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Recent works identified resolution limits for the distance between incoherent point sources. However, it
remains unclear how to choose suitable observables and estimators to reach these limits in practical
situations. Here, we show how estimators saturating the Cramér-Rao bound for the distance between two
thermal point sources can be constructed using an optimally designed observable in the presence of
practical imperfections, such as misalignment, cross talk, and detector noise.
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Introduction.—Our capability of resolving small details
in microscopy, and remote objects in astronomy is
determined by the achievable precision of optical imag-
ing. Historical resolution limits—as those of Abbe [1] or
Rayleigh [2]—address the effect of diffraction, but they
can be overcome when the signal-to-noise ratio is high
enough [3]. In fact, the last decade provided us with a
variety of superresolution techniques to beat these limits
by fluorescence microscopy [4–6], homodyne measure-
ments [7–9], or intensity measurements in an appropriate
basis [10,11].
A paradigmatic imaging problem is the estimation of the

separation of two incoherent point sources. By using tools
from quantum metrology [12–17], this can be optimally
solved by spatial-mode demultiplexing [18]. Extensions of
these results to thermal sources [19,20], to two-dimensional
imaging [21] and (for faint sources) to more general
scenarios [22–25] are also available.
Several experiments [26–29] implemented a binary

version of this demultiplexing technique, that distinguishes
between the fundamental and the first excited modes.
Modern light-shaping techniques, such as multiplane
light conversion [30] or wave-front shaping [31], have
recently enabled experiments demultiplexing into multiple
modes [32]. In all these experiments, only the information
obtained from a single mode (albeit up to 9 different ones in
Ref. [32]) was used to estimate the parameter. To push these
experiments towards their ultimate resolution limits, it is
crucial to determine a practical estimation strategy that
optimally combines the information contained into all
demultiplexed modes.
In this Letter, we identify such an estimation strategy. In

particular, we show how an estimator for the separation
between two, arbitrarily bright, thermal sources can be
constructed using only the average of an optimized linear
combination of demultiplexed intensity measurements.
Accordingly, this estimator is remarkably simpler to imple-
ment experimentally than standard methods requiring the

full counting statistics. Moreover, it takes into account
misalignment [18,33,34], cross talk [35], and detector noise
[36–38], and therefore it is directly relevant for practical
applications. Even in the presence of the aforementioned
imperfections, for faint sources, this estimator is efficient,
i.e., it saturates the Cramér-Rao bound. Moreover, we
demonstrate that our strategy is, in the noiseless case, also
optimal for arbitrarily bright sources, if sufficiently many
modes are measured.
Source model.—We estimate the transverse separation d

between two point sources located at positions �r0, with
r0 ¼ ðd cos θ; d sin θÞ=2. After propagation through a
diffraction-limited imaging system (possibly with finite
transmissivity κ) the sources are described by the modes
u0ðr� r0Þ, with u0ðrÞ the real point spread function (PSF)
of the imaging system. The modes u0ðr� r0Þ are non-
orthogonal, therefore they cannot be used to properly
represent the quantum state of the sources in the image
plane. This issue is solved by introducing the orthogonal
modes u�ðrÞ¼ ½u0ðrþr0Þ�u0ðr−r0Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�δÞp

, with

δ ¼
Z

d2 ru�0ðrþ r0Þu0ðr − r0Þ; ð1Þ

the overlap between the images of the two sources. The
field operators b̂� associated with the modes u�ðrÞ can be
related to the operators ŝ� ¼ ðŝ1 � ŝ2Þ=

ffiffiffi
2

p
, with ŝ1=2 the

field operators associated with the modes generated by
the sources, according to [20]

b̂� ¼ ffiffiffiffiffiffi
κ�

p
ŝ� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ�

p
v̂�; ð2Þ

where v̂� are field operators associated with auxiliary
modes, that we can assume to be in the vacuum state,
and κ� ¼ κð1� δÞ. Equation (2) allows us to propagate the
quantum state ρ̂0 of the sources into its image ρ̂ðd; θÞ after
transmission through the imaging system [39].
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We assume the sources to be in the state
ρ̂0 ¼ ρ̂s1ðNÞ ⊗ ρ̂s2ðNÞ, with ρ̂aðNÞ a thermal state with
mean photon number N in the mode associated with the
field operator â. Thermal sources with unequal brightnesses
are discussed in Ref. [39]. According to Eq. (2), ρ̂0 is
mapped into ρ̂ðθ; dÞ ¼ ρ̂bþðNþÞ ⊗ ρ̂b−ðN−Þ in the image
plane, with the information on the parameter d encoded
both in the shape of the modes u�ðrÞ and the mean photon
numbers N� ¼ Nκ� [39].
Construction of optimal observable and estimator.—To

