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Abstract The goal of this paper is to link the geometric
variables of four-dimensional spacetime with electromag-
netic and gravitational fields. For that purpose, assuming
a Hilbert-Einstein action with Yang-Mills action, we derive
both the gravitation and the electromagnetic equation within
a Riemann-Cartan spacetime where curvature and torsion
are present. We thus show that the gravitational and elec-
tromagnetic fields are respectively identified as geometric
objects of such a spacetime, namely the curvature for gravi-
tation which is a classical result, and the torsion as electro-
magnetic fields. Moreover, the torsion tensor of the space-
time is related to the so-called flux spin angular momentum
of electromagnetic waves propagating within the spacetime.

Keywords Curvature, torsion · gravitation, electromag-
netism · Riemann-Cartan manifold

1 Introduction

Deflection of light measured as earlier as 1919 was among
the first experimental measurements to point out the interac-
tion between gravitation and electromagnetic waves Dyson
& al. [1920]. An important fact usually assumed as evi-
dent nowadays but that should not be forgotten is that both
the gravitation and the electromagnetism either separately at
their own or in interaction occur in a spacetime, and then il-
lustrate the concept of field as action at distance phenomenon
MacMullin [2002]. Unification of gravitation and electro-
magnetism draw back to at least one hundred years, as re-
lated in the review paper by Goenner e.g. Goenner [2004]
where the most active period of unifying the two domains
was between 1910 and 1933. Since then, it is however recog-
nized that the unification of the gravitation and the electro-
magnetism within the same geometric framework remains
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necessary to go further into the unification of field theo-
ries e.g. Hammond [1987]. Paraphrasing Tonnelat, there
remains up to now a need of unified theory joining gravi-
tation and electromagnetism whose basic equations repre-
sent the background required to design geometrical struc-
ture of the spacetime Tonnelat [1955], and it is prior to
any other unification attempts. Since the pioneering work
of Weyl one hundred years ago, there remains among the
physics community a great interest to couple Maxwell elec-
trodynamics to Einstein gravitation e.g. Weyl [1929]. The
geometric approach for continuum physics includes at least
two steps : development of the geometric base by means of
manifold in the framework of differential geometry, and then
definition of geometric objects and their identification of
experimental quantities. As earlier as 1921, such approach
was already adopted by Eddington to extend the Weyl’s ap-
proach by using affine connection with non zero torsion to
develop gravitation and electromagnetism theory within a
unique framework e.g. Eddington [1921]. On the one hand,
the development of the Einstein gravitation theory lies upon
the Riemann geometry where the curvature of the space-
time is identified with the gravitation. More precisely, the
geodesic equation shows that inertia and gravitation are uni-
fied in a unique framework of General Relativity. On the
other hand, the Special Relativity unified the electricity and
magnetism. Early, Weyl clearly thought that gravitation and
electromagnetism could be reduced to the geometry of space-
time. Starting with Riemannian geometry, he slightly mod-
ified the metric compatibility equation to —a gbl = sa gbl
by introducing a 1-form field sa 6= 0, expecting that this 1-
form would be an electromagnetic potential. However, re-
cent studies highlight strong physics objection to this as-
sumption, namely on the definition of the proper time and
geodesic length in the spacetime resulting from the introduc-
tion of this 1-form e.g. Romero et al. [2019]. In general rel-
ativity, the metric is no longer a Minkowskian since g= g(x)



2

depends on the coordinates of the spacetime. In an attempt
to formulate an unified theory of gravitation and electromag-
netism, following the idea of Ferraris and Kijowski, Chru-
sciel proposed a Lagrangian function having depending only
upon the skew-symmetric tensor Fµn := ¬l

µnl and on the
symmetric part of the Ricci curvature tensor with nonzero
torsion e.g. Chrusciel [1984]. The use of the curvature of
the spacetime as the only one variable to sketch electro-
magnetism and gravitation might be questionable. Never-
theless, it could be checked that the two-covariant skew-
symmetric tensor Fµn satisfies the first set of Maxwell equa-
tions (Bianchi equations), and thus could be suggested as
the combined electromagnetic field e.g. Hammond [1989],
whereas the symmetric tensor obtained from Ricci curva-
ture capture the gravitational fields. Implicitly the model
proposed by Chrusciel suggests that the origin of the elec-
tromagnetism comes from the skew-symmetric part of the
spacetime connection, and then of the torsion tensor. Recent
works have shown that gravitation and electromagnetism could
be reduced to geometric object of the spacetime, gravitation
to curvature and electromagnetism to contortion tensor e.g.
Fernando et al. [2012], or torsion tensor Hammond [2018],
Rakotomanana [2018]. In Fernando et al. [2012], the au-
thors assumed a particular Riemann-Cartan structure where
the contortion tensor, is proportionnal to the product of the
Faraday strength tensor with the electromagnetic potential.
It seems however necessary to confirm or not this interesting
assumption.

Historically, the interaction of relative gravitation and
electromagnetism was often considered in a curved Rieman-
nian spacetime e.g. Fernandez-Nunez & Bulashenko [2016].
It is usually assumed that the electromagnetic field is of the
order of small perturbation of the spacetime metric. Only the
influence of the metric on electromagnetic field is mostly ac-
counted for, not the converse. Second, the influence of the
Riemann-Cartan geometry on the electromagnetic field is
not so easy. The hope to relate electromagnetism to affine
connection of spacetime draw back to Einstein himself, a
long debate among others between Einstein and Reichen-
bach relates the fact that Reichenbach showed that both the
metric g and the affine connection — of the spacetime, which
is independent on the metric g, could be derived entirely
from tetrads Fi

a and their partial derivatives with respect
to coordinates Reichenbach [1929] and they are respec-
tively related to gravitation and electromagnetism. Implic-
itly, these results suggested that metric, torsion, and curva-
ture of the spacetime constitute geometric objects of gravi-
tation and electromagnetism. Although the relation between
gravitation and spacetime curvature was clearly stated by
Einstein’s theory, the link between electromagnetism and
other geometric variables remains not clear and evident.

A free electromagnetic field is suggested to not produce
torsion e.g. Hehl et al. [1976], and there is in principle

no contribution from torsion in Maxwell equations. When a
strong magnetic field coexists with matter distribution, there
is however a possibility to induce spin polarization of in-
dividual particles composing the matter assumed as contin-
uum e.g. Prasanna [1975a]. Some authors have even sug-
gested that torsion play a keyrole in electromagnetism when
considering electromagnetic field within twisted spacetime
e.g. Hammond [1989]. They propose that the electromag-
netic potential is represented by the torsion vector Aa :=
¿a = ¿b

ab . The influence of torsion tensor as cosmic dislo-
cation (that is a singularity of the curvature tensor) was in-
vestigated in e.g. Dias & Moraes [2005], or some material
defects such as screw dislocations Fumeron et al. [2015], or
fluids with spin density e.g. Schutzhold et al. [2002]. A con-
venient method for deriving constitutive laws and conserva-
tion laws from a Lagrangian density lies on the concept of
variation of an action, namely the Lagrangian variation and
the Eulerian variation (Poincaré invariance) e.g. Utiyama
[1956]. Covariance requires the use of metric, torsion, and
curvature as arguments of Lagrangian function for a second
gradient continuum e.g. Antonio & Rakotomanana [2011].
For the present paper, we are interested in the search of link
between the electromagnetic fields and the gradient contin-
uum geometric variables developed in e.g. Rakotomanana
[2003] but extended to spacetime e.g. Rakotomanana [2019].
Electromagnetic waves, including light wave propagation,
are described by Maxwell equations within Minkowskian,
Riemannian or Riemann-Cartan spacetime. We consider in
this work some elements of the theory of interaction be-
tween gravitation and electromagnetism respectively based
on the classical Hilbert-Einstein action Hilbert [1915] and
the Yang-Mills action Yang & Mills [1954]. For the sake
of the clarity, we focus on the gravitation and electromag-
netism within spacetime although results are easily extended
to other continuum media at least from a conceptual point of
view. Indeed, from a philosophical point of view, the analy-
sis and then the physics of fields remains a most passionat-
ing domain of physics e.g. MacMullin [2002]. The appar-
ent simplicity hides a deep concept surrounding action-at-
distance. The paper is organized as follows: Section 2 is de-
voted to basic geometrical concepts of spacetimes. Section 3
deals with the classical electromagnetism within Minkowski
spacetime. Il also presents the combined gravitation theory
with electromagnetism in a Riemann curved spacetime. In
section 4, focus is on the geometric development of grav-
itation and electromagnetism deduced from the additional
action including Hilbert-Einstein and Yang-Mills contribu-
tions. Section 5 considers the extension of worldlline (au-
toparallel) deviation in presence of torsion and curvature.
Last section gives some concluding remarks.
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2 Basics on spacetime geometry

Space and time may be considered as the most fundamental
concepts of physics and even most of natural sciences. New-
ton (1687) assumed that an absolute space and time (asymp-
totic and idealized) exists prior to any other concept. The
theory of special relativity is based on two assumptions : (1)
the laws of physics are the same for all inertial observers;
and (2) the speed of light is constant and the same in a vac-
uum for all inertial observers independent of their motion
relative to the source of the light. Theory of relative gravita-
tion lies on two postulates: (1) the relativity principle saying
that the local physics is governed by the theory of special
relativity; and (2) the equivalence principle assuming that it
is impossible to distinguish gravity and acceleration locally.

