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Gaussian states have played an important role in the physics of continuous-variable quantum systems.
They are appealing for the experimental ease with which they can be produced, and for their compact
and elegant mathematical description. Nevertheless, many proposed quantum technologies require us to
go beyond the realm of Gaussian states and introduce non-Gaussian elements. In this Tutorial, we provide
a roadmap for the physics of non-Gaussian quantum states. We introduce the phase-space representations
as a framework to describe the different properties of quantum states in continuous-variable systems. We
then use this framework in various ways to explore the structure of the state space. We explain how non-
Gaussian states can be characterized not only through the negative values of their Wigner function, but also
via other properties such as quantum non-Gaussianity and the related stellar rank. For multimode systems,
we are naturally confronted with the question of how non-Gaussian properties behave with respect to
quantum correlations. To answer this question, we first show how non-Gaussian states can be created
by performing measurements on a subset of modes in a Gaussian state. Then, we highlight that these
measured modes must be correlated via specific quantum correlations to the remainder of the system to
create quantum non-Gaussian or Wigner-negative states. On the other hand, non-Gaussian operations are
also shown to enhance or even create quantum correlations. Finally, we demonstrate that Wigner negativity
is a requirement to violate Bell inequalities and to achieve a quantum computational advantage. At the end
of the Tutorial, we also provide an overview of several experimental realizations of non-Gaussian quantum
states in quantum optics and beyond.
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I. INTRODUCTION

Gaussian states have a long history in quantum physics,
which dates back to Schrödinger’s introduction of the
coherent state as a means to study the harmonic oscilla-
tor [1]. In later times, Gaussian states rose to prominence
due to their importance in the description of Bose gases
[2–4] and in the theory of optical coherence [5,6]. With the
advent of quantum-information theory, the elegant mathe-
matical structure of Gaussian states made them important
objects in the study of continuous-variable (CV) quantum-
information theory [7–9]. In this Tutorial, we focus on
bosonic systems, which means that the continuous vari-
ables of interest are field quadratures. Gaussian quantum
states are then defined as the states for which measurement
statistics of these field quadratures is Gaussian.

Gaussian states can be fully described by their mean
field and covariance matrix, and, due to Williamson’s
decomposition [10], the latter can be studied using a range
of tools from symplectic vector spaces. As such, one can
directly relate quadrature squeezing to Gaussian entangle-
ment via the Bloch-Messiah decomposition [11]. In the
full state space of CV systems, Gaussian states are fur-
thermore known to play a specific role: of all possible
states with the same covariance matrix, the Gaussian state
will always have the weakest entanglement [12] and the
highest entropy [13]. From a theoretical point of view,
Gaussian quantum states provide, thus, an elegant and
highly relevant framework for quantum-information the-
ory. On an experimental level, CV quantum information
has long been motivated by advances in quantum optics,
due to the capability of on-demand generation of ever
larger entangled states using either spatial modes [14–16]
or time-frequency modes [17–22]. Furthermore, Gaussian
states also play a key role in the recent demonstration of
a quantum advantage with Gaussian Boson sampling [23].
These developments have made the CV quantum optics an
important platform for quantum computation [24].

Regardless of all the experimental and theoretical suc-
cesses of Gaussian states, they have a major shortcom-
ing in the context of quantum technologies: all Gaussian
measurements of such states can be efficiently simulated
[25]. In pioneering work on CV quantum computation,

it is already argued that a non-Gaussian operation is
necessary to implement a universal quantum computer
in CV [26]. Later works that laid the groundwork for
CV measurement-based quantum computing have left the
question of this non-Gaussian operation somewhat in the
open [27–29]. Common schemes, based on the cubic phase
gate, turn out to be particularly hard to implement in realis-
tic setups [30]. Furthermore, these protocols require highly
non-Gaussian states, such as Gottesman-Kitaev-Preskill
(GKP) states [31], to encode information. Even though
such states could also serve as a non-Gaussian resource for
implementing non-Gaussian gates [32], these states remain
notoriously challenging to produce. In spite of the prac-
tical problems involved with non-Gaussian states, one is
obliged to venture into non-Gaussian territory to reach a
quantum computational advantage in the CV regime [33].
This emphasizes the importance of a general understanding
of non-Gaussian states and their properties. In this Tuto-
rial, we attempt to provide a roadmap to navigate within
this quickly developing field.

In Sec. II, we take an unusual start to introduce CV
systems. We first present some elements of many-boson
physics, by treating Fock space. This mathematical envi-
ronment is probably familiar to most readers to describe
photons. We then explain how such a Fock space can
also be described in phase space, which is the more nat-
ural framework from CV quantum optics. We introduce
phase-space representations of states and observables in
CV systems such as the Wigner function, and to famil-
iarize the reader with the language of multimode systems.
By first reviewing the basics of Fock space, we can make
interesting connections between what is known as the
discrete-variable (DV) approach and the CV approach to
quantum optics. We see that there is often a shady region
between these two frameworks, where techniques that are
typically associated with one framework can be applied in
the other. We finally argue that the main distinction lies in
whether one measures photons (DV) or field quadratures
(CV).

In Sec. III, we provide the reader with an introduction to
some of the different structures that can be identified in the
space of CV quantum states. When pure states are consid-
ered, all non-Gaussian states are known to have a nonposi-
tive Wigner function [34,35], but this no longer holds when
mixed states enter the game [36]. In the entirety of the state
space, non-Gaussian states occupy such a vast territory that
it is impossible to describe all of them within one single
formalism. Nevertheless, there has recently been consider-
able progress in the classification of non-Gaussian states
[37,38]. We introduce some key ideas behind quantum
non-Gaussianity, the stellar rank, and Wigner negativity as
tools to characterize non-Gaussian states.

Section IV introduces two main families of techniques
to create non-Gaussian states starting from Gaussian
inputs. The first approach concentrates on deterministic
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methods, which rely on the implementation of non-
Gaussian unitary transformations. We show how such
transformations can be built by using a specific non-
Gaussian gate. We then introduce the second class of
techniques, which are probabilisitic and rely on performing
non-Gaussian measurements on a Gaussian state and con-
ditioning on a certain measurement result. We introduce
our recently developed approach to describe these systems
[39] and present mode-selective photon subtraction as a
case study.

Then all the pieces are set to discuss the interplay
between non-Gaussian effects and quantum correlations in
Sec. V. First, we consider the resources that are required
to conditionally prepare certain non-Gaussian states. The
conditional scheme relies on performing a non-Gaussian
measurement on one part of a bipartite Gaussian state, and
will show that the nature of the quantum correlations in this
bipartite state is essential. We show that we can only gen-
erate quantum non-Gaussian states if the initial bipartite
state is entangled. Furthermore, to conditionally generate
Wigner negativity we even require quantum steering. In
the second part of Sec. V, we show how non-Gaussian
operations can in return enhance or create quantum corre-
lations. Finally, we show that Wigner negativity (in either
the state or the measurement) is necessary to violate Bell
inequalities in CV systems.

In a similar fashion, we spend most of Sec. VI explain-
ing the result of Ref. [33], which shows that Wigner neg-
ativity is also necessary to reach a quantum advantage. To
show this, we explicitly construct a protocol to efficiently
simulate the measurement outcomes of a setup with states,
operations, and detectors that are described by positive
Wigner functions. In the remainder of the section, we pro-
vide comments on the quantum computational advantage
reached with Gaussian Boson sampling.

Finally, in Sec. VII, we provide a quick overview of non-
Gaussian states in CV experiments. Due to the author’s
background, the first half of this overview focuses on
quantum optics. In the second part, we also discuss some
key developments in other branches of experimental quan-
tum physics. Readers should be warned that this is by no
means an extensive review of all the relevant experimental
progress. A more general conclusion and outlook on what
the future may have in store is presented in Sec. VIII.

II. CONTINUOUS-VARIABLE QUANTUM STATES

Before we can start our endeavor to classify non-
Gaussian states of CV systems and study their properties,
we must develop some basic formalism for dealing with
multimode bosonic systems. At the root of bosonic systems
lies the canonical commutation relation, [x̂, p̂] ∼ i1, which
can be traced back to the early foundations of quantum
mechanics. The study of the algebra of such noncom-
muting observables has given birth to rich branches of

mathematics and mathematical physics that ponder on the
subtleties of these observables and their associated states.
In this Tutorial, we keep a safe distance from the repre-
sentation theory of the associated C∗ algebras that describe
bosonic field theories in their most general sense. We do
refer interested readers to a rich but technical literature
[4,40–42].

In this Tutorial, we do exclusively work within the Fock
representation, which implies that we consider systems
with a finite expectation value for the number of parti-
cles. In quantum optics, this assumption translates to the
logical requirement that energies remain finite. There are
many approaches to mathematically construct such sys-
tems (luckily for us they are all equivalent [43–46]). Here,
we briefly present two such approaches that nicely cap-
ture one of the key dualities on quantum physics. First we
take the particle approach by introducing the Fock space
that describes identical bosonic particles in Sec. A. Sub-
sequently, in Sec. B, we take the approach that starts out
from a wave picture, by concentrating on the phase-space
representation of the electromagnetic field. Here we also
introduce the phase-space representations of CV quantum
states that proves to be crucial tools in the remainder of
this Tutorial. We show how these approaches are quite nat-
urally two sides of the same coin. In Sec. C, we briefly
discuss the concept of modes and the role they play in
CV quantum systems. This subsection is both intended to
provide some clarification about common jargon and to
eliminate common misconceptions. We finish this section
by presenting a brief case study of Gaussian states in Sec.
D, reviewing some key results. After all, it is difficult to
appreciate the subtleties of non-Gaussian states without
having a flavor from their Gaussian counterparts.

A. Fock space

In typical quantum mechanics textbooks, the story of
identical particles usually starts by considering a set of
n particles, which are each described by a quantum state
vector in a single-particle Hilbert space H, thus for the
ith particle we ascribe a state vector |ψi〉 ∈ H. The joint
state of these n particles is then given by the tensor prod-
uct of the state vectors |ψ1〉 , . . . , |ψn〉. However, if the
particles are identical in all their internal degrees of free-
dom, we should be free to permute them without changing
the observed physics. Formally, such permutation is imple-
mented by a unitary operator Uσ , for the permutation σ ∈
Sn, which acts as

Uσ |ψ1〉 ⊗ · · · ⊗ |ψn〉 = ∣∣ψσ(1)
〉 ⊗ · · · ⊗ ∣∣ψσ(n)

〉
. (1)

Invariance of physical observables under such permuta-
tions can be achieved by either imposing the n-particle
state vector to be fully symmetric (bosons) or fully anti-
symmetric (fermions) under these permutations of parti-
cles. In this Tutorial, we focus exclusively on bosons, and
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thus the condition that must be imposed to obtain a bosonic
n-particle state is

Uσ

∣∣�(n)〉 = ∣∣�(n)〉 . (2)

Because these are the only states that are permitted to
describe the bosonic system, we commonly use the Hilbert
space H(n)

s , which is a subspace of H⊗n that contains only
those states that fulfil Eq. (2). It is usually convenient to
generate these spaces with a set of elementary tensors,
known as Fock states, which we define as

|ψ1〉 ∨ · · · ∨ |ψn〉 :=
∑

σ∈Sn

∣∣ψσ(1)
〉 ⊗ . . .

∣∣ψσ(n)
〉
, (3)

such that

H(n)
s = span

{ |ψ1〉 ∨ · · · ∨ |ψn〉 | |ψi〉 ∈ H}
, (4)

where we refer to the Appendix for some further details on
the span. This fully describes a system of n bosonic parti-
cles in what is often referred to as first quantization. It is
interesting to note that these identical particles appear to
be entangled with respect to the tensor product structure of
H⊗n. There is still debate on whether this is a mathemati-
cal artefact of our description or rather a genuine physical
feature of identical particles. Even though there is still
debate about how to exactly define entanglement between
indistinguishable particles [47,48], several authors have
shown how these symmetrizations can [49–52] induce use-
ful entanglement. Furthermore, it is undeniable that this
structure leads to physical interference phenomena that do
not exist for distinguishable particles [53].

The name “first quantization” suggests the existence of a
second quantization, which turns out to be more appropri-
ate for this Tutorial. Second quantization finds its origins in
models where particle numbers are not fixed or conserved.
This formalism is largely based on creation and annihila-
tion operators, denoted â† and â, respectively, that add or
remove particles. To accommodate these operators in our
mathematical framework, we must equip our Hilbert space
to describe a varying number of particles. Therefore, we
introduce the Fock space

�(H) := H(0)
s ⊕ H(1)

s ⊕ H(2)
s ⊕ . . . , (5)

where the single-particle Hilbert space is given by H(1)
s =

H. Furthermore, we retrieve a peculiar component H(0)
s ,

which describes the fraction of the system that contains no
particles at all. On its own, H(0)

s is thus populated by a
single state |0〉 that we refer to as the vacuum. This implies
that technically H(0)

s
∼= C the zero-particle Hilbert space is

just described by a complex number that corresponds to the
overlap of the state with the vacuum. A general pure state

in Fock space |�〉 ∈ �(H) can then be described using the
structure, Eq. (5), as

|�〉 = �(0) ⊕�(1) ⊕�(2) ⊕ . . . , (6)

where �(i) ∈ H(i)
s are non-normalized vectors (and there-

fore we omit the |.〉) in the i-particle Hilbert space. Because
|�〉 is a state, we must impose the normalization condition
‖�‖2 = ∑∞

i=0‖�(i)‖2 = 1
We can now define a creation operator â†(ϕ) for every

ϕ ∈ H [54], which acts as

â†(ϕ) |�〉 = 0 ⊕ (
�(0) |ϕ〉) ⊕ (|ϕ〉 ∨�(1))

⊕ (|ϕ〉 ∨�(2)) ⊕ . . . (7)

In the same spirit, it is possible to provide an explicit con-
struction of the annihilation operators â(ϕ), but here we
content ourselves by just introducing the annihilation oper-
ator as the hermitian conjugate of the creation operator.
Just as the creation operator that literally adds a particle
to the system, the annihilation operator literally removes
one. One additional property of the annihilation operators
is that they destroy the vacuum state:

â(ϕ) |0〉 = 0. (8)

We can now use creation and annihilation operators to
build an arbitrary Fock state by creating particles on the
vacuum state

|ψ1〉 ∨ · · · ∨ |ψn〉 = â†(ψ1)â†(ψ2) . . . â†(ψn) |0〉 (9)

and by considering superpositions of such Fock states, we
can ultimately generate the entire Fock space. By consid-
ering any basis of the single-particle Hilbert space H and
constructing all possible Fock states of all possible lengths
that can be formed by generating particles in these basis
vectors we construct a basis of the Fock space �(H). We
refer to this basis as the Fock basis.

The beauty of second quantization lies in the natural
appearance of states, which have no fixed particle number.
The most important example is the coherent state

|α〉 := e− ‖α‖2
8

∞∑

j =0

[â†(α)]j

2j j !
|0〉 , (10)

where α ∈ H is a non-normalized vector in the single par-
ticle Hilbert space. One can, indeed, simply generalise (7)
to non-normalized vectors in H which we use explicitly
in Eq. (10). Second, we note that an unusual factor 2 is
included to make the definition consistent with Eq. (62).

In quantum optics, these coherent states are crucial
objects as they describe perfectly coherent light [5]. It is
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important to remark that a coherent state is always gener-
ated by a single vector in the single-particle Hilbert space.
Coherent states often provide a good approximation for
the state that is produced by a single-mode laser far above
threshold [55]. More generally, the study of laser light is
a whole field in its own right and often the light deviates
from the fully coherent approximation.

The creation and annihilation operators are not only
important objects because they populate the Fock space;
they are also of key importance for describing observables
in a many-boson system. These operators are the genera-
tors of the algebra of observables that represents the canon-
ical commutation relations on Fock space. This implies
that any observable can ultimately be approximated by a
polynomial of creation and annihilation operators. At the
heart of this mathematical formalism lies the canonical
commutation relation (CCR):

[â(ϕ), â†(ψ)] = 〈ϕ | ψ〉, (11)

which describes the algebra of observables. Note that this
relation holds for any vectors |ϕ〉 and |ψ〉 in the single-
particle Hilbert space H. These vectors should not form
a basis, nor should they be orthogonal. When |ϕ〉 = |ψ〉,
we find that [â(ψ), â†(ψ)] = 1. On the other hand, when
the single-particle states |ϕ〉 and |ψ〉 are fully orthogonal,
we find that [â(ϕ), â†(ψ)] = 0. In these cases we recover
the typical creation and annihilation operators for har-
monic oscillators. However, by introducing the creations
and annihilation operators through Eq. (7), we can also
deal with more general cases. Furthermore, all definitions
and the form of the CCR are still valid when ϕ and ψ are
unnormalized vectors in H. A more detailed discussion can
be found in Ref. [56].

When we leave the realm of pure states, the description
of quantum states becomes tedious. Commonly, one uses
a density operator ρ̂ with tr ρ̂ = 1 to formally describe a
state. However, we can generally think of these density
operators as infinite-dimensional matrices with an infi-
nite number of components in the Fock basis. In other
words, this is not necessarily a convenient description. In
an operational sense, any state is considered to be charac-
terized when we know all the moments of all the possible
observables. Because the creation and annihilation opera-
tors generate the algebra, one knows all the moments of
all the observables if one knows all the correlation func-
tions tr[ρ̂ â†(ψ1) . . . â†(ψn)â(ϕ1) . . . â(ϕm)], for all possi-
ble lengths n and m. Even though this might seem like
an equally challenging endeavor, much of quantum statis-
tical mechanics boils down to finding expressions of the
correlation functions for relevant classes of states.

B. Phase space

In the previous subsection, we started our analysis by
extending a system of one quantum particle to a system of

many quantum particles. Here we follow a different route,
where we start by considering the classical electric field.
With some effort, we can apply such an analysis to any
bosonic field, but in this Tutorial we focus on quantum
optics as our main field of application. For a more exten-
sive introduction from a quantum optics perspective we
recommend Refs. [55,57,58], whereas a general introduc-
tion to quantum physics in phase space can be found in
Ref. [59].

A traveling electromagnetic wave is described by a solu-
tion of Maxwell’s equations. As is commonly the case in
optics, we focus on the complex representation of the elec-
tric field, which is generally given by E(+)(r, t). It is related
to the real-valued electric field E(r, t) that is encoun-
tered in standard electrodynamics textbooks by E(r, t) =
E(+)(r, t)+ [

E(+)(r, t)
]∗. To express the electric field, it is

useful to introduce an orthonormal mode basis {ui(r, t)}.
These modes are solutions to Maxwell’s equations

∇ · ui(r, t) = 0, (12)
(
	− 1

c2

∂2

∂t2

)
ui(r, t) = 0. (13)

The orthogonalization property is implemented by the
following condition:

1
V

∫

V
d3r [ui(r, t)]∗ uj (r, t) = δi,j , (14)

where V is some large volume that contains the entire phys-
ical system. This assumption serves the practical purpose
of allowing us to consider a discrete mode basis and on top
it makes physical sense. Note that we do not integrate over
t, which implies that at every instant of time t we consider
a mode basis that is normalized with respect to the spatial
degrees of freedom. It is practical to assume that all rele-
vant physics can be described by a (possibly large) finite
number of modes m. These modes now form a basis in
which we can expand any solution to Maxwell’s equations
and thus we may write

E(+)(r, t) =
m∑

j =1

Ej uj (r, t), (15)

where Ei are a set of complex numbers, which can be
written in terms of the real and imaginary parts

Ej = E(x)j + iE(p)j . (16)

These real and imaginary parts of the field are known as
the amplitude and phase quadrature, respectively. We can
interpret these quantities E := (E(x)1 , E(p)1 , . . . , E(x)m , E(p)m ) ∈
R2m as the coordinate in optical phase space that describes
the light field.
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The space of solutions of Maxwell’s equations forms
a Hilbert space, which we call the mode space M and
the mode basis chosen to describe this space is far from
unique. As with all Hilbert spaces, we can define unitary
transformations and use them to change from one basis to
another. As such, let us introduce the unitary operator U to
change between bases

ui(r, t) =
m∑

j =1

Ujivj (r, t), (17)

vi(r, t) =
m∑

j =1

U†
jiuj (r, t), (18)

where we can in principle obtain U as an infinite-
dimensional matrix with

Uji = 1
V

∫

V
d3r

[
vj (r, t)

]∗ ui(r, t), (19)

which remarkably does not depend on time due to the
normalization properties of the mode bases. We can analo-
gously expand the electric field in the new mode basis

E(+)(r, t) =
∑

i

E ′
i vi(r, t), (20)

where E ′
i = ∑

j Uij Ej . This observation is of great impor-
tance when we quantize the electric field. The change of
mode basis also imposes a change of coordinates in the
optical phase space. Like in Eq. (16) the new components
can also be divided in real and imaginary parts, which leads
to a new coordinate E′. Because the coordinate vectors in
optical phase space are real 2m-dimensional vectors, we
obtain

E′ = OE, (21)

where O is an orthonormal transformation. However, the
orthogonal transformation O on the phase space must cor-
respond to the unitary transformation U on the modes,
which imposes the constraint

O2i−1,2j −1 = 1
2
(Uij + U∗

ij ), (22)

O2i−1,2j = − 1
2i
(Uij − U∗

ij ), (23)

O2i,2j −1 = 1
2i
(Uij − U∗

ij ), (24)

O2i,2j = 1
2
(Uij + U∗

ij ). (25)

This imposes a symplectic structure to the transformation
O such that the optical phase space, just like the phase

space of analytical mechanics, can be treated as a symplec-
tic space. The conserved symplectic structure associated
with this space is given by

� =
m⊕

j =1

ω, with ω =
(

0 −1
1 0

)
, (26)

such that OT�O = �. Note that � can be interpreted as a
matrix representation of the imaginary i, in the sense that
it has the properties �T = −� and �2 = −1 [60].

In quantum optics, the electric field of light is treated as
a quantum observable Ê

(+)
(r, t). In this quantization, the

modes, i.e., the normalized solutions to Maxwell’s equa-
tions, remain classical objects and all the quantum features
are absorbed in the coefficients. We can thus write

Ê
(+)
(r, t) =

∑

i

E (1)i
x̂i + ip̂i

2
ui(r, t), (27)

where E (1)i is a constant that carries the dimensions of the
field, which can be interpreted as the electric field of a
single photon. Glossing over many subtleties of the quan-
tization of the electromagnetic field, we remind the reader
that any system that is described on phase space can be
quantized through canonical quantization. The quadrature
operators x̂j and p̂k therefore follow the canonical com-
mutation relations [x̂j , p̂k] = 2iδj ,k, such that they satisfy
the Heisenberg relation	x̂	p̂ � 1. As they are introduced
above, the quadrature operators are specifically related to
the specific mode basis. Indeed, x̂j and p̂j are the quadra-
ture operators that describe the field in mode uj (r, t). Thus,
when we change the basis of modes, we should change
the quadrature operators accordingly in line with Eq. (21).
To overcome these difficulties, it is often convenient to
introduce a basis-independent expression for the quadra-
ture operators, which can be done by mapping any point
in the optical phase space f ∈ R2m to an observable q̂(f ),
given by

q̂(f ) :=
m∑

j =1

f2j −1x̂j + f2j p̂j . (28)

These quadrature operators follow a generalized version of
the CCR, given by

[q̂(f1), q̂(f2)] = −2if T
1 �

f2, for all f1, f2 ∈ R
2m. (29)

We highlight the particular case where [q̂(f ), q̂(�f )] =
2i‖f ‖2, such that we recover the typical form of the
CCR for ‖f ‖ = 1. This highlights that � maps an ampli-
tude quadrature to its associated phase quadrature. From
a mathematical point of view, everything is perfectly well
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defined for arbitrary f ∈ R2m and no normalization con-
ditions have to be imposed. From Eq. (28) we can see
that the norm of f can be factored out, such that it serves
as a general rescaling factor of the quadrature operator.
In a physical context, when a quadrature is measured, it
is common to renormalize measurements to units of vac-
uum noise, which practically means that we set ‖f ‖ = 1.
Unless explicitly stated otherwise, we assume that ‖f ‖ =
1 throughout this Tutorial. We can use these general
quadrature operators to express electric field operator as

Ê
(+)
(r, t) =

m∑

j =1

E (1)j
q̂(ej )+ iq̂(�ej )

2
uj (r, t), (30)

and we can use the basis transformation (21) to equiva-
lently express the electric field operator in a different mode
basis as

Ê
(+)
(r, t) =

m∑

j =1

E (1)j
q̂(Oej )+ iq̂(�Oej )

2
vj (r, t). (31)

This procedure shows us that optical elements, that change
the mode basis, change the associated quadrature operators
accordingly.

