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Abstract
Non-Gaussian states of an optical field are important as a proposed resource in quantum
information applications. While conditional preparation is a highly successful approach to
preparing such states, their quality is limited by detector non-idealities such as dead time, narrow
dynamic range, limited quantum efficiency and dark noise. Mesoscopic photon counters, with
peak performance at higher photon number, offer many practical advantages over single-photon
level conditioning detectors. Here we propose a novel approach involving displacement of the
ancilla field into the regime where mesoscopic detectors can be used. We explore this strategy
theoretically and present simulations accounting for experimental non-idealities such as loss and
amplification noise, showing that precise photon-number resolution is not necessary to herald
highly nonclassical states. We conclude that states with strong Wigner negativity can be prepared at
high rates by this technique under experimentally attainable conditions.

1. Introduction

Quantum information processing (QIP) on optical platforms with better scaling than can be achieved
classically is known to require states with non-positive Wigner functions [1]. In the ideal case of pure states,
a sufficient condition for this is if the wave function is described by a non-Gaussian function of the field
quadratures [2]. The experimental preparation of such non-Gaussian states is therefore of paramount
interest across the quantum optics and quantum information communities.

Strategies for preparing such exotic quantum states of light can be classified into two groups. The first of
these categories is deterministic preparation, where non-Gaussianity is induced unitarily by a Hamiltonian
that is nonlinear in the field. This class encompasses ‘push-button’ single-photon sources based on
interactions in a quantum dot, single atom or crystal defect [3]. Despite recent progress in the technical
development of these sources, they can suffer from adverse properties including poor indistinguishability,
narrow bandwidth and low mode number. Meanwhile, attempts to prepare non-Gaussian states
deterministically using bulk nonlinearities (e.g. by photon triplet generation in χ3 media [4]) have not yet
succeeded in showing Wigner negativity.

The second approach is conditional non-Gaussian state preparation. A multimode state exhibiting
Gaussian entanglement is prepared unitarily, typically by parametric down conversion (PDC) or four-wave
mixing. One mode, known as the ancilla, is then subjected to a conditioning measurement in a
non-Gaussian basis, often the Fock basis, collapsing the wave function over the remaining mode(s), the
signal, into a non-Gaussian state [5]. The outcome of the conditioning measurement must be recorded and
used in conjunction with any application of the signal: if this information is discarded, the signal is
described by an impure Gaussian state and hence is less useful for QIP. The most widely-used technique in
this class is heralded single photon preparation [6], although it has also been used in the preparation of
higher-order Fock states [7], photon-subtracted squeezed states [8], and many other schemes.
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Conditionally prepared states can have many advantages such as broad spectral bandwidth, good
indistinguishability, high collection efficiency, high purity and multimode structure. However, they suffer a
fundamental drawback in that conditional preparation is intrinsically probabilistic: projective
measurements of just one part of an entangled state will always have many possible outcomes and so the
final state impossible to know a priori. Additionally, for conditioning with direct photon counting, the
vacuum is itself a Gaussian state so non-detection events, which are the most likely measurement outcomes
in the case of low photon number, cannot be used to induce non-Gaussianity.

Conditional preparation is also at the mercy of the physical properties of the conditioning detector. At
the single-photon level, these often deviate significantly from the ideal [9]. Commercially available
single-photon avalanche detectors (SPADs) and superconducting nanowire single-photon detectors
(SNSPDs) typically saturate at the single-photon level, rendering them unable to distinguish between
single-photon and multi-photon events and hence reducing the purity of states heralded by such events.
While recent advances in SNSPD technology and the technique of pseudo-number resolved detection
propose to mitigate this, these remain at an early level of development or introduce additional experimental
challenges [10, 11]. Many such detectors also have a characteristic dead time, during which the detector is
blind to new events for some period after a detection. These effects often mean that the average photon
number in the conditioning mode must be kept well below one, to achieve purity at the price of making
non-Gaussian state preparation highly inefficient. Photon counting technologies such as transition edge
sensors exhibit low bandwidth/timing resolution, which sets a practical limitation on the rate at which they
can be used to prepare non-Gaussian states. Other considerations include the quantum efficiency (which
impacts the ability to distinguish between nearby Fock states and hence the purity), dark counts, and price,
since some technologies operate at low temperature and hence must be situated in expensive refrigerators.