2.1 Affinely connected spacetime

Mikkowski spacetime allows us to describe both particle
mechanics and electromagnetism. It constitutes the funda-
mental geometry of special relativistic mechanics (without
gravitation) and electrodynamics. Governing equations are
derived in the local coordinates of Minkowski spacetime M

endowed with the metric denoted ĝµn := {+1,�1,�1,�1}.
Coordinates within the spacetime manifold are denoted xµ :=
(x0 = ct,x1,x2,x3) where c is the light speed in a Minkowski
spacetime, considered as vacuum. More generally, space-
time is described as a 4-dimensional manifold affinely con-
nected where any event can be described by coordinates
(x0,x1,x2,x3) of R4, where index 0 stands for time e.g. Rako-
tomanana [2019]. Namely, from Galilean view, space is
a tridimensional Euclidean manifold and time is a one di-
mensional manifold, they are are assumed to exist indepen-
dently each other. In the Minkowskian point of view, space-
time is a four-dimensional manifold where time is coupled
with space. Presence and motion of a structureless particle
are assumed to not influence the spacetime geometry. In the
presence of matter, an initially flat spacetime is bent. This
results into a curved spacetime which can be understood as
gravity. In a more extended point of view, affinely connected
manifold constitutes the main geometry background for ana-
lyzing the spacetime structure with a more general purpose.

On an affinely connected manifold endowed with a met-
ric g and an independent connection —, two tensors are asso-
ciated to this connection (which is not a tensor), the torsion
tensor ¿ and the curvature tensor ¬ defined by the follow-
ing relations respectively e.g. Nakahara [1996]:
⇢

¿(u,v) := —uv�—vu� [u,v]
¬(u,v,w) := —u—vw�—v—uw�—[u,v]w

(1)

where [, ] denotes the Lie-Jacobi bracket, and (u,v,w) an
arbitrary triplet of vectors on the manifold e.g. Nakahara

[1996]. We consider the spacetime (or space) endowed with
the metric g which may depend or not of the coordinates x.
For gravitation theory, associated to this metric can be de-
fined connection —, with zero torsion ¿ ⌘ 0 but nonzero
curvature ¬ 6= 0. However, to begin with, it is usual to start
with the Minkowskian flat spacetime with the metric ĝ with
zero torsion, and zero curvature. Then we consider the ac-
tual spacetime metric g := ĝ + h, where h(x) is a pertur-
bation. With the metric and the curvature, Einstein built the
theory of general relativistic gravitation. The spacetime may
also have non symmetric connection but compatible with the
metric.

From the differential geometry point of view, it is then
clear that three tensor variables constitute the underlying
structure of the spacetime : the metric, the torsion and cur-
vature. The metric compatibility condition is an essential
property of a spacetime continuum to survive as a spacetime
continuum after non holonomic pertubation h e.g. Verçyn
[1990]. By adopting the spacetime model with affinely con-
nected manifold, we implicitely consider space of a aggre-
gate of microcosms Gonseth [1926] where connection links
each microcosm with its neighbour. Relative motions of mi-
crocosms may induce discontinuity of relative displacements
and rotations e.g. Rakotomanana [1997], called translational
and rotational dislocations. The non compatibility —g 6= 0
between the metric and the connection leads to another more
extended version of dislocations, called Somigliana disloca-
tions, which is a continuum mechanics version of the Weyl
theory Weyl [1929]. The geometric background associated
to Somigliana field of dislocation is the the Weyl manifold
where additional primal variables are the non-metricity ten-
sor Q := —g. A Somigliana dislocation is idealized in terms
of a closed volume V of ”added / substracted matter” located
within a continuum. After cutting the body and separating
two opposite faces, the operation is represented by a small
displacement field b(x), the empty space is then filled with
”added matter” (or ”substracted matter” if the two faces pen-
etrate each other after the cutting).

Cartan parallelogram Figure (1) may be better interpreted
with the concept of Cartan parallelogram. Say a scalar field
q and a vector field w within the spacetime. Consider two
vectors f1 and f2 at any point M of M , they define two paths
of length e1 and e2 that may be considered as two adja-
cent sides of an infinitesimal parallelogram. Non zero tor-
sion and curvature fields induce the following relationships
Rakotomanana [1997]:

8
>>><

>>>:

lim
(e1,e2)!0

(q 0 �q 00)/e1e2 = ¿(f1, f2) [q ]

lim
(e1,e2)!0

[fg (w0)� f
g (w”)]/e1e2 = ¬(f1, f2,w, fg)

�f
g �—¿(f1,f2)w

�
(2)
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Fig. 1: Riemann-Cartan spacetime as a set of microcosms. The space-
time M is viewed as connected chunks of micro-spacetimes having
locally their own metric, torsion and curvature, and where relative dis-
placements and rotations are allowed. The unusual feature not encoun-
tered before in Minkowski spacetime, namely a closure failure of par-
allelograms, implies the non vanishing of torsion and curvature.

where q (x), and w(x) are respectively a scalar field and
a vector field on M . We notice q 0 := q (M0), and q” :=
q (M”); and w

0 := w(M0), and w” := w(M”). The system
of equations (2) are the continuum extension of the discrete
dislocation loop induced by the discontinuity of the displace-
ment field within spacetime composed with microcosms. Fun-
damentally, the possibility of relative motion between two
neighboured microcosms induces a non zero torsion and cur-
vature.

2.2 Modelling continuum physics by Lagrangian

Action principles are widely used to express the laws of
physics, namely those of general relativity and electromag-
netism. Action is a functional basically defined on the space-
time. The Einstein-Cartan theory is the extension of the rel-
ativistic gravitation theory, allowing the spacetime to have
nonzero torsion, it was suggested by Cartan in 1922. The
application of the covariance theorem states that any La-
grangian function L (g,—,—) should be written as L (g,¿,¬)
to be diffeomophism invariant Antonio & Rakotomanana
[2011]. When the connection is that of Levi-Civita1, among
the arguments of the Lagrangian function we should con-
sider are second order derivatives of the metric as additional
variable. Let a spacetime continuum modeled by a metric-
affine manifold endowed with a connection compatible with
the metric. (a) L (g,¿ = 0,R= 0) corresponds to an strain
energy function in elastic spacetime; (b) L (g,¿) is associ-
ated to an elastic spacetime with dislocation singularity. (c)
L (g,¿,R) is associated to an elastic spacetime with dis-
location and disclination singularity. The elasticity refers to
the metric as argument of the Lagrangian function. How-

1The Euclidean connection derived from the metric tensor of a
spacetime body was mostly the connection used in continuum mechan-
ics for over two centuries, e.g. Rakotomanana [2003].

ever the general form is far from tractable. It is worth to in-
troduce the Ricci curvature tensor ¬ab := ¬l

lab . For com-
patible connection, say —g ⌘ 0, the Ricci curvature tensor
is symmetric. Curvature of a three dimensional manifold is
uniquely determined by the Ricci tensor. The scalar curva-
ture is defined by the contraction ¬ := gab ¬ab . For the
metric-affine gravity theory, the Lagrangian density takes
the form of L (g,¬), owing that metric and curvature are in-
dependent variables. In this paper we do not consider quan-
tum physics which describes phenomena physics at the small-
est scales of energy levels of atoms and subatomic particles.
We rather consider classical physics in the sense where it
describes phenomena at macroscopic and microscopic scale
levels, namely gravitation and electromagnetism.

3 Gravitation and electromagnetism within curved

spacetime

We remind in this section the covariant form of the laws of
classical electromagnetism in spacetime which are compat-
ible with gravitation. It should be stressed that originally,
the Newton absolute space, and therefore Minkowski space-
time, enters implicitly into the general theory of gravitation
and electromagnetism. We do not enter into the old debate
whether vacuum space is full of substance or empty. We
merely proceed step by step by considering a gradual com-
plexity of the spacetime from Minkowski, Riemann and then
Riemann-Cartan geometry.

3.1 Basic electromagnetism in a Minkowski spacetime

The Minkowski flat spacetime, say g = uniform, ¿ ⌘ 0 and
¬ ⌘ 0, of special relativistic physics constitutes the right
spacetime model for this purpose. Electromagnetism theory
is built upon electric field E, and magnetic field B. Both of
them depend on the space coordinate and the time in the
general case. The general form of the Maxwell equations is
intimately linked to the geometry of the spacetime charac-
terized by the Minkowski metric, they constitute the funda-
mental basis of classical electrodynamics. Before going into
the derivation of Maxwell equation, it is worth to remind the
notion of proper time in the framework of special relativ-
ity. Consider a body / or a referential frame moving with a
uniform velocity v with respect to M . The proper time is
given by : dt :=

p
1� (v2/c2)dt, where the proper time t

along a timelike world line in the spacetime M is the laps of
time measured by a clock following that line. As such, the
Maxwell equations are the conservation laws, and then by
accounting for constitutive laws, we obtain the partial differ-
ential equations where the electric and magnetic intensities
are the unknowns. By using the form notation in the four-
dimensional spacetime, the electromagnetic strength or also
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Faraday tensor is a 2-form:

F = E1dx1 ^dx0 +E2dx2 ^dx0 +E3dx3 ^dx0

+ B1dx2 ^dx3 +B2dx3 ^dx1 +B3dx1 ^dx2 (3)

from which we can easily check the correspondence of the
components Fµn with the components of tri-dimensional
space vector fields E and B. The covariant formulation of
electromagnetism theory in the Minkowski spacetime M is
classically obtained by considering the Faraday tensor (3)
from the four-dimensional electromagnetic potential A =
(Aµ):

Fµn := —̂µ An � —̂n Aµ , Fµn =

2

664

0 �E1 �E2 �E3

E1 0 B3 �B2

E2 �B3 0 B1

E3 B2 �B1 0

3

775 (4)

where —̂ is the (flat) connection of the Minkowski space-
time, and where the combined electromagnetic field (E,B)
do not transform as 3-vectors but as the six components of
the skew-symmetric tensor Fµn . We conform here to the
convention in e.g. Hehl [2008], Obukhov [2008]. In this
way the skew symmetric tensor Fµn is chosen as primal vari-
ables of the theory. Let us now define the dual variable Hµn

constructed from the electric displacement D and the mag-
netic intensity H. Independently on the constitutive laws, the
classical electromagnetism theory considers the electromag-
netic excitation as a two-form Hµn :

H := � H1dx1 ^dx0 �H2dx2 ^dx0 �H3dx3 ^dx0

+ D3dx1 ^dx2 +D1dx2 ^dx3 +D1dx2 ^dx3 (5)

in the same way as the definition of the electromagnetic
strength (3). The variable we are interested in is in fact the
dual variable H

µn in order to be able to link it with the pri-
mal variable Fab . From (5), we easily obtain the two con-
travariant components as:

H
µn =

2

6664

0 D1 D2 D3

�D1 0 H3 �H2

�D2 �H3 0 H1

�D3 H2 �H1 0

3

7775
(6)

Remark 1 For Minkowski spacetime, the relations between
fields are particular D = e0E, and B = µ0H. We notice that
that the electric permittivity and the magnetic permeability
are related by e0µ0 = 1 when we choose coordinate system
with x0 := ct. It is a particular linear constitutive law. Co-
variant formulation of constitutive laws may be derived by
means of the electromagnetic Lagrangian, and the covariant
Maxwell equations recast in 4-dimension accordingly:

L :=�1
4
F

µn
Fµn , —̂µF

µn = 0 (7)

where Fµn denotes the electromagnetic tensor including the
electric displacement field and the magnetic field.