Equation (30) shows us explicitly that quadrature oper-
ators q̂(f ) and q̂(�f ) correspond to the same mode,
regardless of the mode basis. This reflects the fact that
f generates one axis in the optical phase space and �f
generates the second axis that corresponds to the same
mode. As such, any arbitrary mode comes with an associ-
ated two-dimensional phase space that mathematically can
be denoted as span(f ,�f ). Because this phase space is
uniquely associated with a specific mode, we introduce the
notation

f = span(f ,�f ), (32)

and we refer to this as “mode f.” This allows us to concen-
trate on the multimode quantum states within this Tutorial,
while the specifications of the modes can be left ambigu-
ous. The modes can be seen as the physical implementa-
tions of the quantum system and are of major importance
in the experimental setting as multimode quantum optics
experiments rely on the manipulation of these modes.

Multimode quantum states define expectation values of
the field, and when we consider CV quantum optics, we
primarily focus on the expectation values of the quadra-
ture operators q̂(f ). These operators are unbounded and
have a continuous spectrum. The measurement of a field
quadrature thus leads to a continuum of possible outcomes
and the continuous-variable approach to quantum optics
implies that this characterizes quantum properties of light
through the measurement of such quadrature operators.

Formally, we can again describe a quantum state on
such a system by a density operator ρ̂ but this descrip-
tion is rather inconvenient. It turns out that the quadrature
operators q̂(f ) generate the algebra of observables for the
quantum system that is comprised within our multimode
light. In other words, any observable can be approximated
by a polynomial of quadrature operators. This generally
implies that we can fully characterize the quantum state
ρ̂ by correlation functions of the type tr[ρ̂q̂(f1) . . . q̂(fn)].
When we know these correlation functions for all lengths
n and normalized vectors in phase space, we have fully
characterized the state.

To go beyond the information that is contained in cor-
relation functions, it is often convenient to consider proba-
bility distributions as a whole. For a single quadrature q̂(f )
we can introduce the characteristic function for any λ ∈ R

as

χ(λ) = tr[ρ̂eiλq̂(f )] =
∞∑

n=0

(iλ)n

n!
tr[ρ̂q̂(f )n], (33)

which is clearly related to the moments tr[ρ̂q̂(f )n]. The
characteristic function is the Fourier transform of the prob-
ability distribution of the outcomes of observable q̂(f ). We
can thus obtain the probability distribution as

p(x) = 1
2π

∫

R

dλ χ(λ)e−ixλ. (34)

This approach can be readily generalized to the joint prob-
ability distribution for a set of commuting quadrature oper-
ators. We thus consider f1, . . . fn with [q̂(fj ), q̂(fk)] = 0 for
all j , k, and we define for all λ = λ1 f1 + λ2 f2 + · · · + λn fn
(note that λ is not normalized). We can then use the
properties of the quadrature operators to construct q̂(λ) =∑n

k=1 λkq̂(fk) and define the function

χ(λ) = tr[ρ̂eiq̂(λ)]. (35)

This function generates all the correlations between
observables q̂(f1), . . . , q̂(fn) and it can be used to obtain the
multivariate probability distribution

p(x) = 1
(2π)n

∫

Rn
dλ χ(λ)e−iλTx, (36)

where dλ = dλ1 . . . dλn. The function p(x) describes the
probability density to jointly obtain x1, . . . , xn as measure-
ment outcomes for the measurements of q̂(f1), . . . , q̂(fn),
respectively. This approach relies on the fact that com-
muting observables can be jointly measured and what we
presented to derive Eqs. (34) and (36) is ultimately just
classical probability theory. However, not all quadrature
operators commute such that joint measurements are not
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always possible. This implies that a quantum state cannot
be straightforwardly defined by a probability distribution
of the optical phase space.

Intriguingly, we can carry out the same procedure for a
full multimode system over a set of m modes. To this goal,
let us define the quantum characteristic function

χ : R
2m → C : λ �→ χ(λ) := tr[ρ̂eiq̂(λ)]. (37)

This function, defined on the full optical phase space, can
be used to generate all correlation functions between all
quadrature operators. As such, it does characterize the full
quantum state, but it is common practice to rather study its
inverse Fourier transform, which is known as the Wigner
function [61–63]

W(x) := 1
(2π)2m

∫

R2m
dλ χ(λ)e−iλTx. (38)

This function has many appealing properties even though
it is not a probability distribution but rather a quasiproba-
bility distribution. First of all, the Wigner function is nor-
malized, i.e.,

∫
R2m dx W(x) = 1. Furthermore, its marginals

consistently describe all the joint probability distributions
for sets of commuting quadratures in the system. Formally,
this implies that p(x) of Eq. (36) can be obtained by inte-
grating over all the phase-space axes that are not contained
within span(f1, . . . fn). To do so, let us introduce the n-
dimensional vector xM that is associated with the measured
quadratures, and the 2m − n dimensional vectors xc, which
describe all other axes in phase space. An arbitrary point in
phase space can thus be written as x = xM ⊕ xc. Then we
find that

P(xM ) =
∫

R2m−n
dxc W(xM ⊕ xc). (39)

Finally, the Wigner function also produces the correct
expectation values

∫

R2m
dx f T

1 x . . . f T
n xW(x) = Re{tr[ρ̂q̂(f1) . . . q̂(fn)]}. (40)

Note that considering the real part of tr[ρ̂q̂(f1) . . . q̂(fn)] is
essentially equivalent to considering symmetric ordering
of the operators. Regardless of these nice properties the
Wigner function is by itself not a well-defined probabil-
ity distribution. Due to complementarity, the function can
reach negative values for some states. This Wigner nega-
tivity is consistent with the impossibility to jointly describe
the measurement statistics of all quadratures while also
complying with the laws of quantum physics (notably the
Heisenberg relation). The profound relation between neg-
ativity of the Wigner functions and joint measurability is
perhaps most strikingly illustrated by its connection to con-
textuality [64]. The formalism of Wigner functions can be

used to construct phase-space representations of arbitrary
observables by introducing

χA(λ) = tr[Âeiq̂(λ)], (41)

such that the Wigner representation is given by

WA(x) = 1
(2π)2m

∫

R2m
dλ χA(λ)e−iλTx. (42)

These Wigner representations have the appealing property
that

tr[Âρ̂] = (4π)m
∫

R2m
dx W∗

A(x)W(x). (43)

When Â is an observable and thus has Â = Â†, its Wigner
function will be real such that W∗

A
(x) = WA(x). However, it

may sometimes be useful to extend the formalism to more
general operators. As such the entire theory of continuous-
variable quantum systems can be developed using Wigner
functions.

Several aspects of the phase-space representations in
this section are reminiscent of earlier results in Sec. A,
which was fully developed in a language of particles (also
known as a discrete-variable approach). Indeed, the alge-
bra of operators that is generated by the creation and
annihilation operators is actually the same as the alge-
bra generated by the quadrature operators. To formalize
this, we must first stress that the optical phase space is
isomorphic to an m-dimensional complex Hilbert space,
which can equally be interpreted as the single-particle
Hilbert space of a photon. Formally, this equivalence is
constructed through the bijection (see also the Appendix)

f ∈ R
2m �→

∑

j

(f2j −1 + if2j )
∣∣ϕj

〉 ∈ H, (44)

where {∣∣ϕj
〉} is an arbitrary basis of H. We can introduce

the operators

â(f ) = 1
2

[q̂(f )+ iq̂(�f )],

â†(f ) = 1
2

[q̂(f )− iq̂(�f )].
(45)

By using Eq. (44), we can naturally associate these oper-
ators to creation and annihilation operators on the single-
particle Hilbert space. We retrieve the canonical commuta-
tion relation

[â(f1), â†(f2)] = f T
1

f2 − if T
1 �

f2, (46)

which can be connected to the inner product on the Hilbert
space H via Eq. (44).
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The definition of creation and annihilation operators
allows us to make sense of the vacuum state in our phase-
space picture. The vacuum state is completely character-
ized by the property

â(f ) |0〉 = 0, for all f ∈ R
2m. (47)

This simple fact can be used to evaluate the quantum
characteristic function

χ0(λ) = tr(|0〉 〈0| ei[â†(λ)+â(λ)]) (48)

=
∞∑

n=0

in

n!
〈0| [â†(λ)+ â(λ)]n |0〉 (49)

=
∞∑

n=0

−‖λ‖2n

2nn!
(50)

= exp

[

−‖λ‖2

2

]

. (51)

To obtain Eq. (50) we need a considerable amount of com-
binatorics to evaluate 〈0| [â†(λ)+ â(λ)]n |0〉. In general, it
can be shown that 〈0| â†(λ1) . . . â†(λk)â(λk+1) . . . â(λk+l)

|0〉 = 0. Thus it suffices to cast [â†(λ)+ â(λ)]n in nor-
mal ordering and extract the term proportional to iden-
tity. Even though straightforward, this calculation is quite
cumbersome and thus we do not present the details.

From Eq. (51) the Wigner function can be obtained via
an inverse Fourier transformation that leads to

W0(x) = e− 1
2 ‖x‖2

2π
. (52)

This Wigner function describes a Gaussian distribution on
the phase space with unit variance along every axis. We
can thus use Eq. (40) to see that the vacuum state saturates
Heisenberg’s inequality, i.e., 	q̂(f )	q̂(�f ) = 1.

The quadrature operators thus generate the same algebra
of observables as the creation and annihilation operators.
However, both sets of observables tend to cause mathe-
matical problems because they are unbounded operators
[42,65–67]. The unboundedness means that, when |�〉 is
contained in the Fock space, there is no guarantee that
q̂(f ) |�〉 will also be contained in the Fock space. One
way of solving this problem explicitly is by only con-
sidering states for which 〈�| q̂(f )2 |�〉 < ∞, such that
q̂(f ) |�〉 is a well-defined state. Physically this assump-
tion makes sense, as it ultimately implies that we consider
only states with finite energies. However, the unbound-
edness of quadrature operators also disqualifies them as
well-defined generators of the C∗ algebra of observables
(since elements of such algebras must be bounded). C∗
algebras are essential tools as they allow reconstruction

of the whole framework of Hilbert spaces based on repre-
sentation theory of abstract algebras (which is essentially
the idea of canonical quantization). A highly formal and
detailed treatment that considers all these subtleties for
bosonic systems is found in Ref. [41]. The key idea is to
rather consider a set of bounded operators that describes
the same algebra of observables [65,66] and are known as
the displacement operators:

D̂(α) = e−iq̂(�α)/2, (53)

where α ∈ R2m need not be normalized. Again, we can use
the isomorphism (44) to identify the displacement operator
on the quantized phase space to a displacement operator on
the Fock space. These operators can be seen as generators
of the quadrature operators and they act in a very natural
way on them:

D̂†(α)q̂(f )D̂(α) = q̂(f )+ αT f , (54)

which means that the value αT f is added to the measure-
ment outcomes of q̂(f ). The displacement operator can be
combined according to the rule

D̂(α1)D̂(α2) = D̂(α1 + α2)e
i
4 αT

1�α2 . (55)

This rule is yet another representation of the canonical
commutation relation and it generates the same algebra
of observables. This implies that any observable Â can
be written as a linear combination of displacement opera-
tors. We use the Hilbert-Schmidt inner product 〈Â, B̂〉HS =
tr[Â†B̂] to make this explicit

Â =
∫

R2m
dλ 〈D̂(2�λ), Â〉HSD̂(2�λ),

=
∫

R2m
dλ tr[ÂD̂(−2�λ)]D̂(2�λ), (56)

and we can readily identify that

tr[ÂD̂(−2�λ)] = χ∗
A(

λ). (57)

It can then directly be seen that

tr[Âρ̂] =
∫

R2m
dλχ∗

A(
λ)tr[D̂(2�λ)ρ̂], (58)

=
∫

R2m
dλχ∗

A(
λ)χ(λ). (59)

And we immediately obtain Eq. (43) via Plancherel’s
theorem [67,68].

The displacement operators also implement a unitary
operation on a quantum state. This unitary operation has a
remarkably simple effect when it is expressed on the level
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of the Wigner function. Via the property, Eq. (55), we can
calculate that

ρ̂ �→ D̂(α)ρ̂D̂†(α) =⇒ χ(λ) �→ χ(λ)e−iαTλ. (60)

Performing the inverse Fourier transform of these quantum
characteristic functions leads to

W(x) D(α)�→ W(x − α). (61)

The displacement operator thus literally implements a dis-
placement of the Wigner function by a vector α ∈ R2m in
phase space.

Displacement operators are also well known as the gen-
erators of the coherent states that were introduced in Eq.
(10). We can combine the bijection between phase space
and Hilbert space, Eq. (44), the expression of creation and
annihilation operators in terms of quadratures, Eq. (45),
and the definition of the displacement operator, Eq. (53),
to derive that

|α〉 = D̂(α) |0〉 . (62)

By combining Eqs. (52) and (61), we immediately see that
the Wigner function for such a coherent state is given by

Wα(x) = W0(x − α) = e− 1
2 ‖x−α‖2

2π
. (63)

We emphasize that there is a slight difference between
the coherent states as defined here, and coherent states as
sometimes introduced in the literature. The difference is a
factor of 2, which appears because we normalized the shot
noise to 1 rather than to 1/2. As such, our coherent states
have an energy in mode f, which is given by

〈α| â†(f )a(f ) |α〉 = 1
4

[(αT f )2 + (αT�f )2]. (64)

The coherent states lead us to two other representations
of quantum states and observables: the Q function and P
function. The definition of the P function is related to the
idea that coherent states form an overcomplete basis of
Fock space. This implies, notably, that for a m-dimensional
single-particle Hilbert space

1
(4π)m

∫

R2m
dα |α〉 〈α| = 1, (65)

with 1 the identity operator. We can then show that any
observable can be written as [5,6]

Â = 1
(4π)m

∫

R2m
dαPA(α) |α〉 〈α| , (66)

where we refer to PA(α) as the P function of the observ-
able Â. Similarly, we can represent a density of operator ρ̂

by its P function P(α). The reader should be warned that P
functions often have rather unpleasant mathematical prop-
erties. In particular, they often are not actual functions and
can be highly singular.

The P function naturally comes with a dual representa-
tion that is known as the Q function. As often in quantum
physics, what actually counts is the expectation value of an
observable in a specific state. We can use the P function to
write

tr[Âρ̂] = 1
(4π)m

∫

R2m
dαPA(α) 〈α| ρ̂ |α〉 (67)

= 1
(4π)m

∫

R2m
dαP(α) 〈α| Â |α〉 . (68)

This naturally introduces the Q function, given by

QA(α) = 1
(4π)m

〈α| Â |α〉 , (69)

and, in particular, for the quantum state ρ̂ we find that

Q(α) = 1
(4π)m

〈α| ρ̂ |α〉 . (70)

The latter is of particular interest because it represents the
quantum state ρ̂ as an actual probability distribution. This
leads us to the general identity that

tr[ÂB̂] =
∫

R2m
dαPA(α)QB(α) =

∫

R2m
dαQA(α)PB(α).

(71)

Thus finishing our introduction to the various descriptions
of the quantum states and observables of bosonic many-
particle systems.

The Q function has a clear physical interpretation. It
is directly proportional to the fidelity of the state ρ̂ with
respect to a target coherent state |α〉. Furthermore, it is
always positive, which implies that it is a well-defined
probability distribution. Because we can write 〈α| ρ̂ |α〉 =
tr[ρ̂ |α〉 〈α|], we can use Eqs. (43) and (52) to express the
Q function in terms of the Wigner function as

Q(α) =
∫

R2m
dx W(x)W0(x − α). (72)

To satisfy both Eqs. (43) and (71), we find that

W(x) = 1
(4π)m

∫

R2m
dα P(α)W0(x − α), (73)

= 1
(4π)m

∫

R2m
dα P(α)e

− 1
2 ‖x−α‖2

(2π)m
. (74)
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In turn, this implies that

Q(α) = 1
(8π)m

∫

R2m
d β P( β)e

− 1
4 ‖ β−α‖2

(2π)m
. (75)

These results thus show that all these phase-space repre-
sentations are ultimately related to one another through
convolution or deconvolution with a Gaussian [recall that
the Wigner function of the vacuum Eq. (52) is a Gaus-
sian distribution on phase space]. One can now follow
Ref. [69] to define a continuous family of phase-space
representations Wσ for σ ∈ [−1, 1]

Wσ (α) =
(

1
4π [1 − σ ]

)m ∫

R2m
d β P( β)e

− 1
2[1−σ ] ‖ β−α‖2

(2π)m
,

(76)

where we convolute the P function with an ever-increasing
Gaussian, smoothening its features. We can then see that

tr[Âρ̂] = (4π)m
∫

R2m
dαWA,−σ (α)Wσ (α). (77)

We find, notably, that W(x) = Wσ=0(x), Q(α) = Wσ=−1
(α), and P(α) = (4π)mWσ=1(α). This shows that the
phase-space representation becomes more regular when
decreasing σ . Other generalized probability distributions
have been considered in the literature [70,71], often to cir-
cumvent the unappealing properties of the P function. In
this Tutorial, we mainly use the Wigner function and (to
a lesser extent) the Q function, as they are suitable tools
to classify non-Gaussian quantum states. The P function
is often used in the literature to characterize the nonclas-
sicality of a state, where the intuition is that classical light
is a mixture of coherent states (and thus its P function is a
probability distribution) [5,6].

Before we close this introductory section on the phase-
space description of CV quantum systems, we introduce
one final tool that often comes in handy. The Wigner func-
tion can itself be obtained as the expectation value of an
operator [72]. Formally, we write

W(x) = 1
(2π)m

tr[ρ̂	̂(x)]. (78)

Using linearity and Eq. (38), we obtain the special case

	̂(0) = 1
(2π)m

∫

R2m
dλ eiq̂(λ). (79)

By using techniques based on Eqs. (54) and (55), we can
show that

	̂(0)q̂(f )	̂(0) = −q̂(f ). (80)

This means that 	̂(0) is the parity operator. Its eigenstates
are the Fock states, since

	̂(0)a†(f1) . . . a†(fn) |0〉 = (−1)na†(f1) . . . a†(fn) |0〉 .
(81)

Thus we can formally identify

	̂(0) = (−1)N̂ , (82)

where N̂ is the number operator. We define this opera-
tor by introducing a mode basis {e1,�e1, . . . , em,�em} of
the optical phase space, such that N̂ := ∑m

j =1 a†(ej )a(ej ).
This definition can be combined with the properties of the
displacement operator to obtain that

	̂(x) = D̂(−x)(−1)N̂ D̂(x). (83)

Note that what we just obtained is the operator equivalent
of a δ function, which becomes even more explicit when
we explicitly write down its Wigner representation

W	(x′)(x) = 1
(4π)m

δ(x − x′), (84)

which follows directly from Eqs. (43) and (78).
This result may seem somewhat artificial, but it turns out

to be extremely useful. The observable 	̂(x) can be mea-
sured experimentally by counting photons, which means
that the combination of photon counting and displacements
directly allows us to reconstruct the Wigner function of the
quantum state [73]. Until recently, the lack of good photon-
number-resolving detectors in the optical frequency range
has long made this method unfeasible for most states. Even
though there was an early demonstration of the method for
coherent states [74], it is only due to recent developments
in detector technologies that the method can be applied to
more general states [75,76]. The idea was also applied in
other settings [77], and was used in pioneering CV exper-
iments with trapped ions, such as Ref. [78], and in cavity
QED [79,80].

C. Discrete and continuous variables

In Sec. A, we have introduced a many-boson system,
regardless of the physical realization of these bosons. Such
a many-boson system and its Fock space are built upon the
structure that is determined by the single-particle Hilbert
space H. The Fock space that is constructed accordingly
has a rich structure that is further explored in the Tutorial
[56]. In optics, the bosons that we consider are photons,
and quantum optics can thus be seen as the theory of a
many-boson system in the context of Sec. A. This approach
to quantum optics is referred to as the DV approach.
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In Sec. B, we contrast this with the CV approach to
quantum optics. This approach relies on the measurement
of the field quadratures, and can thus be seen as a bosonic
quantum field theory. Therefore we started this approach
by introducing the classical electric field and its modes,
which we subsequently quantized through canonical quan-
tization. We introduced the notion of optical phase space
as a general way of describing CV quantum systems. The
phase space is directly related to the modes of the field
and manipulations of the modes also cause changes in the
optical phase space. Nevertheless, any system with a phase
space can be described by these techniques.

Both of these approaches are ultimately equivalent.
Bosonic creation and annihilation operators describe the
same algebra of observables as bosonic quadrature oper-
ators, which means that on the level of mathematical
structure, both approaches can be interchanged and even
mixed. This is strikingly clear when the Wigner function,
i.e., the phase-space representation of quantum states and
observables that is most naturally associated with field
quadratures, turns out to be directly measurable by count-
ing photons. Notably, this implies that when it comes to
mathematical structures, bosonic particles such as atoms
can also be described on phase space.

The real difference between CV and DV approaches is
of an experimental nature. What is important is not the
observables that are technically present in the quantum sys-
tem, but the observables that are practically measured in
the lab. For the CV approach we typically use homodyne
detection to measure quadratures [7,81], whereas in DV
approaches we count photons [82].

A common source of misunderstanding between the DV
and CV community stems from the role they attribute to
the single-particle Hilbert space and optical phase space,
respectively. As we argued, both spaces are (at least for
a finite-dimensional number of modes) isomorphic, see
the Appendix for some additional mathematical intuition.
However, the Hilbert space of a photon, which is inher-
ently a quantum particle, is often interpreted as a quantum
object. At the same time, the optical phase space repre-
sents the field quadratures of optical modes and is thus
rather considered to be a classical object. The origin of
this confusion lies in the fact that the optical modes, i.e.,
normalized solutions of Maxwell’s equations, also form
a Hilbert space that has its origins entirely in classical
physics.

The optical modes are the vessels that contain pho-
tons much in the same way as a set of electrons contains
spins. The crucial difference is that optical modes are
not uniquely defined, we can manipulate them, transform
them from one mode basis to another with an interfer-
ometer and thus consider new superpositions of modes.
In typical experimental settings, one would not consider
a superposition of two electrons a new well-defined elec-
tron.

Because creation and displacement operators always act
in one specific mode (i.e., they are generated by a single
vector on the single-photon Hilbert space), single-photon
states and coherent states are always single-mode states.
We may expand this single mode in a different mode basis,
which can even be done physically by sending the state
through a beam splitter, to create some form of entangle-
ment in the quantum states. However, this entanglement is
just a manifestation of the fact that we are not consider-
ing the optimal mode basis. In the CV approach, this has
led to the notion of “intrinsic” properties [58], which are
those properties of quantum states that are independent of
the chosen mode basis. The purity and entropy of a state
are notable examples, but one can also introduce a notion
of “intrinsic entanglement” to refer to a state that is entan-
gled in any possible mode basis. In the next subsection,
we introduce Gaussian states, which will later be shown to
never be intrinsically entangled.

D. Gaussian states

Now that we have introduced phase-space representa-
tions for states and observables of CV quantum systems,
we still need one building block before we can tackle
multimode non-Gaussian states: a good understanding of
Gaussian states. It is not the goal of this subsection to delve
deep into decades worth of research on Gaussian states. We
rather highlight a few key results that set apart Gaussian
quantum states from the rest of the vast states’ space. For
more extended reviews, we refer the reader to Refs. [8,9].
These states are also extensively studied in the mathemat-
ical physics literature under the name “quasifree states of
the CCR algebra.”

Gaussian states are by definition states that have a
Wigner function, which is a Gaussian:

WG(x) = e− 1
2 (x−ξ)TV−1(x−ξ)

(2π)m
√

det V
, (85)

where ξ is referred to as the mean field (or displacement)
and V is known as the covariance matrix. With Eq. (40),
we can verify that the mean field indeed corresponds to the
expectation value of the field quadrature

tr[ρ̂q̂(f )] = ξT f , (86)

similarly, we find for the covariance matrix

tr[ρ̂q̂(f1)q̂(f2)] − tr[ρ̂q̂(f1)]tr[ρ̂q̂(f2)]
= f T

1 Vf2 − if T
1 �

f2. (87)

These quantities can thus be obtained for arbitrary quan-
tum states, but for Gaussian states the covariance matrix
and the mean field also determine all higher-order expec-
tation values. The most elegant way to see this is via the
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multivariate cumulants (also known as truncated correla-
tion functions), which vanish beyond order two [4]. This
fact implies that all properties of Gaussian states can ulti-
mately be deduced from their mean field and—often more
importantly—from their covariance matrix.

