit for the gate teleportation procedure with input ρ ∈ D(H) and denot-
ing ση the density operator of a squeezed state gn (as discussed in section 1.1) is

ρ • U(α, β, γ) P
w

ση • X(−wm) Tη(α, β, γ)[ρ]

where the output is given by a quantum channel Tη(α, β, γ) which is not unitary in general.
As a result, we generalise the gate teleporation protocol [Gu+09; Men+06] to arbitrary
CZ weights:

Proposition 1 (Teleportation convergence). For any α, β, γ, w ∈ R and any ρ ∈ D(H),

lim
η→∞

Tη(α, β, γ)[ρ] = S(w)FU(α, β, γ)ρU∗(α, β, γ)F∗S∗(w). (20)

The explicit form of the quantum map Tη(α, β, γ) as well as the proof of the proposition
are left to appendix A.1. As discussed previously, this is equivalent to convergence in the
strong topology on the set of quantum channels, which is a weaker notion than uniform
convergence [SH08]. This is the best we can expect for quantum teleportation procedures
in CV in general (see [Wil18; PLB18] for a discussion). However, if we restrict the set of
states to a compact subset, such as when the total energy is bounded, this result can be
strengthened to uniform convergence [SW20].

1.3 Graph states
Let F = R or Zd for some prime d. An F-edge-weighted graph G is a pair (V,A) consisting
of a set V of vertices and a symmetric matrix A ∈ F|V |×|V |, the adjacency matrix of G,
which identifies the weight of each edge. Furthermore: if Aj,k = 0 then there is no edge
between j and k; and for any j ∈ G, Aj,j = 0. If j ∈ V we write N(j) := {k ∈ V | Aj,k 6= 0}
the set of neighbours of j in G, excluding j itself.

A (CV) open graph (G, I,O) is an undirected R-edge-weighted graph G = (V,A),
along with two subsets I and O of V , which correspond to the inputs and outputs of a
computation. To this abstract graph, we associate a physical resource state, the graph
state, to be used in a computation: each vertex j of the graph corresponds to a single
qumode and thus to a single pair {Qj ,Pj} [ZB06; Men+06]. This graphical notation is also
somewhat similar to later works for Gaussian states [Zha08; Zha10; MFv11], although with
a different focus: our notation only represents a small subset of the full set of multimode
Gaussian states, but is used to reason about non-Gaussian operations on that state.

For a given input state ψ on |I| modes, the graph state can be constructed as follows:

6



1. Initialise each non-input qumode, j ∈ Ic, in the squeezed state gη, resulting in a
separable state of the form g

⊗|Ic|
η ⊗ ψ.

2. For each edge in the graph between vertices j and k with weight Aj,k ∈ R, apply the
entangling operation CZj,k

(
Aj,k

)
between the corresponding qumodes.

Since our results will be dependant on the squeezing η used to construct the graph state,
we denote Gη ∈ H|V | the resulting graph state and EG the product of the entanglement
operators used to construct the graph state (since these all commute no caution is needed
with the order of the product). An example of such a graph state is represented figure 1.
We shall use the structure of the open graph to study computations using the graph state.

The main results of this article correspond to direct generalisations of proposition 1
to measurement procedures over arbitrary graph states. The question is: given an graph
state, is there an order to measure the vertices (of the graph state) in such that we can
always correct for the resulting measurement errors? In such a scheme, the measurement
error spreads over several edges to more than one adjacent vertex and we need a more
subtle correction strategy, culminating in our definition of CV-flow and a corresponding
correction protocol. In section 2, we exhibit our CV-flow condition and a corresponding
MBQC procedure, in theorem I. Then, in section 3 of the paper, we extract the unitary
implemented by this MBQC protocol, proving a direct equivalent to proposition 1: when
|I| = |O|, the protocol converges strongly to the extracted unitary which acts on the input
state. This is the content of theorem II.

2 Correction procedures
We are now ready to begin our study of CV graph states for CV-MBQC. We first show
that the original flow condition, causal flow [DK06], also holds in continuous variables and
results in a nearly identical MBQC protocol. We then state a generalised condition which
we call CV-flow, inspired by g-flow but valid for continuous variables and different to g-
flow. These conditions are associated with corresponding CV-MBQC correction protocols.
While the CV-flow protocol subsumes the original flow protocol as far as CV-MBQC is
concerned, causal flow is still worth understanding on its own in this context, not least
because the proof of theorem II reduces the CV-flow case to the causal flow case.

Appendices. In addition to the content of this section, appendix B describes a polynomial-
time algorithm for determining a CV-flow for an open graph, whenever it has one, following
almost exactly the qubit case by Mhalla and Perdrix [MP08]. Appendix C contains a com-
parison between CV-flow and the original g-flow condition for qubits, when this makes
sense. Appendix D contains an example of depth-complexity advantage using CV-MBQC
compared to a circuit acting on the same number of inputs.

2.1 Causal flow in continuous variables
In this section, we see how the causal flow condition extends to continuous variables We
additionally allow for weighted graphs, but this does not change the definition.

Definition 2 ([DK06]). An open graph (G, I,O) has causal flow if there exists a map
f : Oc → Ic and a partial order ≺ over G such that for all i ∈ Oc:

• Ai,f(i) 6= 0;

7



• i ≺ f(i);

• for every k ∈ N
(
f(i)

)
\ {i}, we have i ≺ k. y

The order ≺ is interpreted as a measurement order for the MBQC. When an open
graph has causal flow (f,≺), the function f identifies for each measurement of a vertex j
a single, as-of-yet unmeasured neighbouring vertex f(j) on which it is possible to correct
for the measurement error. This renders the corresponding CV-MBQC protocol: after
constructing the graph state,

1. measure the non-output vertices in the graph, in any order which is a linear extension
of ≺, in the basis corresponding to U(α, β, γ)—for example, by applying U(α, β, γ)
and measuring P; and,

2. immediately after each measurement (say of vertex j), and before any other mea-
surement is performed, correct for the measurement error mj onto f(j), by applying

Cj(mj) := Xf(j)(−A−1
j,f(j)mj)

∏
k∈N(f(j))\{j}

Zk(−A−1
j,f(j)Af(j),kmj). (21)

We will now see how (21) can be viewed as an a-causal correction, through the com-
pletion of a stabiliser (as in the discrete case [DK06; Bro+07; MK14]). We first note that
the state after measuring vertex j and getting result mj is equivalent to the state if one
had first applied Zj(−mj) and then measured, getting result 0. Since the result 0 corre-
sponds to the ideal computation branch, the correction ideally corresponds to undoing this
Zj(−mj). However, this cannot be done on vertex j because we would have to do it before
the measurement result were known. From this point of view the above correction acts to
a-causally implement Zj(−mj) through the stabiliser relation.

To see this we note that the unitary

Xf(j)(−A−1
j,f(j)mj)

∏
k∈N(f(j))

Zk(−A−1
j,f(j)Af(j),kmj) = Cj(mj)Zf(j)(mj) (22)

is a stabiliser for the graph state in the infinite squeezing limit—that is, its action leaves
the state unchanged (see the analogous result in lemma 13). Thus, application of Cj(mj)
is, in the limit, equivalent to applying Zf(j)(mj).

In this way, we can see the third condition in the definition as merely imposing that
all the vertices acted upon by Cj have not been measured when we try to complete this
stabiliser.

To see that the correction (21) affects the a-causal correction of Zj(−mj) another way,
we can commute the correction through the graph operations:

Cj(mj)
∏

k∈N(f(j))
CZj,k(Aj,k) = Xf(j)(−A−1

j,f(j)mj)
∏

k∈N(f(j))\{j}
Zk(−A−1

j,f(j)Af(j),kmj) ·
∏

k∈N(f(j))
CZj,k(Aj,k)

(23)
=
∏

k∈N(f(j))\{j}
CZf(j),k(Aj,k) Zj(mj) CZf(j),j(Aj,f(j)). (24)

In this picture, we see that the correction Cj(mj) has a back-action Zj(mj) on the ver-
tex j even though it has already been measured. This back-action appears before the
measurement, even though the correction is applied after the measurement.

