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An Efficient Tool for Multi-Frequency Analysis in Acoustic
Scattering or Radiation by Boundary Element Method

Christian Vanhille, Antoine Lavie*

Institut d’Electronique et de Microélectronique du Nord, UM.R. C.N.R.S. 9929, Département 1.S.E.N., Laboratoire d’Acoustique, 41

Boulevard Vauban, 59046 Lille Cédex, France

Summary

In this article, a new boundary element algorithm in acoustic scattering or radiation is proposed. Based upon a linear
frequency interpolation, this original method allows a real practical, fast and easy use of the boundary element method
for a multi-frequency analysis. This technique is original for two reasons. The first one is the automation of its utilization
using the interpolation between the two bounding frequencies 0 Hz and the top-frequency of the spectrum, given by the
*“\/4 criterion” assoctated with the quadratic isoparametric discretization for any geometry. Furthermore, in the case
of its application to axisymmetrical problems, the circular surface elements of the mesh are automatically split through
decomposition points. This allows a saving of central processor unit time. Moreover, this profit increases very quickly
with the size of the mesh and the number of calculation frequencies. These motives make this boundary element linear

interpolation method very attractive.

PACS no. 43.20.Fn, 43.20.Tb, 43.30.Jx, 43.40.R}

1. Introduction

The problem which has justified the study presented here
is the resolution of the radiation problem from a vibrating
structure with prescribed surface displacements or the scat-
tering problem of a target impinged by an incident wave and
immersed in a fluid medium of infinite extension. This fluid-
structure coupling problem is modelled using two numerical
codes via impedance matrices: the EQI code applied to the
propagation in the fluid medium with a boundary element
method (BEM) and the ATILA code [1, 2] applied to the
elastic structure behaviour with a finite element method. The
EQI code has been validated for solving radiation and scatter-
ing problems by comparisons with analytical solutions and
experimental results [3, 4, 5, 6,7, 8,9, 10].

The BEM has been for about 30 years an usual and good
numerical technique for acoustic analysis. The most notable
feature of the BEM is that only the boundary (surface) of
a three-dimensional body (or cavity) is modelled in order
to obtain a numerical solution. Even for exterior problems
of infinite extent, the BEM discretization limited to the finite
boundary of the body, by invoking implicitly the Sommerfeld
radiation condition, allows to model completely the propa-
gation in the fluid. In this case, this method is more efficient
than the finite element method that requires meshing of a
part of the surrounding medium with appropriated damped
conditions on the boundary of the fluid mesh {1, 2]. For this
reasons, the coupling between the EQI and ATILA codes
is a powerful tool to analyse fluid-structure problems. An-
other advantage of the BEM is its ability to study complex
geometrical structures.
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The major drawback of the BEM is the presence of irreg-
ular frequencies, for which an infinite number of solutions
exists [11]. For an exterior Neumann problem, this mathe-
matical problem occurs at some characteristic frequencies
of the associate Dirichlet interior problem [12, 11]. Numer-
ically, this means that at these eigenfrequencies and in their
neighbourhood, the matrices become singular. In the EQI
code, this drawback is overcome using the Jones method
[13, 4]: the integral equations system is overdetermined by
null-field equations. The efficiency of the Jones method is not
subordinated to the location of the origin of these equations
compared to the nodal surfaces of the interior problem [3].
This is due to the possibility to increase the degree of these
latest equations.

The BEM needs a lot of central processor unit time (CPU
time) divided into two parts: the matrix construction phase
and the resolution phase of the integral equations system. For
a three-dimensional (3D) resolution, most CPU time is spent
in the resolution phase. On the other hand, for an axisym-
metrical resolution, most CPU time is spent in the matrix
construction phase.

Although the BEM is a very efficient numerical technique
for acoustic analysis for a single frequency, it may lose its
advantage for a multi-frequency run. The main reason is that
the integrals of the coefficients of the system are frequency
dependent. For each different frequency, all the components
in the coefficient matrices and vectors need to be recalculated.
The procedure will be very time consuming if solutions for
a wide frequency spectrum are required for analysis.