Hitherto, we have encountered the vacuum state |0〉 and
the coherent states |α〉 as examples of Gaussian states.
Both of the examples have a covariance matrix V = 1.
However, there is a much larger range of possible covari-
ance matrices available and they have to satisfy certain
constraints [83]. At first instance, we note that a covari-
ance matrix must be positive. An additional constraint is
obtained by imposing that the variance 	2q̂(f ) � 0 for
all f in phase space. Equation (87) then directly yields
that f T(V − i�)f � 0, which implies that V � 0 and sug-
gests that (V − i�) � 0. However, the latter is not obvious,
since f are real vectors, whereas (V − i�) is a complex
matrix. We thus need an additional ingredient: the Heisen-
berg inequality. Formally, this inequality can be obtained
through Robertson’s more general inequality [84], such
that we find

	2q̂(f1)	2q̂(f2) � 1
4

∣∣∣tr{ρ̂[q̂(f1), q̂(f2)]}
∣∣∣
2

. (88)

We can now apply the CCR (29) to obtain the general form

	2q̂(f1)	2q̂(f2) �
∣∣∣f T

1 �
f2

∣∣∣
2

. (89)

On the other hand, the definition (87) of the covariance
matrix can be used to translate this result to

f T
1 Vf1 f T

2 Vf2 �
∣∣∣f T

1 �
f2

∣∣∣
2

. (90)

This identity can then be used to prove (f T
1 − if T

2 )(V −
i�)(f1 + if2) � 0 for all f1, f2 ∈ R2m. As a consequence, we
find that

V − i� � 0, (91)

an important constraint on the covariance matrix V, which
can be understood as combining the positivity conditions
and the Heisenberg inequality.

To further understand the structure of covariance matri-
ces and the Gaussian states that they describe, we highlight
some important results on symplectic matrices. The first of
these results is Williamson’s decomposition [10], which
states that any positive-definite real matrix V can be diag-
onalized by a symplectic matrix S (i.e., a matrix with
ST�S = �):

V = STNS, with N = diag[ν1, ν1, ν2, ν2, . . . , νm, νm].
(92)

The values ν1, . . . νm are also known as the symplec-
tic spectrum of V. From Heisenberg’s relation, we then

find the additional constraint that ν1, . . . , νm � 1, in other
words, the values in the symplectic spectrum are larger
than shot noise. It now becomes straightforward to see the
Heisenberg’s relation also implies that

det V � 1. (93)

It thus becomes apparent that the Heisenberg inequality is
saturated when det V = 1. The states for which this is the
case must have a covariance matrix V = STS.

The Gaussian states for which the Heisenberg inequal-
ity is saturated turn out to be the pure Gaussian states.
Recall that the purity of a quantum state is given by μ =
tr[ρ̂2]. This quantity can be directly calculated from the
Wigner function via Eq. (43). We then find for an arbitrary
Gaussian state

μG = (4π)m
∫

R2m
dx WG(x)2 = 1√

det V
. (94)

Alternatively, we may use the symplectic spectrum to
express μG = ∏m

k=1 ν
−1
k . This shows us that a Gaussian

state is pure if and only if its covariance matrix is a positive
symplectic matrix, i.e., it can be written as V = STS.

The class of states with a covariance matrix given by
V = STS is much larger than just the vacuum and coher-
ent states with V = 1. The additional states turn out to
have asymmetric noise in their quadratures, and because
the Heisenberg inequality is saturated this implies that
some quadratures have less noise than the vacuum state.
The states with such covariance matrices are therefore
known as squeezed states. To formalize this intuition,
we consider the Bloch-Messiah decomposition (which is
known in mathematics and classical mechanics as Euler’s
decomposition) [11,85]. Any symplectic matrix S can be
decomposed as follows:

S = O1KO2, with K = diag[s1/2
1 , s−1/2

1 , . . . , s1/2
m , s−1/2

m ],
(95)

where O1 and O2 are orthogonal symplectic matrices, i.e.,
OT

j Oj = 1 and OT
j �Oj = �. We can then see that for any

pure Gaussian state, we find

V = STS = OTK2O. (96)

We have already encountered orthogonal symplectic trans-
formations in Eq. (21), where we associated them with
transformations of mode bases. Thus, if we find a set of
optical modes that are prepared in a pure Gaussian state,
we can always find a different mode basis in which the state
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is given by

V′ = O VOT =

⎛

⎜⎜⎜⎜
⎝

s1
1/s1

. . .
sm

1/sm

⎞

⎟⎟⎟⎟
⎠

. (97)

This means that we can always find a set of symplec-
tic eigenvectors {e1,�e1, . . . , em,�em} of a pure Gaus-
sian state’s covariance matrix, which have the properties
that 	2q̂(ej ) = sj and 	2q̂(�ej ) = 1/sj , such that the
Heisenberg relation is saturated: 	2q̂(ej )	

2q̂(�ej ) = 1.
At the same time, we find that clearly either 	2q̂(ej )

of 	2q̂(�ej ) is smaller than one (and thus below shot
noise).

Gaussian states naturally come with the notion of Gaus-
sian channels [86], they are the completely positive trace-
preserving transformations that map Gaussian states into
other Gaussian states. We have already seen that the dis-
placement operators are unitary transformations that ful-
fil this condition. Because any Gaussian transformation
� preserves the general shape of the Wigner function
(85), we can simply describe the Gaussian channel � in
terms of its actions on the mean field and the covariance
matrix:

V
��→ XVX T + Vc, (98)

ξ ��→ X ξ + α. (99)

The vector α simply serves to displace the entire Gaus-
sian to a different location in phase space. On the level
of the covariance matrix, X transforms and reshapes
the initial covariance matrix, whereas Vc describes the
addition of Gaussian classical noise. Both can a priori
be any real matrices, as long as they satisfy the con-
straint

Vc − i�+ iX�X T � 0. (100)

This constraint derives from the demand that XVX T +
Vc is a well-defined covariance matrix, and there-
fore XVX T + Vc − i� � 0. Because V is a well-defined
covariance matrix, X (V − i�)X T � 0 and thus it can
be seen that XVX T + Vc is also a well-defined covari-
ance matrix whenever Eq. (100) holds. This sim-
ple argument proves Eq. (100) is a sufficient con-
dition for � to transform the covariance matrix of
the initial state into a new bona fide covariance
matrix.

An important case is obtained when we impose that �
conserves the purity of the state and is thus a unitary trans-
formation. It then immediately follows that Vc = 0, since
there cannot be any classical noise. The displacement α is

simply implemented by a displacement operator, and the
constraint (100), combined with the demand that purity is
conserved implies that X is a symplectic matrix. In other
words, a Gaussian unitary transformation ÛG satisfies V �→
STVS. Another relevant example is the case of uniform
Gaussian losses, where we set X = √

1 − η1, Vc = η1

and α = 0, with the positive value η � 1 denoting the
amount of loss.

More generally, the action of a Gaussian channel on
an arbitrary state can be understood from its action on
exp[iq̂(λ)], which can be proven to take the form

exp[iq̂(λ)] ��→ exp
[

iq̂(X Tλ)+ iαTλ− 1
2
λTVcλ

]
. (101)

We can then calculate the quantum characteristic function
and use some properties of Fourier transforms to find that
the Wigner function transforms as

W(x) ��→
∫

R2m
dy W(X −1x − y)e

− 1
2 (y−α)TV−1

c (y−α)

(2π)m
√

det Vc
. (102)

For Gaussian unitary transformations we find the appeal-
ing result that W(x) �→ W[S−1(x − α)]. This means that
a Gaussian unitary transformation is simply a coordinate
transformation on phase space.

Proving that any completely positive Gaussian channel
� is of the form Eq. (102) with condition (100), is a chal-
lenging task. The result was first obtained in Refs. [87,88],
using the language of C∗ algebras. The proof is rather
technical and we do not go into details here.

The paradigm of Gaussian channels is also useful to
structure general Gaussian states. One may, for example,
wonder which Gaussian channel would transform the vac-
uum state into the Gaussian state with covariance matrix V.
In general, there is no unique solution to this question, but
there is a straightforward route to find an answer. First, take
any symplectic matrix S that satisfies V − STS � 0 (the
Williamson decomposition guarantees that this is always
possible). This implies that there is a positive-definite
matrix Vc such that V = STS + Vc. As such, an arbitrary
Gaussian state can always be decomposed as

WG(x) =
∫

R2m
dy W0(S−1x − y)e− 1

2 (y−α)TV−1
c (y−α). (103)

The symplectic operation that is applied to the vacuum
is known as multimode squeezing in optics. These trans-
formations are fully equivalent to Bogoliubov transforma-
tions that are regularly used in condensed-matter physics
[4,8]. Combined with a displacement, this operation pro-
vides the most general operation that maps quadrature
operators into well-defined quadrature operators.

Now that we have introduced the basic concepts of
Gaussian states, we are equipped to start exploring their
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non-Gaussian counterparts. Several other important prop-
erties of Gaussian states will be introduced along the
way to stress just how peculiar these Gaussian states are
compared to the rest of state space.

III. NON-GAUSSIAN QUANTUM STATES

Contrary to Gaussian states with their elegant Wigner
function and properties that can be nicely deduced from
the covariance matrix, the set of non-Gaussian states is vast
and wild. Literally all states with Wigner functions that are
not Gaussian are contained within this class. To give an
idea of the enormous variety, one can consider that highly
exotic states such as Gottesman-Kitaev-Preskill states [31]
and Schrödinger cat states inhabit the set of non-Gaussian
states together with the states that describe single pho-
tons and even certain convex mixtures of Gaussian states.
Throughout the years, there have been considerable efforts
to structure the set of non-Gaussian states. We introduce
the notion of quantum non-Gaussian states [89] and then
extend it to a hierarchy based on stellar rank [38]. A differ-
ent approach is provided by considering that the negativity
of the Wigner function can be used as a genuine signa-
ture of nonclassicality [90]. However, before we attack
these different measures to structure non-Gaussian quan-
tum states, we contrast some properties of Gaussian and
non-Gaussian states.

Figure 1 provides an overview that can be used as a
brief guide to understand the structure of non-Gaussian
states. We attempt to highlight how the different quanti-
ties used to structure the non-Gaussian part of state space
are interconnected.

A. Gaussian versus Non-Gaussian

Gaussian states have many extraordinary properties that
set them apart from non-Gaussian states. First of all, pure
Gaussian states turn out to be the only quantum states that
saturate the uncertainty relation. The easiest way to see
this is by describing arbitrary pure states in terms of their
wave functions. The wave functions associated with ampli-
tude quadratures q̂(f ) and those associated with phase
quadratures q̂(�f ) are related by a Fourier transform. This
fact can then be used to show that only Gaussian wave
functions saturate the Heisenberg inequality. The exten-
sion to arbitrary mixed states can be achieved via Jensen’s
inequality, which emphasizes that no mixed states can sat-
urate the uncertainty relation. Let us consider a mixed
state ρ̂ = ∑

k pk |�k〉 〈�k| with variances	2q̂(f ). We also
introduce the variances 	2

k q̂(f ) for the pure states |�k〉.
From Jensen’s inequality [91], it follows that

	2q̂(f ) �
∑

k

pk	
2
k q̂(f ). (104)

Gaussian states
(stellar rank 0)

Non-Gaussian mixtures 
of gaussian states
(stellar rank 0)

Coherent states
Squeezed vacuum
Thermal states

Stellar rank 1
0.52|0 0| + 0.48|1 1| Stellar rank n  2

â† n
ρ̂G (â)n

tr[(â)n (â†)n
ρ̂G]

Stellar rank ∞ 

GKP states

Wigner-negative states
Fock states
Photon-added states
Photon-subtracted squeezed vacuum

GKP states

1
2

| | + |− |

…

Quantum non-Gaussian states 

FIG. 1. Overview of the different types of non-Gaussian states that can be found in state space. The different aspects will all be
considered throughout Sec. III. Here we attempt to show the stellar hierarchy and how it differentiates itself from the convex hull
(mixtures) of Gaussian states. Furthermore, we emphasize that the stellar rank and Wigner negativity are different quantifiers of non-
Gaussianity. It should be noted that all non-Gaussian pure states are Wigner-negative states, but we can find states that are not mixtures
of Gaussian states without Wigner negativity. For all the classes, we provide examples of states that belong to this group, the Wigner
functions for several of these examples are shown in Fig. 2.
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For Heisenberg’s inequality, we calculate

	2q̂(f )	2q̂(�f ) �
∑

k

p2
k	

2
k q̂(f )	2

k q̂(�f )

+
∑

k �=l

pkpl	
2
k q̂(f )	2

l q̂(�f )

� 1. (105)

The presence of cross terms highlights that even when all
the pure states in the mixture saturate the inequality, the
mixture does not. The only possible exception is the case
where the state is pure.

That only pure Gaussian states saturate the Heisenberg
inequality may seem like an innocent observation, but it
has an important implication for non-Gaussian states. The
Heisenberg inequality can be formulated entirely in terms
of the covariance matrix. We showed in Eq. (92) that the
inequality is saturated if and only if the covariance matrix
is symplectic, i.e., V = STS. Furthermore, we showed in
Eq. (94) that a Gaussian state is pure if and only if its
covariance matrix is symplectic V = STS. The fact that
no non-Gaussian states can saturate the inequality thus
implies that non-Gaussian states can never have a sym-
plectic covariance matrix V = STS. This is a first hint of
the special role played by Gaussian states.

A more general result along these lines states that for all
states ρ̂ with the same covariance matrix V, the Gaussian
state always has the highest von Neumann entropy [13].
First of all, note that entropy −tr[ρ̂ log ρ̂] is conserved
under unitary transformations. Due to the Williamson
decomposition (92), we can write any Gaussian state as

ρ̂G = ÛG

m⊗

j =1

ρ̂nj Û†
G, (106)

where ρ̂nj is a thermal state of the Hamiltonian â†
j âj with

average particle number nj = (νj − 1)/2. From statistical
mechanics, we know that thermal states are the quantum
states that maximize the von Neumann entropy for a given
temperature (here fixed by the occupations nj ).

It turns out that Gaussian states are limiting cases for
many quantities [12]. This result shows that for a range
of functionals f on the state space, we find that f (ρ̂) �
f (ρ̂G), where ρ̂G is the Gaussian state with the same
covariance matrix as ρ̂. Apart from some more technical
aspects such as continuity, f must have two important fea-
tures: it must be conserved under (a certain class of) unitary
operations f (Ûρ̂Û†) = f (ρ̂) and it must be strongly super-
additive f (ρ̂) � f (ρ̂1)+ f (ρ̂2) (note that ρ̂1 and ρ̂2 are
marginals of ρ̂). The equality must be saturated for product
states, i.e., f (ρ̂1 ⊗ ρ̂2) = f (ρ̂1)+ f (ρ̂2). For strongly sub-
additive functions with f (ρ̂) � f (ρ̂1)+ f (ρ̂2) the same
result implies f (ρ̂) � f (ρ̂G), (after all, in that case −f

is a strongly superadditive function). It is clear that the
von Neumann entropy fulfils the latter conditions and is
maximized for Gaussian states. For superadditive entan-
glement measures, this result can be used to show that
for all states with the same covariance matrix, Gaussian
states are the least entangled ones (entanglement is much
more extensively discussed in Sec. V). However, several
common entanglement measures, e.g., the logarithmic neg-
ativity [92] and the entanglement of formation [93], are not
superadditive.

At the heart of these extremal properties lies the cen-
tral limit theorem [4,94–96]. There are many versions of
the central limit theorem in quantum physics, but we stick
to what is probably the simplest one. As always, we con-
sider our optical phase space R2m, but this time, we take
N copies of it, which implies that we are dealing with
a phase space R2Nm = R2m ⊕ · · · ⊕ R2m for the full sys-
tem. We can then embed a vector λ ∈ R2m in the j th of
these N copies via λj := 0 ⊕ · · · ⊕ 0 ⊕ λ⊕ 0 · · · ⊕ 0 and
introduce the new averaged operator

qN (
λ) := 1√

N

N∑

j =1

q̂(λj ). (107)

It is rather straightforward to see that these observables
follow the canonical commutation relation. We can now
restrict ourselves to studying the algebra that is generated
entirely by such averaged quadrature operators. When we
then assume that the different copies of the system are
“independently and identically distributed” we must set
the overall state to be ρ̂(N ) = ρ̂⊗N . We then find the char-
acteristic function of the algebra of averaged observables
by

χN (λ) = tr[ρ̂⊗N eiqN (λ)]. (108)

The following pointwise convergence can be shown:

χN (λ) N→∞→ χG(λ), (109)

where χG(λ) is the characteristic function of the Gaussian
state ρ̂G that has the same covariance matrix as ρ̂. This
means that the non-Gaussian features in any state ρ̂ can be
coarse grained away by averaging sufficiently many copies
of the state. Note that this result considers N copies of an
arbitrary m-mode state. The single-mode version of this
result was proven in Ref. [94], whereas a much more gen-
eral versions are derived in Refs. [95,96]. In Ref. [12] the
central limit theorem is combined with invariance under
local unitary transformations to prove the final extremality
result, we do not review these points in detail.

The extremality of Gaussian states and the associated
central limit theorem highlight why Gaussian states are
important in quantum-information theory and quantum
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statistical mechanics. It also shows that Gaussian states
have some particular properties compared to non-Gaussian
states. It thus should not come as a surprise that some
of these properties can be used to measure the degree of
non-Gaussianity of the state [97–99]. As we mentioned
before, for a fixed covariance matrix V the von Neumann
entropy is maximized by the Gaussian state. This suggest
that we can use the difference in von Neumann entropy as
a measure for non-Gaussianity. To formalize things, let us
consider an arbitrary state ρ̂ with covariance matrix V and
mean field ξ (this quantities can be derived, respectively,
for the second and first moments of the quadrature opera-
tors). We then construct a Gaussian state σ̂V, which has the
same covariance matrix and the mean field. In the spirit of
extremality, we then define

δ(ρ̂) = S(σ̂V)− S(ρ̂), (110)

where S(ρ̂) := −tr[ρ̂ log ρ̂]. Because von Neumann
entropy is constant under unitary transformations, for a
Gaussian state it depends only on the symplectic spectrum
ν1, . . . , νm. In other words, we can calculate S(σ̂V) directly
by using the Williamson decomposition (92) on V. We find
from Ref. [13] that

S(σ̂V) =
m∑

j =1

[
νj + 1

2
log

νj + 1
2

− νj − 1
2

log
νj − 1

2

]
.

(111)

However, it should be noted that the entropy of the non-
Gaussian states S(ρ̂) is generally harder to calculate unless
we can accurately approximate the state by a finite density
matrix in the Fock basis. Furthermore, if the state ρ̂ is pure,
we simply find that δ(ρ̂) = S(σ̂V).

Due to extremality of Gaussian states it directly follows
that δ(ρ̂) � 0, but this does not necessarily mean that δ(ρ̂)
is a good measure for non-Gaussianity. References [13,98]
establish that

δ(ρ̂) = S(ρ̂ | |σ̂V), (112)

where S(ρ̂ || σV) := tr[ρ̂(log ρ̂ − log σ̂V)] is the quantum
relative entropy between ρ̂ and reference state σ̂V. The
quantum relative entropy allows us to connect δ(ρ̂) to a
range of interesting properties, as shown in Ref. [98]. For
example, it directly follow that δ(ρ̂) = 0 if and only if
ρ̂ = σ̂V. Furthermore, the measure δ(ρ̂) inherits convex-
ity and monotonicity properties from the relative entropy.
These are exactly the properties that made this measure
a useful ingredient in the resource theory for quantum
non-Gaussianity presented in Ref. [100].

Thus, the connection between Eq. (110) and relative
entropy shows that δ(ρ̂) can indeed be used as a measure
for non-Gaussianity in the sense that it measures “entropic

distance” between ρ̂ and σ̂V. Yet, there is one important
question that remains to be answered: is σV indeed the
closest Gaussian state to ρ̂? An affirmative answer to this
question was provided in Ref. [101], where it was shown
that

δ(ρ̂) = min
ρ̂G

S(ρ̂ | |ρ̂G), (113)

where we minimise over all possible Gaussian states ρ̂G.
The main idea of the proof is to show that S(ρ̂ || ρ̂G)−
S(ρ̂ || σ̂V) = S(σ̂V || ρ̂G) � 0 such that the smallest rela-
tive entropy in indeed achieved for σ̂V. For the technical
details, we refer the interested reader to Ref. [101]. Fur-
thermore, we note that a similar non-Gaussianity measure
was introduced by using the Wehrl entropy (based on the
Q function) rather than the von Neumann entropy [102].

We have thus shown that Gaussian states are special
in the sense that they minimize entanglement and maxi-
mize entropy as compared to other states with the same
covariance matrix. Another profound distinction can be
found when comparing pure Gaussian states to pure non-
Gaussian states. In this case, there is a seminal result by
Hudson [34] that was extended by Soto and Claverie to
multimode systems [35], which states that a pure state can
have a non-negative Wigner function if and only if the state
is Gaussian. In other words, all non-Gaussian pure states
exhibit Wigner negativity.

Here, we follow the approach of Ref. [103] to prove this
result. First of all, we introduce the function

F�
�(α) := 〈α | �〉e 1

8 ‖α‖2
, (114)

such that the Q function (70) of the state |�〉 is given by

Q(α) = 1
(4π)m

∣∣F�
�(α)

∣∣2 e− 1
4 ‖α‖2

. (115)

From Eq. (114), we directly find that

∣∣F�
�(α)

∣∣2 � e
1
4 ‖α‖2

. (116)

Next, we observe that a Q function that reaches zero
implies a negative Wigner function, which can be seen
from Eq. (72). Thus, demanding that the state has a pos-
itive Wigner function implies demanding that Q(α) > 0,
and thus that F�

�(α) has no zeros. Using the equiva-
lence between 2m-dimensional phase space and a complex
m-dimensional Hilbert space, we can use the multidimen-
sional but restricted version of the Hadamard theorem
[35], which states that any entire function f : Cm �→ C

without any zeros and with order of growth [104] r is
an exponential f (z) = exp g(z), where g(z) is a polyno-
mial of degree s � r. We then note that F�

� is an entire
function of maximal growth r = 2 as given by Eq. (116).
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Hadamard’s theorem then tells us that F�
�(α) is Gaussian.

In other words, if a pure quantum state |�〉 has a positive
Wigner function F�

�(α) must be Gaussian. The only states
for which this is the case are Gaussian states.

In summary, we have seen that Gaussian states inherit
a particular extremal behavior from the central limit
theorem. This should not come as a surprise given that they
are the Gibbs states of a free bosonic field at finite tem-
perature. Thus, a non-Gaussian state can be expected to
have more “exotic” features than the Gaussian state with
the same covariance matrix. This also formalizes the intu-
ition that Gaussian states are more classical states. This
idea is further established by the fact that all pure Gaussian
states are the only possible pure states that have a positive
Wigner function.

The fact that non-Gaussian states automatically have
nonpositive Wigner functions no longer holds when mixed
states are considered. A simple example is that state
ρ̂ = [

∣∣∣0〉〈0| + a†(f )|0〉〈0|a(f )
]
/2, which is clearly non-

Gaussian but also has a positive Wigner function. There
have been considerable efforts to extend Hudson’s theorem
in some form to mixed states [36]. However, in what fol-
lows, we see that there are many ways for a state to be
non-Gaussian. This makes it particularly hard to connect
a measure such as Eq. (110) to more operational inter-
pretations. In the next section, we start by showing some
examples of different non-Gaussian states to make the
reader appreciate their variety.

B. Examples of non-Gaussian states

An overview of the different examples discussed in this
section is shown in Fig. 2.

A first important class of non-Gaussian states are Fock
states, generated by acting with creation operators a†(f )
on the vacuum state

∣∣nf
〉

:= 1√
n!