An emerging class of quantum receiver is the mesoscopic detectors (MSDs), which are used to resolve
photon number in a regime intermediate between the single-photon level and the classical scale. Although
generally too noisy for true number-resolved detection, MSDs exhibit the sub-Poissonian number
resolution necessary for inducing non-Gaussianity and a combination of other desirable properties that at
present cannot be found among single-photon level detectors. Much progress has been made in recent
developments of this class of detectors, with multiple design paradigms including silicon photomultipliers
[12], avalanche photodiode devices [13–15] and, most recently, superconducting nanostrips [16]. Potential
advantages of MSDs over single photon counters include cost-effectiveness and easier temperature control,
fast response, wide dynamic range, no meaningful dead time and high quantum efficiency. Additionally,
operating in the mesoscopic regime implies a low probability of non-detection events, so some
non-Gaussianity is induced for all the most likely measurement outcomes. Together, these properties create
the potential for rapid preparation of broadband, high-purity non-Gaussian states with easy generalisation
to multimode operation.

Previous work has shown the usefulness of photon counting at mesoscopic scales for QIP applications.
For example, by splitting single-mode squeezed vacuum at a 50:50 beam splitter and conditioning off high
Fock state measurements of one output beam, the states generated are approximately Schrödinger cat states
[17]. Schrödinger cat states are known to be useful as a resource for generating Gottesman–Kitaev–Preskill
states [18] and hence universal error-corrected quantum computing [19]. The necessary conditioning
measurement for this scheme would be in the mesoscopic regime for realistic squeezing levels. However,
preparing Schrödinger cat states in this way is not a practical approach to QIP, since the heralding events are
rare and the nonclassicality of the post-selected states is not robust even to single-photon errors in
counting.

Here, we propose a practical conditional preparation technique that circumvents the problems of using
single photon counters while still allowing the rapid conditional preparation of non-Gaussian states with
realistic detectors. This is achieved by displacing the ancilla and performing the conditioning detection at
intermediate photon numbers. We show that displacing the ancilla prior to photon counting makes the
Wigner negativity of the output states robust to errors in photon counting comparable to those encountered
with currently achievable technology. By combining displaced Fock state measurement with MSDs, we
therefore show that it is feasible to generate multi-photon states exhibiting strong Wigner negativity under
realistic experimental conditions with relatively high rates, exceeding that of heralded single photon state
preparation using SPADs.
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2. Ideal displaced Fock state measurement

2.1. Ideal-case POVMs
In the general single-mode conditional measurement scheme, a two-mode Gaussian state ρ̂SA with
entanglement between the signal S and ancilla A modes is prepared unitarily, and the ancilla is subjected to
a conditioning measurement described by a positive operator-valued measure (POVM) with elements{
Π̂V

A

}
and possible outcomes indexed V (which may correspond to the voltage output of the detector, for

example). The post-measurement state of the signal after an outcome V is given by

ρ̂V
S =

1

N
TrA

{
ρ̂SAΠ̂

V
A

}
, (1)

where TrA indicates the trace over the ancilla subsystem and N is a normalisation constant. Here, we
consider that the ideal measurement operation consists of displacement followed by a Fock state
measurement. In this case, the measurement outcomes V correspond precisely to photon number states on
the ancilla |n〉A and so the POVM elements are given by

Π̂n
A = D̂A(α)|n〉A 〈n| D̂†

A(α), (2)

where |n〉A is the nth Fock state and D̂A(α) is the displacement operator:

D̂A(α) = exp
{
αâ†A − α∗âA

}
, (3)

where α is the displacement parameter and âA and â†A the bosonic creation and annihilation operators
for the mode A, respectively. For a given value of α the basis of displaced Fock states

{
D̂A(α)|n〉A

}
, is a

complete orthonormal basis over the field and hence
{
Π̂n

A

}
constitutes a projective measurement.

Experimentally, it is straightforward to approximate the action of the displacement operator by
reflecting the beam off a beam coupler with near-unit reflectivity r that is back-lit by a relatively bright
coherent state with displacement parameter α/

√
1 − r2. This procedure corresponds to ideal displacement

in the limit r → 1 [20]. The measure
{
Π̂n

A

}
can therefore be realised by such displacement followed by

intensity (photon-number) resolving detection, with α chosen such that the mean photon number after
displacement is in the mesoscopic regime.