By introducing the definitions (4) and (6) the three dimen-
sional formulation of the Lagrangian density function re-
duces to : L = 1

2 (D ·E�B ·H). From relations (4), (6), and
(7), it is easy to derive the electromagnetic wave equation in
the Minkowski spacetime e.g. Rakotomanana [2019]:

�gnb —̂n —̂b Aµ = 0 (8)

by accounting for the Lorenz gauge condition —̂n An ⌘ 0.
The equation (8) governs the electromagnetic wave travel-
ling at the speed c within Minkowski spacetime.

Remark 2 The covariance of the Maxwell 3D equations with
respect to rotations, space reflection, time reversal, and charge
conjugation (modification of positive charge to negative one)
may be checked by means of a four-dimensional covariance
analysis with respect to Lorentz group of transformations.

In presence of gravitation phenomena, the flat Minkowski
spacetime becomes curved, metric components vary with lo-
cation in the spacetime. Gravitation is related to the non null
curvature, ¬ 6= 0, within the spacetime. In the present pa-
per, electromagnetic fields equations are formulated within
curved spacetime of general relativity.

3.2 Gravitation within curved spacetime : Einstein fields
equation

Although special relativity is mainly based on the Minkowski
spacetime, which is a flat manifold, relative gravitation lies
upon the Riemannian manifold (or more precisely pseudo-
Riemannian). Let us consider a torsionless but curved space-
time (M ,g,—). The spacetime structure is summarized by
the Riemannian spacetime structure with the metric g, the
torsion ¿, and the curvature ¬:

—g = 0, ¿ ⌘ 0, ¬ 6= 0 (9)

The Lagrangian function L usually depends on the metric,
the torsion and the curvature in the general case. The rel-
evant connection for Einstein relativistic gravitation is the
Levi-Civita connection, with a non zero curvature describ-
ing the gravitational field, with the Lagrangian L (g,¬). Let
consider a Lagrangian corresponding to the Einstein-Hilbert
action of classical relativistic gravitation Hilbert [1915],
and with a retrospective analysis in Brading & Ryckman
[2008]:2

SG := (1/2c)
Z

R wn (10)

where R is the scalar curvature and wn a volume-form e.g.
Nakahara [1996], for example wn :=

p
Detg dx0 ^ · · ·^dx3

2By using a variational procedure, Hilbert preceeded Einstein with
the publication of the gravitational field equations of relative gravita-
tion by five days, however both authors arrived at same field equations
along very different paths.



6

when the spacetime is endowed with the metric g. The con-
stant factor c := 8pG/c4 is introduced to reproduce the clas-
sical mechanics of Newton when some matter is moving
within this Minkowski spacetime reduced to an Euclidian
space and a time interval e.g. Ryder [2009].

First we introduce the metric variation gab ! gab +
dgab (corresponding to the Eulerian variation of the metric
at a fixed point of the spacetime). A straightforward calculus
gives the variation of the connection and the Ricci curvature
(we omit bar overline for connection and curvature for sim-
plicity):

dG g
ab = (1/2) ggl �—b dgal +—a dglb �—l dgab

�
(11)

d¬ab = —l (dG l
ba)�—b (dG l

la) (12)

where the covariant derivative is related to the unperturbed
(metric compatible) connection. The equation (12) is known
as Palatini identity, showing that for torsionless spacetime
the variation of the Ricci tensor may be transferred to the
boundary condition terms via the divergence theorem. The
principle of least action dSG ⌘ 0 for arbitrary variation of
the metric gives the Einstein field equation of the general
relativity e.g. Lovelock [1969]:

Gab := ¬ab � (1/2) R gab = 0 (13)

which is the field equation within a Riemann spacetime, the
Euler-Lagrange equations associated to the Einstein-Hilbert
action. Metric components gab (xµ) are the unknown vari-
ables in this field equation. To this end, given a curvature
field ¬ on a metric manifold M , determination of the 10
metric components g needs integration of system of 20 sec-
ond order partial differential equations. For this to be possi-
ble, additional integrability must be satisfied for third-order
derivatives of metric components assuming that they are C3.
These are the Bianchi identities e.g. Rakotomanana [2003].

Remark 3 First, the derivation of the field equation of gen-
eral relativity, is obtained accounting that the variation of
the connection dG g

ab is shifted to the boundary by means
of the divergence operator. Second, the Einstein’s gravita-
tional equations are invariant under the group of (passive)
diffeomorphims (covariance), and not only for the group of
Lorentz transformations. Under an arbitrary change of coor-
dinate x̃a = x̃a(xµ), the same shape of equations is obtained
to give exactly G̃ab = 0.

3.3 Linearized gravitation equations : Gravitational waves

In this subsection, we derive the basic equations due to linear
perturbation of the Minkowskian metric as for linear grav-
ity phenomenon. Gravity is the consequence of how mas-
sive object deforms the spacetime. Near any massive body,
the spacetime becomes curved following the change of the

spacetime metric. The deformation does not stay only near
the massive body. The field equations of Einstein suggested
that the deformation can propagate throughout the entire
spacetime. The main difference compared to seismic waves
is that gravitational waves can travel in empty space at the
light speed. This is typical example where the gauge invari-
ance is useful for deriving the wave equations of relativistic
gravitation. The method is based on linear perturbation of
the metric, the Ricci curvature tensor, and the Einstein ten-
sor.

Consider a weak field gravitation where metric is close
to Minkowski metric gab ' ĝab +2eab , with keabk<< 13.
It is also usual to assume that at large distance from sources,
the spacetime becomes Minkowskian e.g. Dixon [1975].
Theory of special gravitation allows us to obtain the con-
servation laws associated to the linearized part of Hilbert-
Einstein Lagrangian L (gab ,∂g ∂l gab ) := (1/2c) R with:

¬l
ab µ = ĝls �

∂µ ∂a esb �∂µ ∂b esa +∂s ∂b eµa �∂s ∂a eµb
�

(14)

The equation (13) governs the dynamics of Riemann space-
time in relativistic gravitation. the unknowns are the metric
components. In the presence of moving bodies, the prob-
lem in relativistic gravitation is to solve, at the same time,
the gravitation fields induced by the bodies and the motion
of the bodies e.g. Papapetrou [1951]. From the previous
equation, we deduce the linear scalar curvature e.g. Rako-
tomanana [2019]:

R= 2 [∂ a ∂ n ean � ĝan ∂a ∂n (Tre)] (15)

The linearized Einstein’s equation of gravity Gb µ = 0 is ob-
tained accordingly after some rearrangements to highlight
the D’Alembertian operator:

Gb µ = � ĝan ∂a ∂n
⇥
eb µ � (Tre)ĝb µ

⇤
| {z }

D0Alembertian

+∂ n ∂µ ebn +∂b ∂ n enµ

� ∂b ∂µ (Tre)� (∂ a ∂ n ean)ĝb µ (16)

Despite the fact that we have ten equations for ten unknowns,
it is not yet possible, at this step, to solve them because we
have first to define a coordinate system. Indeed, the decom-
position of the metric into two terms as the flat Minkowskian
metric hb µ , and a perturbation 2eb µ is not unique. Depend-
ing on the choice of a coordinate system (xl ) the shape of
the perturbation may be different. For this purpose, let intro-
duce the Lorentz gauge (also called Einstein gauge, Hilbert

3Application of the Lagrangian formalism in general relativity may
induce some difficulties, because physical quantities in classical or spe-
cial relativity framework require fixed geometric background (New-
tonian or Minkowskian spacetime). Indeed, for general relativity the
spacetime geometry is itself a dynamical object. Separation of the met-
ric into two parts that may be respectively assigned to inertia and grav-
ity is an affair of taste e.g. Shen & Moritz [1996].
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gauge, de Donder gauge or Fock gauge). Starting from the
coefficients of connection G l

µn , the Lorentz gauge imposes
that the skew-symmetry part of the connection is equal to
zero gµn G l

µn ⌘ 0, together with its linearized version:

ĝµn ĝrl �∂µ ern +∂n eµr �∂r eµn
�

= ĝlr ∂ µ erµ � (1/2)∂ l Tr(e)⌘ 0 (17)

The requirement of gauge invariance condition based on the
Lorentz gauge, the linearized gravitation takes the form of
after some straightforward calculus :

ĝan ∂a ∂n eb µ = 0 =) = ĝan —̂a —̂n eb µ = 0 (18)

This is a wave equation in the Minkowskian spacetime where
the perturbed metric is the unknown. Obviously, it takes the
form of classical equation of a wave (18) travelling at the
speed c of the light as electromagnetic wave.