A way to decrease this multi-frequency difficulty is to use
a linear frequency interpolation technique initially proposed
by Benthien [14]. The idea is to eliminate the oscillation of
the coefficients matrices with the frequency, this oscillation
being due to the important variation of the kD term (where &
is the wave number and D the influence distance, i.e. distance
between the calculation point 7 and the integration point )
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Figure 1. 3D quadratic isoparametric elements, with —1 < £ < 1,
~1<n<1.

in the exponential term of the free-space Green’s function:

1 eikD

g(r,r') = =D (1)

By extracting a quantity close to kD from the exponential,
a very slow frequency variation coefficient is obtained. So, a
linear frequency interpolation can be carried out at a calcu-
lation frequency situated between two storage frequencies,
called bounding frequencies, the original coefficient being re-
covered after multiplying by the sinusoidal oscillating term.

This technique widely differs according to the type of
discretization used. Its first implementation was based on
constant elements [14]. This technique has been extended to
quadratic isoparametric elements {15, 16, 17] in the case of
3D problems without considering the axisymmetrical case.

The subject of this paper deals with the fluid propagation
part of this coupling, i.e. the BEM code, and, in particular,
with a multi-frequency analysis development. In this case,
the boundary conditions are Neumann conditions (scattering
of an incident plane wave by a rigid body or radiation in the
fluid from an elastic structure on which displacements are
prescribed). The time dependence of the variables (pressure
and displacement) is harmonic (e“?). The linear frequency
interpolation method is applied to 3D and axisymmetrical
problems with quadratic isoparametric elements. An origi-
nal way of computing the non-oscillating coefficient is shown
in the axisymmetrical case. It consists in decomposing ev-
ery circular element into sub-circular elements on which an
adapted distance is used to factorise out the variation terms
in the matrix coefficients. This decomposition leads to an
important saving of CPU time.

After a brief reminder of the BEM theory, this article
presents the linear frequency interpolation principle and its
application to 3D problems. Then, the description of a nu-
merical integration technique and the new multi-frequency
analysis applied to the axisymmetrical probiems is presented.
Finally, numerical validation and conclusions are provided.

All the test have been realised on a HP 9000/735 worksta-
tion, the sound speed in the fluid medium (water) is 1490 m/s.

Figure 2. Axisymmetrical quadratic isoparametric element.

2. Conventional basic equations

In this part, the BEM is briefly reviewed.
The well-known Helmholtz differential equation governs
the propagation in linear acoustics:

Ap+k’p=0 (2)

for the high pressure p (called pressure in the following),
where k is the wave number. At the same time, Dirichlet or
Neumann conditions on the surface of the immersed structure
and Sommerfeld condition are taken into account.

Usually, this differential equation with boundary condi-
tions is replaced (18, 19, 11] by the Helmholtz integral equa-
tion (HIE):

pc(r) + [ [ o) ) P g )y =
r

p(r) refy ®3)
rel 4)

a(r)
A (r)

where pin is the incident wave, 7 the calculation point on the
surface I or in the fluid domain §2¢, 7' an integration point
on I', g the free-space Green’s function previously defined,
8/0n’ the outward normal derivative on the surface at ', dr’
the surface element and « the solid angle. The discretization
of the surface equation (4) using isoparametric elements with
quadratic variation [20] leads to the linear square system:

(Ap} = 18 { 32 } - (e, ®)

where [A)] and [B] are the integral equations matrices, {p},
{Op/On} and {pin.} are the nodal pressures, nodal normal
derivative pressures and nodal incident pressure vectors. For
the Neumann problem, the unknown is the {p} vector. After
calculation of the surface pressure, the near-field pressure
and the far-field pressure can be directly deduced.