By attributing the eigenvalue n to the nth measurement outcome, we define the displaced Fock state
observable

Υ̂A(α) ≡
∑

n

nΠ̂n
A =

∑
n

nD̂A(α)|n〉A 〈n| D̂†
A(α)

= D̂A(α)â†AâAD̂†
A(α). (4)

Employing the commutation relation [
D̂A(α), â†A

]
= αD̂A(α), (5)

we can rewrite Υ̂A(α) as

Υ̂A(α) = |α|2 +
(
αâ†A + α∗âA

)
+ â†AâA. (6)

This operator is a sum of three terms: a constant term |α|2 (which only affects the first moment of
Υ̂A(α)), a ‘homodyne’ term (αâ†A + α∗âA) and a ‘photon-counting’ term â†AâA. In the case where α→ 0,
Υ̂A(0) simply reduces to the bare photon-counting operator â†AâA. In the other limit α→∞, the moments
of the homodyne term dominate and Υ̂A(α) reduces to the unbalanced homodyne detection operator [21],
which is a Gaussian operation and so preserves the Gaussianity of the state.

We therefore note that there is a trade off, tuned by the displacement parameter α, between strong
non-Gaussianity at low α, necessitating single-photon level detection, and weak non-Gaussianity at high α,
in the many-photon regime where detectors have more desirable properties. The desire to optimise this
trade-off motivates our exploration of the mesoscopic regime.

2.2. Conditioning a single-mode squeezed state split at a beam splitter
We now consider the form of the states produced in the ideal case with a particular class of input state. A
schematic for this is shown in figure 1. We assume that the Gaussian-entangled input state is the pure state

3
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Figure 1. Schematic diagram of the ideal mesoscopic conditioning scheme. A single-mode squeezed vacuum state is split at a
50:50 beam splitter into a signal and ancilla beam, which together constitute the state |ψ〉SA . The ancilla is displaced by
interference with a bright coherent state (LO-local oscillator) at a high reflectivity beam coupler and undergoes measurement in a
mesoscopic photon counter. The output of the measurement is used to herald the signal state |ψ〉S.

generated by shining a single-mode squeezed vacuum state in the mode â0 onto a 50:50 beam splitter. We
can represent this state as ρ̂SA = |ψ〉SA 〈ψ|, where

|ψ〉SA = ŝ0(ξ) |vac〉 (7)

=

∞∑
j=0

c′j(a†0)2j |vac〉 (8)

=

∞∑
j=0

cj(â†A + â†S)2j |vac〉 (9)

where c′j = 2jcj, ŝ0(ξ) ≡ exp
{
ξâ2

0 + ξ∗â†2
0

}
is the squeezing operator, ξ is the squeezing parameter and

|vac〉 is the global vacuum state, and

cj =
1√

cosh r

(−1)j

4jj!
(eiθ tanh r)j (10)

with ξ = reiθ and r real and non-negative.
For this ‘split squeezed vacuum state’, the reduced states on either mode yielded by tracing over the

other have an intrinsic phase sensitivity, with local quadrature noise variation on each mode defining a local
phase determined by θ, which we will from now on set θ = 0 without loss of generality. The presence of a
physically significant local phase on the ancilla means that the relative phase of the displacement α has an
effect on the form of the conditioning operation. In particular, by controlling this phase we can choose to
displace the ancilla along either the squeezed or anti-squeezed quadratures of the ancilla field prior to
measurement. As we will show in our simulations, when displacing along the anti-squeezed quadrature, the
homodyne term of the measurement operator, αâ†A + α∗âA, has large higher moments and dominates the
statistics of Υ̂A. The conditional projection is therefore more similar to a (Gaussian) homodyne
measurement. By contrast, when the displacement is along the squeezed quadrature, the photon counting
term contributes more to the measurement outcome distribution, leading to a higher degree of induced
non-Gaussianity.

We now calculate the explicit form of the states conditioned by MSDs. Using the binomial theorem and
re-ordering the summation we write equation (9) as

|ψ〉SA =

∞∑
j=0

cj

[
2j∑

k=0

(2j)!

