Mirror symmetry breaking in a model insulating cuprate - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Physics Année : 2021

Mirror symmetry breaking in a model insulating cuprate

Résumé

Among the most actively studied issues in the cuprates are the natures of the pseudogap and strange metal states and their relationship to superconductivity(1). There is general agreement that the low-energy physics of the Mott-insulating parent state is well captured by a two-dimensional spin S = 1/2 antiferromagnetic Heisenberg model(2). However, recent observations of a large thermal Hall conductivity in several parent cuprates appear to defy this simple model and suggest proximity to a magneto-chiral state that breaks all mirror planes that are perpendicular to the CuO2 layers(3-6). Here we use optical second harmonic generation to directly resolve the point group symmetries of the model parent cuprate Sr2CuO2Cl2. We report evidence of an order parameter that breaks all perpendicular mirror planes and is consistent with a magneto-chiral state in zero magnetic field. Although this order is clearly coupled to the antiferromagnetism, we are unable to realize its time-reversed partner by thermal cycling through the antiferromagnetic transition temperature or by sampling different spatial locations. This suggests that the order onsets above the Neel temperature and may be relevant to the mechanism of pseudogap formation.
Fichier principal
Vignette du fichier
De la Torre et al - 2021 - Anomalous mirror symmetry breaking in a model insulating cuprate.pdf (6.65 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03216988 , version 1 (31-05-2021)

Identifiants

Citer

A. de La Torre, K. L. Seyler, L. Zhao, Sergio Di Matteo, M. S. Scheurer, et al.. Mirror symmetry breaking in a model insulating cuprate. Nature Physics, 2021, 17 (7), pp.777-781. ⟨10.1038/s41567-021-01210-6⟩. ⟨hal-03216988⟩
89 Consultations
29 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More