Remark 4 The source-free field equations (13) and accord-
ingly the gravitational wave equation (18) were obtained
along independent paths by Hilbert and Einstein. To account
for the sources (“forces”) terms other than gravitation, the
associated Lagrangian L may be split into the sum of two
contributions, a gravitational part given by the Riemann cur-
vature scalar and a source part which they left unspecified
except for the postulation that it depend only on the com-
ponents of the metric and the components of the electro-
magnetic vector potential and its first derivatives e.g. Sauer
[2005]. Both Hilbert and Einstein had left the source term
undetermined to some extent. Einstein had not specified his
source term at all. Hilbert proposed that the source term de-
pend only on the electromagnetic variables and implicitly
assumed that all matter is of electromagnetic origin. In the
following, electromagnetism coupled with gravitation is in-
vestigated.

3.4 Covariant Maxwell equations in curved spacetime

Various phenomenae may have effects on electromagnetic
waves such as the presence of gravitational field. The consti-
tutive equations should be worthily changed to account for
the modification of the spacetime environment in presence
of gravity for instance (curvature). Here, we thus consider
the electromagnetic constitutive laws D = eE and B = µH

where e and µ are the electric and magnetic parameters of
the spacetime replacing e0 and µ0. For the sake of the sim-
plicity, let us consider the simplest example of action for free
electromagnetic field without sources and occurring within
a Riemann curved spacetime where we assume an action in-
cluding both Hilbert-Einstein Hilbert [1915] and a Yang-
Mills Yang & Mills [1954] contributions, say e.g. Ham-
mond [1987],:

S :=
Z

M
L wn with L :=�1

4
F

µn
Fµn +

1
2c

R (19)

where no matter action is considered, and where the Faraday
tensor and the scalar curvature are defined by the relation-
ships:

Fµn := —µ An �—n Aµ , R := gµn ¬µn (20)

where the Faraday tensor Fµn is calculated with the connec-
tion with zero torsion. First, the Lagrangian variation of the
action (19) allows us to obtain the expression:

DS =
Z

M

⇢
�1

2
F

µn DFµn +
1
4
Fµn

⇣
gµl

F
rn +F

µr gln
⌘

Dglr

+
1

2c

✓
¬lr � R

2
glr

◆
Dglr +

1
8
F

µn
Fµn glr Dglr

+
1

2c
gµn

h
—l

⇣
DG l

µn

⌘
�—µ

⇣
DG l

ln

⌘i�
wn

For the variation of the Lagrangian (19), it is worth to re-
mind the independent variations of the metric and the four-
potential vector. The Lagrangian variation of the Faraday
tensor takes the form of :

DFµn = —µ(DAn)�—n(DAµ) (21)

This relation is obtained by directly writing:

DFµn = D
⇣

∂µ An �G r
µn Ar

⌘
�D

⇣
∂n Aµ �G r

nµ Ar
⌘

=
⇣

∂µ DAn �G r
µn DAr �DG r

µn Ar
⌘

�
⇣

∂n DAµ �G r
nµ DAr �DG r

nµ Ar
⌘

accounting for that the connection variation DG r
µn induces a

variation of the field DFµn . Second, the two systems of con-
servation laws associated to the unknown primal variables
(say the 4-vector potential Aµ , and the Riemannian metric
gµn ) are derived by varying the Lagrangian along the Lie-
derivative variations Lx Aµ , and Lx gµn . Shifting the diver-
gence terms at the boundary of the spacetime and assuming
a zero divergence at this boundary allow us to obtain the
conservation laws. We can rearrange the Lagrangian varia-
tion of the action to give:

DS =
Z

M
—nF

µn DAµ wn +
Z

M


1

2c

✓
¬lr � R

2
glr

◆

+
1
8
F

µn
Fµn glr +

Fµn
4

⇣
gµl

F
rn +F

µr gln
⌘�

Dglr wn(22)

owing that the Faraday tensor is in fine expressed in terms
of the potential Aµ by means of equation (20). Due to the
arbitrariness of the metric and potential variations, we obtain
the classical (and covariant) Einstein-Maxwell equations:
8
>>>><

>>>>:

—nF
µn = 0

1
2c

✓
¬lr � R

2
glr

◆
+

1
8
F

µn
Fµn glr

�1
4

⇣
gl µ

FµnF
nr +gln

FnµF
µr

⌘
= 0

(23)
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where the first equation is the covariant Maxwell equations
in a Riemann spacetime, such as second gradient continuum.
The second equation governs the interaction of electromag-
netism with gravitation. The unknowns in first term of the
second equation are the spacetime metric. The electromag-
netic source (including both the second and the third terms)
in the second equation constitutes the energy-momentum
tensor. They influence the gravitation field and vice versa the
metric field has also some influence on the electromagnetic
field via the Levi-Civita covariant derivative —. Maxwell
equations (23) (first row) are used to analyze the electromag-
netic wave within a Riemann spacetime. The first equation
may be re-written:

—nF
µn = —n

�
gµa gan

Fab
�
= —n

h
gµa —a An �gnb —b Aµ

i

= gµa
h
—a —n An +¬n

nag Ag
i
�gnb —n —b Aµ = 0

where we have used the Schouten relations e.g. Rakotomanana
[2003] with a zero torsion. Maxwell equations include a
classical wave part, a divergence term, and the contribution
of the Ricci curvature of the spacetime:

�gnb —n —b Aµ +gµa —a —n An +gµa ¬ag Ag = 0 (24)

The first term expresses a D’Alembertian operator. The sec-
ond term may be dropped if we assume a Lorenz gauge
—n An = 0. We then obtain the electromagnetic wave propa-
gation equation within curved spacetime:

�gnb —n —b Aµ +gµa ¬ag Ag = 0 (25)

in which we notice the direct influence of the gravitation
(represented by Ricci curvature) on the electromagnetic wave
propagation. In the following we will consider an extension
of the equation (25) in the framework of Riemann-Cartan
spacetime.

3.5 Some remarks on electromagnetic fields

The second row of system (23) is the field equation which
extends the Einstein equation for Riemann-Cartan space-
time, where the term represents the energy momentum anal-
ogous of the Maxwell energy-momentum for the space part,
and with nonsymmetric property when considering the time-
like part:

T lr :=�1
4
F

µn
Fµn glr �

Fµn
2

⇣
gµl

F
rn +F

µr gln
⌘

(26)

It is the Minkowski energy-momentum tensor due to electro-
magnetic field. It modifies the gravitational field as source
whereas the spacetime modifies the electromagnetic field
according to (25). The temporal component of the energy-
momentum (26) holds: T 00 = 1

2
�
DiEi +BiHi

�
, which is ex-

actly the electromagnetic energy density

T 00 = (1/2)(D ·E+B ·H) := E

in a three-dimensional formulation. By introducing the elec-
tromagnetic tensors (4) and (6) into the expression of the
energy-momentum tensor, we have the Minkowski tensor
T µn is not symmetric when considering the time index 0.
It is worth to express the energy momentum as:

T µn
M =


E E⇥H

D⇥B T
M

�
(27)

where E is the energy, and T
M is the Maxwell tensor with

contraviant components T i j. The (nonsymmetric) energy-
momentum such defined is called Minkowski energy mo-
mentum.

Remark 5 The Poynting vector S := E⇥H (originally dis-
covered by JH Poynting in 1884) represents the rate of en-
ergy in the i-direction. However, it is well-known that the
Maxwell equations admit only the fundamental fields E and
B, without considering any model of material media where
the electromagnetic fields occur. In such a case, the Poynt-
ing vector is rigorously defined as S = 1

µ0
E⇥B, where µ0

is the vacuum permeability (Minkowski spacetime). This is
considered as the general expression of the Poynting vec-
tor. The moment of the Poynting vector J :=

R
x⇥ Sdv is

defined as the angular momentum including the so-called
orbital angular momentum and the spin angular momentum
e.g. Barnett [2002].

We relate the electromagnetic fields T lr as source of the
bending of the spacetime, we can multiply this equation by
the covariant components of the metric glr to obtain with-
out difficulty the Ricci curvature and then the curvature of
the spacetime:

�R= T := glr T lr
M =�2cFlrF

lr = c (D ·E�B ·H)

(28)

which is exactly c times twice of the electromagnetic part
of the Lagrangian.

Remark 6 In this section the goal is not reached because the
electromagnetic variables should be considered as additional
variables. They are not directly related to the spacetime ge-
ometry. On should add the electromagnetic potential A (or
the electromagnetic Faraday strength F ) as arguments of
the Yang-Mills action.

4 Gravitation and electromagnetism within twisted and

curved spacetime

Analysis of electromagnetic fields in presence of extremely
massive gravitation remains a relevant topic in relativistic
astrophysics. Propagation of electromagnetic waves governed
by Maxwell equations within a curved spacetime constitutes
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a fundamental basis for studying signals received from neu-
tron stars and black holes to name but a few in astrophysics.
Other methods consist in measuring the signal due to grav-
itational waves. It is now admitted that the influence of the
non-Minkowskian metric of the curved spacetime is much
stronger on the electromagnetic field Fµn(xa) than the in-
fluence of this field on the bending of the spacetime M .
Including the torsion of continuum recently gains interest in
the propagation of light in twisted medium e.g. Zhang & al.
[2019]. In this section we consider the gravitation electro-
magnetism interaction within a Riemann-Cartan spacetime
endowed with metric gab (xµ) and connection G g

ab (x
µ). We

consider curved spacetime (M ,g,—) with non zero torsion.
As previously, the spacetime structure is caracterized by the
Riemann-Cartan spacetime with the metric g, the torsion ¿,
and the curvature ¬:

—g = 0, ¿ 6= 0, ¬ 6= 0 (29)

In the following, we derive the Maxwell equations in a curved
and twisted manifold M . By using a formalism based on
exterior calculus, Maxwell equations were established for
various continua (Minkowski, Riemann, and almost post-
Riemann) Puntigam et al. [1997] where they considered
as basic axioms the conservation of electric charge and the
conservation of magnetic flux. This allows them to put aside
the connection structure of the spacetime. Third, either for
metric-based energy, or metric-torsion based energy, it is
worth to define a Lagrangian L (Fµn , · · ·) associated to the
electromagnetic fields when we face the question of vari-
ational formulation. To relate electromagnetism with rela-
tivistic gravitation, it is interesting to remind that applica-
tion of the gauge invariance principle for the group of trans-
lation (corresponding to torsion) of the spacetime M with
Yang-Mills type Lagrangian, quadratic in the field strengths
Fµn (as for electromagnetism), allows us to deduce the Ein-
stein’s theory of gravitation, based on the Einstein-Hilbert
action e.g. Cho [1976a].