(2j − k)!k!
â†k

A â†(2j−k)
S

]
|vac〉 (11)

=

∞∑
k=0

⎡
⎣ ∞∑

j=
 k
2 �

cj
(2j)!

(2j − k)!k!
â†(2j−k)

S

⎤
⎦ â†k

A |vac〉 (12)
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=

∞∑
k=0

⎡
⎣ ∞∑

j=
 k
2 �

cj
(2j)!

(2j − k)!
√

k!
â†(2j−k)

S

⎤
⎦ |0〉S|k〉A, (13)

where 
.� is the ceiling function. The state on the signal mode prepared by measurement of the displaced
Fock state D̂†

A(α) |m〉 in the ancilla mode is then

|ψm〉S = Nm 〈m| D̂A(α)|ψ〉SA (14)

= Nm

∞∑
k=0

⎡
⎣ ∞∑

j=
 k
2 �

cj
(2j)!

(2j − k)!
√

k!
â†(2j−k)

S

⎤
⎦Δmk|0〉S, (15)

where Nm is a normalisation constant and we have defined Δmk ≡ 〈m| D̂(α) |k〉, the matrix elements of the
displacement operator in the Fock basis. Written explicitly,

Δmk = e−
|α|2

2 (−α∗)kαm
min(m,k)∑

n=0

√
k!m!(−1)n|α|−2n

n!(k − n)!(m − n!)
. (16)

Note that since the displacement operator tends to the identity for weak displacements, Δmk → δmk as
|α|2 � {m, k}.

It is illuminating to consider the terms of opposite parity in the heralded state |ψm〉S. Dividing
equation (15) into the terms where k is either even or odd and rearranging the series, we obtain the final
form for the pure states heralded by displaced Fock state detection,

|ψm〉S = Nm

∞∑
j=0

([ ∞∑
k even

cj+ k
2

(2j + k)!√
(2j)!k!

Δmk

]
|2j〉S +

[ ∞∑
k odd

cj+ k+1
2

(2j + k + 1)!√
(2j + 1)!k!

Δmk

])
|2j + 1〉S. (17)

The dependence of these two collections of terms on the phase of the displacement matrix elements Δmk

turns out to have an important role in the degree to which |ψm〉S can be well approximated by a Gaussian
state.

3. Role of displacement phase

In the appendix we show that in the zero-displacement case (where Δmk = δmk) equation (17) tends
towards a Schrödinger cat state as m →∞, recovering the result found in [17].

We now consider a small nonzero displacement, nonetheless introducing fewer photons than the
conditioning count (i.e. |α|2 � m). Therefore, the final term in the sum in equation (16) dominates. In this
case, the displacement is small enough that the state D̂†

A(α) |m〉 has contributions from only a few Fock
states |k〉 centred on k = m. Starting from the final (dominant) term in the sum in equation (16) (n = m),
and taking δ ≡ k − m we can write

Δm,m+δ = e−
|α|2

2 (−1)δ(α∗)δ
√

(m + δ)!m!

m!δ!
. (18)

With the approximation (m + δ)! ≈ mδm! for m � δ, this reduces to

Δm,(m+δ) ≈ e−|α|2 m
|δ|
2

|δ|! (−1)δ|α|δe−iφδ , (19)

where α = |α|eiφ. Note the dependence of the phase of Δm,(m+δ) on the term e−iφδ .
We are now in a position to understand the role of the phase of α. Consider the terms in equation (17)

where m and k have opposite parity to m, such that δ = {±1,±3,±5, . . .}. If α is real (i.e. φ = {0,π}) then
the two matrix elements of the same order in α, Δm,(m+δ) and Δm,(m−δ), have the same sign. Because cm+k/2

and cm+(k+1)/2 both have opposite sign for ±δ, the terms at ±δ in the sum over k add together destructively
and the contribution of Fock states with parity opposite to m is suppressed. By contrast, the terms with the
same parity have δ = {0,±2,±4, . . .} and the terms in the sum over k have the same sign regardless of
whether α is real or purely imaginary. Hence terms with the same parity as m are reinforced. In this case,
the state once again resembles a Schrödinger cat state.