8



Let ~α, ~β,~γ ∈ R|Oc| identify measurement angles for each non-output mode as in step
1, then, for a given open graph with causal flow, we denote F δ

η (~α, ~β,~γ) the quantum map
corresponding to this MBQC procedure starting with the corresponding graph state with
local squeezing η. Then, we have the following:

Proposition 3 (Causal flow protocol). Suppose the open graph (G, I,O) has causal flow,
then for any ~α, ~β,~γ ∈ R|Oc| and any input state, the corresponding MBQC procedure
F δ
η (~α, ~β,~γ) is runnable: no corrections depend on the outcome of measurements before

they are made, and no corrections are made on vertices after they are measured.

This is clear by the condition that i ≺ f(i): we always measure node i before the vertex
f(i) onto which we perform the corresponding correction.

2.2 CV-flow
As was done by Browne et al. [Bro+07] for qubit MBQC, we can obtain a more general
notion of flow by loosening these conditions. In particular, we now allow corrections to
be applied on more than one neighbour and loosen the condition on neighbours of the
correction vertex being unmeasured. This is possible by selecting vertices on which to
correct in such a way that their different contributions add up to correct the measurement
error. We determine if this is possible for a candidate measurement order by considering
at each step of that order a partition, or cut, of the graph into 2 subsets: vertices that
have yet to be measured that can be used for corrections, and vertices that have already
been measured, and for which we need to be careful about unwanted back-actions.

If (X,Y ) is a pair of subsets of V , we define A[X,Y ] as the submatrix obtained from
the adjacency matrix of G by keeping only the rows corresponding to vertices in X and
the columns corresponding to vertices in Y .

Definition 4. Let (G, I,O) be an open graph, < a total order over the vertices V of G
and A< be the adjacency matrix of G such that its columns and rows are ordered by
<. Further, define P (j) (the “past” of node j) as the subset of V such that k ∈ P (j)
implies k 6 j. Then the correction matrix A<j of a vertex j ∈ V is the matrix A<j :=
A[P (j), (P (j) ∪ I)c]. y

The correction matrix tells us how X and Z operations on unmeasured nodes are going
to affect the previously measured nodes, thus it allows us to determine how to apply a
correction on a specific vertex by controlling this back-action.

Definition 5. An open graph (G, I,O) has CV-flow if there exists a partial order ≺ on
Oc such that for any total order < that is a linear extension of ≺ and every j ∈ Oc, there
is a function cj : R→ R|V |−|P (j)∪I| such that for all m ∈ R the linear equation

A<j cj(m) =


0
...
0
m

 holds, (25)

where A<j is the correction matrix of vertex j. Letting (cj)j∈Oc be such a set of functions,
we call the pair (≺, (cj)) a CV-flow for (G, I,O). y
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Figure 2: Example of the MBQC procedure based on a CV-flow. (a) We start with a graph state with a
candidate measurement order: the vertices in layer 2 must be measured before layer 1. As explained in
section 3, all CV-flows can be broken up into such a sequence of layers such that all the vertices within
a layer can be measured simultaneously. We perform measurements on the vertices in layer 2 (in a given
basis for the unitary (11)), obtaining measurement outcomes ~mL2 = (ma,mb,mc)T and leading to the
correction equation on the right of (a), which is a direction application of equation (28). (b) This linear
equation has a solution for any measurement outcomes giving a CV-flow for layer 2 as per definition
5, which we decompose into the different contributions from the measurement of each vertex as per
lemma 7 (right). This leads to a correction procedure for the measurements in the MBQC procedure
(left). The corrections C take the form of partial stabilisers as described in equations (27) and (30).
(c) We then measure the vertices in the layer 1, with measurement outcomes ~mL1 = (md,me,mf )T .
The previously measured vertices, which are no longer accessible for corrections, have been grayed
out. This second set of measurements has its own correction equation. (d) The solution to the linear
equation (see (29) and (28)), and corresponding correction procedure for layer 1. Since at this point,
we have measured all the vertices in the graph, the MBQC procedure is complete. Furthermore, as we
have seen, for this measurement order it is possible to correct for any measurement error at any of the
measurements and the open graph has a CV-flow.
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Lemma 6. If (≺, (cj)j∈Oc) is a CV-flow for an open graph (G, I,O), then the functions
cj can be chosen as R-linear, that is, for each i ∈ Oc and any m ∈ R, cj(m) = m · cj(1).

Proof. Let cj(1) be such that equation (25) holds. Then,

A<j (m · cj(1)) = m ·A<j cj(1) = m ·


0
...
0
1

 =


0
...
0
m

 (26)

Now, there is a correction procedure on an open graph (G, I,O) if there is a measure-
ment order such that each measurement error can be corrected for without any backaction
on previously measured vertices. As before, for any open graph with CV-flow, the MBQC
protocol is evident:

1. measure the non-output vertices in the graph in any order which is a linear extension
of ≺, in the basis corresponding to U(α, β, γ); and,

2. immediately after each measurement (say of vertex j), and before any other mea-
surement is performed, correct for the measurement error mj by applying

C≺j (mj) :=
∏

k∈V \P (j)∪I

Xk(−cj(mj)k)
∏

`∈N(k)\P (j)
Z`(−Ak,` · cj(mj)k)

 , (27)

where cj(mj)k is the k-th element of the vector cj(mj) ∈ R|V |−|P (j)∪I|.

Remark. It is straightforward how to extend these definitions to simultaneously correct
for a subset L ⊆ Oc of vertices unrelated by ≺: for any total linear extension < of ≺ let
P (L) be the subset of V such that whenever k ∈ P (L), for some j ∈ L we have k 6 j.
We can then define the correction matrix A<L = A<[P (L), V \ (P (L) ∪ I)] of L identically
to definition 4. There is a simultaneous correction procedure for L if there is a function
cL : R|L| → R|V |−|P (L)∪I| such that

A<LcL(~m) =


0
...
0
~m

 for all measurement outcomes ~m ∈ R|L|. (28)

From the proof of lemma 6, we can also see that

Lemma 7 (CV-flow linearity). The function cL from equation (28) can be chosen as R-
multilinear, in the following sense: for any ~m ∈ R|L|,

cL(~m) =
∑
k∈L

mk · cL(1k), (29)

where 1k is the column vector with a single 1 in its k-th row and 0 elsewhere.

It is therefore possible to measure several vertices at once in step 1 of the procedure,
so long as one never measures two vertices comparable by ≺ in a single measurement step.
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The correction then takes the form of a product of corrections of the form of equation
(27):

C≺L (~m) :=
∏
j∈L

C≺j (mj), (30)

and where C≺j (mj) is calculated using cj(mj) = mj · cL(1j) by lemma 7. We will use this
form in section 3. A simple example is worked out in figure 2. y

As for causal flow, let ~α, ~β,~γ ∈ R|Oc| identify measurement angles for each non-output
mode as in step 1, then, for a given open graph with causal flow, C δ

η (~α, ~β,~γ) denotes the
quantum map corresponding to this MBQC procedure starting with the corresponding
graph state with local squeezing η. Then:

Theorem I (CV-flow protocol). Suppose the open graph (G, I,O) has CV-flow, then for
any ~α, ~β,~γ ∈ R|Oc| and any input state, the corresponding MBQC procedure Cη(~α, ~β,~γ) is
runnable.