[â†(f )]n |0〉 , (117)

which is a state of n photons in mode f . These states are
inherently single mode, even though they can be embedded
in a much larger multimode state space. The Wigner func-
tion for such states is commonly found in quantum optics
textbooks, but deriving it using Eq. (38) is a good exercise.
Here we simply state the result:

Wnf (x) =
n∑

k=0

(
n
k

)
(−1)n+k‖xf‖2k

k!
e− 1

2 ‖x‖2

2π
. (118)

In the most general sense, we write xf = (f Tx)f +
(f T�x)�f as the projector of x on the phase space of
mode f , but it is most practical to use the coordinate repre-
sentation xf = (xf , pf )

T where xf = f Tx and pf = f T�x
to describe the two-dimensional phase space associated
with mode f .

Multimode Fock states can be obtained by acting on
the vacuum with different creation operators in different
modes. Even though these different modes do not neces-
sarily have to be orthogonal [56], we here focus on the
case where they are. For example, in the m-mode system,
we can chose a basis {e1,�e1, . . . , em,�em} of the phase

Fock states

Mixed non-gaussian states Cat state GKP state

1
2

(| | + |− |) |cat− |GKP0

FIG. 2. Several examples of Wigner functions for single-mode non-Gaussian states. The Wigner functions for the Fock states are
obtained from Eq. (118) and the mixture of a Fock state and a vacuum is given by Eq. (124). The mixture of coherent states is expressed
in Eq. (122) where we set ‖α‖ = 4. The Wigner function for the cat state is given by Eq. (126) where we choose ‖α‖ = 6. Finally,
for the GKP state, Eq. (130), we numerically integrated a wave-function expression of the state with s = 2 and δ = 0.3 to obtain the
Wigner function.
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space R2m and define multimode Fock states as
∣∣ne1

〉 ⊗ · · · ⊗ ∣∣nem

〉

:= 1√
n1! . . . nm!

[â†(e1)]n1 . . . [â†(em)]nm |0〉 , (119)

where the kth mode in the basis contains nk photons. Note
that for nk = 0 we have a vacuum mode. For the Wigner
function, this implies

Wne1 ,...,nem (x) = Wne1
(xe1) . . .Wnem (xef). (120)

Here we use that the phase-space point x can be expressed
as x = xe1 ⊕ · · · ⊕ xem , where xek is the phase-space coor-
dinate within the subspace spanned by ek and �ek. We can
note xek = (xk, pk)

T, such that we find the coordinate rep-
resentation x = (x1, p1, . . . , xm, pm)

T in the chosen basis of
phase space.

Non-Gaussian states do not necessarily have to be pure,
they can also come in the form of statistical mixtures. The
most basic example of such as state is a non-Gaussian mix-
ture of Gaussian states. As a simple example, let is consider
a mixture of two coherent states

ρ̂ = 1
2
(|α〉 〈α| + |−α〉 〈−α|) . (121)

Even though this is a highly classical state, it is still non-
Gaussian as clearly seen from its Wigner function

W(x) = 1
4π

(
e− 1

2 ‖x−α‖2 + e− 1
2 ‖x+α‖2

)
. (122)

Another important example of a non-Gaussian mixed state
is

ρ̂λ = λ |0〉 〈0| + (1 − λ)
∣∣1f

〉 〈
1f

∣∣ . (123)

In the mode f , the Wigner function of the state behaves as

Wλ(x) = [(1 − λ)‖xf‖2 + 2λ− 1]
e− 1

2 ‖x‖2

2π
. (124)

This Wigner function reaches negative values as long as
λ < 1/2 and subsequently becomes positive. Nevertheless,
it will remain non-Gaussian until λ = 1. As we see in
Sec. C, even when the Wigner function is positive, it is
not always possible to describe this state as a mixture of
Gaussian states.

Generally speaking, non-Gaussian states can come in a
wide variety of shapes, which can be much more exotic
than the examples discussed above. A popular class of
Gaussian states is obtained by taking coherent superposi-
tions of Gaussian states. As we see in Sec. VII, there has
been a strong experimental focus on two specific types of

such states: Schrödinger’s cat states [105] and GKP states
[31]. The former are obtained by coherently superposing
two coherent states, and often are split in even |cat+〉 and
odd |cat−〉 cat states:

|cat±〉 := 1
N (|α〉 ± |−α〉) , (125)

where N =
√

2(1 ± exp[−‖α‖2]) is the normalization
coefficient, which depends on the displacement α. The lat-
ter is often referred to as “the size of the cat.” The Wigner
function of these states resembles that of Eq. (122) but has
an additional interference term

Wcat±(x) = e− 1
2 ‖x−α‖2 + e− 1

2 ‖x+α‖2 ± cos(
√

2 αTx)e− 1
2 ‖x‖2

4π(1 ± e−‖α‖2
)

.

(126)

The appearance of these interference terms creates sev-
eral regions in phase space where the Wigner function
attains negative values. The term “Schrödinger’s cat state”
has historically grown from the idea that coherent states
describe classical electromagnetic fields and can thus be
considered “macroscopic,” in particular, for large values of
‖α‖. However, one should honestly admit that they fail to
capture an important point of Schrödinger’s thought exper-
iment [106]: the entanglement with a microscopic quantum
system (i.e., the decay event that triggers the smashing of
the vial of poison). Nevertheless, the term “cat state” has
established itself firmly in the CV jargon, and now also lies
at the basis of derived concepts such “cat codes” for error
correction [107,108].

Finally, there are the GKP states. In their idealized
form, they rely on eigenvectors of the quadrature operators
(sometimes also known as infinitely squeezed states). To
keep notation simple, we restrict to the single mode with
quadrature operators x̂ and p̂ . The eigenvectors of these
operators are then formally written as

x̂ |x〉 = x |x〉 , and p̂ |p〉 = p |p〉 . (127)

Furthermore, we have the relations 〈x′ | x〉 = δ(x′ −
x), 〈p ′ | p〉 = δ(p ′ − p), and 〈p | x〉 = e−ipx/

√
2π . GKP

states are constructed by considering a grid of such states
to create a qubit, by identifying the two following GKP
vectors:

∣∣GKP0̃

〉
:=

∑

k∈Z

∣∣x = 2k
√
π

〉
, (128)

∣∣GKP1̃

〉
:=

∑

k∈Z

∣∣x = (2k + 1)
√
π

〉
. (129)

Clearly, these states are not normalizable and not phys-
ical as they would require infinite energy to be created.
Thus, it is common to construct approximate GKP states,
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by replacing the states |x〉 with displaced squeezed states,
and by truncating the summation by adding a Gaussian
envelope:

|GKP0〉 := N0

∑

k∈Z

e−2π [kδ]2
D̂[2k

√
π ] |s〉 , (130)

|GKP1〉 := N1

∑

k∈Z

e−2π [(k+1/2)δ]2
D̂[(2k + 1)

√
π ] |s〉 .

(131)

Here N0,1 are normalization constants and |s〉 is a single-
mode squeezed vacuum, which implies that its Wigner
function is given by Eq. (85) with ξ = (0, 0)T and V =
diag[1/s, s] for s > 1. To get a good GKP state for quan-
tum error correction, we generally need that s � √

π . The
Wigner function of an ideal GKP state is a grid of delta
functions, which again highlights that it is a nonphysi-
cal state. The more realistic states |GKP0〉 and |GKP1〉
have well-defined Wigner functions, even though they are
not very insightful to write down explicitly. In Fig. 2, we
plot an example that was calculated numerically by taking
into account only the first few terms around k = 0 in the
sum.

GKP states may seem a little artificial at first glance,
but they have been developed with a very clear pur-
pose: to encode a qubit in a harmonic oscillator [31].
This encoding implies a notion of fault tolerance as
these states are designed to be very efficient at cor-
recting displacement errors. The more realistic incar-
nations of these states, Eq. (130), are therefore often
proposed as candidates for encoding the information in
CV quantum computation protocols [29]. Furthermore,
it was shown that these states can also be used as the
sole non-Gaussian resource to implement a CV quantum
computer [32]

Once we progress into the realm of multimode states,
the class of non-Gaussian states becomes even more vast.
In Sec. 2, we present a dedicated introduction to mul-
timode photon-subtracted states, which is a useful state
to illustrate several of the concepts treated in this Tuto-
rial. Furthermore, these states have a particular importance
in CV quantum optics experiments. As a final example,
we introduce another class of multimode non-Gaussian
states, which have been highly relevant for quantum
metrology: N00N states [109–111]. Even though these
states are very promising for quantum sensing with opti-
cal setups, the general idea that underlies these states
was first introduced for fermions [112] in an attempt to
mimic the advantage that is provided by squeezing in
optics.

N00N states are two-mode entangled states defined in
a pair of orthogonal modes g1 and g2. The state contains
exactly N photons, and is a superposition of a state with
all photons being mode g1 and a state with all photons in

mode g2:

|N00N 〉 := 1√
2

(∣∣Ng1

〉 + ∣∣Ng2

〉)
. (132)

Here we recall that the state
∣∣Ng1

〉
can be trivially embed-

ded to the full multimode space by adding vacuum in
all other modes. We study these states in more detail for
N = 2 in our discussion of the Hong-Ou-Mandel effect
surrounding Eq. (165). However, here we highlight already
that the Wigner function of |N00N 〉 is not simply the sum
of Wigner functions of the form Eq. (118). The entangle-
ment will create additional interference terms, just like we
saw in Eq. (126). In the present case, these interferences
are genuinely multimode, and thus related to quantum
correlations.

Experimentally, these states have been created and ana-
lyzed using a DV approach [113]. As we highlighted in
Sec. C, the distinction between DV and CV is somewhat
subtle and mainly depends on what is measured. Because
N00N states are built from Fock states and have a well-
defined total photon number, they are most natural to
analyze using photon-number-resolving detectors.

C. Quantum non-Gaussianity

Non-Gaussian states come in a wide variety, which
means also that some of them are more exotic than oth-
ers. Non-Gaussian states that are of limited interest, are
those which are convex combinations of Gaussian states.
Gaussian states do not form a convex set, after all, we can
immediately see that, e.g., [W0(x − α1)+ W0(x − α2)]/2
is not a Gaussian function even though it is a convex
combination of Gaussian states.

The fact that the set of non-Gaussian states contains
mixtures of Gaussian states may lead one to suspect that
any mixed state with a positive Wigner function can be
written as a well-chosen mixture of Gaussian states. After
all, Gaussian states are the only pure states with posi-
tive Wigner functions. This intuition turns out to be false
[89], which means that the set of states with a nonpositive
Wigner function is not the same as the set of states that
lie outside of the convex hull of Gaussian states G. More
formally, let us define

G :=
{
ρ̂ | ρ̂ =

∫
dγ p(γ )ρ̂G(γ )

}
, (133)

where γ is some arbitrary way of labelling Gaussian states
ρ̂G(γ ) and p(γ ) is a probability distribution on these
labels. Note that Eq. (103) tells us that we can generate
all Gaussian states by taking convex combinations of dis-
placed squeezed states, and thus we can limit ourselves to
ρ̂G(γ ) = |�G(γ )〉 〈�G(γ )| in the definition of G.

Any quantum state ρ̂ that is not contained in the con-
vex hull of Gaussian states, i.e., ρ̂ /∈ G, is referred to
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as a “quantum non-Gaussian” state. The intuition behind
this terminology is that Gaussian pure states are less
quantum than non-Gaussian pure states that boast a non-
positive Wigner function. A mixed state that is quantum
non-Gaussian may have a positive Wigner function, but
it cannot be created without adding states with nonposi-
tive Wigner functions into the pure-state decomposition.
Hence, these states are more quantum than the states that
are in the convex hull of Gaussian states G.

Next, one may wonder how to differentiate between
states that are quantum non-Gaussian and states which are
in the convex hull G. Throughout the last decade, many
methods have been developed to answer this question. We
start by introducing the main idea of Ref. [114] because
it is based on the Wigner function. The key idea is that
Gaussian distributions have tails, which means that we can
take an arbitrary pure Gaussian state W0[S−1(x − α)], and
evaluate the Wigner function at to origin of phase space:

W0(S−1 α) = e− 1
2 ‖S−1 α‖2

(2π)2
. (134)

Clearly, when ‖S−1 α‖2 → ∞, we do find that W0(S1 α) →
0. This limit essentially corresponds to a system with infi-
nite energy. It is thus natural to try to bound the value of the
Wigner function in the origin by a function that depends on
the energy N of the state. For an arbitrary pure Gaussian
state, we find that

N =
m∑

j =1

tr[ρ̂â†(ej )â(ej )] = 1
4

(
tr[STS − 1] + ‖α‖2)

.

(135)

Using the properties of the operator norm, we write
‖S−1 α‖2 = ‖S−1Oα‖2, where O is a symplectic orthog-
onal transformation. Furthermore, we note that ‖α‖2 =
‖Oα‖2. It is then useful to explicitly write the coordi-
nate representation of the vector Oα = (α

(x)
1 ,α(p)1 , . . . ,α(x)m ,

α
(p)
m )T, such that

N =
m∑

j =1

1
4

(
sj + 1

sj
+ (α

(x)
j )2 + (α

(p)
j )2 − 2

)
(136)

=
m∑

j =1

nj . (137)

At the same time, we expand

‖S−1 α‖2 =
m∑

j =1

sj (α
(x)
j )2 + (α

(p)
j )2

sj
, (138)

and with a little algebra we can show that

1
2
‖S−1 α‖2 �

m∑

j =1

4nj (2nj + 1) � 4N (2N + 1), (139)

such that

W0(S−1 α) � 1
(2π)m

e−4N (2N+1). (140)

This means that the value of the Wigner function of a pure
Gaussian state in the origin of phase space is bounded from
below by a function of the average number of particles N .
However, it is not obvious that we can extend this bound
to arbitrary mixtures of Gaussian states. Let us assume that
ρ̂ ∈ G, then the Wigner function in the origin is given by

W(0) =
∫

dγ p(γ )W0(S−1
γ αγ ), (141)

where we saw that W0(S−1
γ αγ ) is the value of a pure

Gaussian state’s Wigner function in the origin and γ is
some arbitrary label for the Gaussian states in the mix-
ture. Therefore we can bound the states in the convex
combination

W(0) � 1
(2π)m

∫ ∞

0
dN γ p̃(N γ )e−4Nγ (2Nγ+1), (142)

where we introduce a probability distribution p̃ on the
average particle numbers of the pure Gaussian states in
the mixture. The overall average number of particles in the
state ρ̂ is then given by N = ∫ ∞

0 dN γ p̃(N γ )N γ . The final
element that we require is the fact that exp[−4N γ (2N γ +
1)] is a convex function, such that we can apply Jensen’s
inequality to find that

ρ̂ ∈ G =⇒ W(0) � 1
(2π)m

e−4N (2N+1). (143)

This means that we can simply use the total energy
of the state to construct a witness for quantum non-
Gaussianity. This clearly shows that there are quantum
non-Gaussian states with positive Wigner functions. An
explicit example can be constructed by tuning the γ

in the state [(1 − γ ) |0〉 〈0| + γ |1f 〉〈1f |] to 1/2 > γ >

1/2 − e−4γ (2γ+1) (where we use that γ is also the average
particle number in this particular state).

Nevertheless, there are many quantum non-Gaussian
states that do not violate inequality (143). After all, why
would the origin of phase space be the most interesting
point? A first solution is provided in Ref. [114], where it is
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argued that

ρ̂ ∈ G =⇒ W�(0) � 1
(2π)m

e−4N�(2N�+1), (144)

for all Gaussian channels � that act on the Wigner func-
tion of ρ̂ as W(x) ��→ W�(x). Recall that the action of a
Gaussian channel was defined in Eq. (102). The quantity
N� then denotes the average number of particles in the
state �(ρ̂). Further generalizations of this scheme have
been worked out in Ref. [115]. Moreover, Ref. [116]
has considered combinations of the value of the Wigner
function in several points to reach better witnesses for
quantum non-Gaussianity. Further progress has been made
by identifying observables that are more easily measurable
with typical CV techniques [117]. Others have considered
other phase-space representations of the state to identify
witnesses of quantum non-Gaussianity [118,119].

Quantum non-Gaussianity has been investigated with
a wide range of tools. In this Tutorial we have limited
ourselves to phase-space methods in the spirit of the CV
approach. However, there is also a significant body of
work on quantum non-Gaussianity using techniques that
are more typical in DV quantum optics. The earliest works
on the subject used photon statistics to distinguish quantum
non-Gaussian states from convex mixtures of Gaussian
states [89]. This research line has been continued in recent
years to uncover new aspects of quantum non-Gaussian
states, such as the “non-Gaussian depth” [120] and tech-
niques to differentiate different types of multiphoton states
[121]. Ultimately, these photon-counting techniques were
extended to develop a whole hierarchy of quantum non-
Gaussian states [37]. These ideas have been further for-
malized and generalized through the notion of the “stellar
rank” of a quantum state.

D. Stellar rank

An interesting starting point to introduce the stellar
representation is the method [103] to prove Hudson’s
theorem. We recall the definition

F�
�(α) := 〈α | �〉e 1

8 ‖α‖2
,

of what we henceforth refer to as the stellar function. To
avoid technical complications, let us now restrict ourselves
to single-mode systems such that the optical phase space is
R2. Note that, in a single-mode system, there is only one
creation operator â† with associated annihilation operators
â. We can then follow Ref. [38] to introduce the stellar rep-
resentation of single-mode quantum states. Note that some
similar ideas are also present in other works [122].

First, we develop the stellar representation for pure
states, which will then be used to generalize the framework
to mixed states in Eq. (148). We use the definition of the

displacement operator to show that

|�〉 = F�
�(â

†) |0〉 , (145)

which immediately implies that the stellar representation is
unique. In other words, if F�

� = F�
� it follows that |�〉 =

|�〉 up to a phase. In our proof of Hudson’s theorem,
we have already highlighted that F�

� satisfies the property
(116), which means that it is an entire function with growth
order r = 2. Because in this single-mode setting F�

� can
be interpreted as a function of a single complex variable,
the Hadamard-Weierstrass theorem implies that F�

� can be
fully represented by its zeros (one can consider this as a
generalization of the fundamental theorem of calculus).
This thus implies that a single-mode state is completely
determined by the zeros of the F�

� , and thus by the zeros of
the Q function in Eq. (115).

It is thus natural to use these zeros in order to classify
pure single-mode quantum states and thus the stellar rank
is introduced. Ultimately, the stellar rank is simply given
by the number of zeros of F�

� or alternatively the number
of zeros of the Q function. Because in practice zeros may
coincide, one should also consider the multiplicity of the
zeros. We thus define the stellar rank r�(�) of |�〉 as the
number of zeros of F�

� : C �→ C counted with multiplicity.
Alternatively one may count the zeros of the Q function
with multiplicity and divide by two.

The fact that a state is fully characterized by its stellar
representation F�

� can be made more explicit by consider-
ing the roots {α1, . . . , αr�(�)} of the Q function, which rep-
resents |�〉 [note that we use (44) to interchange between
phase-space representation and complex Hilbert-space rep-
resentation]. The single-mode state |�〉 can then be used to
express

|�〉 = 1
N

r�(�)∏

j =1

D̂†(αj )â†D̂(αj ) |�G〉 , (146)

where |�G〉 is a pure Gaussian state and N a normalization
constant. We can then use the stellar rank to induce some
further structure in the set of states by defining

RN := {|�〉 | r�(�) = N }. (147)

that groups all states of stellar rank N . Note that the
Hadamard-Weierstrass theorem also considers functions
with an infinite amount of zeros and the case N = ∞ is
thus mathematically well defined. It turns out that this case
is not just a pathological limit. An evaluation of the Q
function shows that Gottesman-Kitaev-Preskill states and
Schrödinger cat states inhabit the set R∞.

Clearly, all that was introduced so far only works for
pure states. We can naturally extend this result via a convex
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roof construction, by defining

r�(ρ̂) := inf
{p(γ ),|�(γ )〉}

sup
γ

{r�[�(γ )]}, (148)

where the infimum is considered of all probability dis-
tributions on the set of pure states that lead to ρ̂ =∫

dγ p(γ ) |�(γ )〉 〈�(γ )|. In words, there are many ways
to decompose the state ρ̂ in pure states and we consider all
of them. For each decomposition, we define the stellar rank
as the highest rank of the states in the decomposition. Then
we minimize these values over all possible decompositions
to arrive at the stellar rank of ρ̂.

Convex roof constructions are commonly used to treat
mixed states as they are easy and natural to formally define.
However, they are often much harder to calculate in prac-
tice. This is where the stellar representation unveils its
most remarkable property: stellar robustness. To formalize
this idea, Ref. [38] introduced the robustness as the trace
distance between the state and the nearest possible state of
lower stellar rank.

R�(�) := inf
r�(ρ̂)<r�(�)

1
2

tr
√
(|�〉 〈�| − ρ̂)2. (149)

And it can be shown that

R�(�) =
√

1 − sup
r�(ρ̂)<r�(�)

〈�| ρ̂ |�〉, (150)

where 〈�| ρ̂ |�〉 is the fidelity of ρ̂ with target state
|�〉. Remarkably, it can be shown that R�(�) > 0 when
r�(�) < ∞ [38]. This means that any state that is suffi-
ciently close to a pure state of r�(�) is also of rank r�(�)
or higher.

The idea of stellar robustness can be generalized [123]
by introducing k robustness. For any k < r�(�), we define

R�k(�) := inf
r�(�)�k

√
1 − |〈� | �〉|2, (151)

and show subsequently that

R�k(�) =
√

1 − sup
r�(ρ̂)�k

〈�| ρ̂ |�〉. (152)

The k robustness can thus be interpreted as the nearest dis-
tance from a state |�〉 at which we can find any state of
stellar rank k, provided k < r�(�). Beyond showing that
R�k(�) is nonzero when |�〉 is of finite stellar rank, Ref.
[123] also provides an explicit method to calculate R�k(�).
Thus, for whichever state ρ̂ is available in an experiment
one can attempt to find a pure target state |�〉 for which
〈�| ρ̂ |�〉 > 1 − R�k(�)

2 to prove that ρ̂ is at least of stellar
rank k.

We note that for pure states r�(�) = 0 implies that the
state is Gaussian (this is essentially what is proven in Hud-
son’s theorem). From the definition (148) we can then
deduce that

r�(ρ̂) = 0 ⇐⇒ ρ̂ ∈ G, (153)

where G denotes, again, the convex hull of Gaussian states.
On the other hand, states for which r�(ρ̂) > 0 cannot
be written as a mixture of Gaussian states and are thus
quantum non-Gaussian.

This idea can be extended by using the stellar k robust-
ness, Eq. (152), as a witness of quantum non-Gaussianity.
When we want to check whether ρ̂ is quantum non-
Gaussian, it suffices to find a pure target state |�〉 such
that ρ̂ is closer to |�〉 than the 1 robustness R�k(�). More
formally written, whenever a pure state |�〉 exists with the
following property:

〈�| ρ̂ |�〉 > 1 − R�1(�)
2 =⇒ ρ̂ /∈ G, (154)

and ρ̂ is quantum non-Gaussian. This may seem like a
complicated challenge, but for a single-photon state |�〉 =
|1〉 we find that 1 − R�1(�)

2 ≈ 0.478 [123]. This means
that any state that has a fidelity of more than 0.478 with
respect to a Fock state is quantum non-Gaussian. This idea
can be extended to higher stellar ranks: whenever we find
a target state |�〉 such that 〈�| ρ̂ |�〉 > 1 − R�k(�)

2, the
state ρ̂ is at least of stellar rank k. Note that the fidelity of
an experimentally generated state ρ̂ with any pure target
state |�〉 can be calculated from double homodyne mea-
surements on ρ̂ [123]. There is no need to experimentally
create the pure state |�〉, the latter is just theoretical input
needed to analyze the data.

Obviously, the stellar rank imposes a lot of additional
structure on the state space. It rigorously orders all states
that can be achieved by combining a finite number of cre-
ation operators and Gaussian transformations. The creation
operator serves as a tool to increase the stellar rank by one
and the stellar rank actually corresponds to the minimal
number of times the creation operator must be applied to
obtain the state, together with Gaussian operations. The
stellar rank remains unchanged under Gaussian unitary
transformations, which makes sense for a measure of the
non-Gaussian character of the state, and thus it falls within
the set of intrinsic properties of a state as discussed in
Sec. C. Furthermore, the class of states with infinite stellar
rank can be understood as the set that contains the most
exotic states. However, it is lonely at the top as it can
be shown that R�∞(�) = 0 for states of infinite rank. This
means that we can find states of finite stellar rank arbitrar-
ily close to a state of infinite stellar rank. As stressed in Ref.
[38], this implies that finite-rank states are dense in the full
Fock space and any state of infinite rank can be arbitrarily
well approximated by finite-rank states. Whereas a finite
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stellar rank k of any experimental state can be certified by
achieving a sufficiently high fidelity to a target state |�〉
to fall within the range given by its k robustness R�k(�),
a similar procedure is impossible for infinite stellar ranks.
This means, in practice, that genuinely infinite-rank states
are impossible to certify in experiments because one never
achieves perfect fidelity. Nevertheless, different states of
infinite rank may differ significantly in the values R�k(�)
for k < ∞.