4.1 Faraday tensor in twisted spacetime

Formulation of Maxwell equations by means of differential
forms may be not equivalent to formulation by means con-
nection in Riemann-Cartan spacetime e.g Vandyck [1996].
In a Riemann-Cartan spacetime, the Faraday tensor is cal-
culated as follows e.g. Prasanna [1975a], Smalley [1986]:
Fµn := —µ An �—n Aµ = ∂µ An �∂n Aµ +¿r

µn Ar . It is rather
different if calculated by means of an exterior derivative of
the 1-form A = (Aµ) e.g. Prasanna [1975a] :

F := dA =) Fµn = ∂µ An �∂n Aµ (30)

where, in such a case, we have exactly the same form of
Faraday tensor in either Minkowski spacetime or Riemann

spacetime. In this framework, two of the Maxwell equa-
tions dF = 0 would be expected since the Faraday tensor
2-form F is exact, say F := dA, and hence closed, dF =
d (dA) = 0. In order to investigate electromagnetic waves
within twisted and curved spacetime matter (which may be
considered as a Riemann-Cartan manifold), it is assumed
that the electromagnetic field is described by an electro-
magnetic 2-form Fµn . It constitutes an extended model of
electromagnetism within curved spacetime as earlier as in
e.g. Plebanski [1960], and in the framework of differential
forms e.g. Prasanna [1975a]. Prasanna [1975a] has derived
the Maxwell equations in a Riemann-Cartan spacetime. The
Faraday tensor (minimally coupled to the gravitation in a
Riemann-Cartan spacetime via the torsion) and the scalar
curvature are defined by the relationships:

Fµn := —µ An �—n Aµ = —µ An �—n Aµ �¿r
µn Ar ,

R := gµn ¬µn (31)

where the contravariant components of Fµn are calculated
by means the connection with torsion e.g. Smalley & Krisch
[1992]. Definition of Faraday tensor (30) in Riemann space-
time holds for both Euclidean and (pseudo)-Riemannian and
also even proposed in some post Riemannian spacetimes e.g.
Puntigam et al. [1997]. As extension the definition (31) is
valid for both Euclidean, Riemannian and Riemann-Cartan
spacetime. This again illustrates the fact that the extension
of physical variables as Fµn can be done in many ways
(as a 2-form in e.g. Puntigam et al. [1997] or as a twice
the skew-symmetric part of the gradient in e.g. Smalley &
Krisch [1992]).

4.2 Field equations, wave equations

For the sake of the simplicity, consider the action for free
gravito-electromagnetic field without sources and occurring
within a Riemann-Cartan spacetime (curved and twisted),
the Yang-Mills and Hilbert-Einstein action e.g. Charap &
Duff [1977],:

S :=
Z

M
L wn with L :=�1

4
F

µn
Fµn +

1
2c

R (32)

where no action due to matter is considered. For the vari-
ation of (32), it is worth to remind that the metric and the
torsion are independents primal variables as well as the elec-
tromagnetic four-potential. The Lagrangian variation of this
2-form and curvature include both the variation of the po-
tential Aµ , the variation of the Riemann metric gab , and also
the variation of the connection G g

ab . First, the Lagrange vari-
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ation of the action (32) allows us to obtain :

DS =
Z

M

⇢
�1

2
F

µn DFµn +
1
4
Fµn

⇣
gµl

F
rn +F

µr gln
⌘

Dglr

+
1

2c

✓
¬lr � R

2
glr

◆
Dglr +

1
8
F

µn
Fµn glr Dglr

+
gµn

2c

h
—l

⇣
DG l

µn

⌘
�—µ

⇣
DG l

ln

⌘
�¿r

l µ DG l
rn

i�
wn = 0

where the last line is deduced from extended version of Pala-
tini relation. Indeed, we can formulate the variation of pri-
mal independent variables as dgab and the connection dG g

ab .
For this purpose, we remind the relations e.g. Rakotomanana
[1997]:

D¿g
ab = DG g

ab �DG g
ba ,

D¬l
ab µ = —a

⇣
DG l

b µ

⌘
�—b

⇣
DG l

aµ

⌘
�¿n

ab DG l
nµ (33)

where the covariant derivatives use the connection with non
zero torsion. The second equation (33) extends the Palatini
identity when continuum has torsion. The Lagrangian varia-
tion of the Faraday tensor takes the form of :

DFµn = —µ(DAn)�—n(DAµ)+D¿r
µn Ar (34)

This relation is obtained by directly writing:

DFµn = D
�
∂µ An �G r

µn Ar
�
�D

�
∂n Aµ �G r

nµ Ar
�

=
�
∂µ DAn �G r

µn DAr �DG r
µn Ar

�

�
�
∂n DAµ �G r

nµ DAr �DG r
nµ Ar

�

accounting for that the variation of the geometric structure,
say D¿r

µn , induces a variation of the field DFµn . At a sec-
ond step, the three systems of conservation laws associated
to the unknown primal variables (say the 4-vector potential
Aµ , the Riemannian metric gµn , and the torsion ¿r

µn ) are
derived by varying the Lagrangian along the Lie-derivative
variations Lx Aµ , Lx gµn , and Lx ¿r

µn . Now we factorize
the variation with respect to the Lagrangian variations of
the electromagnetic potential DAµ , the metric Dglr , and
the connection DG l

µn respectively. The presence of the term
DG l

µn means that the torsion and curvature may evolve since
they are independent primal variables of the theory. By shift-
ing divergence terms at the boundary of the spacetime M

we can rearrange the Lagrangian variation of the action to
give:

DS =
Z

M
—nF

µn DAµ wn +
Z

M


1

2c

✓
¬lr � R

2
glr

◆

+
1
8
F

µn
Fµn glr +

Fµn
4

⇣
gµl

F
rn +F

µr gln
⌘�

Dglr wn

�
Z

M

✓
(Fµn �F

nµ) Al +
1
c

grn ¿µ
lr

◆
DG l

µn wn (35)

owing that the Faraday tensor is in fine expressed in terms of
the potential Aµ by means of (31). Due to the arbitrariness

of the variation of primal variables, we deduce the system of
partial differential equations:
8
>>>>>>>><

>>>>>>>>:

—nF
µn = 0

1
2c

✓
¬lr � R

2
glr

◆
+

1
8
F

µn
Fµn glr

�1
4

⇣
gl µ

FµnF
nr +gln

FnµF
µr

⌘
= 0

(Fµn �F
nµ) Al +

1
c

¿µ
lr grn = 0

(36)

where we notice a slightly extension of the fields equations
in Charap & Duff [1977] for Riemann-Cartan spacetime.
The first row of the system (36) expresses the Maxwell equa-
tions in Riemann-Cartan spacetime, and it should be stressed
that for this Lagrangian (model), the potential Aµ may be ap-
parently calculated independently on the gravitation (except
eventual coupling at the boundary ∂M ). The connection ap-
proach for Faraday tensor is equivalent to the differential
form approach when the spacetime is Riemannian without
torsion (Vandyck [1996]), or when the non metricity of the
connection is traceless. The Maxwell equations of (36) show
that the connection approach with torsion is ”naturally” de-
duced from a variation principle, and the same form as the
form approach is obtained.

Remark 7 It is stressed that for non-symmetric tensors, care
should be taken about the placement of the indices.

Non symmetry of the Ricci tensor First, the difference be-
tween the spacetime connection connection and the Levi-
Civita connection is the contortion tensor:

T
g
ab := G g

ab �G g
ab (37)

where G g
ab are the Christoffel symbols associated to the

metric gab . The contortion tensor describes the deviation
of the matter geometry from the Riemannian geometry one,
whose connection reduces to the Christoffel symbols. By
choosing a metric connection on the manifold, we have:

¬g
abl = ∂a(G

g
bl +T

g
bl )�∂b (G

g
al +T

g
al )

� (G µ
al +T

µ
al )(G

g
b µ +T

g
b µ)

+ (G µ
bl +T

µ
bl )(G

g
aµ +T

g
aµ)

We arrive to the expression of the curvature strain which is
defined as the difference between the matter and the curva-
ture calculated with Levi-Civita connection:

¬g
abl = ¬g

abl +—aT
g
bl �—bT

g
al � (Tg

b µT
µ
al �T

g
aµT

µ
bl )

(38)

where another interest appears when we calculate the Ricci
curvature which is obviously non symmetric :

¬bl := ¬a
abl = ¬bl +—aT

a
bl �—bT

a
al

�(Ta
b µT

µ
al �T

a
aµT

µ
bl ) (39)
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where we notice that the Levi-Civita covariant derivative is
used for calculating the contortion. In view of the relation
(39), we notice the possibility of the Ricci tensor to be not
symmetric in presence of torsion. The gravitational part in
the equation (36�2) is then not symmetric too, and this is
coherent to the fact that the Minkowski energy-momentum
may be not symmetric too.