estimate the distance d between the two thermal sources,
we use the method of moments [17]. Following this
approach an estimator of d is obtained from the sample
mean x̄μ ¼

Pμ
i¼1 xi=μ of a series of μ independent meas-

urement results xi of a given observable X̂. In particular, the
separation estimator is given by the parameter value d̃ for
which the sample mean x̄μ equals the expectation value hX̂i
[40] of the measurement operator X̂. The dependence of
hX̂i on the separation d could be known either from theory
or from a previous calibration experiment (see the param-
eter estimation block of Fig. 1). For sufficiently large values
of μ, according to the central limit theorem, x̄μ is normally
distributed with mean value hX̂i and variance ðΔX̂Þ2=μ.
Consequently, the estimation error is given by the error
propagation formula ðΔdÞ2 ¼ ðΔX̂Þ2=μð∂hX̂i=∂dÞ2.
Let us now assume that we can measure the intensity

of K spatial modes vkðrÞ with associated field operators âk.
In other words, we have access to the measurement
operators N̂ ¼ ðN̂1;…; N̂KÞ, with N̂k ¼ â†kâk, and we
can measure arbitrary linear combinations X̂m̃ ¼ m̃ · N̂,
with m̃ the measurement-coefficients vector. In this case,
it is possible to perform an analytical optimization over
all possible linear combinations of the accessible
operators, i.e., to calculate the measurement sensitivity

M½d; θ; N̂� ¼ maxm̃½ð∂hX̂m̃iÞ∂d=�2=ðΔX̂m̃Þ2. This optimi-
zation yields [41]

M½d; θ; N̂� ¼ D½d; θ; N̂�TΓ½d; θ; N̂�−1D½d; θ; N̂�; ð3Þ

with Γ½d; θ; N̂� the covariance matrix with elements
Γk;l½d; θ; N̂� ¼ hN̂kN̂li − NkNl, and D½d; θ; N̂� the deriva-
tives vector, with components Dk½d; θ; N̂� ¼ ð∂Nk=∂dÞ,
where we denoted the mean photon number in the
measurement modes as Nk ¼ hN̂ki. The optimum given
by Eq. (3) is obtained for m̃ ¼ m [41], with

m ¼ ηΓ−1½d; θ; N̂�D½d; θ; N̂�; ð4Þ

and η a normalization constant. The measurement sensi-
tivity M½d; θ; N̂� obeys the following chain of inequalities
M½d; θ; N̂� ≤ F ½d; θ; X̂m� ≤ FQ½d; θ�. Here, F ½d; θ; X̂�
denotes the Fisher information that bounds the sensitivity
of the estimation of d from measurements of X̂ according to
the Cramér-Rao lower bound ðΔdÞ2 ≥ ðμF ½d; θ; X̂�Þ−1
[12–17]. Finally, FQ½d; θ� ¼ maxX̂F ½d; θ; X̂� is the quan-
tum Fisher information which determines the ultimate
metrological sensitivity [13].
To calculate the quantities (3) and (4), we extend the

modes u�ðrÞ to a complete orthonormal basis, and we
expand the field operators âk in this basis. By means of
this expansion, the mean photon number Nk and the
correlations hN̂kN̂li can be fully expressed in terms of
the expectation values hb̂†�b̂�i ¼ N�, hb̂†�b̂�b̂†�b̂�i ¼
2N2

� and hb̂†�b̂�b̂†∓b̂∓i ¼ NþN− [39]. Finally, we obtain

ðΓ½d; θ; N̂�Þk;l ¼ ðNκÞ2ðjfþ;kj2jfþ;lj2 þ jf−;kj2jf−;lj2
þ 2Re½fþ;kf�þ;lf−;kf

�
−;l�Þ þ δk;lNk; ð5Þ

ðD½d; θ; N̂�Þk ¼ 2N κRe

�
f�þ;k

∂fþ;k

∂d þ f�−;k
∂f−;k
∂d

�
; ð6Þ

with the mean photon number Nk ¼ Nκðjfþ;kj2 þ jf−;kj2Þ,
and f�;k ¼

R
d2rv�kðrÞu0ðr ∓ r0Þ.