This is true by construction, since we only ever consider corrections for a given mea-
surement error that act on unmeasured nodes at that step in the MBQC procedure. The
idea is essentially the same as proposition 3, but with more more gates to consider: by
commuting the corrections through the CZ gates, one can see that the protocol is equivalent
to a sequence of parallel gate teleportations.

3 Circuit extraction
We have shown that a correction procedure is possible when the open graph has CV-
flow. We now address the induced quantum map and the question of convergence of
these teleportations. In general, for an arbitrary graph state, even one with CV-flow, the
MBQC procedure is not convergent. It is possible for the output state to contain squeezing
dependant components which diverge in the limit.

We will see that for an open graph (G, I,O) with |I| < |O|, an MBQC protocol is
equivalent to one based on an open graph (G, I ′, O), where I ⊆ I ′ and |I ′| = |O|. The
additional states in I ′ are auxiliary squeezed states gη reinterpreted as inputs, and this
forces divergence (as in equation (19)) from the inputs to the outputs. A trivial example
is given by the single-vertex open graph ({•},∅, {•}, A•,• = 0) with no input and a single
output: the graph trivially has causal flow but the output is a squeezed state. As we shall
see, the existence of a CV-flow also implies both that |I| 6 |O| and |O| 6= 0, hence we
conclude that a necessary and sufficient condition for the protocol to be convergent is that
the open graph has as many input vertices as outputs, |I| = |O| 6= 0.

The proof will proceed by explicitely constructing the limit of the protocol, via a circuit
extraction scheme inspired by [MHM15]. While the circuits extracted by our scheme as well
as the broad structure of the proof are entirely analogous to that work, our proof method
is quite different. The original graph-theoretical arguments using local complementation
in [MHM15] do not hold for CV, so we reason instead with the adjacency matrix and
correction matrices of the open graph. This method extends the DV case, and should also
apply to more general MBQC scenarios beyond CV. In particular, it easily applies to qudit
MBQC for any prime local dimension, as we shall see in section 4.
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Figure 3: An example of circuit extraction of an MBQC for an open graph with causal flow, using star
pattern transformation as described in section 3.1. Starting from an open graph with a causal flow (a),
we identify a path cover of the graph that agrees with the causal flow (thick edges directed u→ f(u)
for each u ∈ Oc) (b), and each path as a wire in a quantum circuit (c). The remaining edges of the
graph implement CZ gates in the circuit. Finally, each causal flow edge implements a unitary of the
form given by equation (31), and we obtain a circuit representation of the unitary implemented by the
MBQC (d).

3.1 Star pattern transformation
In order to model the computation through the MBQC, the trick is to distinguish between
“real” qumodes that undergo a unitary transformation though the MBQC (which act like
the wires in a circuit undergoing gates), and auxiliary qumodes that are consumed in
teleportations. In the case of causal flow, things work quite nicely as follows.

We use the following which also holds in CV (since the causal flow does not depend on
edge weights, only the correction procedure):

Definition 8 ([de 08]). A path cover of an open graph (G, I,O) is a collection P of
directed edges (or arcs) in G such that

• each vertex in G is contained in exactly one path in P;

• each path in P is either disjoint from I or intersects I only at its initial point;

• each path in P intersects O only at its final point. y

Lemma 9 (Causal flow path cover [de 08]). Let (f,6) be a causal flow on an open graph
(G, I,O). Then there is a path cover Pf of (G, I,O) where x→ y is an arc in some path
of Pf if and only if y = f(x).

Lemma 9 allows us to interpret the causal flow MBQC procedure as a sequence of single
qumode gate teleportations, with additional entangling operations between teleportations.
In fact, the path cover Pf allows us to distinguish between two types of edges in G:

• edges (j, k) ∈ Pf correspond to gate teleportations where one end is the input and
the other the output;

• edges (j, k) /∈ Pf correspond to CZ
(
Aj,k

)
gates in the final circuit.

Star pattern transformation (STP) [BK09] is a method based on this intuition for turning
the MBQC protocol on an open graph with causal flow into an equivalent quantum circuit.
While it was originally formulated for DV, an almost identical method functions in CV,
the only real difference being the nature of the unitary gates. Assume (G, I,O) is an open
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graph with causal flow (f,≺) and corresponding path cover Pf , and let

J(w,α, β, γ) := S(w)FU(α, β, γ), and for any subset S ⊆ G, CZj,S(s) :=
∏
k∈S

CZj,k(w),

(31)
To obtain a circuit for the causal flow MBQC,

1. Interpret each path in Pf as a wire (qumode) in a quantum circuit, and index the
wire by the collection of vertices intersected by the path.

2. For each edge (j, k) /∈ Pf , insert a CZ
(
Aj,k

)
gate between the edges indexed by j

and k.

3. For each edge (j, k) ∈ Pf , insert a J
(
Aj,k, α, β, γ

)
gate after all the CZ gates for

vertices i ∈ Pf such that i 6 j but before all such gates for k 6 i.

An example is worked out in figure 3. In the ideal limit, the MBQC procedure converges
to the CV SPT map. We have that:

Proposition 10 (Causal flow circuit). Suppose the open graph (G, I,O) has a causal flow
and |I| = |O|. Then for any ~α, ~β,~γ ∈ R|Oc| and any ρ ∈ D(H⊗|I|),

lim
η→∞

Fη(~α, ~β,~γ)[ρ] = USPT (~α, ~β,~γ)ρU∗SPT (~α, ~β,~γ), (32)

where USPT is the unitary corresponding to the circuit obtained by star pattern transfor-
mation of (G, I,O). Furthermore, the condition |I| = |O| is necessary.

The proof is left to appendix A.2.

3.2 CV-flow triangularisation
The next challenge is to do the same as above and extract a circuit, for CV-flow. From
there one can treat convergence through viewing it as a sequence of teleportations. For
CV-flow however, it is not obvious how to go about it, for instance one does not directly
have an obvious path cover. We follow the ideas of [MHM15], associating open graphs with
CV-flow to equivalent open graphs with causal flow which allows circuit extraction, albeit
using quite different proof methods.

More precisely, for the general CV-flow case, we show there are totally ordered par-
titions of Oc called layer decompositions such that all the vertices in each layer can be
measured simultaneously and corrected for in one step as in lemma 7—that is, there is a
CV-flow from the layer into the remaining unmeasured vertices. We then show that this
“one-step” CV-flow can be reduced to a causal flow for the same layer, at the cost of some
additional gates acting on the unmeasured vertices. Finally, by repeating this procedure
for each layer, we extract a circuit for the total MBQC procedure, as a sequence of star
pattern transformation circuits and intermediate gates.

From CV-flow to causal flow

We begin by defining the decomposition into layers as follows.

Definition 11. Let (G, I,O) be a graph with CV-flow (c,≺). A corresponding layer
decomposition of (G, I,O) is a partition {Lk}Nk=1 of Oc such that if i ∈ Lm, j ∈ Ln and
i ≺ j then n < m (as elements of N). y
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Figure 4: An example of the reduction of CV-flow to causal flow by the triangularisation procedure as
described in section 3.2, using the graph with CV-flow from figure 2. We represente the open graphs
in the sequential steps of the procedure (left) alongside the corresponding cut matrix for the layer in
consideration at that step (right, layer 2 for (a),(b) and layer 1 for (c),(d)) and the column-space
operations which are made on the cut matrices throughout. Starting from an open graph with CV-flow
in two layers (a), an upper triangularisation of the cut matrix for the first layer gives a new open
graph where there is now a causal flow from the vertices in layer 2 into the vertices in layer 1 (b)
Since permuting columns of the correction matrix is a “free” operation (it corresponds to relabelling
unmeasured nodes), the matrix has the form of lemma 12. This comes at the cost of additional weighted
CX gates acting in layer 1 (lemma 14), represented as colored edges directed from the source of the
CX to its target. These CX gates in the graph state are colored-matched to the term in the matrix
triangularisation from which they come. We repeat this procedure for layer 1, where the vertices in layer
2 cannot be used for corrections since they come before layer 1 in the CV-flow order (c), resulting in a
final graph state where the causal flow has been indicated by the bold arrows (d) directed as u→ f(u)
for each vertex u ∈ Oc. As per lemma 16 the edpoints of causal flow edges from different layers in the
resulting open graph match up, resulting in a path cover.
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It is straightforward to see that if {Lk} is such a decomposition, we can measure the
layers in the order given by Lk+1 ≺ Lk and corrections are always possible. We chose this
inverted ordering for layers (from the last layer measured to the first) in accordance with
[MP08]. It is equally easy to see that in this procedure, we can measure all the vertices in
each layer before applying any correction for measurements errors in the layer.