For a 3D problem, respectively for the left-hand and the
right-hand matrix, the matrix coefficients of the linear system
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are [4]:

0
Anis = [[ Gro(rmr € m)Nite.m dr'(€,)
r;

«

Buij = /F / 9T €M) NiE ) AP E ), (D)

where m is the index of the calculation node, 75 the index of
the node 4 of the element I';, V; the pondering functions of
the element I';, 6 the Kronecker’s symbol and (¢, 7) are the
local coordinates on the element (see Figure 1). In the case
of an axisymmetrical problem, these coefficients are [4]:

A = [[ gmolrm @R MO ar'(E,0)
r;

(87
— Omij ﬁ’ (8)

Buij = / / o(rm (6 Q) NiE) (€ 0),  (9)

where £ is the local coordinate on the element and ¢ the az-
imuthal angle (see Figure 2). The free-space Green’s function
and its normal derivative are:

1 eichm

!
ms = - 5 1
9(rm, ) = Do (10)

(Pm,7') = 1elton i 1
o I\ ) T g D2

Dp,
: ("'1(5577) - "'m) . nla (11)

where D,, is the distance between the calculation node 7,
and the integration point v’ which depends upon the local
coordinates.

3. Linear frequency interpolation method

In this section, the linear frequency interpolation method is
detailed.

3.1. Aim

A shortcoming of the BEM is the frequency dependence of
the integral equation matrices, and therefore, of the matrix
coefficients. So, for each desired calculation frequency, an
entire execution of the BEM procedure is needed, and, in
particular, an execution of the matrix construction phase.
This phase computes the matrix coefficients and requires a
great number of integrals calculations. For an analysis of a
large bandwidth frequency spectrum. this problem becomes
acute, the cost of CPU time is very high.

The linear frequency interpolation method allows to re-
duce the number of matrix construction phases. Only two
matrix construction phases are executed, at the two bound-
ing frequencies. Thus it provides an important saving of CPU

time. Between these two frequencies, the matrix construc-
tion phase is replaced by a linear frequency interpolation of
the corresponding matrix coefficients. This technique is very
well suited to axisymmetrical modelling for which the matrix
construction phase is very time consuming.

3.2. Method

The method is based upon the elimination of the rapid fre-
quency oscillating character of the BEM matrix coefficients
in order to use a linear frequency interpolation formula.

The fluctuating character is due to the heavy variations
of kDm and is situated in the exponential of the free-space
Green’s function and its normal derivative:

elkDm (12)

Then, to smooth out this difficulty, a term close to the value
of kD, is factorised out. So, new coefficients, which the-
oretically vary very slowly with frequency are obtained, at
two bounding frequencies, between which the application of
a linear frequency interpolation is possible. Then, multipli-
cation by the extracted fluctuating terms at the interpolating
frequency recovers the real matrices.

4. Application to three-dimensional problems

Throughout this section, the application of the linear fre-
quency interpolation to 3D problems is shown, when using
quadratic isoparametric elements.

4.1. Theoretical application

The first application of the BEM linear frequency interpola-
tion used discretization with constant elements [14]. Every
element contains one node located at its centre. So, the fac-
torising distance is the distance between the calculation node
T'm and the unique centroid node of the element I';.

Our work concerns the application of this method for any
kind of geometry, while using quadratic isoparametric el-
ements [20]. This type of element can be quadrilateral or
triangular as shown on Figure 1. The rectangular element is
composed of 8 nodes and the shape functions are:

Ni(¢,n) = 3E-DA-nE+n+1),
Np(é,m) = 1+ A -n)(E—n-1),
N3(&m) = ;A=A +nn-€-1),
Ni(,m) = 1+ A +n)(E+n-1),
Ns(&m) = 51-&)(1-n), (13)
Ne(&,m) = 51 -7°)(1-9),

No(&m) = 5(1—-n")(1+9),

Ns(é,m) = 2(1-€)(1+n).
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The triangular element is composed of 6 nodes and the shape
functions are:

Ni(&,n) = 526 +n+1)(26 +7-1),

No(&,m) = §(26 —n+1)(26 —n 1),

N3(&,m) = 30(1 +n),

Ny(&,m) = (26 —n+1)(1 -2 —7),

Ns(&m) = (1 +n)(28 +n-1), (14)
Ng(&,m) = 51 +n)(1 - 26 — 7).