Many of the results on stellar rank rely on the
Hadamard-Weierstrass theorem that allows one to uniquely
factorize F�

�(α) as a Gaussian and a polynomial, where
the roots of the polynomial are the roots of F�

� and thus
also the roots of the Q function. Sadly, this theorem cannot
be straightforwardly generalized to a multimode setting,
which is known in mathematics as Cousin’s second prob-
lem [124]. Notable progress was made in Ref. [125] where
one studies multimode stellar functions, which are poly-
nomials and it was shown that there is no straightforward
generalization of Eq. (146).

E. Wigner negativity

Hudson’s theorem shows us that all pure non-Gaussian
states have nonpositive Wigner functions, which sets them
apart from normal probability distributions of phase space.
For mixed states, this no longer holds and thus we spent
the previous two sections developing methods to charac-
terize the non-Gaussian features of these states. Whether
it is through quantum non-Gaussianity or the more refined
stellar rank, these methods focus on characterizing the non-
Gaussian resources that are required to generate a certain
state. In this subsection, we change the perspective and
focus rather on negative values of the Wigner function
(“Wigner negativity” in short) as a resource of interest.

Wigner negativity has the advantage of being a clear
quantum feature, it reflects that different quadratures in
the same mode cannot be jointly measured and thus goes
hand in hand with the principle of complementarity. More
formally, it has even been connected to the principle of
quantum contextuality [64]. Indeed, in Sec. VI we elab-
orate on the fact that Wigner negativity is a necessary
resource for reaching a quantum advantage, i.e., perform-
ing a task that cannot be efficiently simulated by a classical
computer. However, the idea of using Wigner negativity as
a signature of nonclassicality was already around before
it was connected to a quantum computational advantage.
An important step to formalize this idea was the introduc-
tion of a measure for Wigner negativity [90], which lies at
the basis of recent resource theories of Wigner negativity
[100,126].

A priori, there are several natural measures than can
be used for Wigner negativity. It is therefore useful to
consider some desirable properties that are required for
a measure of Wigner negativity. First of all, we want the

measure to be zero if and only if the Wigner function
is positive. It seems natural to demand that, furthermore,
Wigner negativity remains unchanged under Gaussian uni-
tary transformations. It is then tempting to simply consider
the absolute value of the lowest possible value of the
Wigner function, but this would have some unnatural out-
comes. It would mean that a single-photon state would
have more Wigner negativity than a two-photon state. We
thus need to look for a different measure.

The starting point of Ref. [90] is that the normalization
of the Wigner function implies that

∫

R2m
dx |W(x)| � 1, (155)

and that the inequality is strict whenever there is Wigner
negativity. Furthermore, Liouville’s theorem implies that
integrals over phase space are unchanged by Gaussian
transformations. A first possible way of measuring Wigner
negativity is through the negativity volume

N (ρ̂) :=
∫

R2m
dx |W(x)| − 1. (156)

This measure has the major advantage of being convex
due to the triangle inequality, which means that for ρ̂ =∫

dγ p(γ )ρ̂(γ ) we find that

N (ρ̂) �
∫

dγ p(γ )N [ρ̂(γ )]. (157)

However, this measure is not additive, i.e., N (ρ̂1 ⊗ ρ̂2) �=
N (ρ̂1)+ N (ρ̂2). To circumvent this shortcoming, another
measure for Wigner negativity has been introduced [100,
126,127]:

N(ρ̂) := log
∫

R2m
dx |W(x)| . (158)

Clearly, N(ρ̂1 ⊗ ρ̂2) = N(ρ̂1)+ N(ρ̂2) making this mea-
sure additive. However, the introduction of the logarithm
destroys the convexity of the measure. Note that the two
measures are closely related by N(ρ̂) = log[N (ρ̂)+ 1].
Thus when N (ρ̂1) > N (ρ̂2), we also find that N(ρ̂1) >

N(ρ̂2).
The single-mode examples that are considered in Ref.

[90] lead to some interesting observations. First of all,
they show that for Fock states Wigner negativity increases
with the photon number. Furthermore, they show that for
Schrödinger cat states the integral is bounded from above
by a value smaller than the Wigner negativity of a two-
photon state. Even though Fock states of increasing stellar
rank have increasing Wigner negativity, there is no clear
relation between stellar rank and Wigner negativity for
more general classes of states. For example, Schrödinger
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cat states are of infinite stellar rank, suggesting that they
are in this regard the most exotic states, but they manifest
only a limited amount of Wigner negativity.

As a case study, let us briefly concentrate on the Wigner
negativity of Fock states, Eq. (117). One can now evaluate
the Wigner negativity of such states to find that

N (|1〉) ≈ 0.426 12 and N(|1〉) ≈ 0.354 959, (159)

N (|2〉) ≈ 0.728 99 and N(|2〉) ≈ 0.547 537, (160)

N (|3〉) ≈ 0.976 67 and N(|3〉) ≈ 0.681 415, (161)

which shows that the negativity does not simply increase
linearly with the number of photons even for the addi-
tive measure N. However, let us now look at a multimode
n-photon state where each photon occupies a different
mode, i.e., a Fock state generated by creation operators in
f1, . . . , fn with span{fj ,�fj } �= span{fk,�fk} for all j �= k,

â†(f1) . . . â†(fn) |0〉 = ∣∣1f1

〉 ⊗ · · · ⊗ ∣∣1fn
〉
. (162)

The Wigner function for this state can be shown to be
[showing this based on (38) is again a good exercise]

W1f1 ,...,1fn
(xf1 ⊕ · · · ⊕ xfn) =

n∏

k=1

W1fk
(xfk). (163)

Either by explicitly using the expression of the Wigner
function, or by using the additivity property, we find that

N
(∣∣1f1

〉 ⊗ · · · ⊗ ∣∣1fn
〉) = nN(|1〉). (164)

Numerically, we can show that nN(|1〉) > N(|n〉) and thus
we can generally conclude that n photons in different
modes hold more Wigner negativity than n photons in the
same mode.

Let us now concentrate on the case where n = 2. We
showed that two photons in different modes are more
Wigner negative than two photons in the same mode, and
now we combine this finding with the idea that Wigner
negativity remains unchanged under Gaussian transforma-
tions. A particularly simple Gaussian transformation is a
balanced beam splitter, which ultimately just implements a
change in mode basis that we describe by an orthonormal
transformation OBS. When we mix two photons, prepared
in orthogonal modes f1 and f2 by such a balanced beam
splitter, we see the Hong-Ou-Mandel effect in action (more
details can be found in Ref. [56] where a similar notation
is used):

∣∣1f1

〉 ⊗ ∣∣1f2

〉 OBS�→ 1√
2

(∣∣2g1

〉 − ∣∣2g2

〉)
:= |HOM〉 , (165)

where f1, f2 and g1, g2 are the input and output modes of
the beam splitter, respectively. The Hong-Ou-Mandel out-
put state |HOM〉 is thus a superposition of two photons in

mode g1 and two photons in mode g2. We can now use
the simple fact that Wigner negativity is unchanged under
Gaussian unitary transformations to show that

N (|HOM〉) = N
(∣∣1f1

〉 ⊗ ∣∣1f2

〉) = 2N(|1〉) > N(|2〉),
(166)

this then also implies that N (|HOM〉) > N (|2〉). At first
sight, this is somewhat of a peculiar finding: by tak-
ing a superposition of two states with the same Wigner
negativity one finds a state with a higher Wigner negativity.

An explicit look at the Wigner function of the Hong-Ou-
Mandel state |HOM〉 provides some insight. We find that
this Wigner function can be written as (yet again a good
exercise to show this explicitly)

WHOM(xg1 ⊕ xg2) =1
2

[W2g1
(xg1)+ W2g2

(xg2)]

+ Wint(xg1 ⊕ xg2), (167)

where Wint is the contribution to the Wigner function that
contains all the interference terms that are induced by the
superposition. We can calculate that

N
(

1
2

[W2g1
(xg1)+ W2g2

(xg2)]
)

� N (|2〉), (168)

and thus, by additionally applying the triangle inequal-
ity, we can understand that the additional negativity in the
Hong-Ou-Mandel state is due to the term Wint.

In the Hong-Ou-Mandel effect, it is common to talk
about interference between particles, but in a more gen-
eral CV language this interference will be equivalent to
some form of entanglement, which is exactly described
by the Wigner-function contribution Wint. In other words,
the superposition between

∣∣2g1

〉
and

∣∣2g2

〉
has more Wigner

negativity than each of its two constituents because it cre-
ates entanglement between the modes g1 and g2. This is
a first indication that there is a connection between quan-
tum correlations and non-Gaussian features of the Wigner
function. We explore this connection in further detail in
Sec. V.

Even though Wigner negativity is an important non-
Gaussian feature, it is often hard to witness [128]. The most
common experimental technique is homodyne tomogra-
phy [129] to fully reconstruct the quantum state. These
methods come with the inconvenience that it is hard to
set good error bars. Techniques to circumvent the need
for a full tomography have been developed based on
homodyne [130] and double-homodyne (or heterodyne)
measurements [123,128]. These methods come with the
advantage of permitting to put a degree of confidence on
the proclaimed Wigner negativity.
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IV. CREATING NON-GAUSSIAN STATES

In Sec. III we have discussed the many ways of charac-
terizing non-Gaussian quantum states and their properties.
In this section, we explore the different theoretical frame-
works for creating these states. An overview of some
important experimental advances to put these theoretical
techniques into practice is left for Sec. VII.

Gaussian quantum states can in some sense be under-
stood as naturally occurring states. The foundational work
of Planck that lies at the basis of all of quantum mechan-
ics provides a first description of the thermal states of light
that describe black-body radiation. In a more modern lan-
guage, we refer to this as the thermal states of an ensemble
of quantum harmonic oscillators or a free bosonic field.
It has long been understood that these states are Gaussian
[2–4]. Creating this kind of Gaussian states of light is thus
literally as simple as switching on a light bulb.

When we turn towards more sophisticated light sources
such as lasers, we can encounter coherent light that is
described by coherent states [5,6]. Generating squeezed
light becomes much harder and typically requires nonlin-
ear optics [131]. Nevertheless, pumping a nonlinear crystal
with a coherent pump generally suffices to deterministi-
cally create a squeezed state [132]. Recall from the end
of Sec. D that from a theoretical point of view all these
pure Gaussian states can be created by applying Gaussian
unitary transformation to the vacuum state.

From an experimental point of view, the creation of non-
Gaussian states is much harder than the creation of their
Gaussian counterparts. Nevertheless, we start by introduc-
ing an ideal theoretical approach that is not too different
from Gaussian states. In essence, it suffices to apply a
non-Gaussian unitary operation to the state to create a
non-Gaussian state. In Sec. A we dig deeper into the
desired structure of such non-Gaussian unitary transforma-
tions that would in principle allow for the deterministic
generation of non-Gaussian quantum states. In experi-
ments (in particular, those in optics) such non-Gaussian
unitary transformations are hard to come by, which is
why one very often uses different preparation schemes.
In Sec. B, we provide a general introduction into the
conditional preparation of non-Gaussian quantum states,
where one measures part of the system and conditions on
a certain measurement outcome. This process projects the
remainder of the system into a new non-Gaussian state.

A. Deterministic methods

To introduce some further structure in the sets of Gaus-
sian and non-Gaussian unitary transformations, it is useful
to take a quantum computation approach that is inspired
by Ref. [26,133]. The central idea of this work is that
Gaussian unitary transformations are always generated by
“Hamiltonians” that are at most quadratic in the quadrature
operators (or equivalently in the creation and annihilation

operators). Let us denote that as

ÛG = exp{iP2(q̂)} (169)

where the polynomials P2(q̂) are generated by combining
terms of the types 1, q̂(f ), and q̂(f1)q̂(f2). A remarkable
property of these three types of observables is that they
are closed under the action of a commutator. Indeed, using
the canonical commutation relation (29) and the general
properties of commutators, we can show that

[q̂(f1), q̂(f2)] ∼ 1, (170)

[q̂(f1), q̂(f2)q̂(f3)] ∼ q̂(f ′), (171)

[q̂(f1)q̂(f2), q̂(f3)q̂(f4)] ∼
∑

q̂(f ′
1 )q̂(f ′

2 ). (172)

Thus, we can use the Baker-Campbell-Hausdorff formula
to show that the combination of two Gaussian unitaries
ÛGÛ′

G is again a Gaussian unitary.
This notion lies at the basis of universal gate sets in the

CV approach. Using typical techniques from Lie groups,
we can look for a minimal set of Gaussian unitaries than
can be combined to generate all possible Gaussian unitary
transformations. Generally, such a set is clearly not unique,
but there are some natural choices. For example, we pre-
viously saw that a Gaussian unitary transformation is a
combination of displacement operations and symplectic
transformations. Furthermore, the Bloch-Messiah decom-
position (95) shows us that any symplectic transformation
can be decomposed into a combination of multimode
interferometers and single-mode squeezing. In turn, inter-
ferometers can be decomposed as a combination of beam
splitters and phase shifters [134]. Indeed, we can choose
the set of Gaussian gates to be

ÛD(λ) := D̂(λ), (173)

ÛS(λ) := exp i[q̂(λ)q̂(�λ)+ q̂(�λ)q̂(λ)], (174)

ÛP(λ) := exp i[q̂(λ)2 + q̂(�λ)2], (175)

ÛBS(λ1, λ2) := exp i[q̂(λ1)q̂(λ2)+ q̂(�λ1)q̂(�λ2)],
(176)

where we note that λ, λ1, λ2 ∈ R2m are not normalized and
λ1 ⊥ λ2. These unitary operators describe a displacement,
a squeezer, a phase shifter, and a beam splitter, respec-
tively. We note that all these operations act on a single
mode, except for the beam splitter, which connects a pair
of modes. These transformations are referred to as a Gaus-
sian gate set; when we can implement all these gates in all
the modes of some mode basis, we can generate any mul-
timode Gaussian transformation, and thus any Gaussian
state.

To generate non-Gaussian unitary transformations and
thus non-Gaussian states, we need to add more unitary
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gates to the Gaussian gate set. The relevant question is thus
how many gates one should add and which gates are the
best choices. The answer to the first question is surprising:
one needs to add just one single gate [27]. The argument is
simple, when we consider the operators q̂(λ)3, we find that

[q̂(λ1)
3, q̂(λ2)

n] =q̂(λ1)
2[q̂(λ1), q̂(λ2)

n]

+ [q̂(λ1), q̂(λ2)
n]q̂(λ1)

2

+ q̂(λ1)[q̂(λ1), q̂(λ2)
n]q̂(λ1). (177)

With the canonical commutation relations we can show
that [q̂(λ1), q̂(λ2)

n] ∼ q̂(λ2)
n−1, which can be inserted into

Eq. (177) to obtain

[q̂(λ1)
3, q̂(λ2)

n] ∼q̂(λ1)
2q̂(λ2)

n−1 + q̂(λ2)
n−1q̂(λ1)

2

+ q̂(λ1)q̂(λ2)
n−1q̂(λ1). (178)

This calculation thus shows that commutation with the
operators q̂(λ)3 increases the order of the quadrature oper-
ators. Thus, with the quadratic Hamiltonians to generate
all operations that conserve the order of polynomials of
quadrature operators and q̂(λ)3 to increase the order of
the polynomial by one, we can ultimately generate the full
algebra of observables. On the level of unitary gates, this
implies that a full universal gate set is given by

U ={ÛD(λ), ÛS(λ), ÛP(λ), ÛBS(λ1, λ2), ÛC(λ)}, (179)

with ÛC := exp iq̂(λ)3. (180)

In other words, combining sufficiently many of these gates
allows us to built any arbitrary unitary transformation
generated by a Hamiltonian, which is polynomial in the
quadrature operators.

The non-Gaussian gate ÛC is known as the cubic phase
gate. The argument above shows that any experiment that
can implement Gaussian transformations and a cubic phase
gate can in principle generate any arbitrary non-Gaussian
state. Even though many protocols have been proposed to
experimentally realize a cubic phase gate [28,135–138],
any convincing implementations have yet to be demon-
strated. One of the key problems is that experimental
imperfections and finite squeezing are detrimental for the
most commonly proposed methods [30].

In principle, there is no particular reason to limit our
attention to cubic phase gates. Already in the very first
work on the subject it is argued that essentially any Hamil-
tonian of a higher than quadratic order can be used as a
generator [26]. Thus, optical processes that perform pho-
ton triplet generation can also be used as a non-Gaussian
gate, which can even be converted into the cubic phase
gate [139]. This requires well-controlled high χ(3) nonlin-
earities, which are generally only achieved by using exotic

nonlinear crystals or well-controlled individual atoms.
Handling such setups with a sufficient degree of con-
trol to actually implement a quantum gate is extremely
challenging.

Other CV systems are more appropriate for the imple-
mentation of non-Gaussian unitary transformations. In
particular, the systems used in circuit QED have such non-
Gaussian contributions in their Hamiltonians [140,141],
which suggests that they may be more capable of determin-
istically generating non-Gaussian states than their optical
counterparts. Still, the characterization, detection, and con-
trol of such states is expected to be challenging. Recently,
some important progress was made by demonstrating
triplet generation in these systems [142].

B. Conditional methods

The experimental difficulties that are encountered when
trying to implement non-Gaussian unitary transformations
can be circumvented by abandoning the demand of unitar-
ity. This implies that we no longer consider operations that
can be implemented deterministically, but rather resort to
what can be broadly referred to as conditional operations.
This idea was formalized by Kraus when characterizing the
most general ways of manipulating quantum states [143].

In the most general sense, we can implement a condi-
tional operation by taking a set of linear operators on Fock
space X̂1, X̂2, . . . and acting on the state in the following
way:

ρ̂ �→
∑

j X̂j ρ̂X̂ †
j

tr[ρ̂
∑

j X̂ †
j X̂j ]

. (181)

This formalism is typically implemented by performing
some form of generalized measurement on the state ρ̂
[144]. When ρ̂ is a deterministically generated Gaus-
sian state, the action of a well-chosen set of operators
X̂1, X̂2, . . . can turn it into a non-Gaussian state. In optics,
two of the most well-known examples of this technique are
single-photon addition and subtraction. In both cases, there
is only a single operator X̂1. For photon addition, we imple-
ment X̂1 = â†(f ), whereas photon subtraction requires the
realization of a case where X̂1 = â(f ).

In many physical setups, and, in particular, in optics,
the problem is that measurements are destructive and a
measurement effectively removes the measured mode from
the system. Therefore, it is common to prepare large mul-
timode Gaussian states of which a subset of modes is
measured in order to conditionally prepare a non-Gaussian
state in the remaining modes. We now introduce a general
framework to describe the non-Gaussian Wigner functions
that are created accordingly [39].
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Source
g

WÂ(xg)

W (x)
Wf |Â(xf )

f

FIG. 3. Sketch representation of the conditional preparation
scheme for creating the non-Gaussian states described by Eq.
(190). Note that both f and g can be highly multimode. The
Wigner function shown on the right is obtained by a conditional
protocol shown in Ref. [39].

1. General framework

First of all, let us consider a general multimode phase
space and separate it into two subsystems, i.e., R2m =
R2l ⊕ R2l′ , where we perform some generalized measure-
ment on the l′ modes and leave the remaining l modes
untouched. This introduces a general structure in the points
of phase space x ∈ R2m, which can now be written as
x = xf ⊕ xg with xf ∈ R2l and xg ∈ R2l′ . The general pro-
cedure is schematically outlined in Fig. 3 and we present
the details step by step.

Any state ρ̂ on this system then comes with a Wigner
function W(x) = W(xf ⊕ xg) that is defined on the global
phase space. This state can be reduced to one of the two
subsystems by tracing out the other subsystem, which can
be described on the level of the Wigner function by the
following integrals:

Wf(xf) :=
∫

R2l′
dxgW(xf ⊕ xg), (182)

Wg(xg) :=
∫

R2l
dxfW(xf ⊕ xg). (183)

When the state is Gaussian and the Wigner function is
given by Eq. (85), the structure of the phase space is
reflected in the mean field vector ξ and in the covariance
matrix V:

ξ = ξf ⊕ ξg, (184)

V =
(

Vf Vfg
Vgf Vg

)
, (185)

with Vfg = VT
gf. The matrices Vf and Vg describe all the

variances and correlations of the modes within R2l and
R2l′ , respectively. In addition, the submatrix Vgf contains
all the correlations between the modes in the different
subspaces, which will be important for conditional state
preparation. One can show that for such Gaussian states,
the reduced states are also Gaussian, for the modes in R2l

given by

Wf(xf) = e− 1
2 (xf−ξf)TV−1

f (xf−ξf)

(2π)m
√

det Vf
, (186)

and analogously for the modes in R2l′ . As Gaussian states
are the states that are least challenging to produce, they
form the starting point of the conditional state preparation
scheme.

As a next step, we must implement some form of oper-
ation on the modes that correspond to the phase space
R2l′ . To do so, we consider the action of a general posi-
tive operator-valued measure (POVM) element Â � 0 that
corresponds to a specific measurement outcome. We can
then obtain a conditional state via

ρ̂f|A := trg[Âρ̂]

tr[Âρ̂]
. (187)

The partial trace trg[Âρ̂] runs only over the modes in R2l′

because the other modes are left untouched. The denom-
inator tr[Âρ̂] renormalizes the state and gives the prob-
ability of actually obtaining the measurement result that
corresponds to Â. In an actual experiment, this operation
is implemented by many repeated measurements of the
modes in R2l′ and Â corresponds to a specific detector out-
put of these measurements. The nonmeasured part of the
state is only used when the detector indicates this specific
output, otherwise it is simply discarded. This conditional
selection of the state significantly changes the properties
of the state in a way that is strongly influenced by Â.

As we described in Eq. (42), the operator Â comes with
an associated phase-space representation WA(xg), which
can be used to formally describe the phase-space represen-
tation of ρ̂f|A:

Wf|A(xf) =
∫

R2l′ dxgWA(xg)W(xf ⊕ xg)∫
R2l′ dxgWA(xg)Wg(xg)

. (188)

There is a more practical way of expressing this Wigner
function by exploiting the fact that the initial multi-
mode Wigner function W(xf ⊕ xg) is positive and there-
fore describes a well-defined probability distribution on
phase space. This implies that the conditional probability
distribution

W(xg | xf) := W(xf ⊕ xg)

Wf(xf)
, (189)

is also a well-defined probability distribution, which is
obtained when we fix one point in phase space xf ∈ R2l

and look at the probability distribution for the remaining
modes in R2l′ . We can then use this conditional probability
distribution to write W(xf ⊕ xg) = W(xg | xf)Wf(xf), which
can be inserted in Eq. (188) to find

Wf|A(xf) = 〈Â〉g|xf

〈Â〉
Wf(xf), (190)
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where we define

〈Â〉 := (4π)l
′
∫

R2l′
dxgWA(xg)Wg(xg), (191)

〈Â〉g|xf := (4π)l
′
∫

R2l′
dxgWA(xg)W(xg | xf). (192)

The quantity 〈Â〉 is simply the expectation value of the
observable Â in the state ρ̂. 〈Â〉g|xf , on the other hand,
is the expectation value of the function WA(xg) where
xg is distributed according to the distribution W(xg | xf),
which makes 〈Â〉g|xf a function of the selected phase-space
point xf. However, even though W(xg | xf) is a well-defined
probability distribution on phase space, it does not neces-
sarily correspond to a quantum state. Indeed, W(xg | xf)

may violate the Heisenberg inequality, which will be of
vital importance in Sec. V as it is narrowly connected to
quantum steering.

In the specific case where W(xf ⊕ xg) is Gaussian, we
find that W(xg | xf) is also a Gaussian probability distribu-
tion, given by

W(xg | xf) =
exp

[
− 1

2 (xg − ξg|xf)
TV−1

g|xf
(xg − ξg|xf)

]

(2π)l′
√

det Vg|xf

.