In order to extract causal flows from CV-flows, we need a matricial characterisation of
causal flow:

Lemma 12 (Matrix form of causal flow). Let (G, I,O) be an open graph with CV-flow for
a total measurement order <, L ⊆ Oc a set of unmeasured vertices. Then there is a subset
C ⊆ P (L)c with |L| = |C| and a causal flow L → C if and only if the correction matrix
A<L of L can be written as

A<L = M ·
(
X 0
Y T

)
·N (33)

where M and N are permutation matrices, T is a lower triangular |V | × |C| matrix with
non-zero diagonal and X,Y are arbitrary real matrices. In other words, we can turn A<L
into the partial triangular form of equation (33) only by reordering rows and columns,
which in turn corresponds to relabelling the vertices of the graph G.

Proof. (⇐= ) If AL takes the form described, then the diagonal elements of T determine
a single correction vertex in C for each vertex in L, as well as a measurement order such
that there is no back-action: the order of the columns in T (since all elements above the
diagonal are now 0). Thus, there is a causal flow L→ C.

( =⇒ ) If there is a causal flow L → C, then there is a measurement order < on L
such that when measuring vertex i ∈ L, there is a single unmeasured vertex j ∈ Ic to
correct onto, and this correction has no back-action on previously measured vertices. But
this implies that if we reorder the columns of j according to <, column i has only zeros
above row j (otherwise there is a back-action), and a non-zero entry in row j (otherwise
it is not possible to correct onto j). Repeating this process for each vertex in L gives |L|
such columns, let C be the corresponding correction vertices.

Now, < induces an order <C on C by the causal flow matching. Extend < by letting
all previously measured vertices in P (L) be less than L, and <C by letting all unmeasured
vertices in P (L)c be less than C. Then, ordering the columns and rows of AL according
to < and <C , respectively, results in a matrix of the form described.

This characterisation of causal flow is the key difference between our proof method and
that of Miyazaki et al. [MHM15]—where they use arguments based on local complementa-
tion to find a causal from a g-flow, we solve the comparatively easier problem of proving it
is always possible to map an open state with CV-flow to one where the correction matrix
takes this form.

The approach now is, having broken the measurement pattern down into layers, we
show that the graph over each pair of layers can be seen as having flow, by transforming
the correction matrix such that it takes the above triangular form. Reordering rows and
columns of the correction matrix simply corresponds to relabelling of the vertices, however,
we will also require linear addition of columns. This matrix or graphical operation, it
turns out, is physically equivalent to applying CX gates, which are exactly the additional
operations in the equivalence we mentioned.
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This emerges from the following stabiliser condition for controlled operators, which is
approximate for any finite squeezing and, as for the standard stabiliser conditions, only
holds perfectly in the infinite squeezing limit:

Lemma 13 (Approximate controlled stabilizers). Let (G, I,O) be an open graph, j ∈ G
and k ∈ Ic. Then, for any Schwartz input state φ ∈ H⊗|I| and s ∈ R,

lim
η→∞

∥∥∥CXj,k(s) CZj,N(k)(s)G(η)−G(η)
∥∥∥ = 0. (34)

As with the other convergence proofs, the proof of lemma 13 is left to appendix A.3. In
this way, the action of specific CZ operations - which are what are used to create or remove
edges in the graph - are equivalent (in the infinite squeezing limit) to the application of a
CX operation. This allows us to achieve the our goal:

Proposition 14 (Triangularisation). If (G, I,O) is an open graph with CV-flow, and L
is the last layer in a corresponding layer decomposition, then (G, I,O) is approximately
equivalent to an open graph with a causal flow L→ O, up to weighted CX gates acting in
O and reordering the vertices in L.

Proof. Let AL be the correction matrix of L for a given CV-flow order. Then, we can
reorder the columns of AL by relabeling the unmeasured vertices, and we can reorder the
rows of AL by choosing a different measurement order for vertices in L.

Further let j, k ∈ O, then by lemma 13 applying the gate CXj,k(−s) on the graph state
induces new edges in the graph state in the infinite squeezing limit. The result on the
correction matrix is the transformation

Cj 7−→ Cj + sCk, (35)

where Cj is the j-th column of AL.
By the definition of CV-flow, for each v ∈ L we have that

A<Lcv(1v) = 1v, (36)

so that cv(1v) gives a sum of columns A which contains a single 1 in the row corresponding
to v. Repeating this for each v ∈ L, we obtain |L| such columns, each with the 1 on a
different row, so that by reordering rows and columns we can write AL as

AL ∼
(
X 0
Y I|L|

)
(37)

where I|L| is the |L| × |L| identity matrix. Then, AL takes the form described in lemma
12, and this partial triangularisation procedure corresponds to extracting additional CX
gates from the graph as described above. Then, the open graph (G, I,O) is approximately
equivalent to a graph with causal flow L→ O, up to CX gates acting in O.

The fact that the additional controlled gates act only on the outputs is crucial: it will
allow us reduce the total physical map to a sequence of single-gate teleportation operations.
Since the CX gates never appear in between a measurement and the corresponding CZ
gate for the teleportation, nor do they act on the auxiliary squeezed states before they are
consumed in the teleportation, the projective measurements can be brought forward and
the squeezed inputs delayed to obtain a single gate teleportation circuit within the larger
circuit representing the total physical map of the computation.
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Path cover of CV-flow

Now, using these two lemmas, we obtain a causal flow from the last layer L1 of a decom-
position into a subset of the outputs by adding CX gates. Most importantly, this subset is
then only connected to L1 so it can be removed from the open graph as far as determining
flows on the remainder is concerned. As a result, we can reduce a graph to a sequence of
causal flows by peeling off each layer one-by-one.

Lemma 15 (Graph reduction). If (G, I,O) is an open graph with CV-flow (≺, (cj)Nj=1),
and corresponding layer decomposition {Lk}Nk=1 then there is C1 ⊆ O such that there
is a causal flow L1 → C1 with |L1| = |C1|, up to a product T of weighted CX gates
acting in O. Furthermore, let G′ be the graph state obtained from the triangularisation
procedure for layer L1, then (G′ \ C1, I \ C1, L1 ∪ (O \ C1)) has CV-flow (≺, (cj)Nj=2) and
layer decomposition {Lk}Nk=2.

Proof. The first part follows straightforwardly from lemmas 12 and 14. The second is
immediate once one realises the following: by the third condition in the definition of
causal flow, if there is a causal flow C1 → L1, C1 cannot be connected to any vertex in a
layer k > 1. Since L1 is measured last, so C1 must be connected only to L1 (and possibly
O). As a result, we can remove C1 from the graph for subsequent layers: since it is not
connected to any previous layer k > 1, it never appears in any subsequent correction
subgraphs. As a result, the truncated CV-flow and layer decomposition remain valid for
the reduced graph.