By contrast, if α is purely imaginary (i.e. φ = {π/2, 3π/2}) then the terms in both the even and
odd-parity series sum constructively. In this case, once α is large enough that D̂†

A(α) |m〉 contains large

5
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Figure 2. Wigner functions for the states heralded by the m = 24 event at 10 dB squeezing and using (top row) an EPR state and
(bottom row) a split squeezed vacuum state. Left column: displacement along the antisqueezed quadrature (α = 4i). Right
column: displacement along the squeezed quadrature (α = 4). With the EPR resource, the form of the output state is
independent of the displacement field phase and Wigner negativity is weak; with the split squeezed vacuum, Wigner negativity is
highly dependent on phase and is strong for real displacement.

contributions from several Fock states adjacent to |m〉, the contributions of both the even-parity and
odd-parity series become comparable. Following similar reasoning to that in section, the state then
approximates a coherent state, which is of limited interest for QIP.

While Schrödinger cat states are undoubtedly useful as a nonclassical resource, unfortunately this limit
(where the conditioning count number m is large relative to |α|2) comes with two disadvantages. Firstly,
detecting m photons in the ancilla arm is unlikely for large m, meaning preparation of these states is
inefficient. Secondly, the nonclassicality of the signal derives from its strongly nonzero parity, which is
determined by the parity of m. The conditioning measurement must therefore be precise enough to
accurately determine the parity the ancilla, which requires precise photon number resolution. Hence, the
nonclassicality of the signal is not robust to errors at the detection stage on the order of one photon. One
way of visualising this is that for Schrödinger cat states, the negativity of the Wigner function is in the
interference fringes around the origin (see figure 4(d)), which exchange sign for alternating values of m. An
incoherent mixture of the states heralded by nearby values of m, which alternates from even to odd,
therefore blurs out these fringes and yields a resultant Wigner function with little overall negativity
(figure 2).

4. Pure states for intermediate conditioning values

In this section, we explore the states conditioned by measurement outcomes m in the ancilla that are not
much larger than the expectation value ∼|α|2. At this point, the equations can no longer be reduced by
approximations and so we must turn to simulations. These were executed numerically on MatLab by
explicit calculation of Fock state amplitudes up to 50 photons. To emphasise the aforementioned sensitivity
of the scheme to the phase of the displacement field, we also simulated the output states where the input is a

6
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Figure 3. Left: expectation value of the parity operator (equivalent to the value of the Wigner function at the origin) for the
states conditioned for various detector outcomes with 10 dB squeezing and α = 4. Right: probability distribution for selected
detection outcomes in range 1–50 for α = 4 and 10 dB squeezing.

two-mode squeezed state,

|ψ′〉SA = exp
{
ξâSâA − ξ∗â†Sâ†A

}
|vac〉 . (20)

For this state [22], which exhibits perfect photon number correlations, the reduced state of both the
signal and ancilla modes are thermal states with no well-defined local phase. As such the phase of the
displacement field has no physical bearing on the photon statistics of the output |ψ′〉S.

As with the weak-displacement limit, we observe that displacing the ancilla along the squeezed
quadrature yields states in the signal mode with strong non-Gaussianity, whereas displacing along the
antisqueezed quadrature conditionally prepares very nearly Gaussian states. This contrasts with the EPR
state case where, as expected, there is no dependence on the phase of α. The postselected state also has
weaker negativity than the one prepared by split-squeezed vacuum displaced along the squeezed
quadrature. Hence, the maximum non-Gaussianity obtainable from such a resource is less than in the split
single-mode squeezed vacuum case.

Unlike in the large-m limit, for the events where m ∼ |α|2 with real α the parity of the states is no longer
so strictly bound to that of m. Wigner functions of states heralded by consecutive values of m generally have
significant overlaps in their regions of negativity. Figure 3 shows how the value of the Wigner function at
the origin changes as a function of m for the states generated with these parameters. After an initial peak
close to the expectation value of m ≈ 16, the parity enters an oscillatory regime, taking both positive and
negative values. As already established, at high m the period of these oscillations tends towards 2, as the
parity takes alternating positive and negative values. However, at intermediate m, the oscillations are slower,
and multiple consecutive states have parity of the same sign. A representative example is the three states
heralded by m = {22, 23, 24} for the case where the original squeezing is 10 dB and α is 4. The probabilities
of heralding these states are 5.2%, 3.5% and 2.3% respectively. The expectation value of the parity operator
for the three states is −0.225, −0.405 and −0.178 respectively. This quantity is equal to the value of the
Wigner function at the origin (note that the origin is not the point of maximum negativity). Since the
parity is negative for all three states, all three (and any incoherent mixture thereof) has a Wigner function
with a negative region around the origin. Incoherent mixtures of the states heralded by adjacent values of m
(resulting from imperfect photon counting) therefore do not lose their negativity. This allows the heralding
of states with deep Wigner negativity even accounting for the non-ideal properties of realistic detectors at
mesoscopic light levels, and it is this regime which we contend is the most promising for non-Gaussian state
preparation with MSDs.