The curvature (39) allows us to calculate de scalar cur-
vature R := gbl ¬bl . Since the both two connections are
initially assumed metric compatible, and by shifting the di-
vergence terms to the spacetime boundary ∂M , we notice
that the gravitation part of the Hilbert-Einstein action seem
to be not equivalent when using the two connections : Levi-
Civita and the connection with non zero torsion. However,
the symmetric ¬S

bl and anti-symmetric ¬A
bl parts of the

Ricci curvature are obtained from (39):
(

¬S
bl = ¬bl

¬A
bl = —aT

a
bl �—bT

a
al � (Ta

b µT
µ
al �T

a
aµT

µ
bl )

where we notice that the symmetric part reduces to the Ricci
curvature associated to the Levi-Civita connection whereas
the skew-symmetric part includes all the remaining terms
of the equation (39). We easily deduce that the two scalar
curvatures are equal R := gbl ¬bl = gbl ¬bl = R and the
same Lagrangian density of the gravitation by using the two
connections. We nevertheless draw attention that the choice
of the volume-form wn for integrating 4-forms should be un-
dertaken carefully to ensure compatibility e.g. Mosna & Saa
[2005].

Electromagnetic wave propagation The Maxwell equations
(36) (first row) may be used to analyze the electromagnetic
wave propagation within a twisted and curved spacetime.
Let consider a spacetime M endowed with a metric gab
and a connected with G g

ab , this later is compatible with the
metric. Maxwell equations may be re-written as follows:

—nF
µn = —n

�
gµa gan

Fab
�
= —n

h
gµa —a An �gnb —b Aµ

i

= gµa ⇥
—a —n An �¿g

na —g An +¬n
nag Ag⇤

�gnb —n —b Aµ = 0

where we used the Schouten’ relations e.g. Rakotomanana
[2003]. By arranging the previous relationships, we notice
that the Maxwell equations include, as for elastic wave prop-
agation, a classical wave part, a divergence term, and the
contribution of the twisting and the Ricci curvature of the
spacetime:

�gnb —n —b Aµ �gµa ¿g
na —g An +gµa ¬ag Ag = 0 (40)

where the condition —n An ⌘ 0 was used to extend the Lorenz
condition in the framework of Riemann-Cartan geometry,
more specifically in the way of Gauss units system. The first
term expresses a D’Alembertian operator. The second term

may be dropped if we assume a null divergence as a gauge
condition. For a non twisted and non curved spacetime, the
electromagnetic wave propagation equation reduces to ⇤ Aµ =
0. The third term introduces a first covariant derivative which
leads to a diffusion of the wave (spacetime attenuation), and
the last term points out a breathing mode whenever the bound-
ary conditions allow it e.g. Futhazar et al. [2014]. What
should be observed too is that the torsion and Ricci curva-
ture influence the wave propagation linearly. It should be
stressed that the spacetime geometry and in fine the gravi-
tation is in fact tightly linked to the electromagnetism phe-
nomenon. This may not be perceived at a first sight. In sum,
the second row of the system (36) gives the coupling equa-
tion of the electromagnetic field and the gravitational field
one. The electromagnetic terms act as a source-term for the
gravitation. They act as a kind of electromagnetic energy
generating evolution of the spacetime metric. We recognize
the Einstein field equation in the absence of the electromag-
netic field. Despite its apparent relative simplicity, the sys-
tem of partial differential equations (36) remains complex
since the connection, and by the way the Ricci and total cur-
vatures, includes both the (gravitational) metric gµn and the
contortion tensor Tg

µn .

Remark 8 Most importantly, the torsion ¿ of the spacetime
is related to the flux spin angular momentum of electro-
magnetic waves e.g. Allen & al. [1992], Barnett [2002],
Milonni & Boyd [2010] as shown in the equation (36-3).
This equation is deduced directly from a variational princi-
ple by assuming an additive action including both the Hilbert-
Einstein and Yang-Mill actions. In a recent work, by using
another meyhod based on the fields equations, it has also
been shown that electromagnetic spin creates torsion within
spacetime Hammond [2018], and accordingly the presence
of the torsion as argument of the Lagrangian L is required
to ensure gauge invariance of the electromagnetism theory.
Electromagnetic waves and particularly, light beams have
angular momentum, corresponding to the Poynting vector.
There are two particularly manners in which a electromag-
netic waves can rotate: if every polarization vector rotates,
the wave has spin; if the phase structure rotates, the wave
has orbital angular momentum. What would be interesting
too is that spin angular moment as well as orbital angular
momentum have mechanical effects, this may open to some
research in the domain of relativistic optomechanics at least
from a basic theoretical point of view.

4.3 Remarks on the extended electromagnetism wave
equation

The third row of (36) gives the equation to calculate the
torsion field. It is striking its analogy with the relation as-
sumed by Fernando et al. [2012] by considering a partic-
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ular Riemann-Cartan spacetime and working with contor-
tion tensor. It is a link between electromagnetic fields and
the twisting of the spacetime. What is interesting is that the
electromagnetic field allows us to calculate with an algebraic
explicit formula the torsion field by means of the third row.
Once the torsion is obtained, we can apply covariant deriva-
tive within Riemann-Cartan geometry. By multiplying with
gns , the explicit formula for calculating the torsion is ob-
tained accordingly by means of an algebraic relation:

¿µ
ls = �c gsn (F

µn �F
nµ)Al

= �2c gsn
⇣

gµa gnb �gµb gna
⌘

Al —a Ab (41)

owing the expression of the electromagnetic strength in terms
of potential. It may be noticed that the contribution of the
electromagnetic potential to the torsion field is of second or-
der ”Al —a Ab ”.

Remark 9 The investigation of the interaction of electromag-
netic masses with Riemann-Cartan continuum was done by
numerous authors for charged and spinning ”static” dust (here
static means here no displacement of the center of mass),
for perfect fluids with spin density e.g. Smalley & Krisch
[1992]. By analyzing the solutions of Maxwell equations,
the torsion field together with the spin of Einstein-Cartan
gravitation theory may be suggested as produced by the elec-
tromagnetic field e.g. Tiwari & Ray [1997]. Paraphrasing
these authors, it was concluded that in the absence of elec-
tromagnetic fields, the body has a vanishing spin density
which itself is associated to the continuum torsion e.g. Hehl
& von der Heyde [1973]. The third algebraic equation of
(36) conforms this conclusion concerning the torsion field.

Remark 10 From the system of equations (36), we notice
that the electromagnetic energy-momentum in a vacuum has
the same shape as for as for electromagnetic within a con-
tinuum matter Obukhov & Hehl [2003]:

T lr =
1
4
F

µn
Fµn glr � 1

2

⇣
gl µ

FµnF
nr +gln

FnµF
µr

⌘

(42)

This is a (non) symmetric Minkowski (canonical) energy-
momentum tensor e.g. Obukhov [2008] for the free electro-
magnetic field occurring within spacetime. There is a con-
troversy between the version of Minkowski and that of Abra-
ham, not deduced from a Lagrangian. We do not enter into
this long last debate, which was done in the past. We have
just to remind that the Minkowski version is defined in the
framework of Lagrange-Noether conforming to the invari-
ance approach we adopt in this work. Obukhov & Hehl sug-
gested the adoption of the Minkowski version (42) which
is motivated by the Lagrangian axiomatic approach, and by
the experimental evidence conducted in the past by Walker
& Walker (which is based on experimental measurements of

dielectric disk placed in a crossed oscillating radial electric
and longitudinal magnetic fields), and James (which is based
on a similar experimental jig but with radial electric field and
azimuthal magnetic field) Obukhov & Hehl [2003].

Remark 11 In the previous equations, the torsion does not
propagate. In order to account for the torsion propagation,
i.e., a well-known method would be to add a scalar bilinear
term of the covariant derivatives of the torsion e.g. Ham-
mond [1987] where the trace of the torsion ¿n := ¿µ

nµ
can be considered as the electromagnetic four-potential, and
the skew-symmetric part of the Ricci curvature tensor as
proportional to the electromagnetic Faraday tensor. For that
purpose, he has considered the Lagrangian: S :=

R
M (Rc +

a GµnG
µn) with Gµn := ∂µ ¿n � ∂n ¿µ where arbitrariness

of the metric and the torsion variations hold. In his approach
the electromagnetic variables are also deduced from space-
time geometry.

To go further let us consider the first and third equations
of the system of equations relating gravitation and electro-
magnetism. As for the Maxwell equations within Minkowski
spacetime, the above equation may be formulated by means
of four-potential vector Aµ by introducing properties of cur-
vature tensor, the metricity of the connection and the Lorenz
gauge (—n An ⌘ 0). The third equation may be re-arranged
to isolate the torsion. The first and third equations thus give,
by assuming a null divergence for the potential —n An = 0,:
(
�gnb —n —b Aµ �gµa ¿g

na —g An +gµa ¬ag Ag = 0
2ec (—g Aa �—a Ag)Ab = ¿g

ab

(43)

where, in the Maxwell equations, the first term represents a
wave equation, the second term a diffusion contribution due
to the torsion field, and the last term with the Ricci curvature
introduces a ”breathing” mode due to the non vanishing of
curvature tensor. It should be pointed out that the torsion
field is of second-order with respect to the potential Aa .