(193)

Using the notation of Eq. (185), we express its covariance
matrix

Vg|xf = Vg − VgfV−1
f VT

gf, (194)

and mean field vector

ξg|xf = ξg + VgfV−1
f (xf − ξf). (195)

The covariance matrix Vg|xf is known in the mathematics
literature [145] as the Schur complement of V. The Schur
complement has interesting properties, for example, V is a
positive matrix if and only if the same holds for the Schur
complement Vg|xf . This immediately implies that the Gaus-
sian probability distribution in Eq. (193) is well defined.
Furthermore, the Schur complement also plays an impor-
tant role in the theory of Gaussian quantum correlations
[146]. It should be noted that Vg|xf does not actually depend
on the chosen value for xf. Thus, the conditional expecta-
tion value 〈Â〉g|xf depends only on the phase-space point xf

through the displacement ξg|xf . This is a particular feature
of Gaussian states.

Finally, remark that the derivation of Eq. (190) holds
true for all initial states with a positive Wigner function.
Whenever the initial multimode Wigner function W(xf ⊕
xg) is positive, it follows that Wf(xf) is also positive.
Furthermore, given that 〈Â〉 is the quantum expectation

value of a positive semidefinite operator it clearly also is
a positive quantity. Hence, Wigner negativity is entirely
contained with 〈Â〉g|xf . The fact that 〈Â〉g|xf can take neg-
ative values is exactly due to W(xg | xf) not being the
Wigner function of a quantum state. Furthermore, Eq.
(192) teaches us that the conditionally generated Wigner
function Wf|A(xf) can only achieve negative value when
WA(xg) is nonpositive.

Thus, in order to conditionally prepare a state with
Wigner negativity, one faces strict requirements, on both
the POVM element Â that is conditioned upon and on
the conditional probability distribution W(xg | xf) that is
obtained from the initial multimode state. We discuss this
point in greater detail in Sec. B. For a more experimentally
inclined perspective on the production of non-Gaussian
states, we refer to Ref. [81].

Before we move on to consider photon subtraction as
an example of conditional creation of non-Gaussian states,
let us take for a moment the opposite process: Gaussifi-
cation. The authors of Ref. [147] consider several copies
of an initial non-Gaussian state, which are mixed through
linear optics and subsequently some output modes are
measured with on-off detectors. The conditioning is done
of the events where no photons are detected, and such that
we can interpret Â as a projector in vacuum. By repeating
several iterations of this scheme (assuming many success-
ful conditioning events), the initial non-Gaussian state is
converted into a Gaussian state. The Gaussification pro-
cess thus relies on starting from a non-Gaussian state and
conditioning by projecting on a Gaussian state: the vac-
uum. This point of view nicely complements our approach
to create non-Gaussian states.

2. An example: photon subtraction

Single-photon subtracted states are theoretically obtained
by acting with an annihilation operator on the state. Their
density matrices are given by

ρ̂− = â(b)ρ̂â†(b)
tr[â†(b)â(b)ρ̂]

, (196)

if the photon is subtracted in one specific mode b. In prac-
tice [129,148,149], we can implement this operation on
the state ρ̂ through a mode-selective beam splitter Û =
exp{θ [â†(g)â(b)− â†(b)â(g)]}, that couples the mode b to
an auxiliary mode g, which is prepared in a vacuum state.
We thus describe the action of the beam splitter on the sys-
tem of interest and the auxiliary mode as Û(ρ̂ ⊗ |0〉 〈0|)Û†.
As a next step, we mount a photon detector on one of the
output modes of the beam splitter. This detector is cru-
cial to make sure that no information is lost, without it we
would effectively trace out the mode and the beam split-
ter would simply induce losses. In contrast, we condition
on the specific events where the detector counts a single
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photon, we generate the state

ρ̂−
θ = trg[Û(ρ̂ ⊗ |0〉 〈0|)Û†(1 ⊗ |1〉 〈1|)]

tr[Û(ρ̂ ⊗ |0〉 〈0|)Û†(1 ⊗ |1〉 〈1|)] . (197)

The reader can now recognize Eq. (187). As a next step, we
assume that the beam splitter is transmitting nearly all the
incoming light, such that θ → 0. We can then approximate
Û ≈ 1 + θ [â†(g)â(b)− â†(b)â(g)]. Then, when we insert
this approximation in the expression for ρ̂−

θ , we find that
only the terms proportional to θ2 survive such that

ρ̂− = lim
θ→0

ρ̂−
θ = â(b)ρ̂â†(b)

tr[â†(b)â(b)ρ̂]
. (198)

A much more detailed analysis of multimode photon sub-
traction with imperfect mode selectivity can be found in
Ref. [150]. We note that through this approach, photon sub-
traction can be understood as a weak measurement of the
number of photons [151].

We can now derive the Wigner function of a single-
photon-subtracted state through Eq. (193) by following the
idea of Eq. (197). We initially start from a Gaussian state
with covariance matrix Vf and one auxiliary mode that is
prepared in the vacuum

Vini =
(

Vf 0
0 1

)
. (199)

We then implement a mode-selective beam splitter that
mixes one specific mode b with the auxiliary vacuum
mode, following the scheme outlined in Fig. 4. An effec-
tive way to describe such a transformation is by designing
a new mode basis B, which has b as one of the modes in
the mode basis. We complete the basis with complemen-
tary modes bc

1, . . . bc
m−1, such that the modes basis of phase

space is given by B = {bc
1,�bc

1, . . . , bc
m−1,�bc

m−1, b,�b}.
Thus, we can perform such a basis change as

(
Vf 0
0 1

)
�→

(
OT

B 0
0 1

) (
Vf 0
0 1

) (
OB 0
0 1

)
, (200)

where the matrix of basis change is given by

OB =
⎛

⎝
| | | | | |
bc

1 �bc
1 . . . bc

m−1 �bc
m−1

b �b
| | | | | |

⎞

⎠ .

(201)

It is now instructive to explicitly write the rows and
columns corresponding to mode b:

OT
BVfOB =

(
Vc

f Vcb
f

Vbc
f Vb

f

)
. (202)

Note that Vb
f is the 2 × 2 matrix that describes the ini-

tial state covariances of mode b, while Vc
f is the (m −

1)× (m − 1) that describes all the covariances in the com-
plementary modes. The rectangular matrices Vcb

f and Vbc
f

contain all the correlations between the mode b and the
complementary modes in the basis. Now, we mix the mode
b and the auxiliary vacuum mode on a beam splitter. This
beam splitter is implemented by the transformation

V(B)BS = O(B)
BS

⎛

⎝
Vc

f Vcb
f 0

Vbc
f Vb

f 0
0 0 1

⎞

⎠ O(B)
BS

T
, (203)

where O(B)
BS is given by

O(B)
BS =

⎛

⎝
1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

⎞

⎠ . (204)

As a final step, we change the basis back to the original
basis, such that the final state’s covariance matrix becomes

V =
(

OB 0
0 1

)
V(B)BS

(
OT

B 0
0 1

)
. (205)

We can now rewrite this entire transformation such that the
matrix V in Eq. (185) is given by

V = OBSViniOT
BS, (206)

with

OBS =
(

OB 0
0 1

)
O(B)

BS

(
OT

B 0
0 1

)

=
(
(cos θ − 1)BBT + 1 sin θ B

− sin θ BT cos θ1

)
. (207)

We introduce the 2m × 2 matrix B, which implements the
mode selectivity of the beam splitter in mode b and is
defined as

B =
⎛

⎝
| |
b �b
| |

⎞

⎠ . (208)

Hence, we can simply use OBS as a mode-selective beam
splitter that mixes one specific mode of a multimode state
with the auxiliary mode. We should highlight that OBS ulti-
mately turns out to be independent of the complementary
modes bc

1, . . . bc
m−1. This means that the finer details of the

interferometer OB are not important for the final OBS, the
key point is that OB changes towards a mode basis in which
b and �b are basis vectors of the phase space.

For the particular case of photon subtraction, we con-
sider a very weak beam splitter, such that we consider the
limit θ → 0. In this case, we can express the conditional
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OT
B OB

O
(B)
BS

f

b

f

OBS

g

WA(xg)

FIG. 4. Schematic representation of an implementation of
mode-selective photon subtraction. See main text for details. For
illustration, the initial state on the left is a product of single-
mode squeezed vacuum states, but the protocol can in principle
be applied to any Gaussian state.

mean field, Eq. (195), and covariance matrix, Eq. (194), of
the auxiliary mode g by

ξg|xf ≈ θ(Vbf − BT)V−1
f (xf − ξf)+ θ ξb

= θBT(1 − V−1
f )(xf − ξf)+ θ ξb (209)

Vg|xf ≈ 1 + θ2 [
Vb − 1 − (Vbf − BT)V−1

f (Vfb − B)
]

,

= 1 + θ2 (
1 − BTV−1

f B
)

, (210)

where we introduce the matrices Vb = BTVfB, Vb f = BTVf,
and Vfb = VfB as well as the vector ξb = BTξf. We can then
use these quantities to evaluate that

W(xg | xf) ≈ e− 1
2 ‖xg‖

(2π)m

(
1 + θ xT

g · BT(1 − V−1
f )(xf − ξf)

+ θxT
g · ξb + θ2

2
[
(xT

g · BT(1 − V−1
f )(xf − ξf)

+ xT
g · ξb)

2 − ‖BT(1 − V−1
f )(xf − ξf)+ ξb‖2

+ xT
g

(
1 − BTV−1

f B
) xg

] + O(θ3)
)

. (211)

As a next step, we must choose a POVM element Â to mea-
sure. In the case of photon subtraction, we mount a photon
counter on the auxiliary mode and for single-photon sub-
traction we condition on the event where this detector
detects exactly one photon. Because we use a very weakly
reflective beam splitter, the probability of obtaining such
an event is small but when it occurs, we have created a
photon subtracted state on the remaining modes.

On a theoretical level, mounting a photon counter and
conditioning on a single photon is translated to choosing

Â = ∣∣1g
〉 〈

1g
∣∣. We already encountered the corresponding

Wigner function in Eq. (118), and thus we can combine
this with Eq. (211) to obtain

〈Â〉g|xf = 4π
∫

R2
dxgW1g (xg)W(xg | xf)

≈ θ2

2

(
‖BT(1 − V−1

f )(xf − ξf)+ ξb‖2

+ tr
[
1 − BTV−1

f B
] )

+ O(θ3), (212)

and in a similar fashion we find that

0〈Â〉 = 4π
∫

R2
dxgW1g (xg)Wg(xg)

≈ θ2

2

(
tr [Vb − 1] + ‖ξb‖2

)
+ O(θ3). (213)

The actual evaluation of these integrals is not completely
straightforward. As a key idea, we use that the integral
takes the form of a polynomial multiplied by a Gaussian.
We can thus evaluate the expectation value of the polyno-
mial with respect to this Gaussian distribution. In essence,
this boils down to calculating a set of moments of a Gaus-
sian probability distribution. We see rather quickly that the
lowest orders in θ vanish, such that the leading order is θ2.
Putting everything together, we find that

lim
θ→0

Wf|A(xf) = lim
θ→0

〈Â〉g|xf

〈Â〉
Wf(xf)

= ‖BT(1 − V−1
f )(xf − ξf)+ ξb‖2 + tr

[
1 − BTV−1

f B
]

tr (Vb − 1)+ ‖ξb‖2

Wf(xf). (214)

As such, we obtain the Wigner function for a multi-
mode photon-subtracted state. This Wigner function can
be obtained using several different methods, ranging from
algebraic [152,153] to analytical [154]. The difference
between those approaches and our method here is that we
do not directly use the properties of the annihilation oper-
ator, but rather model the exact experimental setup, while
relying entirely on phase-space representations.

The methods presented here for treating photon-
subtracted states can straightforwardly be extended to the
subtraction of multiple photons in different modes and
we can easily replace photon-number-resolving detection
with an on-off detector by setting Â = 1 − |0〉 〈0|. The
techniques used in the calculations remain essentially the
same and it yields the same result in the θ → 0 limit
(doing this calculation may prove to be a good exercise
for the motivated reader). However, any real implementa-
tion of a photon-subtraction experiment will use a beam
splitter with finite reflectivity, such that there will be a
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difference between on-off detectors and photon-number-
resolving detectors due to the small contributions of higher
order terms in θ . In practice, one chooses the reflectivity of
the beam splitter with respect to the energy content of the
initial state to effectively suppress all higher-order terms
in Eq. (211). In the single-mode case, an early thorough
analysis of the implementation of photon subtraction can
be found in Ref. [155]. There are also proposals in the
literature to use a photon-subtraction setup with larger val-
ues of θ to gain an additional advantage in quantum state
preparation [156–158].

As a final note, we point out that a similar treatment can
be used to describe photon-added states, which are also
relevant in experiments [159,160]. It is perhaps surprising
that such a state can be obtained by performing a measure-
ment on a part of a Gaussian state, but it suffices to replace
the beam splitter in Eq. (197) with a two-mode squeezer. In
other words, we set Û = exp{θ [â†(g)â†(b)− â(b)â(g)]},
and consider again the limit where the parameter θ is small,
i.e., weak squeezing. Even though this is a simple step in
theory, it is much harder in an actual experimental setting.
Photon subtraction can be implemented with a passive lin-
ear optics element, while photon addition always requires
squeezing and thus a nonlinear optics implementation.

V. NON-GAUSSIAN STATES AND QUANTUM
CORRELATIONS

In this section, we explore the interplay between non-
Gaussian effects and quantum correlations. First, in Sec.
A, we provide a crash course to introduce the unfamiliar
reader to the most important types of quantum correla-
tions: entanglement, steering, and Bell nonlocality. In Sec.
B we subsequently highlight how certain types of quan-
tum correlations can be used to create certain types of
non-Gaussian states via the methods of Sec. B. In Sec. C,
we then explore how non-Gaussian operations can create
or enhance quantum correlations by focusing on photon-
subtracted states. Finally, we explore the role that is played
by non-Gaussian states in Bell inequalities in Sec. D.

A. Quantum correlations: a crash course

We start by giving a quick introduction to the differ-
ent kinds of common quantum correlations. Readers who
want to get a more thorough overview on these subjects are
referred to Refs. [161–163] as natural starting points.

In this Tutorial, we solely consider bipartite quantum
correlations. This implies that we structure the system in
a similar way as in Sec. B and divide the m-mode sys-
tem in two parts, each with their own phase space, i.e.,
R2m = R2l ⊕ R2l′ . It is noteworthy that the corresponding
Fock space takes the structure �(Hm) = �(Hl)⊗ �(Hl′),
where we again use the mapping, Eq. (44), between the
phase space R2k and the k-dimension Hilbert space Hk.

These structures are crucial to understand quantum corre-
lations.

1. Correlations

To better understand quantum correlations, it is useful to
start by generally defining what a correlations is. In a statis-
tical sense, two stochastic variables X and Y are correlated
when the expectation values have the following property:

E(XY) �= E(X )E(Y). (215)

This can be translated to the level of probability distri-
butions by stating that the joint probability distribution
for outcomes X = x and Y = y is not the product of the
marginals

P(x, y) �= P(x)P(y), (216)

where

P(x) =
∫

Y
dy P(x, y), and P(y) =

∫

X
dx P(x, y). (217)

Here, X and Y denote the possible outcomes of the
stochastic variables X and Y, respectively [164].

When we talk about quantum systems, there are gener-
ally many observables that can be considered. When we
consider a global multimode system with phase space R2m

and two subsystems with phase spaces R2l and R2l′ , there
is a whole algebra of observables involved. The role of
the stochastic observables X and Y will be taken up by
local observables X̂ and Ŷ that are contained in the observ-
able algebra generated by, respectively, q̂(f ) and q̂(g),
with f ∈ R2l and g ∈ R2l′ . These local observables are
correlated when

tr(X̂ ⊗ Ŷρ̂) �= tr(X̂ ρ̂f)tr(Ŷρ̂g), (218)

where ρ̂f and ρ̂g are the marginals (or reduced states) of ρ̂
for the subsystems R2l and R2l′ .

When we talk about correlated systems rather than cor-
related observables, we consider that there exists a pair
of local observables such that Eq. (218) holds. Thus, if
two systems are not correlated, it follows that for all pos-
sible observables tr(X̂ ⊗ Ŷρ̂) = tr(X̂ ρ̂f)tr(Ŷρ̂g). This lack
of correlations can be expressed on the level of the quan-
tum state by the identity ρ̂ = ρ̂f ⊗ ρ̂g. On the level of
Wigner functions, we can therefore say that a state contains
correlations if the Wigner function satisfies

W(xf ⊕ xg) �= Wf(xf)Wg(xg), (219)

where the marginal Wigner functions are defined as in Eqs.
(182), (183).
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It is clear that correlations between systems can occur,
both, in the context of classical probability theory and
in quantum theory. However, we already established that
quantum physics imposes additional constraints on the
statistics of observables, which ultimately make it impossi-
ble to describe CV quantum systems in terms of probability
distributions on phase space. Similarly, quantum physics
leads to new features for the correlations of subsystems.
Thus, in our study of quantum correlations we explore cor-
related systems, in the sense of Eq. (219), and we seek
to differentiate between correlations that are of classical
origin and those that can be attributed to a quantum origin.

2. Quantum entanglement

Quantum entanglement is probably the most well-
known type of quantum correlation. The notion of entan-
glement derives directly from the structure of the quantum
state space and is related to the contrast between pure states
in classical and quantum physics.

To understand this contrast, we loosely follow the idea
of Ref. [165]. Let us be a bit more precise as to what
is meant with pure states in classical physics in the con-
text of CV systems. Classically, in a context of statistical
mechanics, any CV system can be described by a prob-
ability distribution on phase space. From a mathematical
point of view, this means that the space containing all the
possible classical states is a convex set because any con-
vex combination of two probability distributions is again
a probability distribution. Pure states are formally defined
as the extreme points of the convex set, i.e., the states
that cannot be decomposed as being a convex combina-
tion of two other states. In a classical theory, where states
can unambiguously be represented by probability distribu-
tions on phase space, the pure states are delta functions
centered on the different points of phase space. From a
physical point of view, this corresponds to the intuition
that pure states are “the least noisy” states, which simply
corresponds to a single point in phase space.

For our phase space R2m = R2l ⊕ R2l′ these delta func-
tions factorize with respect to the subsystems, i.e., δ(x −
x′) = δ(xf − x′

f)δ(xg − x′
g), with x, x′ ∈ R2m, xf, x′

f ∈ R2l,
and xg, x′

g ∈ R2l′ . In the light of Eq. (216) we thus conclude
that pure states of classical systems are always uncorre-
lated [166]. Any correlations that are present in classical
states are thus obtained by taking a convex combination of
uncorrelated pure states.

In quantum systems, pure states are represented by state
vectors in a Hilbert space (in our case Fock space). They
also can be seen as the extreme points of a convex set of
states that contains all density matrices ρ̂. As we saw in the
example where we discussed the Hong-Ou-Mandel state
|HOM〉 in Eq. (165), pure quantum states can actually be
correlated in the sense of Eq. (219). This crucial difference

between classical and quantum pure states lies at the basis
of quantum entanglement.

The notion of entanglement derives directly from the
structure of the quantum state and is defined as the opposite
of a separable state. For pure states, separable states |�〉 ∈
�(Hm) are the pure states that are uncorrelated and can
thus be written as |�〉 = |�l〉 ⊗ |�l′ 〉 with |�l〉 ∈ �(Hl)

and |�l′ 〉 ∈ �(Hl′). All other pure states are said to be
entangled. They possess correlations that are not due to
some type of convex combination of uncorrelated states,
something which is impossible for classical pure states.

The situation is more subtle when considering mixed
states, i.e., convex combinations of pure states. Convex
mixtures of classical pure states can also show correlations,
and it is therefore crucial to make a distinction between this
type of classical correlations and quantum correlations.
Due to the structure of classical pure states, we find that
any classical joint probability distribution on phase space
can be written as a convex combination of local probability
distributions

P(xf ⊕ xg) =
∫

dγ p(γ )P(γ )(xf)P(γ )(xg), (220)

where γ is some arbitrary way of labeling states, dis-
tributed according to distribution p(γ ). This notion of
classical correlations can directly be generalized to quan-
tum states [167], and thus a mixed state is said to be
separable when all of its correlations are classical, i.e.,
when it is a convex mixture of product states

ρ̂ =
∫

dγ p(γ )ρ̂(γ )f ⊗ ρ̂(γ )g . (221)

In the language of Wigner functions, the separability con-
dition translates to

W(xf ⊕ xg) =
∫

dγ p(γ )W(γ )

f (xf)W(γ )
g (xg), (222)

where we again use the definitions of Eqs. (182), (183).
Quantum states that cannot be described by a Wigner func-
tion of the form Eq. (222) are not separable and are said to
be entangled.

Hence, quantum entanglement describes the origin of
the quantum correlations rather than their properties. Nev-
ertheless, the set of separable states is a convex set and thus
the Hahn-Banach separation theorem [168,169] teaches us
that it is in principle possible to use observables to dis-
tinguish between separable and entangled states. In this
sense the difference between entangled and separable states
is measurable. For the sake of uniformity, we highlight
that separable states lead to the following measurement
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statistics of local observables X̂ and Ŷ:

P(x, y) =
∫

dγ p(γ )P(γ )
ρ̂
(x)P(γ )

ρ̂
(y). (223)

It is crucial to emphasize that the distributions of measure-
ment outcomes P(γ )

ρ̂
(x) and P(γ )

ρ̂
(y) are governed by the

laws of quantum physics. Formally, we can use the spectral
theorem to write

X̂ =
∫

X
dx xÊx, and Ŷ =

∫

Y
dy yÊy , (224)

such that Êx and Êy are the POVM elements that cor-
respond to the measurement outcomes x and y for the
measurement of the (generalized) observables X̂ and Ŷ,
respectively. The probability distribution P(γ )

ρ̂
(x) is then

given by

P(γ )
ρ̂
(x) = tr[Êxρ̂

(γ )

f ] = (4π)l
∫

R2l
dxf WEx(xf)Wf(xf),

(225)

and analogously for P(γ )
ρ̂
(y).

For separable states, Eq. (223) with local probability dis-
tribution given by Eq. (225) holds for any arbitrary pair
of local observables. The model that is described by these
equations is known as a local hidden variable model for
quantum entanglement, where γ is the hidden variable. We
may not necessarily know the origins and behavior of γ ,
but the model generally captures two important elements.
First, all correlations are induced by the common vari-
able γ that governs the convex mixture. Second, the local
probability distributions P(γ )

ρ̂
(x) and P(γ )

ρ̂
(y) have a quan-

tum origin. For CV systems the latter point, for example,
implies that these local probability distributions must sat-
isfy the Heisenberg inequality. These quantum constraints
on the local probability distributions P(γ )

ρ̂
(x) and P(γ )

ρ̂
(y)

are typically useful for the falsification of the local hidden
variable model, Eq. (223), and thus prove the presence of
quantum entanglement [170,171].

3. Quantum steering

In a formal sense, quantum steering is a rather recent
addition to the family of quantum correlations. Neverthe-
less, it is exactly this phenomenon that lies at the basis
of the Einstein-Podolsky-Rosen (EPR) paradox [172].
Schrödinger’s response to the EPR paper [173,174] lies at
the basis of what we now call quantum steering, but the
broader implications of these results were only sporadi-
cally discovered and formalized [175,176].

Just like for quantum entanglement, a system is said
to be steerable if the measurement statistics cannot be
explained in terms of a local hidden variable model. A

peculiarity of quantum steering is that it involves a cer-
tain directionality, where one of the subsystems is said
to “steer” the other subsystem. This asymmetry is repre-
sented in the local hidden variable model, which takes the
following form:

P(x, y) =
∫

dγ p(γ )P(γ )(x)P(γ )
ρ̂
(y), (226)

where we emphasize the striking resemblance to Eq. (223).
Note that, contrary to the case of quantum entanglement,
we now allow the probability distribution P(γ )(x) for the
first subsystem to be arbitrary and thus do not impose any
constraints of quantum theory on it. If there exist observ-
ables X̂ and Ŷ for which the probability distribution is not
consistent with the model, Eq. (226), the subsystems with
phase space R2l is able to steer the subsystem with phase
space R2l′ .