This “peeling” procedure also allows us to determine a path cover of (G, I,O), by noting
that each layer causal flow has a path cover, and the endpoints of each of these covers meet
up. So, by a successive applications of this lemma, we obtain a the final ingredient to our
proof, a CV-flow analogue of lemma 9:

Lemma 16 (CV-flow path cover). Let (G, I,O) be an open graph with CV-flow, then there
is a path cover of (G, I,O) whose edges are causal flow edges of the triangularised graph
(14). If |I| = |O|, every path is indexed by an input.

Proof. Let {Lk} be a layer decomposition of (G, I,O), and consider each vertex j ∈ O
the endpoint of a path. Then, by lemma 15 there is C1 ⊆ O such that there is a causal
flow and a bijection L1 → C1; label each vertex in L1 by its image under the causal flow
matching. Then, remove C1 from the graph as in lemma 15, and repeat the process. Since⋃N
k=1 Lk ∪O = G, we eventually label the whole graph. Furthermore, the resulting paths

never cross: if they did, there would be two vertices in the same layer corrected onto the
same node–but this is impossible, by the definition of causal flow. Thus the resulting set
of paths is a path cover for (G, I,O).

Finally, if |I| = |O|, every input is the beginning of some path, since we measure all
j ∈ I but can never correct onto I. Since there are exactly |O| = |I| paths, every path
must begin in I and end in O, and every path is indexed by an input.

As a corollary, we obtain bounds on the number of inputs and outputs of an open graph
if it has a CV-flow:

Corollary. Let (G, I,O) be an open graph with CV-flow, then |I| 6 |O|.
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Proof. By the proof to the lemma, every input is the beginning of a path that ends in O,
and these paths never cross, such that even their endpoints in O cannot coincide. Then,
the collection of paths describes an injection I → O, since each path uniquely associates
an endpoint in O to each input.

Corollary. Let (G, I,O) be an non-empty open graph with CV-flow, then |O| 6= 0.

Proof. If G 6= ∅ and the open graph has CV-flow, then there is a path cover of the open
graph which contains at least one path. This path must end at an output vertex, thus
|O| 6= 0.

Putting it all together

We are finally ready to state our main convergence result (the proof is in appendix A):

Theorem II (CV-flow circuit). If (G, I,O) is an open graph with CV-flow and |I| = |O|
then the CV-flow correction protocol converges to a unitary acting on the input state. If
{Lk}nk=1 is a corresponding layer decomposition, for any ~α, ~β,~γ ∈ R|Oc| let

W(~α, ~β,~γ) :=
n∏
k=1

T(k)U(k)
SPT (~α, ~β,~γ), (38)

where U(k)
SPT is the circuit extracted for the k-th layer using the causal flow from lemma 15,

and T(k) contains the CX gates obtained from the triangularisation of the CV-flow (lemma
14).

Then, for any ~α, ~β,~γ ∈ R|Oc| and any physical input state ρ ∈ D(H⊗|I|),

lim
η→∞

Cη(~α, ~β,~γ)[ρ] = W(~α, ~β,~γ)ρW∗(~α, ~β,~γ). (39)

T(k)U(k)
SPT (~α, ~β,~γ) acts on the qumodes represented by wires indexed by Lk, and the total

product W acts on the qumodes represented by wires indexed by I.

In other words, in the ideal limit, we implement the unitary

W(~α, ~β,~γ) : H⊗|I| −→ H⊗|I|

f 7−→
n∏
k=1

T(k)U(k)
SPT (~α, ~β,~γ)f,

(40)

where convergence of the approximation is once again in the strong sense.
An example of the complete circuit extraction procedure for an open graph based on a

CV-flow and using the triangularised causal flow from example 4 is given in figure 5.

4 Flow for MBQC with qudit graph states
In this section, we give a brief overview of how our methods apply to the qudit case.
We leave a more in-depth discussion for future work, as some results are missing when
comparing with the qubit case [Bro+07].
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Figure 5: Example of the final circuit extraction procedure for an open graph with CV-flow. We use the
open graph state resulting from the triangularisation (figure 4) of the graph state with CV-flow from
figure 2. (1) The causal flow edges (red directed edges) of the open graph are interpreted as edges in a
circuit, and the CX gates (colored, dashed, directed edges) from the triangularisations of each layer are
added. These are ordered by layer, and within a layer by the order of column space operations in the
triangularisation of the cut matrix for that layer. They separate the final circuit into individual sections,
with each section corresponding to a single layer of the open graph. (2) The auxialiary (non-causal
flow) edges for each section are added to the circuit as CZ gates. (3) Each of the causal flow edges
corresponds to a J gate (equation (31)) in the final circuit. Adding these gates completes the SPT for
each layer, and we identify the different sections corresponding to the decomposition of theorem II in
the final circuit.
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4.1 Computational model
The setup is very analogous for qudit MBQC: letting d be an odd prime, the state space
is also a space of square integrable functions H = L2(Zd,C) with respect to a discrete
measure, consisting of functions Zd → C with norm

for any ψ ∈H , ‖ψ‖ :=
d∑

n=1
|ψ(n)|2. (41)

Vectors in H can be represented with respect to an orthonormal basis {|n〉}dn=1, and we
adopt the bra-ket notation which is better suited to this case than CV:

for any ψ ∈H , |ψ〉 :=
d∑

n=1
ψ(n) |n〉 . (42)

This space also comes equipped with two operators X and Z, which verify:

X |n〉 := |n+ 1〉 , (43)

Z |n〉 := ei
2πn
d |n〉 , (44)

Xd = I = Zd, (45)

ZX = ei
2π
d XZ, (46)

and these are also linked by the Hadamard or discrete Fourier transform H,

H |n〉 := 1√
d

d∑
k=1

ei
2πkn
d |k〉 , (47)

so that
HZH−1 = X and HXH−1 = Z−1. (48)

Finally, we define the multiplication and controlled-Z gates:

M(w) |n〉 := |w · n〉 , (49)

CZ(w) |m〉 ⊗ |n〉 := ei
2πmn
d |m〉 ⊗ |n〉 . (50)

For these operations to make sense it is necessary for the group Zd to admit a compatible
field structure, and therefore d must be prime. It is also clear that, algebraically, these
operations are analogous to those used for CV, with the multiplication operator taking the
place of squeezing.

4.2 Measurement-based quantum computing
It is straightforward to see that the usual qubit gate teleportation generalises to

|φ〉 • U H
w

|0〉 H • X−wm M(w)HU |φ〉

where once again U is any unitary that commutes with CZ(w), and we perform a projective
measurement whose elements are projections onto the basis {|n〉}.
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4.2.1 Graph states

A qudit qudit open graph is an undirected Zd-edge-weighted graph G = (V,A), along
with two subsets of vertices I and O, which correspond to the inputs and outputs of a
computation [Zho+03]. To this abstract graph, we associate a physical resource state, the
graph state, to be used in a computation: each vertex j of the graph corresponds to a
single qudit and thus to a single pair {Xj ,Zj}.

For a given input state |ψ〉 on |I| qudits, the graph state can be constructed as follows:

1. Initialise each non-input qudit, j ∈ Ic, in the auxiliary state
∣∣0̃〉 = H |0〉, resulting in

a separable state of the form
∣∣0̃〉⊗|Ic| ⊗ |ψ〉.

2. For each edge in the graph between vertices j and k with weight Aj,k ∈ Zd, apply
the entangling operation CZj,k

(
Aj,k

)
between the corresponding qudits.

4.3 Results
Now, all of the results proven for continuous variables function analogously in this setting.
Since the all of the arguments in CV simply extend the convergence proof of single gate
teleportation to the more general MBQC setting, and we have seen that that proof is
replaced by equality in the finite-dimensional case, we can simply take all the results from
previous sections, and drop the convergence statements for equality.