Remark 12 In the present model, we define the Faraday ten-
sor as Fab := —a Ab �—b Aa where the connection has tor-
sion. The U(1) gauge invariance of Maxwell equations may
be violated without cautions with this choice. Indeed by mod-
ifying the potential as Ab ! Ab + gbg —gL where L(xµ)
is an arbitrary function, we get: Fab = —a Ab �—b Aa �
¿g

ab —gL where the last term vanishes if and only if the tor-
sion is zero or the function L is covariantly uniform. Some
previous authors propose to define Fab := —a Ab �—b Aa
as Faraday tensor even in Riemann-Cartan spacetime e.g.de
Andrade & Pereira [1999], Smalley [1986]. Further anal-
yses are required in the future. Results in the framework of
Riemann-Cartan Gravitation (e.g. Sotiriou & Liberati [2007])
may highlight some problems of gauge invariance since the
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Minkowski Special Relativity

Spacetime
metric

gab :=
{+,�,�,�} g :=

q
|Detgab |

Faraday
tensor G g

ab ⌘ 0 Fab = ∂a Ab �∂b Aa

Constitutive
laws

L :=
�1

4
F

ab
Fab g F

ab = e0 gaµ gbn
Fµn

Conservation
laws —b F

ab = 0 gnb —n —b Aµ = 0

Riemann Einstein Gravitation

Spacetime
metric gab := gab (xµ ) g :=

q
|Detgab |

Faraday
tensor G g

ab Fab = —a Ab �—b Aa

Constitutive
laws

L :=
�1

4
F

ab
Fab g F

ab = e0 gaµ gbn
Fµn

Conservation
laws —b F

ab = 0 gnb —n —b Aµ �gµa ¬ag Ag = 0

Riemann-

Cartan Einstein-Cartan Gravitation

Spacetime
metric gab := gab (xµ ) g :=

q
|Detgab |

Faraday
tensor G g

ab Fab = —a Ab �—b Aa

Constitutive
laws

L :=
�1

4
F

ab
Fab g F

ab = e0 gaµ gbn
Fµn

Conservation
laws —b F

ab = 0
gnb —n —b Aµ +gµa ¿g

na —g An �
gµa ¬ag Ag = 0

Table 1: Theories of electromagnetism interacting with gravitation in
twisted and curved spacetime : Minkowski(flat), Riemann (curved) and
Riemann-Cartan (twisted and curved)

electromagnetic tensor does not satisfy the Lorenz gauge in-
variance (say U(1) gauge invariance) e.g. Puntigam et al.
[1997]. Choosing the Faraday tensor as F := dA or equiv-
alently Fµn := —µ An �—n Aµ = —µ An �—n Aµ �¿r

µn Ar
allows to obtain a U(1) invariant model but induces the fol-
lowing field equations: —nF

µn �2¿µ
rnF

rn = 0 and ¿r
µn =

0 replacing the first Maxwell equations and the third equa-
tion coupling the torsion within spacetime and the electro-

magnetic fields. It means that the torsion is identically zero
within the spacetime. Further investigations should be done
about the definition of the Faraday tensor, there is yet a lot to
be done in this domain. This may hurt at first sight, however,
more investigations should be conducted since the concept
of magnetic monopole enters into the discussion because the
Gauss law on magnetic flux should be re-analyzed in such a
case e.g. Fernando et al. [2012].

5 Geodesic and autoparallel deviation for gravitational

and electromagnetic waves

Detection of gravitational waves illustrates a well-known
application of the geodesic deviation equation e.g. Nieto et
al. [2007]. The measuring of the separation of two neigh-
bored geodesic curves in a Riemann spacetime may be eval-
uated by means of the separation acceleration. Some pre-
vious studies have extended this deviation equation to in-
clude the relativistic top moving in a gravitational field e.g.
Nieto et al. [2007], or to reformulate the geodesic devia-
tion in terms of teleparallel gravity Darabi et al. [2015].
Geodesic deviation equation describes the relative motion of
two structureless particles determined by the spacetime ge-
ometry with non zero curvature. When particles are charged
electrically, the deviation equation should account for the
charge q e.g. Balakin et al. [2000] where geodesic curves
are called autoparallel curves or worldlines e.g. Balakin et
al. [2000]. In the present subsection, we are interested in de-
veloping the extension of the deviation equation for geodesics
to autoparallel curves where the spacetime is curved with
torsion. In view of the previous results where the torsion ten-
sor of the spacetime is directly related, identified, with spin
angular momentum of the electromagnetic field by means of
the equation (41), it is necessary to check what about the in-
fluence of the torsion on the deviation of autoparallel curves.

5.1 Geodesic deviation equation in Riemannian manifold

First, let consider two geodesic curves in the pseudo-Riemann
spacetime (M ,g) denoted by g0 and g1 respectively. At the
same propertime t , we define the separation four-vector x
of the spacetime M which connects a point (event) x(t) of
the geodesic g0 to a point (event) x(t) + x (t) of a nearby
geodesic g1. The separation x is small in such a way that
any expansion of tensor function of x with respect to x can
be truncated to only the first-order terms. The relativistic
acceleration a of two material points is defined as the sec-
ond derivative of the separation vector x as the two material
points move along their respective geodesics. Let remind the
separation velocity and deduce the separation acceleration
along the geodesic curve as follows:

v := —ux , a := —uv (44)
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where the components u := dx/dt define the four-vector
velocity (timelike vector). Then the separation acceleration
takes the general form :

D2x
Dt2 := —u—ux (45)

which remains valid for either Riemann or Riemann-Cartan
spacetime. For this purpose, let us worthly remind some ba-
sic assumptions and relations:

1. A geodesic on the spacetime M endowed with an affine
connection — is defined as a curve g(t) such that parallel
transport along the curve preserves the tangent vector to
the curve. Say u a four-vector along a geodesic curve,
then we have :

—uu = 0 (46)

2. The orthogonality condition implies the nullity of the
Lie derivative of the separation vector x along the vec-
tor tangent to the geodesic curve: Lux := —ux �—x u�
¿(x ,u) = 0. This allows us to deduce two equivalent
relations :
(

—x u = —ux �¿(x ,u)
—ux = —x u+¿(x ,u) (47)

3. We also remind the basic relation for the curvature oper-
ator for any three vectors :

—u—vw�—v—uw�—[u,v]w = ¬(u,v,w) (48)

From the equation (48), we have:

—u—x u�—x —uu�—[u,x ]u = ¬(u,x ,u) (49)

where the second and the third terms vanish because vec-
tor u is tangent to a geodesic, and the Lie derivative of x
along the geodesic curve is zero respectively. We deduce the
intrinsic Jacobi equation so-called geodesic deviation equa-
tion, expressed by means of the Levi-Civita connection e.g.
Levi-Civita [1927] (1927), Synge [1934],:

D2x
Dt2 = ¬(u,x ,u) , D2x a

Dt2 = ¬a
dgb ub ud x g (50)

which is valid within a Riemannian spacetime without tor-
sion. ¬(u, ,̇u) is called Jacobi operator along the curve g(t)
with the tangent u. The geodesic deviation equation (50)
shows that the curvature produces acceleration of the sep-
aration between two neighboring geodesics g0 and g1. This
provides a geometrical interpretation of the curvature tensor.
The geodesic deviation equation constitutes a fundamental
equation for relativistic gravitation since it relates the rela-
tivistic acceleration of two nearby particles in presence of
gravitation field. In a flat spacetime, the separation will be
linear. Equation (50) allows us to analyze numerous motions

of particles in gravitational field, such as the chaotic behav-
ior of particles orbits but they are not well-suited to study
spinning particles, either for microscopic with intrinsic spin
or macroscopic bodies with intrinsic spin e.g. Leclerc [2005].

Remark 13 For Newton mechanics, a geodesic is a curve
along which a particle moves as free falling particle. The
concept of geodesic deviation is based on the comparison
of two geodesic curves in the spacetime (t,xa) for Newton
spacetime. Say two particles within a potential F(xµ), their
motion equations hold respectively:

ẍa(t) =�∂ aF(P), z̈a(t) =�∂ aF(Q) =�∂ aF(P)+ ẍ (t)
(51)

Expanding the potential about the point P gives: �F(Q) =
�F(P)� ∂bF(P) x b �O(x ). This implies the expression
of the acceleration of the geodesic deviation:

d2x a

dt2 =�∂ a∂bF x b (52)

which represents the distance acceleration between two par-
ticles falling in a nonuniform gravitation field F(t,xa). Ex-
tension of the special non-relativistic spacetime to include
gravitation is first due to Cartan Cartan [1986] and later
in e.g. Havas [1964], and for continuum mechanics in e.g.
Duval & Kunzle [1978]. In weak field condition (for earth
gravitation this means that GM/(c2R) << 1) (G is the con-
stant of gravitation, M earth mass, R earth radius, and c light
speed) and the low speed motion i.e. v/c<< 1 the difference
between Newton gravitation and general relativistic gravi-
tation may be neglected e.g. Shen & Moritz [1996]. For
relating the Newtonian description with the relativistic ap-
proach, let us remind the time variable as dt = cdt where
c is the light speed, and to rewrite the geodesic equation of
Newtonian limit case as:

d2x a

dt2 =�¬a
b00 x b (53)

where we introduce ¬a
b00 = c2 ∂ a∂bF . Such equation was

used to analyse the oblatness of the earth e.g. Greenberg
[1974].

5.2 Autoparallel deviation in Riemann-Cartan spacetime

The idea is now to detect the relativistic acceleration of two
nearby particles when the spacetime is curved with torsion.
First of all, it is worth to remind that in a Riemann-Cartan
manifold the deviation from an autoparallel curve is obtained
from the definition of the deviation (component and intrinsic
forms):

D2x
Dt2 := —u (—ux ) (54)
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t

t + dt

x

x + dx

g0

g1

u

u + du

Fig. 2: Autoparallel curves. The gap vector x separating autoparallel
timelike curves respectively g0 and g1, defined by —uu = 0.

where the connection have torsion and curvature. In the fol-
lowing, this intrinsic definition can be also used to obtain
with a straightforward calculus the result (50) on a Riemann
manifold. Let now extend to Riemann-Cartan spacetime.

Theorem 1 Let (M ,g,G ) a Riemann-Cartan spacetime with
u := dx/dt , four-vector velocity (timelike vector), and x
the separation between two autoparallel curves g0, and g1.
We assume the Lie derivative of x along u vanishes (as for
classical assumption in general relativity) Lux ⌘ 0. Then
the acceleration of the separation between two auto-parallel
curves g0, and g1 takes the form of:

D2x
Dt2 = ¬(u,x ,u)+¿

✓
Dx
Dt

,u

◆
+—u¿(x ,u) (55)

which extends the equation (50) from Riemann to Riemann-
Cartan spacetime.