The factorising distance Dy, ;; is the distance between the
calculation node 7., and the node ¢ of the element I';. As
Dy, ;; is always close to the distance D, of equation (12),
the distance Dy, — Dy, ;; is always small. Therefore, the
coefficients of the matrix [B] can be expressed as:

k(D —Dmij
Duss //e ( i)
D,
Ty

and those of the "new matrix", distinguished by the symbol’,
as:

1
Bmij — L_L_ellc

B L [t D) mydr 16
ni = 3= || N m dr' (€. (19)
Ty

The same decomposition is valid for the matrix [A]. The solid
angle is not subject to the interpolation method since it does
not depend upon frequency.

As opposite to discretization with constant elements, the
use of quadratic variation interpolation adds two constraints:
the respect of the “A/4 criterion”, which states that the di-
mension of the largest element of the mesh has to be minor
than a quarter of the wavelength to get a good precision in the
computations [20]; the duplicity of the normals at the nodes
of the mesh. This latest problem is treated by a projection
of the right-hand [B] matrix on the three space coordinates
[4, 16].

Therefore, the linear frequency interpolation contains
three steps (see Figure 3): a first step where the "new matri-
ces" are calculated and stored at the inferior bounding fre-
quency f1;a second one which is identical but at the superior
bounding frequency fo; and a third step of interpolation at
each calculation frequency f included in the f; — f range.

The method has been implemented for the 3D case in the
EQI code. An automation of its use has even been obtained:
the bounding interpolation frequencies have been fixed at
0Hz for f; and F for f5 where F' is the maximum frequency
permitted by the “\ /4 criterion”.

However, the matrix construction phase CPU time is small
compared to the resolution phase of a 3D problem. So, the
saving of CPU time is weak. Moreover, the disk storage space
taken up by the bounding matrices can be dissuasive.

In the papers of Wu et al. [15, 17], the fluctuating dis-
tance used is constant for one element (distance computation
node-centroid): it then differs from the one used here and

1. Storage step at the inferior | 2. Storage step at the superior

bounding frequency f; bounding frequency f;

New matrix construction phase

New matrix construction phase

at the frequency f; at the frequency f;

> Storage of the

Storage of the

new matrix at fj new matrix at f,

on disk on disk

3. Interpolation step at each
computation frequency f

Interpolation of the new matrix

and recovery of the original
matrices at the

computation frequency f

/
/
Ve

Computation frequency (f)

Figure 3. Linear frequency interpolation process.

theoretically allows less precision; moreover, the technique
is only applied to a spherical structure. However, here, it
is generalized to every geometric form, and the problem of
duplicity of the normals is taken into account [4, 16].

4.2. Validation

In a classical manner, the numerical validation of the devel-
opments is realized using the point-source check [11]. This
test consists in situating a point-source into the structure at
the point 7. This source radiates an analytical pressure:

eik[r—r°| eikD
pa(T)sz:A |7‘—1‘0| ==+A D’ (17)

from which its normal derivative value is evaluated on the
surface:

b)) e1I<:D
a—ﬁpa(r) =+A e [ﬂc ~ ——J (#° —r)-n'. (18)
The nodal surface value vector of these derivative values
{Ops/On} is introduced in the BEM data file. The BEM
system is solved in order to obtain the calculated pressure on
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Figure 4. Submarine structure.

Table I. Point-source check of the submarine structure at F'/2.

MSE (%) MSE (%)
option 1: 3 option 2: 3.5
1
2

Figure 5. Rigid submarine monostatic far-field directivity pattern at
F/2.

the surface. Then, the calculated pressure is compared to the
analytical pressure by the Mean-Square Error (MSE):

N
Z }pc(rn) _pa(rn)'2
MSE = |2=L (19)

N 2
Z 'pa("'n)|

where N is the total number of nodes of the mesh, p.(r,,)
and p,(r,) respectively the calculated and the analytical
pressure at the node 7.