Figure 4 shows the conditionally prepared Wigner functions for various measurement outcomes with
10 dB squeezing and α = 4. These values were chosen to allow the preparation of states of strong Wigner
negativity at probable outcomes of the conditioning measurement for experimentally realistic squeezing
levels. Note increasing structure and negativity as m increases, with the form of the states tending
increasingly to a Schrödinger cat state at high m. Figure 3 (right) shows the probability of heralding these
states with ideal conditioning detection.

7
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Figure 4. Ideal-case Wigner functions for various conditioning outcomes, assuming initial squeezing of ξ = 10 dB and a
displacement parameter α = 4. From top left: conditioning on 18 photons, 22 photons, 26 photons and 36 photons detected.
Note increasing negativity and convergence towards a Schrödinger cat state.

5. Modelling experimentally realistic detectors

Unfortunately, real-world detectors do not exhibit ideal properties and hence cannot be modelled by a
projective measurement of the form of equation (2). In practice, there is a loss of information in the
detection and a given detector output V leaves the observer with a mixed state. This can be modelled by a
POVM whose elements do not correspond to pure-state operators. The main contributions to this loss of
information are non-unit quantum efficiency, the excess noise introduced during signal amplification, and
dark current. The effect of all three sources of noise are that the states heralded by certain detector
outcomes are incoherent mixtures of the pure states heralded by several values of m, with the largest
contributions coming from some states with nearby values of m.

We assume that the displacement can be performed unitarily, and that the detector itself is stationary,
i.e. its response is insensitive to the phase between different Fock-state components in the displaced ancilla.
The POVM is therefore diagonal in the displaced Fock basis:

Π̂V
A =

∑
m

P(V|m)D̂†
A(α)|m〉A 〈m| D̂A(α). (21)

The conditioned state is then given by

ρ̂V
S = NTrA

{
ρ̂SAΠ̂

V
A

}
(22)

= N
∑

m

P(V|m)P(m)|ψm〉S 〈ψm| , (23)

where P(m) is the probability of a displaced m-photon event such that

P(m) = TrS

{
〈ψ|SAD̂†

A(α)|m〉A 〈m| D̂A(α)|ψ〉SA

}
. (24)

8
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To preserve the unity of the trace the normalisation constant N is given by N = 1/P(V), i.e. just the inverse
of the probability P(V) of recording the V-detection event, where

P(V) =
∑

p

P(V|m)P(m). (25)

Substituting this into equation (23) and using Bayes’ theorem:

P(m|V) =
P(V|m)P(m)

P(V)
, (26)

the normalised conditioned state is given by

ρ̂V
S =

∑
m

P(m|V)|ψm〉S 〈ψm| , (27)

where P(m|V) is a relative weight for the classical probability of having the displaced m-photon Fock
state given the V-detection event, which can be calculated from the detector response P(V|m) via.
Equation (26).

We first model the non-unit quantum efficiency of the detector ε � 1. In this case, the possible detector
outcomes V correspond to events where only b photons are absorbed by the active part of the detector from
the m photons in the signal, with b � m. Since the probability of each photon being absorbed by the
detector is independent, the probability of b absorption events given a signal state containing m photons is
modelled by the binomial distribution

P(b|m) =
m!

b!(m − b)!
εb(1 − ε)m−b. (28)

For an amplified photodetector such as an avalanche photodiode, another contribution to the mixedness is
the noise due to the amplification process, quantified by the excess noise factor [23]. A single absorption
event gives rise to an avalanche of M daughter carriers, where M is the gain random variable. Assuming that
the contribution to the photocurrent from each carrier-amplification event is independent, due to the
central limit theorem in the limit of large b the statistics of the overall photocurrent are determined entirely
by the mean 〈M〉 and variance Var(M) = 〈M2〉 − 〈M〉2. The variance may be related to the excess noise
factor, defined as the normalised second moment of the gain M,