Proof: The relation (48) induces —u—x u = ¬(u,x ,u). The
nullity of the Lie derivative also holds : —ux =—x u+¿(x ,u).
The separation acceleration writes in such a case:

D2x
Dt2 = —u (—ux ) = —u

�
—x u+¿(x ,u)

�

= ¬(u,x ,u)+—u [¿(x ,u)]

For the sake of clarity, we calculate separately the last term
:

—u [¿(x ,u)] = (—u¿)(x ,u)+¿(—ux ,u)+¿(x ,—uu)

where the third last term vanishes since u is tangent to the
geodesic. Owing that —ux := Dx/Dt , we get the result ⇤

Remark 14 Each term in the equation (55) has its physical
interpretation when identified with the results of Balakin et
al. [2000] (page 5011, equation (8)), where the torsion ¿
which is proportional to the Faraday tensor F appears as
well as its covariant derivative —¿ related to —F . Assum-
ing a Riemann-Cartan manifold allows us to entirely include

Theory Potential Geodesic deviation

Newton F d2x a

dt2 = ¬a
00b x b

Einstein g, — D2x
Dt2 = ¬(u,x ,u)

Einstein-
Cartan g , —

D2x
Dt2 =

¬(u,x ,u)+¿
✓

Dx
Dt

,u

◆
+(—u¿)(x ,u)

Table 2: Expression of the geodesic and autoparallel deviation equa-
tion for Newton (N), Einstein (E), and Einstein-Cartan (EC) theories.
So, the acceleration of separation is completely determined by the cur-
vature and the torsion of the spacetime. associated to gravitation and
electromagnetic fields respectively.

in the geometric backgrounds of the spacetime two kinds
of action-at-distance physics fields : gravitation and electro-
magnetism. In view of the system of equations (43), it is
obvious that the torsion of the spacetime is due to the spin
of angular momentum, and the solving of such equation re-
mains a great challenge. Notice that gravitational waves are
described by linearized gravitation field equation deduced
from curvature (18) whereas electromagnetic waves may also
described by further linearized version of (43) involving tor-
sion. For the sake of the completeness, elastic waves are
associated to linearized equations of Euler continuum me-
chanics equations. Indeed, by considering the relation be-
tween torsion tensor and electromagnetism (41), it is hope-
fully guessed that the last two terms of the (55) represent
forces due to electromagnetism. Symmetries may reduce the
number of components. For example, within Einstein-Cartan
spacetime with a spherical symmetry where the metric is of
Schwarzschild type, the simplest case where the spins of in-
dividual particles, or fluid elements composing the contin-
uum are all aligned in the radial direction, only the compo-
nent ¿0

23 = �¿0
32 := ¿0 is not equal to zero e.g. Prasanna

[1975b].

5.3 Summary

Geodesic deviation is present for any gravitational theory.
We can sketch the analogy between Newton, Einstein, and
Einstein-Cartan gravitation in the table below. In the follow-
ing table we resume the different expressions of the geodesic
deviation where t is the proper time of relativistic theory.
These three formulae express how the spacetime curvature
and torsion influence two nearby geodesic or autoparallel
curves, making them converge to or diverge from each other.
The right-hand side terms may be considered as tidal forces.
The analogies between the tidal forces resulting from the
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previous three theories is obvious4. For Newtonian gravita-
tion, the tidal forces do not explicitly depend on the velocity
u conversely to Einstein and to Einstein-Cartan gravitation.

Remark 15 In the deviation equations (53), (50), and (55),
the vector x may be physically interpreted as the vector sep-
aration of two moving objects (ideally two mass points) near
each other, and vector u represents their initial motions. The
second term is linear with respect to the separation vec-
tor constitutes the influence of the spacetime geometry on
this separation acceleration. For Einstein-Cartan spacetime,
we again observe and stress that a non curved spacetime
with torsion may induce a separation acceleration between
the two moving objects due to gravitation and electromag-
netism, but described entirely and solely with spacetime ge-
ometry.

6 Discussion

The unified theory in physics gave rise to long debate in sci-
ence history. The need of unified theory joining gravitation
and electromagnetism prior to any other unification attempts
remains up-to-date in order to design the geometrical struc-
ture of the spacetime. The Einstein-Cartan theory is prob-
ably the most natural extension of the relative gravitation
theory in order to include the non symmetry of the affine
connection, considered as independent variable with respect
to metric field. Cartan introduced additionally the torsion
tensor as arguments of the theory in 1922 and it was pro-
posed before the discovery of the electron spin. On the one
hand, numerous works devoted to the extension of relative
gravitation did not treat the electromagnetic part and might
face a problem of lack of gauge invariance. On the other
hand, there are many studies on the coupling of gravitation
with electromagnetism in a Riemann spacetime. With this
approach, it is necessary to have the presence of matter (by
the way the electron spin) in order to point out the torsion
tensor. In the present paper, we choose to avoid introduction
of matter and then provide a spacetime geometry as initial
background without reference to matter either continuous of
discrete. The guideline is to electromagnetism interacting
with gravity such as source of change of Riemann space-
time of gravitation theory to Riemann-Cartan spacetime. We
have considered in the present study the Hilbert-Einstein
action (which is the simplest case among numerous grav-
itation theories) combined to Yang-Mills action (again the
simplest case of electromagnetism theories) to relate elec-
tromagnetism and gravitation within the extended spacetime
with torsion. In the present paper, we mainly consider the
intimate link between the electrodynamics and the geome-
try of the spacetime where the electromagnetic waves are

4The geodesic deviation equation is also called the Jacobi equation
in the framework of differential geometry.

propagating. Considering a very simple shape of the La-
grangian (the same form for all the models), we extend the
geometry structure from the curved spacetime and then to
curved spacetime with torsion. In order to analyze the inter-
action of electromagnetism and gravitation, the development
of the Maxwell equations within curved spacetime shows
the electromagnetism and gravitation mutual influence by
means of the geometry characterized by metric, Levi-Civita
connection, and associated Ricci curvature. When dealing
with spacetime analogous to continuum with continuous dis-
tribution of singularity e.g. Rakotomanana [1997], where
abrupt gradients of physical properties may occur, the ex-
tension of the Maxwell equations, namely the resulting wave
propagation, is necessary to account for the non zero torsion
¿ 6= 0 and non zero curvature ¬ 6= 0. Among numerous ap-
proaches, the use of Riemann-Cartan manifold as underly-
ing geometrical structure seems worth. First, ”geometriza-
tion” of gravity developed by Einstein by considers the de-
pendence of the Lagrangian on the curvature tensor as the
starting point for deriving the field equations (Einstein equa-
tions). Second, introducing the tensor Faraday including elec-
tric and magnetic fields - within the Lagrangian, it is rec-
ognized that the light, a particular case of electromagnetic
waves, bends if viewed from a uniformly accelerating frame
and then accordingly that the gravity would therefore bend
the light. The interaction of gravitation and electromagnetic
waves are described Einstein-Maxwell equations. The ”ge-
ometrization” of the electromagnetic fields constitutes the
third step when these fields are present in the spacetime.
For that purpose, we have considered an extended spacetime
where curvature and torsion are present, a Riemann-Cartan
spacetime. By observing the fields equation, we find that
the gravitational and electromagnetic fields are respectively
identified as geometric objects of such a spacetime, namely
the curvature ¬g

abl and the torsion ¿g
ab . Further studies are

required for the invariance aspects. The equation (36) we ob-
tained, is analogous to the particular contortion tensor found
in a paper by Fernando et al. [2012]. Indeed, they have de-
duced that a particular connection defined by G g

ab := G g
ab +

T
g

ab in Riemann-Cartan spacetime allowed them to derive
Maxwell equations. It is shown that the torsion is nothing
more than the spin angular momentum of an electromag-
netic wave. The first goal of this work is reached in the sense
that the electromagnetic variables are defined entirely from
the spacetime geometry. More precisely the geometry of the
spacetime is deduced from the electromagnetic variables.
The work should not be considered as a ”geometrization” of
gravitation and electromagnetism, but should be considered
as a unification of the geometric structure of the spacetime
underlying continuum physics. Gravitation and electromag-
netic fields are merged into a set of geometric variables of
spacetime, as curvature and torsion. As a second goal, wave
propagation equations were derived by accounting for the
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geometric structure of the spacetime, they conform to pre-
vious theories in the literature and has been extended for
curved spacetime with torsion. For instance, following an-
other path Poplawski suggested to define the four-potential
as a part of the trace of the torsion itself e.g. Poplawski
[2010]. All these aspects will certainly constitute future re-
search topics. We observe that both the torsion and the cur-
vature influence the electromagnetic wave propagation in a
Riemann-Cartan spacetime. Despite the crucial point on the
Lorenz gauge invariance, this model seems to extend and
thus include all previous models.

Last but not least, we investigate the influence of tor-
sion and curvature on the deviation equation. It is found that
the derivation of the autoparallel deviation equation within
a Riemann-Cartan spacetime allows us to obtain a tidal force
including terms representing gravitation and electromagnetic
forces which are similar to results obtained by other ap-
proach. The main interest of our results would be that these
results are obtained without assuming the presence of elec-
tromagnetic field, but solely by accounting the geometric
structure, metric, torsion and curvature, of the spacetime.
Minkowski spacetime is the emptiest state, Riemann is in
the middle whereas Riemann-Cartan constitutes the fullest
state of the spacetime where gravitation and electromagnetic
phenomena are present.

7 Conclusion

Both gravitation and electromagnetism are shown to be man-
ifestation of the curvature and torsion of the Riemann-Cartan
spacetime. This geometric approach might have interest in
the continuum approach for physics of the vacuum space-
time.
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