To validate this technique, numerous examples have been
studied. Its illustration here is shown on a realistic structure:
a submarine structure, which highest reduced frequency kL
given by the “A/4 criterion” is 30 (see Figure 4). The point-
source check with the source situated at the centre of the
structure at the frequency F'/2 has shown (see Table I) the
good behaviour of the interpolation computation between 0
and F (option 2) respected to the classical calculation (with-

out using the interpolation technique) (option 1). The monos-
tatic directivity pattern is drawn at frequency F'/2 on Figure 5
where the classical calculation (option 1) is also compared
to the interpolated computation between 0 and F' (option 2).
The calculation frequency F/2 is the most unfavourable
frequency, since it is the farthest from 0 and F'. Nevertheless,
the compliance between the two options is perfect. However,
the costs of CPU time for the two options are equivalent.

5. Application to axisymmetrical problems

In this section, the application to the axisymmetrical case of
the linear frequency interpolation technique is presented.

5.1. Theoretical application

For axisymmetrical problems, the elements used in the dis-
cretization of the equations are circular slices obtained by
sub-divisions of the generatrix. These elements are isopara-
metric with quadratic variation and are constituted of 3 nodes
[20] (see Figure 2). The form functions of these elements are:

Ni(©) = 266~ 1),
Ny(€) =1-¢%, (20)
Nu(€) = (€ + 1)

The integrals in the HIE are evaluated via a semi-analytical
method [21]. This integration method first consists in sepa-
rating the singular parts (which appear when the calculation
node r;,, belongs to the element I'; in the equations (8),
(9), (10) and (11)) in the Green’s function and its normal
derivative:

ikD,, ikDm _ 1 1
SR + 21)
D, Dy, Dy,
elkDm 1
k— 22
D, (‘ Dm> 22)
e*POm(ikD,, —1)+1 1
D3, D3,

The integrands have been split into two parts (the singular and
the non-singular). The non-singular integrals are calculated
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Figure 6. Axisymmetrical decomposition points and influence zones
for the node 71; of the element I';.

by the Gauss-Legendre quadrature [20]. The treatment of
singular integrals is based upon the use of elliptic integrals
[22]: the numerical integration depending upon ¢ is removed
and replaced by a series development of elliptic functions;
the numerical integration depending upon £ is done with
the Gauss-Legendre numerical integration. Unfortunately, in
(21) and (22), e'*Pm cannot be factorised out in the two
terms of the decomposition. Thus, referring to section 3.2.,
the linear frequency interpolation cannot be applied with this
semi-analytical integration.

So, we propose another integration method which is com-
patible with the linear frequency interpolation principle.
A complete numerical integration has been developed: the
Gauss-Legendre quadrature on the two variables £ and .
Singularities appear when the calculation node 7., belongs
to the element I';. In this case and in order to treat this prob-
lem, the Gauss points number in the two directions £ and ¢
is multiplied by 2 to increase the integration points density
on the edge of the integration domain [23]. Therefore, the
singularity in the neighbourhood of the local nodes 1 and
3 (see Figure 2) is suitably taken into account. However,
when r,, is the local node 2, this increase of Gauss points
is insufficient to treat the singularity with accuracy. Then,
the integration domain of I'; is divided into two domains
separated by node 2.

Many tests have allowed to underline that, for an equiv-
alent convergence, this last integration method is faster (in
CPU time) than the semi-analytical method.

Therefore, the linear frequency interpolation principle is
applied with the complete numerical integration method.
Such as in the 3D case, this principle is applied with the use
of the distance Dy, ¢;. In accordance with Figure 6, where
a circular integration domain has been spread, some Gauss

points can be located very far from the generatrix. Then
Dy, — Dy, 35 can be very far from zero.