Quantum steering is perhaps most logically explained
in terms of conditional states and probability distributions.
For nonsteerable states, the local hidden variable model,
Eq. (226), must hold for all observables, which in turn
imposes conditions on the level of states. Here these con-
ditions manifest on the level of conditional states of the
type Eq. (187). To see this, we consider the conditional
probability distribution associated with Eq. (226):

P(y | x) =
∫

dγ p(γ )P(γ )(x)P(γ )
ρ̂
(y)

P(x)
, (227)

where the probability to obtain a certain outcome X̂ = x is
given by

P(x) =
∫

dγ p(γ )P(γ )(x). (228)

Note that for any x the function

P̃(γ | x) := p(γ )P(γ )(x)
P(x)

(229)

is a well-defined probability distribution. Furthermore, if
we demand that Eq. (227) holds for all observables Ŷ, we
find the following condition for the conditional state:

ρ̂g|X̂ =x =
∫

dγ P̃(γ | x)ρ̂(γ )g . (230)

Because quantum steering is a property of the state, we
again require Eq. (230) to hold for all observables X̂ for a
state to not be steerable.

The local hidden variable model, Eq. (226), and the con-
sequence for the conditional state, Eq. (230), may seem
stringent, but it is often intricate to formally prove that
such a model cannot explain observed data. It turns out
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that computational methods based on semidefinite pro-
gramming [177] are well suited to prove that the set of all
possible conditional states is inconsistent with Eq. (230).
A more physical point of view is based on developing
steering inequalities [178]. As a notable example, one
can derive a type of conditional Heisenberg inequality
for states of the form Eq. (230). The local hidden vari-
able model, Eq. (226), assumes that the laws of quantum
physics constrain the measurement statistics in the second
subsystem. We can then define the conditional variance of
an arbitrary observable Ŷ

	2(Ŷ | X̂ = x) := tr[Ŷ2ρ̂g|X̂ =x] − tr[Ŷρ̂g|X̂ =x]2, (231)

which leads to the “average inference variance”

	2
inf(Ŷ) :=

∫

X
dxP(x)	2(Ŷ | X̂ = x), (232)

that characterizes the precision with which we can infer the
measurement outcome of Ŷ, given a measurement outcome
of X̂ . Under the assumption that Eq. (230) holds, we can
than prove the inference Heisenberg inequality [178]

	2
inf(Ŷ1)	

2
inf(Ŷ2) � 1

2

∫

X3

dxP(x)
∣∣∣tr

(
[Ŷ1, Ŷ2]ρ̂g|X̂3=x

)∣∣∣
2

,

(233)

where 	2
inf(Ŷ1) and 	2

inf(Ŷ2) can be conditioned on any
observables X̂1 and X̂2, respectively.

Thus, whenever one performs a series of condi-
tional measurements that violate the inference Heisenberg
inequality (233), the assumption (230) cannot hold and
thus the measurements in the subsystem with phase space
R2l have steered those in the subsystem with phase space
R2l′ . In more colloquial terms, the inequality (233) sets
a limit on the precision with which classical correlations
between observables can be used to infer measurement out-
comes of one quantum subsystem, based on measurement
outcome of the other subsystem (regardless of whether it
is quantum or not). Quantum correlations allow us to out-
perform these bounds and provide better inference than
classically possible, and this phenomenon is the essence
of quantum steering.

Now let us now express Eq. (233) for quadrature opera-
tors:

	2
inf[q̂(g1)]	2

inf[q̂(g2)] �
∣∣gT

1�g2
∣∣2 , (234)

where g1, g2 ∈ R2l′ . As a next step, we must understand the
properties of the average inference variance 	2

inf[q̂(g1)],
which we obtain by conditioning on a quadrature observ-
able in the other subsystem’s phase space R2l. More specif-
ically let us assume that we condition on measurements of

q̂(f1), such that we must evaluate the conditional variance
	2[q̂(g1) | q̂(f1) = x]. The conditional variance	2[q̂(g1) |
q̂(f1) = x] is then given by the matrix element of the
covariance matrix that describes W(xg | xf1) as defined in
Eq. (193):

	2[q̂(g1) | q̂(f1) = x] = gT
1

[

Vg − Vg f f1 f T
1 Vfg

f T
1 Vf f1

]

g1,

(235)

because the quantity does not depend on the actual out-
come that is postselected upon, we find that

	2
inf[q̂(g1)] = gT

1

[

Vg − Vg f f1 f T
1 Vfg

f T
1 Vf f1

]

g1, (236)

	2
inf[q̂(g2)] = gT

2

[

Vg − Vg f f2 f T
2 Vfg

f T
2 Vf f2

]

g2. (237)

From Eqs. (236) and (237) we can deduce that
	2

inf[q̂(g)] � gTVg|xf g for all g ∈ R2l′ regardless of the
q̂(f ) that is conditioned upon. Thus, if Vg|xf satisfies the
Heisenberg inequality the inference Heisenberg inequality
(234) is also satisfied.

The setting with homodyne measurements, or more gen-
eral Gaussian measurements, is close to the system that is
discussed in Ref. [172]. For this reason, we refer to quan-
tum steering with Gaussian measurements as EPR steering
in contrast to more general quantum steering. This type of
steering has been studied extensively in the literature, e.g.,
[176,179–181] and will be a key element in Sec. 2.

Note that both subsystems clearly play a very different
role in this setting. The first subsystem simply produces
measurement results of different observables. The infor-
mation of these measurements in the first subsystem is
then used to infer measurement results in the second sub-
system, which is assumed to be a quantum system. In a
quantum communication context, this asymmetry corre-
sponds to a level of trust: we position ourselves in the
steered system and trust that our system is a well-behaved
quantum system, but we do not trust the party that controls
the other subsystem (up to a point where we do not even
want to assume that the data that are communicated to us
come from an actual quantum system). The violation of a
steering inequality practically allows verification in such a
setting that there is indeed a quantum correlation between
the two subsystems [182].

The inference Heisenberg inequality (233) shows that
quantum steering describes certain properties of the quan-
tum correlations. States that can perform quantum steering
thus possess correlations that can be used to infer mea-
surement outcomes better than any classical correlations
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could. These correlations cannot be described by a hid-
den variable model of the form Eq. (226), which is more
general than the model, Eq. (223). Thus, all states that pro-
duce statistics consistent with Eq. (223) are also consistent
with Eq. (226) such that states that can perform steering
must be entangled. However, there are states that produce
statistics that is consistent with Eq. (226), but inconsistent
with Eq. (223). In other words, not all entangled states can
be used to perform quantum steering. In this sense, quan-
tum steering can be said to be “stronger” than quantum
entanglement.

4. Bell nonlocality

To date, the seminal work of John S. Bell on the
Einstein-Podolsky-Rosen paradox [183] is probably one of
the most remarkable findings on the foundations of quan-
tum physics. What most had long taken for granted, the
existence of local hidden variables to explain the proba-
bilistic nature of quantum physics, turned out to be incon-
sistent with the theoretical quantum formalism. It is here
that we find the real historical origin of the concept of
quantum correlations as something fundamentally different
from classical ones.

As for quantum entanglement and steering, the story
of Bell nonlocality starts from a local hidden variable
model that bears a strong resemblance to Eqs. (223) and
(226). In this case, the model attempts to describe the joint
measurement statistics of X̂ and Ŷ as

P(x, y) =
∫

dγ p(γ )P(γ )(x)P(γ )(y). (238)

The key observation is that now all the quantum constraints
on the probability distributions have been dropped and
both the P(γ )(x) and P(γ )(y) can be any mathematically
well-defined probability distributions. Even though the dif-
ference between Eqs. (223) and (226) on the one hand,
and Eq. (238) on the other hand, may appear small, the
impact of dropping the constraints on the local distribu-
tions is enormous. Think, for example, of the Hahn-Banach
separation theorem that is invoked to define entanglement
witnesses, this crucially relies on the Hilbert-space struc-
ture of the state space. Think for example of (233) which
crucially depends on the fact that quantum probabilities are
constrained by the Heisenberg inequality. Abandoning all
connections that tie probabilities to operator algebras on
Hilbert spaces deprives quantum mechanics of their tool-
box. Nevertheless, it turns out that some quantum states
induce statistics that is inconsistent with Eq. (238).

Again, we note that states that can be described by the
models, Eqs. (223) or (226), can also be described by the
model, Eq. (238). Bell’s local hidden variable model, Eq.
(238), is thus the most general one and the class of states
that lead to measurement statistics that cannot be described
by it is the smallest. Therefore, we say that the correlations

that lead to a violation of the mode, Eq. (238), also known
as Bell nonlocality, are the strongest types of quantum
correlations.

The key insight of Bell’s work [183,184] is that Eq.
(238) puts constraints on the correlations of different com-
binations of observables in the subsystems. These con-
straints, cast in the form of Bell inequalities can be violated
by certain quantum states. The inconsistency of quantum
physics with the model, Eq. (238), can in itself be seen
as a special case of contextuality [185]. Over the decades,
many different kinds of Bell inequalities have been derived
(see, for example, Ref. [186]). Here we restrict to pre-
senting one of the most commonly used incarnations: the
Clauser-Horne-Shimony-Holt (CHSH) inequality [187].
This inequality relies on the measurement of four observ-
ables: X̂ and X̂ ′ on the first subsystem and Ŷ and Ŷ′
on the second subsystem. Furthermore, we consider that
the observables can take two possible values: −1 or 1.
Assuming the model in Eq. (238) it is then possible to
derive

∣∣∣〈X̂ Ŷ〉−〈X̂ Ŷ′〉+〈X̂ ′Ŷ〉+〈X̂ ′Ŷ′〉
∣∣∣ � 2, (239)

where 〈.〉 denotes the expectation value. In this Tutorial
we skip the derivation of this result, but the interested
reader is referred to Ref. [188] for a detailed discussion.
Remarkably, certain highly entangled states can violate
this inequality.

The experimental violation of Bell’s inequalities for-
mally shows that quantum correlations are profoundly
different than classical correlations [189–192]. However,
one needs clever combinations of several observables in
both subsystems to actually observe the difference. With
most experimental loopholes now closed [193–197], Bell
inequalities can now in principle be used to impose a
device-independent level of security on various quantum
protocols [198].

As a concluding remark, it is interesting to highlight the
existence of a semidevice-independent framework for test-
ing quantum correlations [199,200]. The key idea is that
nothing is assumed about the measurement devices nor
about the states, much like in the scenario of Bell inequali-
ties. Yet, in the framework of Refs. [199,200] one does add
an additional level of trust in the sense that one assumes
that the inputs of the measurement device can be controlled
and trusted. In a way, this additional intermediate level of
trust is somewhat reminiscent of quantum steering. This
framework was very recently extended to the CV setting
[201].

B. Non-Gaussianity through quantum correlations

In Sec. B, we explained how conditional operations
can be used to create non-Gaussian quantum states. The
presence of correlations plays an essential role in this
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framework. Indeed, in the absence of correlations the com-
bination of Eqs. (222) and (189) implies that W(xg | xf) =
Wg(xg). As a consequence, we see from Eq. (192) for the
conditional expectation value 〈Â〉g|xf = 〈Â〉, and thus from
Eq. (190) that Wf|Â(xf) = Wf(xf). In other words, the con-
ditional operation has no effect whatsoever and gives the
same result as tracing out the modes in R2l′ .

A closer look at the explicit expressions

Wf|A(xf) = 〈Â〉g|xf

〈Â〉
Wf(xf),

and

〈Â〉g|xf := (4π)l
′
∫

R2l′
dxgWA(xg)W(xg | xf),

shows that whenever there are correlations, and thus
〈Â〉g|xf �= 〈Â〉, the conditional Wigner function is a priori
non-Gaussian. When we use explicitly that the initial state
is Gaussian and thus that W(xg | xf) is given by Eq. (193),
this condition can be translated to the existence of nonzero
components in Vgf in Eq. (185). The precise properties of
the resulting non-Gaussian quantum state depend on the
conditional expectation value 〈Â〉g|xf .

In the literature, some attention has been devoted
to proposing different types of measurements for such
heralding procedures. One may think of using on-off
detectors [202], photon-number-resolving detectors [156],
parity detectors [203], and more exotic multimode setups

[204,205]. However, these works usually assume that the
initial quantum state is a pure Gaussian state obtained by
an idealized source of multimode squeezed vacuum states.
As we saw in Sec. 2, for pure-state correlations automat-
ically imply entanglement, and it even turns out that all
correlated pure states violate a Bell inequality [206]. In
other words, for pure states all correlations are quantum
correlations and all these quantum correlations are of the
strongest type. When we no longer make such assumptions
on the initial multimode Gaussian state, we see that 〈Â〉g|xf

will not only depend on the chosen POVM Â, but also on
the properties of W(xg | xf). In Secs. 1 and 2, we explain
that certain types of non-Gaussian features can only be
achieved through certain types of quantum correlations in
the initial Gaussian state. An overview of the results of this
section is provided in Fig. 5.

1. Quantum non-Gaussianity and entanglement

To understand the role of quantum entanglement in a
conditional preparation scheme, we contrast it to a system
with only classical correlations. In that regard, let us sup-
pose that the initial quantum state is separable such that
its Wigner function can be cast in the form Eq. (222). By
inserting this form in Eq. (188), we find that

Wf|A(xf) =
∫

dγ p(γ )

∫
R2l′ dxgWA(xg)W

(γ )
g (xg)∫

R2l′ dxgWA(xg)Wg(xg)
W(γ )

f (xf).

(240)

Uncorrelated states

(Correlated)
separable states

Nonsteerable
entangled states

Steerable states

Bell nonlocal states

Gaussian states

Non-Gaussian 
mixtures of 
gaussian states

Quantum non-
gaussian states

Wigner-negative 
states

INITIAL STATECONDITIONAL STATE 

FIG. 5. Different types of quantum correlations are required to be present in the initial Gaussian state W(x) to create conditional states
Wf|A(xf), as described in Eq. (190), that belong to a certain class. We thus show how the typical hierarchy of quantum correlations
(right) can be connected to the structure of the CV state space that was introduced previously in Fig. 1. Throughout Sec. B, we prove
that these different types of quantum correlations are necessary resources to achieve different types of states.
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As a next step, we define

p̃A(γ ) := p(γ )

∫
R2l′ dxgWA(xg)W

(γ )
g (xg)∫

R2l′ dxgWA(xg)Wg(xg)
, (241)

and show that p̃A(γ ) is a well-defined probability distribu-
tion. First, we use the definition of the reduced state

Wg(xg) =
∫

R2l
dxfW(xf ⊕ xg) (242)

=
∫

dγ p(γ )W(γ )
g (xg), (243)

and thus we immediately find that
∫

dγ p̃A(γ ) = 1. Fur-
thermore, we note that W(γ )

g (xg) is the Wigner function of
a well-defined quantum state ρ̂(γ )g and thus

∫

R2l′
dxgWA(xg)W(γ )

g (xg) = tr[ρ̂(γ )g Â] � 0. (244)

The final inequality follows from the fact that Â is a posi-
tive semidefinite operator. As a consequence, we find that
p̃A(γ ) � 0 for every possible γ . Thus, we find that for a
separable initial state

Wf|A(xf) =
∫

dγ p̃A(γ )W
(γ )

f (xf). (245)

Up to this point, we assumed only that the initial state
is separable. As we saw in Sec. C, a mixed quantum
state with a positive Wigner function cannot necessarily
be decomposed in states with positive Wigner functions.
Therefore, we can generally not infer much about the
properties of the Wigner function W(γ )

f (xf) in Eq. (245).
As a next step, we use the fact that the initial state is

also a Gaussian state. Recall from Eq. (103) that any mixed
Gaussian state can be decomposed as a mixture of pure
Gaussian states. A priori, however, it is not trivial that this
decomposition is consistent with decomposition in sepa-
rable states, Eq. (222). Thus, it remains to show that for
Gaussian separable states the Wigner functions W(γ )

f (xf)

and W(γ )
g (xg) in Eq. (222) are also Gaussian.

We start from a crucial observation on covariance matri-
ces that was made in Ref. [207]: whenever an m-mode state
with covariance matrix V is separable, there are covariance
matrices V′

f and V′
g such that

V �
(

V′
f 0

0 V′
g

)
= V′

f ⊕ V′
g. (246)

Note that V′
f and V′

g are covariance matrices on the phase
spaces R2l and R2l′ , respectively. Nevertheless, V′

f and
V′

g are generally not the same as the covariance matrices

Vf and Vg of Eq. (185) that describe the marginal distri-
butions. We should emphasize that the Williamson, Eq.
(92), and Bloch-Messiah, Eq. (95), decompositions offer
the necessary tools to explicitly construct V′

f and V′
g (we

come back to this point in Sec. C). This allows us to use
similar techniques as in Eq. (103). Let us first define

W′
f(xf) := e− 1

2 xT
f V′

f
−1xf

(2π)m
√

det V′
f

, (247)

W′
g(xg) := e− 1

2 xT
g V′

g
−1xg

(2π)m
√

det V′
g

. (248)

We can then use Eq. (246) to define a positive definite
matrix Vc := V − V′

f ⊕ V′
g, such that a decomposition of

the type Eq. (103) gives us

W(xf ⊕ xg) =
∫

R2m
dy W′

f(xf − yf)W′
g(xg − yg)

× e− 1
2 (y−ξ)TV−1

c (y−ξ)

(2π)m
√

det Vc
, (249)

where we again impose the structure of the bipartition
on y = yf ⊕ yg, with yf ∈ R2l and yg ∈ R2l′ . Furthermore,
recall that ξ is the mean field of the initial Gaussian state
W(xf ⊕ xg). The structure we obtain in Eq. (249) exactly
corresponds to Eq. (222), where y now labels the states
and thus plays the role of the abstract variable γ .

We can then use the structure Eq. (249) in the derivation
Eq. (245) and then we find that

Wf|A(xf) =
∫

R2l
dyfW′

f(xf − yf)p̃A(yf). (250)

In any concrete choice of Â, one can use Eq. (241) to derive
an explicit expression for p̃A(yf), which will generally be a
non-Gaussian probability distribution, such that Wf|A(xf)

describes a non-Gaussian state. However, the resulting
conditional state, Eq. (250), is clearly a statistical mix-
ture of Gaussian states and thus lies in the convex hull
of Gaussian states. In the language of Sec. C this means
that the conditional state is non-Gaussian but not quantum
non-Gaussian and has a stellar rank 0.

In summary, we have assumed that our initial state with
Wigner function W(xf ⊕ xg) is a separable Gaussian state.
Without making any assumptions on the POVM element
Â of the conditional operation, we retrieve that the condi-
tional state always is a convex combination of Gaussian
states, given by Eq. (250). Thus, when the initial state is
Gaussian, entanglement is a necessary resource to produce
quantum non-Gaussian states via conditional operations.
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2. Wigner negativity and Einstein-Podolsky-Rosen
steering

In Sec. E, we explained that Wigner negativity is
a “stronger” non-Gaussian feature than quantum non-
Gaussianity. Here, we show that also stronger types of
quantum correlations are required to conditionally create
Wigner negativity. To understand how Wigner negativity
can be achieved through a conditional preparation scheme,
it suffices to understand when the conditional expectation
value 〈Â〉g|xf in Eq. (192) reaches negative values.

Regardless of the chosen POVM, WA(xg) is the Wigner
function of a positive semidefinite operator Â as defined
by Eq. (42). Thus, whenever there is a quantum state
ρ̂ ′ that has W(xg | xf) as associated Wigner function, Eq.
(43) implies that 〈Â〉g|xf = tr[ρ̂ ′Â] � 0. Hence, to con-
ditionally create a nonpositive Wigner function (190)
the conditional probability distribution W(xg | xf) can-
not be a well-defined Wigner function. This observation
holds whenever the initial state has a positive Wigner
function.

When in addition we assume that the initial state is
Gaussian, we find that W(xg | xf) is a Gaussian distribu-
tion (193). Whether the conditional probability distribution
Eq. W(xg | xf) describes a Gaussian quantum state depends
entirely in the properties of its covariance matrix, i.e.,
the Schur complement Vg|xf . Indeed, W(xg | xf) describes
a quantum state if and only if Vg|xf satisfies the Heisenberg
inequality. Because Vg|xf does not depend on the choice
xf ∈ R2l, it follows that W(xg | xf) corresponds to a quan-
tum state either for all xf ∈ R2l [if the Schur complement
Eq. (194) satisfies the Heisenberg inequality] or for none
of the xf ∈ R2l [if the Schur complement Eq. (194) violates
the Heisenberg inequality].

If Vg|xf satisfies the Heisenberg inequality, the condi-
tional state’s Wigner function Wf|A(xf) must thus be pos-
itive. To better understand the physical resources required
to conditionally create Wigner negativity, one must com-
prehend what it means for Vg|xf to violate Heisenberg’s
inequality in terms of quantum correlations. It turns
out that this condition is closely related to the origi-
nal argument of the EPR paper [172]. The violation of
Heisenberg’s inequality by the Schur complement Vg|xf
corresponds to Gaussian quantum steering in the state
W(xg ⊕ xf).

To understand the connection between the conditional
covariance matrix Vg|xf and quantum steering, we first
express the Wigner function obtained by conditioning on
a Gaussian measurement, such that the associated POVM
element has a Wigner function WG(xf):

Wg|G(xg) =
∫

R2l dxfWG(xf)W(xf | xg)∫
R2l dxfWG(xf)Wf(xf)

Wg(xg). (251)

In a very similar way, we can also show that

Wg|G(xg) =
∫

R2l
dxf

WG(xf)Wf(xf)∫
R2l dxfWG(xf)Wf(xf)

W(xg | xf).

(252)

Hence, when W(xg | xf) is a bona fide Wigner function
for every xf this expression is an explicit manifestation
of the local hidden variable model Eq. (230). In other
words, whenever W(xg | xf) describes a quantum state, the
modes in g cannot be steered by Gaussian measurements
on the modes f. Note that we can generalize Gaussian
measurements to any measurement with a positive Wigner
function.

The remarkable feature of EPR steering is that the
inverse statement also holds: when W(xg | xf) is not a bona
fide Wigner function Gaussian measurements can steer the
state. Let us assume that Eq. (230) holds for Gaussian
measurements. It then follows that a well-defined covari-
ance matrix U exists such that the covariance matrix Vg|G
of the conditional state Wg|G(xg) satisfies Vg|G � U for
all Gaussian measurements. Furthermore, U is physical
and satisfies the Heisenberg inequality. Reference [176]
shows that the existence of such a U implies that the full
covariance matrix of the system satisfies V + 0f ⊕ i�g �
0, which in turn implies that Vg|xf , the Schur complement
of V, satisfies the Heisenberg inequality.

This shows that we can only generate Wigner negativ-
ity through Eq. (190) if the initial state can be steered by
Gaussian measurements on the subsystem associated with
phase space R2l. Note that the creation of Wigner nega-
tivity occurs in the opposite direction to the steering: We
can produce Wigner negativity in the modes f by per-
forming a measurement on the modes g if the modes g
can be steered by performing Gaussian measurements on
the modes f. Somewhat counterintuitively, it turns out that
the created Wigner negativity volume, Eq. (156), is not
directly proportional to the strength of EPR steering [208].

As a final remark, we note that, in a multimode con-
text, EPR steering is constrained by monogamy relations
[209–211]. Notably, this implies that when a single mode
g can be steered by a single other mode f , it is impossi-
ble for any other mode to also steer g. This naturally has
profound consequences for the conditional generation of
Wigner negativity that we discussed in this section. The
monogamy relations for quantum steering can be used to
derive similar monogamy relations [208] for the created
Wigner negativity volume (156).

C. Quantum correlations through non-Gaussianity

In Sec. B, we extensively considered the use of quantum
correlations as a resource to create non-Gaussian effects.
In this subsection, we focus on the opposite idea where
non-Gaussian operations increase or even create quantum
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correlations. The subject of entanglement in non-Gaussian
states is generally difficult to study, for some states it
may be sufficient to evaluate lower-order moments [212]
and when the density matrix in the Fock representation
is available one can apply DV approaches to character-
ize entanglement [213]. However, these methods cannot
always be applied and there are no universally applica-
ble entanglement criteria that are practical to evaluate for
arbitrary CV quantum states.

1. Entanglement measures on phase space

In Sec. 2, we argued that any pure state that manifests
correlations between subsystems contains entanglement.
Measuring entanglement in this case becomes equivalent
to measuring the amount of correlation within the pure
state. In particular, for pure states, one finds a wide range
of entanglement measures in the literature [161]. In the
case of CV systems, some measures are more appropriate
than others, and here we focus on one particularly intuitive
measure that is based on purity.