Optimality of the estimator.—We now study the opti-
mality of this strategy by comparing the measurement
sensitivity M½d; θ; N̂� (3) with the Fisher information.
To this goal, and for the rest of this work, we consider
a Gaussian PSF, u0ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπw2Þ

p
expð−jrj2=w2Þ.

Moreover, let us assume ideal intensity measurements in
the Hermite Gaussian (HG) basis vkðrÞ ¼ uk¼ðn;mÞðrÞ with
u00ðrÞ ¼ u0ðrÞ. In this scenario, the covariance matrix (5)
can be inverted analytically and it is possible to derive exact
expressions for the measurement sensitivity M½d; θ; N̂� and
coefficients m for an arbitrary number K of measured
modes [39]. In particular, if we measure intensity in the full
HG basis, our estimation strategy saturates the quantum

FIG. 1. Schematic representation of the estimation procedure.
In the data acquisition block, the image of the two sources enters
into an (eventually misaligned) demultiplexing device that
performs a mode decomposition affected by cross talk. The
intensity of each mode is then measured with noisy detectors.
Parameter estimation is performed (in postprocessing) linearly
combining the measured intensities with optimal coefficients, and
comparing the result with a calibration curve.
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Cramér-Rao bound calculated in Refs. [19,20], i.e.,
limK→∞M½d; θ; N̂� ¼ FQ½d; θ� [39]. When the number of
received photons is low (Nκ ≪ 1), the quantum Fisher
information is constant FQ½d; θ� ¼ 2Nκ=w2 [18], accord-
ingly small distances can be resolved as well as large ones.
Moreover, for Nκ ≪ 1, the covariance matrix (5) is
essentially diagonal, and we have

M½d; θ; N̂� ≈
X
k¼1

1

Nk

�∂Nk

∂d
�

2

; ð7Þ

that coincides with the Fisher information for demultiplex-
ing [18], i.e., in the low brightness regime our estimator is
efficient for arbitrary K. On the other hand, increasing the
sources brightness such that Nκ ≳ 1 induces a finite
probability of detecting multiple photons in the same
mode. This fact reduces the quantum Fisher information
for intermediate values of d, a reduction which is more
pronounced the larger Nκ [19,20]. For thermal sources of
arbitrary brightness, an expression for the Fisher informa-
tion for finite K is unknown.
Let us finally comment that our estimation strategy only

requires us to access the mean value of a single measure-
ment observable. Accordingly, it is practically far more
convenient than standard efficient estimators (e.g., maxi-
mum likelihood) that require knowledge of the full meas-
urement probability distribution [10].
Noise sources.—In the following, we describe how

experimental imperfections (whose impact on intensity
measurements is illustrated in the data acquisition block
of Fig. 1) can be included in our model.
First, the assumption that the demultiplexing mode basis

vkðrÞ is perfectly centered with respect to the centroid of
the two sources is often not true in practice. In particular, an
imperfect knowledge of the centroid position leads to a
misalignment of the sources and the measurement basis.
A two-dimensional shift rs ¼ ðds cos θs; ds sin θsÞ of the
sources with respect to the ideal HG measurement basis can
be readily included in our model by substituting f�;k ¼
βkð�r0 − rsÞ ¼

R
d2ru�kðrÞu0ðr ∓ r0 þ rsÞ in Eqs. (5)

and (6). Figure 2(a) shows that misalignment is mostly
relevant when it is of the order of the source separation.
On the other hand, for alignment precisions an order of
magnitude smaller than the separation, the impact of
misalignment on the measurement sensitivity M½d; θ; N̂�
can be ignored.
Let us now consider the impact of imperfections in the

mode decomposition. In particular, we model cross talk
between the detection modes as a unitary matrix ckl that
maps the ideal HG mode basis ulðrÞ into the actual
measurement basis vkðrÞ ¼