Fe ≡,〈M2〉/〈M〉2 (29)

= Var(M)/〈M〉2 + 1. (30)

In the case of b absorption events, and assuming that the b multiplication processes are independent,
then the total number of electrons output from the detector is V, where 〈V〉 = b〈M〉 and the variance of V
given b absorption events is given by Var(V) = b Var(M). The probability distribution of V is then given by

P(V|b) = exp

(
−(V − 〈V〉)2

Var(V)

)
(31)

= exp

(
−(V/〈M〉 − b)2

b(Fe − 1)

)
(32)

The resultant detector response to an m-photon event is then given by

P(V|m) =
∑

b

P(V|b)P(b|m). (33)

The effect of dark current, or baseline electronic noise, is straightforwardly modelled by a convolution of
the signal with the spread function due to noise. This is strongly application-dependent, and for the
applications using pulsed light and detectors with greater bandwidth than the repetition rate, the dark
current can largely be eliminated by temporal gating.

Figure 5 shows the result of these non-idealities for a state produced by imperfect mesoscopic detection
with 10 dB initial squeezing, α = 4 and photon number m ≈ 25. The quantum efficiency of the detection is
taken to be 90% and excess noise Fe = 1.1, which are values that are experimentally plausible at the current
state of the art.
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Figure 5. Wigner function for a state heralded by imperfect mesoscopic detection with 10 dB squeezing, α = 4 and modal
conditioning number m = 25. Quantum efficiency is 90% and Fe = 1.1.

6. Experimental feasibility

The 10 dB squeezing level used in the simulations presented is already relatively conservative by
cutting-edge experimental standards. Experiments using optical parametric oscillators (OPOs) have
demonstrated AC squeezing of 12.3 dB at 1550 nm [24] and 15 dB at 1064 nm [25]. Some promising
MSDs, such as HgCdTe detectors [13, 14], have good broadband response across the infrared region and so
represent a promising candidate system for conditional state preparation in conjunction with such OPOs.

In practice, many sources of squeezed vacuum are multimode, whether spectrally such as a
synchronously-pumped OPO [26], or spatially like many single-pass PDC sources. This multimode nature
provides both challenges and opportunities. On the one hand, the presence of multiple squeezed modes
allows for the automatic creation of non-Gaussian entanglement by performing a non-Gaussian
measurement on a superposition of eigenmodes of the covariance matrix. On the other hand, in the
multimode case photon counting without mode resolution incurs a loss of information which can severely
degrade the purity of the state. In previous demonstrations with conditional preparation with multimode
Gaussian resources, such as photon subtraction, experimentalists have employed a quantum pulse gate to
ensure (post-selectively) that the measurement is only performed on a single selected mode [8]. However,
this is often an experimentally taxing process, requiring efficient optical nonlinearities and synchronisation
with an independent optical gate field. In our method, mode selectivity is achieved by the choice of mode of
the displacement field. Provided that the photon number occupation of the other modes is small compared
to |α|2, their overall contribution to the heralding value m will be small and the statistics of the
conditioning measurement will be dominated by only the desired mode. This intrinsic mode-selectivity is a
significant experimental advantage of our scheme.

A major appeal of using MSDs is the higher repetition rate (or measurement bandwidth) they are
capable of sustaining. Whereas commercially available SNSPD systems are typically specified with
maximum count rates of a few megahertz, the bandwidths of mesoscopic APDs can be orders of magnitude
higher. In conjunction with their higher saturation threshold, this means that MSDs can monitor optical
fields with squeezing up to tens or hundreds of megahertz (consistent with table-top oscillators) without
loss of quantum information, and therefore have the potential to yield far higher generation rates than
attainable with existing sources of heralded single photons.