To be able to apply the linear frequency interpolation,
we propose a decomposition of each circular element into
subcircular elements. Every node of an element of the mesh
belongs to a perimeter of a circle and a circular element
covered by . The circular element is split into influence
zones of the same length (see Figure 6). An influence zone is
represented by a decomposition point 7 5 of the perimeter of
the node. This 7 is the closest from all the Gauss points of
its influence zone with regard to the others of the perimeter.
So, at a given 7 of an element I';, and a calculation node 7,
for each influence zone, the factorisation (15) is done with
the distance D,,,» between 7, and its . Thus, D, — D,
is small and the linear frequency interpolation scheme is led
from end to end on each influence zone. After recovering
the "original matrices" for all influence zones, a sum on
all influence zones is done in order to obtain the complete
integration.

Obviously, the decomposition points number has to be
sufficient. Due to the kind of element used here, a /4 interval
between the decomposition points is natural. To have the
same decomposition points number for every interpolation
frequency, an interval of Amax /4 is chosen (Amax = ¢/F'
where ¢ is the sound speed). Many tests have proven the
convergence of this choice.

Here, for an axisymmetrical problem, with these quadratic
elements, the “A/4 criterion” also has to be verified and a
projection of the right-hand matrix is done.

The disk storage space taken up by the bounding matri-
ces is not cumbersome since the nodes are restricted to the
generatrix.

5.2. Validation

The application of the linear frequency interpolation method
to axisymmetrical problems presented in this paper is now
tested and validated.

Four types of computations are presented:

e option a: semi-analytical option, issued from a classi-
cal calculation (without frequency interpolation) with the
semi-analytical integration mode,

e option b: numerical option, issued from a classical com-
putation with the complete numerical integration method,

e option cl: 1 interval option, issued from the linear fre-
quency interpolation method with bounding frequencies
equal to O and F,

e option c2: 2 intervals option, issued from the linear fre-
quency interpolation method with two frequency inter-
vals: 0~F/2 and F'/2-F . In this case, three storages are
executed, at 0, F/2 and F.

Several axisymmetrical examples are given to demonstrate
the good behaviour of the BEM linear frequency interpolation
technique and the improvement of computational efficiency
(saving of CPU time).

The first three examples involve the point-source check de-
scribed above. Comparisons are made between all the com-
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Figure 8. MSE for the sphere with 1 point-source at O.

putation options. The whole frequency range is covered Hertz
by Hertz.

The first structure is a sphere with maximum reduced fre-
quency ka of 4.02 (see Figure 7). The point-source is situated
at the centre of the structure. Figure 8 shows the logarithmic
variation of the MSE versus frequency. Good agreement be-
tween all the options is observed. The irregular frequency
is underlined for every option, but with a peak which is a
little bit larger for option cl. Nevertheless, this relative im-
precision is increased by the logarithmic scale used, which
amplifies the weak differences. At a given calculation fre-
quency, the cumulative CPU time takes into account the cost
of CPU time of all the previous calculation frequencies of
the range. Moreover, in the case of interpolation, the cost of
CPU time of the storage steps is taken into account before
the first calculation frequency. This cumulative CPU time
is drawn versus frequency on Figure 9. The interpolation
options become attractive from a number of calculation fre-
quencies greater than the half of the total frequency number

‘. 3a

Figure 10. Cylinder with the point-source at its centre.

between 0 and F'. The difference in CPU time between the
two interpolation options is only due to the additional storage
at F'/2 when option c2 is used.

The second example is given on a cylinder (see Figure 10).
The maximum ka is 6.28. The point-source is at the centre.
Again, the MSE (see Figure 11) and cumulative CPU time
(see Figure 12) versus frequency are provided. The conclu-
sions are the same: good compliance between all the options,
larger gap of the irregular frequency peaks with the interpo-
lation technique option c1 and a good saving of CPU time,
even clearer than on Figure 9, for the interpolation methods.

In the third example, the point-source is shifted from the
centre of a structure usually called LINE (see Figure 13). The
maximum ka of which is 7.85. With the LINE structure, the
EQI code has already allowed computations for reduce wave
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Figure 11. MSE for the cylinder with 1 point-source at O.
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Figure 12. Cumulative CPU time for the cylinder with 1 point-source
at 0.

numbers of about 20 in 3D problems and 100 in axisymmet-
rical problems. The drawings of the MSE (see Figure 14)
and cumulative CPU time (see Figure 15) versus frequency
confirm the effectiveness of the linear interpolation method.
In this case, the interpolation process needs about 5 times
less CPU time to compute the whole frequency range than
the classical methods.