The generalised flow condition is now given by:

Definition 17. A qudit open graph (G, I,O,A) has Zd-flow if there exists a partial order
≺ on Oc such that for any total order < that is a linear extension of ≺ and every j ∈ Oc

there is a function cj : Zd → Z|G|−jd such that for all m ∈ Zd the linear equation

A<j cj(m) =


0
...
0
m

 holds, (?)

where A<j is the correction matrix of vertex j. Letting (cj)j∈Oc be a such set of functions,
we call the pair (≺, (cj)) a Zd-flow for (G, I,O). y

The causal flow condition is identical, and we have

Proposition 18 (Causal flow circuit). Suppose the qudit open graph (G, I,O,A) has a
causal flow, then for any choice of measurement bases,

Oδ
η(~α, ~β,~γ) = USPT , (51)

where USPT is the unitary corresponding to the circuit obtained by star pattern transfor-
mation of (G, I,O,A).

In the star pattern transformation, the gates are given by J = HU. Finally,

Proposition 19 (Zd-flow circuit). If (G, I,O) is a qudit open graph with Zd-flow and
|I| = |O| then the Zd-flow correction protocol implements a unitary acting on the input
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state. If {Vk}nk=1 is a corresponding layer decomposition, for any choice of measurement
bases,

C δ
η (~α, ~β,~γ) =

n∏
k=1

T(k)U(k)
SPT , (52)

where U(k)
SPT is the circuit extracted for the k-th layer using the causal flow from the equiv-

alent to lemma 15, and T(k) contains the CX gates obtained from the equivalent to the
triangularisation of the Zd-flow (lemma 14). T(k)U(k)

SPT acts on the qudits represented by
wires indexed by Vk, and the total product acts on the qudits represented by wires indexed
by I.

Conclusion
We have defined a notion of flow for continuous variables and proved that it can be used to
obtain a desired unitary, provided sufficient squeezing resources are available. We have also
obtained a polynomial algorithm for finding CV-flow and a circuit extraction scheme, which
might allow further comparison of depth and size complexities between circuit models and
MBQC, as has already been obtained in the DV case, with a preliminary result in this
direction showing depth separation in Appendix D. We have not considered the question
of convergence rates in terms of the squeezing resources available nor the precision of
measurements. These are highly dependant on the specific choice of measurements (ours
is somewhat arbitrary), auxiliary teleportation states, the topology of the graph, as well
as the input state itself.

There are further extensions possible to the flow framework. In particular, one might
consider Hilbert spaces over more general locally compact rings or fields and these come
equipped with a different unitary group of translations. It is unclear whether a good notion
of MBQC is possible in these spaces in general, but examples include the cases considered
in this article, which correspond to R and Zd. This is also necessary to extend the theory
to qudits of arbitrary (non-prime) local dimension. Then, one is interested in general in
the case where the edges of the graph are weighted with elements of a ring R, and the
correction equations are solved in the R-module Rn.

Finally, we only considered a single choice of measurement “plane”, where the original
gflow condition accounted for several. It should be possible to extend our framework to
account for more planes using symplectic relations between different measurement bases.
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A Convergence proofs
We use several different, equivalent formulations of quantum theory for the different proofs
of convergence:

• the proof of gate teleportation, proposition 1 is done via the Wigner-Weyl-Moyal
phase space formulation of quantum theory, which is a standard tool in continuous
variables quantum computing;

• the proof that graph states admit approximate controlled stabilisers, lemma 13 is
done in the Hilbert space formulation, since this is a statement about pure states;

• the proofs of convergences of the flow MBQC procedures in the density operator
formulation, since these two proofs follow from the other two convergence results
and a continuity argument for quantum channels on T(H).

The Wigner function

We briefly review the Wigner formulation. In fact, we do not need the full phase space
picture: it is sufficient for our purposes to understand how to represent states and mea-
surements on those states.

In the phase space formalism, to each density operator ρ ∈ D(H) such that ρ =∑
j cjρψj , we associate a real-valued square-integrable function in a Hilbert space L2(R ×

R,R), called the Wigner function:

Wρ(q, p) := 1
π

∑
j

cj

∫
y∈R

ψ∗j (q + y)ψj(q − y)e2ipy. (53)

and it is clear that this association is R-linear, Wρ+λσ = Wρ +λWσ. The norm is given by

‖W‖ :=
√∫

x∈R

∫
y∈R

W (x, y)2, (54)

which agrees with the Hilbert-Schmidt norm, ‖Wρ‖2 = tr
(
ρ2).

A.1 Proof of Proposition 1
We are interested in proving convergence of the quantum map implemented by:

ρ • U(α, β, γ) P
w

ση • X(−wm) Tη(α, β, γ)[ρ]

Proposition 1 (Teleportation convergence). For any α, β, γ, w ∈ R and any ρ ∈ D(H),

lim
η→∞

Tη(α, β, γ)[ρ] = S(w)FU(α, β, γ)ρU∗(α, β, γ)F∗S∗(w). (20)

Proof. We first note that we can ignore the parameter w for the CZ(w) gate: we know
that the teleportation circuit is equivalent to
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ρ • U(α, β, γ) P

ση S(−w) • S(w) X(−wm)

thus, commuting the correction with the squeezing operator, to

ρ • U(α, β, γ) P

ση+w • X(−m) S(w)

The additional squeezing w in the auxiliary state will be absorbed into the limit, and the
final S(w) gate can be added at the end since it comes after the teleportation (it is unitary
thus continuous and preserves limits). Since the “change of basis” unitary U(α, β, γ)
commutes with the CZ gate, it can be absorbed into the input state. We have therefore
reduced the problem to proving convergence of the simpler circuit:

ρ • P

ση • X(−m) Tη[ρ]

for an arbitrary input ρ ∈ D(H).
Put Wη := WTη [ρ] and Wη the output state when the measurement is assumed to be

perfect. Then, from [Gu+09] we have

Wη(x, y) :=
∫
p∈R

∫
q∈R

gη(x+ p)g 1
η
(y − q)Wρ(q, p) = WFρF∗ ∗1 g 1

η
(x, y), (55)

where ∗1 indicates convolution with respect to the first variable, and the ideal output state
is

W∞(x, y) := Wρ(x,−y) = WFρF∗(x, y). (56)

We need to bound ‖Tη[ρ]− FρF∗‖1. By [AU00; HQ12] we know that for any ρ, σ ∈
D(H),

‖ρ− σ‖1 6
√

1− F (ρ, σ), (57)

where F is the Ulhmann fidelity [Uhl76] which can be calculated for pure states as

F (ρ, σ) = 1
π

∫
q∈R

∫
p∈R

Wρ(q, p)Wσ(q, p). (58)

Assume ρ is a pure state, and furthermore that it is the density operator of f ∈
L1(R)∩L2(R), i.e. the projector onto the one-dimensional subspace generated by f . Then
we have

1− F (Tη[ρ],FρF∗) = 1− 1
π

∫
q∈R

∫
p∈R

Wη(q, p)Wρ(p,−q) (59)

= 1
π

∫
q∈R

∫
p∈R

(
Wρ(p,−q)2 −Wη(q, p)Wρ(p,−q)

)
(60)

= 1
π

∫
q∈R

∫
p∈R

Wρ(p,−q)
(
Wρ(p,−q)−Wη(q, p)

)
. (61)

since ∫
q∈R

∫
p∈R

Wρ(p,−q)2 = tr
(
(FρF∗)2

)
= tr

(
ρ2
)

= 1. (62)
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Since the Wigner transform of ρ is L1 (given that f is), we have

1− F (Tη[ρ],FρF∗) = |1− F (Tη[ρ],FρF∗)| (63)

=
∣∣∣∣ 1π
∫
q∈R

∫
p∈R

Wρ(p,−q)
(
Wρ(p,−q)−Wη(q, p)

)∣∣∣∣ (64)

6
1
π

∫
q∈R

∫
p∈R

∣∣∣Wρ(p,−q)
(
Wρ(p,−q)−Wη(q, p)

)∣∣∣ (65)

= 1
π

∫
q∈R

∫
p∈R
|Wρ(p,−q)| · |Wρ(p,−q)−Wη(q, p)| (66)

6
1
π

∫
q∈R

∫
p∈R
|Wρ(p,−q)−Wη(q, p)|. (67)

where we have used the inequality |Wρ(p,−q)| 6 1 for pure states to go from equation
(66) to (67).