A number of methods exist for characterising the conditioned non-Gaussian states once they have been
prepared. The most common approach to continuous variable state characterisation in quantum optics is
homodyne tomography [27], now usually combined with maximum-likelihood estimation [28]. Another
approach, particularly suited to measuring Wigner negativity at one point in phase space, is generalised
overlap quantum state tomography [29]. This method involves interference of the signal with a small set of
calibrated coherent states followed by photon number-resolved detection, previously realised experimentally
using transition-edge sensors. The parity of the measured state is inferred from the results of the photon
counting, from which one may infer the Wigner function at a point in phase space determined by the
coherent state.
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7. Conclusions and outlook

Here we have shown how non-Gaussian states with negative Wigner functions can be generated from a
single-mode squeezed vacuum resource state using only displacement and photon-number resolved
measurement in the mesoscopic regime. This protocol can be used to generate Schrödinger cat states in the
limiting case, for high-intensity conditioning events with weak displacement. For non-negligible
displacements, the phase of the coherent displacement field relative to that of the local squeezing is
extremely important to the quantum properties of the conditioned state, with displacement along the
noisier quadrature conditioning states that are approximately coherent, and displacement along the more
squeezed quadrature generating states with high non-Gaussianity. However, in this limit, the negative
regions of the Wigner functions of the heralded states are non-overlapping and hence the Wigner negativity
is not robust to imprecise photon number resolution in the conditioning detector.

At intermediate photon numbers in the ancilla mode, the different signal states prepared for several
consecutive conditioning measurement outcomes have Wigner functions whose negative regions overlap in
phase space, and hence an incoherent mixture of them (as occurs with imprecise photon number
resolution) still has negativity. Simulations show that for a realistic model of these detectors and with
attainable squeezing values, it is possible to prepare states with significant negativity, with rates of tens to
hundreds of megahertz.

Simulations with a pure two-mode squeezed state (also known as an Einstein–Podolsky–Rosen or EPR
state) show that the nonclassicality of the conditioned state rapidly deteriorates with increasing
displacement |α|, emphasising the importance of the local squeezing on the state for retention of quantum
properties up into the mesoscopic regime. Future work may nonetheless wish to consider the more general
form of two-mode Gaussian entanglement, with varying degrees of photon-number correlation and local
squeezing on the signal and ancilla. Additionally, generalisations of this strategy to a multimode picture for
quantum information applications present an exciting line of enquiry.

Experimentally, we have considered the effect of realistic loss and noise on the quality of the states
prepared for feasible squeezing levels. The mode-selective character of the conditioning could allow the
heralding of nonclassical states from a multimode source or even the preparation of non-Gaussian
entanglement between separate modes, all without the need for optical nonlinearities (notwithstanding the
initial squeezed state preparation). Additionally, the high bandwidths of MSDs on the near horizon
promises much higher preparation rates than can be achieved natively with a leading single-photon
counters such as SNSPDs.
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Appendix A.

A.1. Preparation of Schrödinger cat states
We consider the limit where |α|2 = 0 and hence Δmk = δmk. The first observation to make about this case is
that the parity of |ψm〉S is the same as that of the heralding count m. Specifically,

|ψm even〉S = Nm

∞∑
j=0

cj+ m
2

(2j + m)!√
m!

|2j〉S√
(2j)!

(34)

for m even, and

|ψm odd〉S = Nm

∞∑
j=0

cj+ m+1
2

(2j + m + 1)!√
m!

|2j + 1〉S√
(2j + 1)!

(35)
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for m odd. We can write the coefficients as

cμ
(2μ+ 2j)!√

m!
(36)

=
(−1)μ+j

4μ+j
√

cosh r

(2μ+ 2j)!

(μ+ j)!

(tanh r)μ+j

√
m!

(37)

for μ = {m/2, (m + 1)/2}. For the events where μ � j, we can use the approximation (which follows from
the Stirling approximation)

(2μ+ 2j)!

(μ+ j)!
≈ μ!

√
πμ

4μ+jμj, (38)

and hence the right-hand side in equation (37) can be written

(−1)μ(tanh r)μμ!√
m!πμ cosh r

(−μ tanh r)j. (39)

We can therefore write equation (34) in the form

|ψm even〉S = N ′
m

∞∑
j=0

β2j |2j〉S√
(2j)!

(40)

=
|β〉+ |−β〉√

2
, (41)

where |β〉 is a coherent state with β = i
√

m tanh r/2, and similarly for m odd (with
β′ = i

√
(m + 1) tanh r/2)

|ψm odd〉S =
|β′〉 − |−β′〉√

2
. (42)

This recovers the result found originally in [17].
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