The last example involves the scattering from the same
LINE target, rigid, impinged by an incident plane wave
travelling along the symmetrical axis of the geometry (see

Figure 13. LINE with the point-source shifted from its centre and
the incident plane wave.

ka= ka=7.85
. . . . . ;
0 F/2 F
B
= - b
i/,
10° |
3
w
7}
210t
]
\,
.
100 - L |
- wa
I . 2l

800 1000 1200 1400 1600 1800
frequency (Hz)

0 200 400 600

Figure 14. MSE for the LINE with 1 point-source shifted from the
centre.

Figure 13). Figures 16 and 17 show the rigid backscattered
normalized pressure spectrum. The computations are made
at each frequency Hertz by Hertz. The scattered pressure
modulus is normalized by the incident pressure modulus. On
Figure 16, the pressure is calculated on the surface: the agree-
ment between all the options is perfect, irregular frequencies
are perfectly recovered; here, the trifling differences on the
MSE does not exist anymore. In the far-field, the curves on
Figure 17 show the great efficiency of the interpolation pro-
cess.
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Figure 15. Cumulative CPU time for the LINE with 1 point-source
shifted from the centre.
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Figure 16. Rigid backscattered normalized pressure spectrum on the
surface of line.

Figures 18, 19 and 20 show the far-field directivity pat-
tern at three frequencies, respectively F'//4, F//2 and 3F /4.
For option ¢2: at F'/4, the interpolation process is done be-
tween 0 and F'/2; at F'/2, this calculation frequency being a
bounding frequency, no interpolation is led; at 3F'/4, the in-
terpolation process is done between F'/2 and F'. At the three
frequencies, the curves are identical. Excellent agreement is
again observed between every option.

The most important feature of the linear frequency in-
terpolation method applied to axisymmetrical problems is
certainly the saving of CPU time for a multi-frequency run
without significant loss of accuracy. When the size of the

Figure 17. Far-field rigid backscattered normalized pressure spec-
trum.

=

50 N

Figure 18. Far-field directivity pattern of rigid LINE at F/4 with
incident plane wave travelling along the symmetrical axis.

mesh grows, the cost of CPU time during the interpolation
step does not increase as much as the classical matrix con-
struction phase. For this reason, as it has been observed on
the Figures of cumulative CPU time, this technique becomes
more and more attractive when the size of the mesh grows.

6. Conclusions

A linear frequency interpolation method has been developed
for multi-frequency analysis in acoustics in the case of 3D
and axisymmetrical problems. It is based upon a discretiza-
tion with quadratic isoparametric elements of the HIE. This
technique is very accurate when applied to 3D and axisym-
metrical problems. For a multi-frequency run, in the case of
3D modelling, this method does not provide saving of CPU
time. However, in the case of axisymmetrical modelling, it
provides an important saving of CPU time. This saving be-
comes more important when the size of the mesh gets bigger.
The very good behaviour of the axisymmetrical case is due
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Figure 19. Far-field directivity pattern of rigid LINE at F/2 with
incident plane wave travelling along the symmetrical axis.

Figure 20. Far-field directivity pattern of rigid LINE at 3F'/4 with
incident plane wave travelling along the symmetrical axis.

to the implementation of an original and automatic decom-
position of the integration domain and an adapted integration
method.

The application of the Jones method to the BEM interpo-
lated system as well as its integration into the EQI-ATILA
codes fluid-structure coupling is available but not presented
here because of the perfect similarity of the results between
classical and interpolation methods.

In conclusion, the BEM linear frequency interpolation
technique presented in this paper turns out to be an efficient
numerical tool to analyse multi-frequency acoustic scattering
or radiation axisymmetrical problems.
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