P
l cklulðrÞ. In practically

relevant scenarios, cross talk is generally weak, namely,
the off-diagonal elements of the coupling matrix are much
smaller than the diagonal ones [32,35]. The overlap

functions to be used in Eqs. (5) and (6) are now given
by f�;k ¼

P
l cklβlð�r0 − rsÞ. To assess the impact of

weak cross talk on our estimator, following Ref. [35],
we numerically generate random K × K cross-talk matrices

cij resulting in an average cross-talk probability hjcijj2i ¼
hPK

i≠j¼1 jcijj2=KðK − 1Þi, where h·i represents here an
ensemble average [42]. Figure 2(b) shows the measurement
sensitivity M½d; θ; N̂� averaged over 500 random cross-talk
matrices.
The last noise source we consider is electronic noise at

the detection stage, i.e., dark counts. We model this effect,
by adding to the quantum mechanical photon number
operators in the measurement modes N̂k a classical random
variable ξk which is thermally distributed with mean value
Ndc

k . The ratio between the dark counts and the number
of received photons σk ¼ Ndc

k =2Nκ gives the strength of
detection noise. The mean photon number N0

k in the
detection modes as well as the covariance matrix
Γ0½d; θ; N̂� are now calculated not only taking quantum
mechanical expectation values, but also classical averages
over the probability distribution of ξk. We therefore obtain
N0

k ¼ Nk þ Ndc
k , and since Ndc

k does not depend on d, the
derivative vector (6) is unaffected by dark counts. On the
other hand, the covariance matrix (5) acquires an additional
diagonal term Γ0½d; θ; N̂� ¼ Γ½d; θ; N̂� þ δklNdc

k ð2Ndc
k þ 1Þ.

The influence of dark counts on the sensitivity M½d; θ; N̂�
is shown in Fig. 2(c), assuming σk to be the same for
all modes.
The combined effect of misalignment, cross talk, and

dark counts on the measurement sensitivity M½d; θ; N̂� is

(a) (b)

(c) (d)

FIG. 2. Measurement sensitivity M½d; θ; N̂� for intensity mea-
surements into HG modes unmðrÞ with n;m ≤ Q ¼ 1, 2
[K ¼ ðQþ 1Þ2] including (a) misalignment (ds=2w ¼ 0.01,

θs ¼ π=4), (b) cross talk (hjcijj2i ¼ 0.0017), (c) dark counts
(σk ¼ 0.001 ∀ k), and (d) all three imperfections combined. In
panels (b) and (d) solid lines and bands represent the mean and 1
standard deviation computed over 500 cross-talk matrices.
Dashed lines show the results for ideal measurements, while
the green solid line describes ideal direct imaging results [39]. For
all plots, we assumed Nκ ¼ 1.5 and θ ¼ π=4.
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shown in Fig. 2(d) for experimentally relevant imperfec-
tions [43]. Considering all noise sources together, misalign-
ment and cross talk modify the demultiplexing basis;
accordingly they affect the overlap functions fk;�. On
the other hand, dark counts enter at the detection stage and
affect only the diagonal of the covariance matrix.
Accordingly, Eq. (7), which coincides with the Fisher
information in the Nκ ≪ 1 regime, remains valid if we
replace Nk with N0

k. As a consequence, in the low bright-
ness regime, our estimator remains efficient even in the
presence of noise.
Independently of the number of received photons Nκ,

Fig. 2 shows that all noise sources cause M½d; θ; N̂� to
vanish for d → 0, and therefore make it harder to resolve
small distances. However, even when all imperfections are
combined, for small separations, demultiplexing outper-
forms the most common spatially resolved intensity mea-
surements (direct imaging), which we considered without
imperfections. The minimal distance at which ideal direct
imaging outperforms imperfect demultiplexing into HG
modes unmðrÞ with n, m ≤ 2 (e.g., the crossing point
between the red and green curves in Fig. 2) is illustrated
in Fig. 3 [44]. Increasing the source brightness allows to
resolve smaller distances with both methods, and at the
same time reduces the minimal distance at which direct
imaging surpass demultiplexing.
Optimal observable.—Let us finally discuss the observ-