Now,∫
q∈R

∫
p∈R
|Wρ(p,−q)−Wη(q, p)| =

∫
q∈R

∫
p∈R

∣∣∣∣Wρ(p,−q)−Wρ ∗1 g 1
η
(p,−q)

∣∣∣∣. (68)

As a result,
∥∥∥C 0

η [ρ]− FρF∗
∥∥∥

1
6
√

1
π

∥∥∥∥WFρF∗ −WFρF∗ ∗1 g 1
η

∥∥∥∥
L1
.

Now we have g 1
η
(x) = 1

ηg1(xη ) and
∫
g 1
η

= 1, so that by [WZ15], theorem 9.6, the net
(g 1

η
)η∈R forms an approximation to identity. As a result,

∥∥∥∥WFρF∗ −WFρF∗ ∗1 g 1
η

∥∥∥∥
L1
→ 0 as η → +∞. (69)

It follows that
lim
η→∞

Tη[ρ] = FρF∗, (70)

for any such ρ. Since the trace-class norm agrees with the Hilbert space norm for pure
states, and L1(R)∩L2(R) is dense in L2(R), it follows that equation 70 holds by continuity
of Tη for any pure ρ ∈ D(H). Finally, since the set of finite convex sums of pure ρ ∈ D(H)
is dense in D(H) (which is Banach) the result can be extended to mixed states.

Reintroducing the edge-weight and measurement angle, we have

lim
η→∞

Tη(α, β, γ)[ρ] = S(w)FU(α, β, γ)ρU∗(α, β, γ)F∗S∗(w). (71)

as desired.

A.2 Proof of Proposistion 10
Proposition 10 (Causal flow circuit). Suppose the open graph (G, I,O) has a causal flow
and |I| = |O|. Then for any ~α, ~β,~γ ∈ R|Oc| and any ρ ∈ D(H⊗|I|),

lim
η→∞

Fη(~α, ~β,~γ)[ρ] = USPT (~α, ~β,~γ)ρU∗SPT (~α, ~β,~γ), (32)

where USPT is the unitary corresponding to the circuit obtained by star pattern transfor-
mation of (G, I,O). Furthermore, the condition |I| = |O| is necessary.

30



Proof. As explained in section 3.1, we can decompose Fη as a set of parallel paths with
mediating edges. Each of these parallel paths corresponds to a sequence of single gate
teleportations. All we need to worry about is ordering the mediating edges such that they
appear before any teleportation of a node they are connected to. This is possible since
such an ordering exists if and only if there is a causal flow [MHM15]. Then, by proposition
1 each teleportation converges, and and since each gate teleporation channel is continuous
it preserves limits.

A.3 Proof of Lemma 13
Lemma 13 (Approximate controlled stabilizers). Let (G, I,O) be an open graph, j ∈ G
and k ∈ Ic. Then, for any Schwartz input state φ ∈ H⊗|I| and s ∈ R,

lim
η→∞

∥∥∥CXj,k(s) CZj,N(k)(s)G(η)−G(η)
∥∥∥ = 0. (34)

Proof. Let φ ∈ (S (R))1, s ∈ R and consider

CX1,2(s)[φ⊗ gη](x, y) = exp(isQ1P1)[φ⊗ gη](x, y) = φ(q)gη(y + sx). (72)

Now, since φ is square-integrable of norm 1, for any ε > 0 there is some bounded measur-
able subset E ⊆ R such that ∫

x∈Ec
|φ(x)|2 < ε, (73)

and

‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 = 1√
πη2

∫
x∈R

∫
y∈R

∣∣∣∣∣φ(x)e−
(y+sx)2

2η2 − φ(x)e−
y2

2η2

∣∣∣∣∣
2

(74)

6
1√
πη2

∫
x∈R

∫
y∈R

|φ(x)|2
∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

(75)

6
1√
πη2

∫
x∈E

∫
y∈R

|φ(x)|2
∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

(76)

+ 1√
πη2

∫
x∈Ec

∫
y∈R

|φ(x)|2
∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

(77)

6
1√
πη2

∫
x∈E

|φ(x)|2
∫
y∈R

∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

+ 2
∫

x∈Ec

|φ(x)|2. (78)

Furthermore, using for any x, y ∈ R,∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣ 6 |sx| ·max
t∈R

d
dt

(
e
− t2

2η2

)
6
A

η
|sx| (79)

where A = maxt∈R d
dt

(
e−

t2
2

)
. Then,

‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 6
A2s2

η3√π

∫
x∈E

|xφ(x)|2 + 2ε, (80)

31



and since φ is Schwartz,
∫
x∈E |xφ(x)|2 is bounded by some B > 0. Finally,

‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 6
A2Bs2

η3√π
+ 2ε, (81)

whence picking η > 3
√ √

π
A2Bs2 we have ‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 < 3ε, and because ε < 0

was arbitrary,
lim
η→∞

‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 = 0. (82)

As every controlled stabiliser can be reduced to this case by commuting though EG:
CXj,k(s) CZj,N(k)(s)EG = EG CXj,k(s), (83)

we are done.

A.4 Proof of Theorem II
Theorem II (CV-flow circuit). If (G, I,O) is an open graph with CV-flow and |I| = |O|
then the CV-flow correction protocol converges to a unitary acting on the input state. If
{Lk}nk=1 is a corresponding layer decomposition, for any ~α, ~β,~γ ∈ R|Oc| let

W(~α, ~β,~γ) :=
n∏
k=1

T(k)U(k)
SPT (~α, ~β,~γ), (38)

where U(k)
SPT is the circuit extracted for the k-th layer using the causal flow from lemma 15,

and T(k) contains the CX gates obtained from the triangularisation of the CV-flow (lemma
14).

Then, for any ~α, ~β,~γ ∈ R|Oc| and any physical input state ρ ∈ D(H⊗|I|),
lim
η→∞

Cη(~α, ~β,~γ)[ρ] = W(~α, ~β,~γ)ρW∗(~α, ~β,~γ). (39)

T(k)U(k)
SPT (~α, ~β,~γ) acts on the qumodes represented by wires indexed by Lk, and the total

product W acts on the qumodes represented by wires indexed by I.