able that practically achieves the sensitivity bounds dis-
cussed above. To this goal, in Fig. 4, we present the
coefficients mij, Eq. (4), of the optimal linear combination
of intensity measurements in the HG modes uijðrÞ with i,
j ≤ 2 for different source separations d. Comparing the top
three panels in Fig. 4, we see that, for small separations and
all noise sources, the coefficients are weakly dependent
on d. Accordingly, in the, arguably, most interesting range
of small separations d, the observable that makes the best

use of the available measurements does not change with the
real value of the parameter. Further illustrations of this
behavior are provided in Ref. [39].
Let us now have a look at the amplitudes of the various

coefficients. First, the fundamental mode u00 contains
no information on d for small separations, accordingly
m00 ¼ 0. In the ideal case (blue bars in Fig. 4), for every
k ≤ Q all coefficients mi;k−i (with i ≤ k) are degenerate,
and their amplitude increases with k. In fact, in the absence
of noise, the optimal observable amplifies the small signals
in the higher order modes to extract the most information
on the parameter out of them. Different noise sources
modify this behavior. Misalignment (red bars in Fig. 4) is
influential for d≲ ds and tends to increase higher-order
coefficients. On the contrary, both cross talk and dark
counts (green and orange bars in Fig. 4) add noise to the
higher order modes. Accordingly, the coefficients for these
modes get strongly depleted, and for small separation the
ultimate sensitivity can be achieved by only measuring
u01ðrÞ and u10ðrÞ. For larger separations, even in presence
of noise, the optimal observable gets significant contribu-
tions also from higher order modes (e.g., orange bars in the
bottom panel of Fig. 4).
Conclusions.—We presented a procedure to estimate the

separation between two thermal sources from an optimal
combination of demultiplexed intensitymeasurements. In the
limiting case of ideal intensity measurements into infinitely
manyHGmodes, our approach reaches the quantumCramér-
Rao bound for arbitrary source brightness and separations.
For faint sources, the sensitivity M½d; θ; N̂� of our method
saturates the Fisher information even in the noisy scenario.
In other words, in the Nκ ≪ 1 regime, our estimator makes
the best possible use of a (possibly noisy) demultiplexing
measurement. Interestingly, this approach allows to reach

FIG. 3. Smallest source separation d at which ideal direct
imaging outperforms demultiplexing [into HG modes unmðrÞ
with n, m ≤ 2] as a function of the (a) misalignment, (b) cross
talk, and (c) dark count strengths for a fixed finite value of the
other two imperfections (same as in Fig. 2), and different
brightnesses Nκ ¼ 1.5 (blue), 5 (red), 10 (green).

FIG. 4. Optimal coefficients mij for measurements in the HG
basis uijðrÞ with i, j ≤ 1. The modes’ intensity distributions are
plotted below the corresponding coefficients. Different noise
sources are considered: (blue) none, (red) misalignment

(ds=2w¼0.01, θs¼π=4), (green) cross talk (hjcijj2i¼0.0017),
and (orange) dark counts (σk ¼ 0.001 ∀ k). Green bars for cross
talk are averaged over 500 cross-talk matrices. All plots corre-
spond to Nκ ¼ 1.5 and θ ¼ π=4.
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optimality using a practical estimator that only requires
knowing the mean value of a single observable. In addition,
for small separations d, the weak dependence of the optimal
observable on d allows us to identify an estimation strategy
valid over a wide range of separations.
The optimal observable is given by Eq. (4) and can be

determined in practice in different ways. A measurement of
the covariance matrix and derivative vector using test sources
naturally accounts for all experimental noise sources.
Alternatively, these properties can be predicted from theory
models if sufficient information about the noise is known:
Detection noise is routinely measured in experiments and the
cross-talk matrix can be extracted from a careful charac-
terization of the mode sorting device. Misalignment errors
mostly stem from an imprecise knowledge of the source
centroid and can be contained by scanning the demultiplexer
in the image plane or using adaptive strategies [33].
Finally, we point out that different measurement coef-

ficients can be chosen at the estimation stage after the
measurements have been performed. Therefore, even in
the presence of a dynamically changing parameter, our
approach allows us to select at any time the optimal
observable in postprocessing.
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