Proof. By lemma 16 we obtain a graph G′ that is approximately equivalent to G up to CX
gates. Let E(k)

G be the product of CZ gates in G′ from layer Vk into its outputs and T(k)

the CX gates obtained from the corresponing triangularisation procedure. By lemmas 14
and 16 for any A > 0 we have, for high enough squeezing, that∥∥∥∥∥EGg⊗|Ic|

η ⊗ φ−
n∏
k=1

(
T(k)E(k)

G

)
g⊗|I

c|
η ⊗ φ

∥∥∥∥∥ < A. (84)

Now, none of the edges in T(k) E(k)
G for k < n touch the nodes in Vk+1, so that we

can bring the auxiliary squeezed states |η〉v for v ∈ Vk forward until E(k)
G . Since there is a

causal flow Vk+1 → Vk,
n∏
k=1

(
T(k)E(k)

G

)
g⊗|I

c|
η ⊗ φ = T(k) ◦ O(k) ◦ · · · ◦ T(1) ◦ O(1)[φ] (85)

where O(k) is the channel associated to the causal flow procedure Vk+1 → Vk. Then by
proposition 10, we can perform an SPT for each O(k), and

lim
η→∞

Cη(~α, ~β,~γ) =
n∏
k=1

T(k) U(k)
SPT (~α, ~β,~γ), (86)

by continuity.
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B A polynomial time algorithm for finding CV-flows
The following pseudocode algorithm finds a CV-flow for an open graph if it has one (we
interpret the return value ∅ as the graph not having a flow). Our algorithm is based on
[MP08], which contains an almost identical algorthm for the qubit case.
1: input: A CV open graph
2: output: A CV-flow

3: procedure CV-Flow(G, I,O)
4: for all v ∈ O do
5: layer(v) := 0
6: end for
7: return CV-Flow-aux(G, I,O, layer, flow, 1)
8: end procedure

9: procedure CV-Flow-aux(G, In, Out, layer, k)
10: O′ := O \ I . Nodes onto which we can correct
11: C := ∅ . Nodes which we are correcting in this layer
12: for all v ∈ G \O do
13: solve in R: AC~c = 1{v} assuming v ≺ o for all v ∈ Oc, o ∈ O . AC is the

correction matrix of C
14: if there is a solution ~c then
15: C := C ∪ {v}
16: layer(v) := k . Assign v to layer k
17: flow(k) = ~c . The corrections for layer k
18: end if
19: end for
20: if C = ∅ then . If we can no longer correct for additional nodes, either:
21: if O = G then
22: return (flow, layer) . we have found a CV-flow for the whole open graph; or,
23: else
24: return ∅ . there is no CV-flow.
25: end if
26: else
27: return CV-Flow-aux(G, I,O ∪ C, layer, flow, k + 1)
28: end if
29: end procedure

The return value is a pair of functions, layer : G → N which assigns each node to a
layer, and flow : N → RN which returns the correction coefficients for each layer. The
ordering for the CV-flow is implicitely given by the layers: all nodes within layers are
unordered with respecting to each other and nodes in layer k + 1 are less than nodes in
layer k.

For a proof of the running time of this algorithm, we refer the reader to [MP08]. The
only real difference between that algorithm and ours are the lines 13 to 18: the correction
equations are solved over R instead of Z2, and the type of the solution is subtly different.
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C Comparing g-flow and CV-flow
Definition 20. An open graph (G, I,O) has a generalised flow, or gflow, if there exists
a map g : Ic → P(Oc) and a partial order ≺ over G such that for all i ∈ Ic:

• if j ∈ g(i) and i 6= j then i ≺ j;

• if j ≺ i then j /∈ Odd(g(i)). y

It is not immediately clear if gflow and CV-flow are equivalent properties or not, or
even if one is strictly stronger than the other. We construct counterexamples to either
implication, showing that these are indeed entirely independant properties. Thus, a graph
can have both (as in the case of flow), either or neither.

Proposition 21. The open graph

has a gflow but no CV-flow.

Proof. The graph has a gflow, given (for example) by the measurement order

1 2

3

4 ,

where we correct each of the first three nodes onto an unmeasured neighbour, and the
fourth node is corrected on all three outputs. The modularity ensures that this last
correction has no backaction on nodes 1 to 3.

Now, we show that the graph does not have CV-flow, by showing that no node in the
graph can be measured last. There are two cases: either we measure the central node last
(case 1), or we measure one of the outer nodes last (case 2) (by symmetry, these are all
equivalent).

Case 1: The maximal correction subgraph, where we are correcting a measurement on
the blue node and the black nodes have already been measured, is given by

, for which the correction equation has superior matrix


1 1 1 1
1 1 0 0
1 0 1 0
0 1 1 0

 .
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Case 2: The maximal correction subgraph is given by

, for which the correction equation has superior matrix


1 1 1 0
1 1 0 1
1 0 1 0
0 1 1 0

 .
Since both of these superior matrices have reduced row echelon form

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
equation the correction equation has no solution in either case. For any CV-flow to exist,
we must be able to measure and correct some node of the graph last (every partial order
extends consistently to a total order), so we have constructed a graph that has a gflow
but no CV-flow.

Proposition 22. The open graph

has a CV-flow but no gflow.

Proof. Any measurement order on the nodes is equivalent by symmetry, so the graph has
a unique CV-flow (up to rotations) given by:

1 2

3

,

where we correct the first two measurement onto a neighbouring output (as per flow), and
the last measurement outcome m as:

X(m2 ) X(m2 )

X(−m
2 )

Z(m)

.
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By definition 20, this last correction is not possible in DV, as every possible subset of
the unmeasured nodes (in white) that connects oddly to the measured node (in blue) also
connects oddly to one of the previously corrected nodes (in black).

D Depth complexity advantage in CV-MBQC
For any k ∈ Z, let fk ∈ L2(R) be given by

fk(x) :=
{

1 if x ∈ [k, k + 1);
0 otherwise.

(87)

Now, let (kj)Nj=1 ∈ ZN , and consider the CV-MBQC given by the open graph

· · ·

I1 I2 I3 I4 IN−2 IN−1 IN

O1 O2 O3 O4 ON−2ON−1 ON

where the input In is prepared in the state fkn . This open graph has a 1-step CV-flow
where all the inputs are in the layer I ≺ O. The correction equation is given by

1 0 0 0 0 · · · 0 0
1 1 0 0 0 · · · 0 0
0 1 1 0 0 · · · 0 0
0 0 1 1 0 · · · 0 0
0 0 0 1 1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 1 0
0 0 0 0 0 · · · 1 1


~c =



m1
m2
m3
m4
m5
...

mN−1
mN


, (88)

which has a solution ~c ∈ RN whose n-th element is cn = ∑n
j=1mj . Performing the circuit

extraction as described in section 3 and taking α = β = γ = 0 at each measured node
(that is, we just measure P), we see that the MBQC is equivalent in the squeezing limit to
the circuit

fk1 F •

fk2 • F •

fk3 • F •

...

fkN−1 • F •

fkN • F Ff∑N

j=1 kj
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where we only care about the last output. Since the graph state can be generated in
two steps provided access to the input states (generating the auxiliary squeezed states
then performing the entangling unitaries), the CV-MBQC yields a quantum circuit for
generating f∑N

j=1 kj
in constant depth and with width 2N .

Now, from [BK09] we have:

Proposition 23. Let S a unitary operator on H that restricts to the map

S(
N⊗
j=1

fkj ) =
N−1⊗
j=1

fkj ⊗
(
f∑N

j=1 kj

)
(89)

on the subspace of H generated by the fk for k ∈ Z. Then any circuit of 1 and 2-qumode
gates that implements S has depth in Ω(log2(N)).

This result follows from an argument on the “backwards light-cone” of the outputs. In
general, the output of a k-ary gate can depend only on the k inputs, so that composing
n times, the output can depend on at most kn inputs. As a result, the number of gates
needed to treat N inputs is at least logk(N).

Thus, this example demonstrates a clear depth advantage for CV-MBQC: at the cost
of doubling the width of the circuit, the unitary S is implemented in constant rather than
logarithmic depth.

37


	1 Preliminaries
	1.1 Computational model
	1.2 MBQC
	1.3 Graph states

	2 Correction procedures
	2.1 Causal flow in continuous variables
	2.2 CV-flow

	3 Circuit extraction
	3.1 Star pattern transformation
	3.2 CV-flow triangularisation

	4 Flow for MBQC with qudit graph states
	4.1 Computational model
	4.2 Measurement-based quantum computing
	4.2.1 Graph states

	4.3 Results

	References
	A Convergence proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposistion 10
	A.3 Proof of Lemma 13
	A.4 Proof of Theorem II

	B A polynomial time algorithm for finding CV-flows
	C Comparing g-flow and CV-flow
	D Depth complexity advantage in CV-MBQC