When we consider an arbitrary bipartite pure quantum
state with Wigner function W(xf ⊕ xg) (with xf ∈ R2l and
xg ∈ R2l′), we find that its purity is μ = 1 by definition.
However, this is not necessarily true for the subsystems f
and g. We can use Eq. (94) to evaluate the purity of any
state based on its Wigner function, and we define

μf =
∫

R2l
dxf[Wf(xf)]2, and μg =

∫

R2l′
dxg[Wg(xg)]2,

(253)

where we again use the definitions (182), (183). Because
the global state with Wigner function W(xf ⊕ xg) is pure,
we always find that μf = μg (this is a general conse-
quence of the existence of a Schmidt decomposition for
pure states). Furthermore, if the pure state is separable,
we find W(xf ⊕ xg) = Wf(xf)Wg(xg) and as a consequence
we obtain that μf = μg = 1. However, when μf = μg < 1
there must be correlations between the subsystems f and g
and the smaller the purity of the subsystems, the stronger
these correlations are. Without delving into the details, we
stress that the opposite notion also holds: when there is
a correlation between the subsystems, the purity of the
subsystems is smaller than one.

To convert this quantity into an entanglement mea-
sure [214], it is useful to define the Rényi-2 entropy for
subsystem f

SR := − logμf. (254)

We then find that SR � 0 and SR = 0 if and only if the state
is separable. Furthermore, it should be clear that SR cannot
be increased by local unitary operations on the subsys-
tems f and g. We can thus define an entanglement measure

for the pure state |�〉 with Wigner function W(xf ⊕ xg) by
setting

ER(|�〉) := SR. (255)

This constitutes a well-defined entanglement measure for
any chosen bipartition and any pure state on the phase
space.

To extend this measure to mixed states, we follow
Ref. [214] and construct a convex roof. Any mixed
state ρ̂ can be decomposed in pure states as ρ̂ =∫

dγ p(γ )
∣∣�(γ )

〉 〈
�(γ )

∣∣, we abbreviate this decomposition
as the ensemble {p(γ ), ∣∣�(γ )

〉}. For each pure state in this
ensemble, we can evaluate the entanglement ER(

∣∣�(γ )
〉
)

and subsequently average all of these values according
to p(γ ). However, the decomposition of ρ̂ in pure states
is far from unique and different ensembles {p(γ ), ∣∣�(γ )

〉}
generally lead to a different value of entanglement even
though they are all constrained to produce the same state
ρ̂. Therefore, it is common to define

ER(ρ̂) := inf
{p(γ ),|�(γ )〉}

∫
dγ p(γ )ER

(∣∣�(γ )
〉)

(256)

as the general “Rényi-2 entanglement” of the state ρ̂.
Formally, this is an elegant definition that can in prin-

ciple be calculated directly from the Wigner function.
However, in practice it is nearly impossible to actually
identify all possible decompositions {p(γ ), ∣∣�(γ )

〉}, which
makes this measure notoriously hard to evaluate for mixed
states. This has sparked some alternative definitions of
entanglement measures for Gaussian states, where any
Gaussian state can be decomposed in an ensemble of Gaus-
sian states, Eq. (103). Thus, one can define “Gaussian
Rényi-2 entanglement” by restricting Eq. (256) to only
Gaussian decompositions [215]. In this sense, Gaussian
Rényi-2 entanglement is by construction an upper bound
to the general Rényi-2 entanglement.

As an alternative to entanglement measures, it is com-
mon to use entanglement witnesses. These have been
particularly successful for Gaussian states [146,216–220],
where one commonly applies methods based on the covari-
ance matrix of the state. Due to the extremality of Gaussian
states [12] these results also provide witnesses for entan-
glement if the state is non-Gaussian. However, there are
several examples of non-Gaussian entangled states for
which no entanglement can be detected from the covari-
ance matrix. Notable progress was made by developing
entanglement witnesses for non-Gaussian states with spe-
cific structure in their Wigner function [221].

It is noteworthy to emphasize that the positive-partial
transpose (PPT) criterion of Ref. [216] can in principle be
implemented on the level of Wigner functions. To make
this apparent, let us first define the transposition opera-
tor T that implements ρ̂ �→ ρ̂T. When W(x) with x ∈ R2m
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denotes the Wigner function of the state ρ̂, we can write
the Wigner function of ρ̂T as W(Tx). The matrix T can be
written as

T =
m⊕ (

1 0
0 −1

)
, (257)

which can be derived from the definition of the Wigner
function [222]. The concept of partial transposition in
entanglement theory relies on the simple idea that one
can apply a transpose only on one of the two subsys-
tems in the bipartition. In our context, this means that the
Wigner function changes as W(xf ⊕ xg) �→ W(xf ⊕ Txg)

(where T is now taken only on the l′ modes of subsystem
g). The PPT criterion is based on the idea that, in absence
of entanglement, the function W(xf ⊕ Txg) still gives a
well-defined Wigner function of a quantum state. How-
ever, there are entangled states for which this is no longer
true and W(xf ⊕ Txg) becomes unphysical. This lack of
physicality is expressed by the fact there exist positive
semidefinite operators Â for which

(4π)m
∫

R2m
dx WA(x)W(xf ⊕ Txg) < 0. (258)

Finding such observables Â � 0 for a non-Gaussian state
W(xf ⊕ xg) is generally a very hard task. For Gaussian
states, on the other hand, the physicality of W(xf ⊕ Txg) is
simply checked through Heisenberg’s inequality. For more
general non-Gaussian states, this is insufficient and one
should check a full hierarchy of inequalities instead [212].
Nevertheless, one may yet uncover more direct methods to
check the properties of W(xf ⊕ Txg).

2. Entanglement increase

One of the most well-known protocols for increasing
entanglement is entanglement distillation. In this proto-
col, one acts with local operations on a large number
of mixed entangled states that are shared by two parties
and concentrates the entanglement in a smaller number of
maximally entangled pairs [223]. When the initial states
are pure and the local operation serves only to increase
the entanglement and not the purity, we speak of entan-
glement concentration [224]. Conditional operations play
an important role in these protocols, and we can alterna-
tively think of entanglement distillation as the idea that
a conditional operation can increase the entanglement of
a state. For Gaussian quantum states, there is a notori-
ous no-go theorem that states that Gaussian measurements
(or Gaussian operations in general) cannot increase bipar-
tite entanglement [225–227]. It was quickly realized that
these no-go results can be circumvented by even the most
basics non-Gaussian states: those created through a non-
Gaussian noise process [228,229]. On the other hand, if

one wants to distill entanglement in a CV system start-
ing from initial Gaussian states one really requires non-
Gaussian operations. One such example is given in Refs.
[230,231], where the authors propose to use a Kerr non-
linearity to distill entanglement for mixed Gaussian states.
In contrast, conditional schemes have also been proposed
[147,232,233], avoiding the need for optical nonlinearities.
In those protocols, one first uses conditional operations to
create non-Gaussian states and subsequently uses Gaus-
sification to obtain states with higher entanglement. A
narrowly related protocol [234] relies on the implemen-
tation of noiseless linear amplification [235], where the
non-Gaussian element is injected in the form of auxiliary
Fock states.

The realization that photon subtraction and addition
can be used to increase the entanglement of a Gaussian
input state was developed reasonably early [236–238] and
was further formalized in works such as Refs. [239–241].
Remarkably, all of these works explicitly assume that the
initial state under consideration is a two-mode squeezed
state and the approach strongly relies on the structure of
this type of state in the Fock basis. Beyond the two mode
setting, the class of CV graph states has also been studied
in the context of entanglement increase [242,243]. Here
we provide an alternative approach, based on phase-space
representations to understand entanglement increase due to
the subtraction of a single photon.

Our approach relies on the fact that we can easily apply
the entanglement measure (256) when the global state is
pure. This means that we are focusing on a context of
entanglement concentration. Furthermore, when we per-
form photon subtraction on a pure Gaussian state, the
resulting photon-subtracted state is also pure, as we saw
in Sec. 2. The starting point is the Wigner function of the
photon-subtracted state, Eq. (214), which we rewrite as

W−(x) = W(x)
tr (Vb − 1)+ ‖ξb‖2

(
‖BT(1 − V−1)(x − ξ)

+ ξb‖2 + tr
[
1 − BTV−1B

] )
. (259)

The state W−(x) is thus obtained by subtracting a pho-
ton from the Gaussian state W(x). As we consider a pure
two-mode state we assume that the state has a 4 × 4 covari-
ance matrix of the form V = STS, where S is a symplectic
matrix. We assume that the photon is locally subtracted in
one of the modes of the mode basis, such that

B =

⎛

⎜
⎝

0 0
0 0
1 0
0 1

⎞

⎟
⎠ . (260)

However, to assess the entanglement in the system, we
must obtain the Wigner function for the reduced state asso-
ciated to either of the two modes. When we focus on mode
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b where the photon is subtracted, we can simply obtain the
reduced photon subtracted state W−

b (xb) by subtracting a
photon from the reduced Gaussian state Wb(xb). As such,
we obtain

W−
b (xb) = ‖(1 − V−1

b )xb + V−1
b

ξb‖2 + tr
[
1 − V−1

b

]

tr (Vb − 1)+ ‖ξb‖2

Wb(xb). (261)

This is now a single-mode photon subtracted state, but it is
no longer pure. This lack of purity is notably reflected by
Vb, which is no longer symplectic. Nevertheless, we can
use the Williamson decomposition, Eq. (92), and write

Vb = ν

(
r 0
0 r−1

)
, (262)

where we set the phase such that the squeezing coincides
with one of the axes of phase space. What remains is for us
to calculate the purity

μ−
b = 4π

∫

R2
dxb[W−

b (xb)]2. (263)

The final expression for the purity is not very insightful.
When on top we use that the purity μb of the Gaussian
state Wb(xb) is given by μb = 1/ν, an explicit calculation
of μ−

b makes it possible to prove (the motivated reader can
use a combination of patience and software for symbolic
algebra to do so) that

μ−
b

μb
� 1

2
. (264)

In other words, photon subtraction reduces the purity at
most by a factor of 2.

When we use Eq. (256) to define the entanglement of
the two-mode photon-subtracted state, Eq. (259), we find
that it is given by

ER(
∣∣�−〉

) = − logμ−
b , (265)

because the two-mode state is pure. The entanglement of
the initial Gaussian state is given by ER(|�G〉) = − logμb,
such that we can use Eq. (264) to find that

	ER := ER(
∣∣�−〉

)− ER(|�G〉) � log 2. (266)

In other words, photon subtraction can increase the Rényi-
2 entanglement of an arbitrary Gaussian state, but at most
by an amount log 2. It turns out that this result can be gen-
eralized to all bipartitions of Gaussian pure states of an
arbitrary number of modes [244]. Furthermore, the same
work shows that when the entanglement measure ER(|�G〉)
is replaced with the Gaussian Rényi-2 entropy of Ref.

[215], the result holds for all bipartitions of all Gaussian
states (including mixed ones).

For the particular case of a two-mode pure Gaussian
state, we can directly evaluate 	ER for some important
examples. Say, for example, that we consider the EPR state
that is obtained by mixing two oppositely squeezed vac-
uum states on a balanced beam splitter. In this case ξ = 0
and V is given by

V = 1
2

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

T ⎛

⎜⎜
⎝

s
s−1

s−1

s

⎞

⎟⎟
⎠

×

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

= 1
2s

⎛

⎜⎜
⎝

s2 + 1 0 s2 − 1 0
0 s2 + 1 0 1 − s2

s2 − 1 0 s2 + 1 0
0 1 − s2 0 s2 + 1

⎞

⎟⎟
⎠ . (267)

We then extract directly that

Vb = s2 + 1
2s

1, (268)

such that we find that the parameters in Eq. (262) are set to
r = 1 and ν = (s2 + 1)/(2s). And thus we directly obtain

	ER = log(2)− log

(
s4 + 6s2 + 1

(
s2 + 1

)2

)

. (269)

We clearly see that the entanglement increase vanishes in
absence of squeezing, whereas we achieve the log(2) limit
for s → ∞. Adding a mean field with ξb �= 0 immediately
complicates the problem. As can be seen in Fig. 6, where
we plot the case ξb = (0, 1)T, the presence of a mean field
in the mode of photon subtraction lowers the entanglement
increase 	ER. Nevertheless, in the limit s → ∞ we reach
the limit log(2) regardless of the displacement.

This example clearly shows that photon subtraction can
be used as a tool to increase entanglement. The setting cor-
responds to the case that is typically studied in most works
on CV entanglement distillation such as Refs. [239–241].
It turns out that one can further increase entanglement in
such systems by subtracting more photons. Furthermore,
photon addition and the combination of addition and sub-
traction on both modes have also been considered. The
methods we use in this Tutorial are not easily generalized
to the subtraction and addition of many photons, but in
return they can be applied to a much wider class of initial
Gaussian states.
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FIG. 6. Entanglement increase, Eq. (266), through photon sub-
traction in one mode of a pair of entangled modes. The ini-
tial Gaussian states are obtained by mixing either two equally
squeezed modes (yellow curves) or one squeezed mode and one
vacuum mode (red curves) on a beam splitter (see also sketches
on the right). We show how a variation of squeezing (in dB com-
pared to shot noise level) in these initial squeezed vacuum states
influences the entanglement increase due to photon subtraction.
We consider cases without mean field (solid curves) and with a
mean field ξ = (0, 0, 0, 1)T (dashed curves).

As a second example, we consider a single-mode
squeezed state that is split in two on a balanced beam
splitter. This means that the Gaussian state is given by

V = 1
2

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

T ⎛

⎜
⎝

s
s−1

1
1

⎞

⎟
⎠

×

⎛

⎜
⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞

⎟
⎠

= 1
2

⎛

⎜⎜
⎝

s + 1 0 s − 1 0
0 s+1

s 0 1
s − 1

s − 1 0 s + 1 0
0 1

s − 1 0 s+1
s

⎞

⎟⎟
⎠ , (270)

such that we get

Vb = 1
2

(
s + 1 0

0 s+1
s

)
, (271)

such that we find that we identify the parameters
of Eq. (262) as ν = √

2 + s + s−1/2 and r = (1 +
s)/

√
2 + s + s−1. In absence of any mean field, i.e., with

ξ = 0, we then find an entanglement gain given by

	ER = log(2)− log
(

3 + 2s + 3s2

2(s + 1)2

)
. (272)

Interestingly, in this case we reach the maximal entangle-
ment gain for vanishing squeezing s → 1, where we reach

	ER → log(2). This case may seem somewhat counter-
intuitive, but it should be emphasized that the success
probability of photon subtraction also vanishes in this case.
Yet, our conditional approach assumes that we are in the
scenario where a photon was subtracted and the negligi-
ble fraction of the state that is not in vacuum is enhanced.
In the limit of vanishing squeezing, the photon subtracted
state converges to the Bell state (|1, 0〉 + |0, 1〉)/√2. On
the other hand, in the limit where squeezing is high we still
find a finite entanglement increase as 	ER → log(4/3).

When we add a mean field given by ξb �= 0, there is an
importance of the phase because our state locally has some
remaining asymmetry (which can be seen from r �= 1). In
Fig. 6 we particularly show the case where ξb = (0, 1)T

such that the direction of the displacement coincides with
the quadrature where the noise is minimal. In this case we
observe that for some values of initial squeezing, the entan-
glement decreases due to photon subtraction. Note that this
quite remarkably implies that in some cases photon sub-
traction can actually be used to increase the purity of a
state.

We thus showed that photon subtraction is a useful non-
Gaussian operation to increase entanglement. However, in
the presence of a mean field in the subtraction mode, it
is also possible to decrease entanglement. Even though
this subject has been studied for nearly two decades, for
arbitrary Gaussian input states, there are still many open
questions. Notably, there has not been much work on the
effect of photon subtraction on multipartite entanglement,
nor on stronger types of quantum correlations. Our discus-
sion in Sec. 2 suggests an important interplay between EPR
steering and Wigner negativity, and thus it is intriguing
to wonder whether well-chosen non-Gaussian operations
can increase quantum steering. Since all steerable states
are also entangled, it is a reasonable conjecture that some
of the protocols that can increase quantum entanglement
should also increase quantum steering.

We have followed the terminology found in the liter-
ature and referred to this process as entanglement dis-
tillation, because our conditional operation has only a
finite success probability. This implies that we can use a
large number of Gaussian entangled states and use pho-
ton subtraction to obtain a much smaller number of more
entangled states. Yet, it must be stressed that there is a more
subtle process happening: the entanglement is increased
by adding non-Gaussian entanglement on top of the exist-
ing Gaussian entanglement. To get a better grasp of this
non-Gaussian entanglement, it is useful to go to a setting
where no other type of entanglement is present as we do
in Sec. 3.

3. Purely non-Gaussian quantum entanglement

In this subsection, we explore an idea that is in many
ways complementary to the previous subsection: rather
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than using a local non-Gaussian operation to increase
already existing entanglement, we now use a nonlocal
non-Gaussian operation to create entanglement between
unentangled modes.

Let us again assume that our state is initially Gaussian
as described by Eq. (85), and we induce the non-Gaussian
features through the conditional methods of Sec. B. The
mean field of the initial state is given by ξ = ξf ⊕ ξg, and

V =
(

Vf Vfg
Vgf Vg

)
, with Vf = Vf1 ⊕ Vf2 . (273)

Here, we have introduced the modes of interest, labeled by
f and a set of auxiliary modes g upon which a measurement
will be performed to induce non-Gaussian features in the
modes f. In the initial state, we consider a bipartition in
the modes f without any direct correlations, hence Vf =
Vf1 ⊕ Vf2 . In other words, the modes in f1 are completely
uncorrelated to the modes in f2.

To induce non-Gaussian effects, we resort to the condi-
tional framework by acting with a POVM element Â upon
the auxiliary modes g, and we rewrite Eq. (190) as

Wf|A(xf1 ⊕ xf2) =
〈Â〉g|xf1⊕xf2

〈Â〉
Wf1(xf1)Wf2(xf2), (274)

and the conditional expectation value 〈Â〉g|xf1⊕xf2
is again

given by Eq. (192). The entanglement in the resulting
state thus crucially depends on the exact properties of
〈Â〉g|xf1⊕xf2

.
First of all, note that Wf1(xf1) and Wf2(xf2) are generally

not pure states and as a consequence Wf|A(xf1 ⊕ xf2) is not
a pure state either. Even though the specific structure of
the Wigner function makes it a suitable case to apply the
methods of Ref. [221], we follow a different route in this
Tutorial by focusing on a particular example for which we
can assume that Wf1(xf1) and Wf2(xf2) are pure.

Just as in Sec. 2, we concentrate on photon subtraction.
To get a conceptual idea of such a setup in this specific
scenario, we present two equivalent schemes in (a) and (b)
of Fig. 7. Note that the equivalence stems from the fact
that the beam splitters that subtract the light from the sig-
nal beams to send it to the photodetector are of extremely
low reflectivity. In this limit, we can be sure that there is
at most one photon in the path and when it is detected,
we herald a single-photon-subtracted state. In Fig. 7(a),
the combination of this heralding process and the presence
of at most one photon avoids that the unmeasured output
causes any losses or impurities. Nevertheless, the unmea-
sured output will practically change the success probability
of the heralding process, such that for practical implemen-
tations Fig. 7(b) may be the preferential setup. Recall that
the Wigner function for a state with a photon subtracted in

a particular mode b was given by Eq. (259), which here
becomes

W−(xf1 ⊕ xf2) = Wf1(xf1)Wf2(xf2)

tr (Vb − 1)+ ‖ξb‖2

×
(
‖BT(1 − V−1

f1
⊕ V−1

f2
)(xf1 ⊕ xf2

− ξ1 ⊕ ξ2)+ ξb‖2

+ tr
[
1 − BT(V−1

f1
⊕ V−1

f2
)B

] )
. (275)

Because we consider a limit where the state is completely
transmitted by the beam splitter and only a negligible
amount is sent to the photon counter to subtract the photon,
we can indeed assume that the state is pure. For simplicity,
we also assume that f1 and f2 are single modes. As we did
before, we now calculate the reduced state

W−
1 (xf1) =

∫

R2
dxf2W−(xf1 ⊕ xf2). (276)

The integral is rather tedious to evaluate, therefore we
immediately jump to the result (see Ref. [153] for an alter-
native method that circumvents the explicit calculation of
integrals):

W−
1 (xf1) = Wf1(xf1)

tr (Vb − 1)+ ‖ξb‖2

(
‖BTF1(1 − V−1

f1
)(xf1 − ξ1)

+ ξb‖2 + tr
[
BTF1(1 − V−1

f1
)FT

1 B
]

+ tr
[
BTF2(Vf2 − 1)FT

2 B
] )

, (277)

where we introduce the matrices Fk, given by

Fk =
⎛

⎝
| |
fk �fk
| |

⎞

⎠ , (278)

such that we can use the properties of the symplectic form
� to obtain

BTFk =
( bT fk bT�fk

−bT�fk bT fk

)
. (279)

If mode b is orthogonal to mode f1, we find that BTF1 =
0 such that W−

1 (xf1) = Wf1(xf1). On the other hand, when
mode b is exactly the same as f1 we find that BTF1 = 1

such that the photon is only subtracted there. In this case
W−

1 (xf1) is a pure state and no entanglement is created. In
this case, one can check that W−

2 (xf2) = W2(xf2).
To create entanglement, we are thus interested in the

case where b is a superposition of the two modes f1 and f2.
To keep things simple, let us assume that b = cos θ f1 +
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(a)
(c) (d)

(b)

FIG. 7. Entanglement creation through photon subtraction in a
superposition of uncorrelated modes f1 and f2. (a),(b) Sketches
of two equivalent setups to implement a photon subtraction in
the mode b, with b = cos θ f1 + sin θ f2. In (c),(d), we show the
created entanglement, as measure through the Rényi entropy, Eq.
(256), for varying values of θ . The initial Gaussian states are
pure, with covariance matrices Vf1 = diag[s1, 1/s1] and Vf2 =
diag[s2, 1/s2] for modes f1 and f2, respectively. The global mean
field, i.e., displacement, is varied ξ = 0 (solid curves), ξ =
(1, 0, 0, 0)T (dotted curves), and ξ = (0, 0, 1, 0)T (dotted curves).
(c) The particular case where the squeezing is balanced, i.e., s1 =
s2 = 2. (d) An unbalanced example where s1 = 4 and s2 = 2.
All squeezing values s1 and s2 are measured in units of vacuum
noise.

sin θ f2. Because the modes f1 and f2 are orthogonal, we
can use that f T

1
f2 = 0 and thus we find that BTF1 = cos θ 1

and BTF2 = sin θ 1. Nevertheless, the general expression
for W−

1 (xf1) does not simplify much.
To acquire additional insight, let us now assume that

both modes f1 and f2 have exactly the same squeezing in
the same quadrature:

Vf1 = Vf2 =
(

s 0
0 1

s

)
. (280)

Furthermore, let us assume that there is no mean field, such
that ξ = 0. In this particular case, we find the expression

W−
1 (xf1 , pf1) = W1(xf1 , pf1)

×
[

p2
f1

s + x2
f1

s
+ cos(2θ)

(

p2
f1

s + x2
f1

s
− 2

)]

.

(281)

In particular, it turns out that the purity takes a simple form,
such that we can quantify the entanglement for this state as

ER = log(2)− log
(

cos(4θ)+ 3
2

)
. (282)

This shows that the maximal entanglement is reached for
θ = π/4 and—as expected—the entanglement vanishes
when θ = 0 and θ = π/2, i.e., when we subtract entirely
in either mode f1 and f2.

More general settings are shown in Fig. 7, where we
show the entanglement creation for unbalanced squeezing,
by setting

Vf1 =
(

s1 0
0 1

s1

)
, and Vf2 =

(
s2 0
0 1

s2

)
. (283)

We compare the case with s1 = s2 to the case with s1 �= s2
and find that in absence of a mean field one can reach
the same maximal amount of entanglement. However, the
maximum is attained at a different value of θ when the
squeezing is unbalanced. From Eq. (282) we know that
in absence of a mean field, the curve for s1 = s2 does not
depend on the actual value of squeezing.

Figure 7 also shows the effect of an existing mean field,
by probing a mean field in mode f1 with ξ = (1, 0, 0, 0)T

and in mode f2 with ξ = (0, 0, 1, 0)T. Generally speak-
ing, we observe that the mean field reduces the created
entanglement. Nevertheless, the unbalance of squeezing
(s1 �= s2) also unbalances the effect of the mean field. The
higher squeezing in mode f1 makes the entanglement cre-
ation more resilient to displacements, but a mean field in
mode f2 will reduce the maximal attainable amount of
entanglement to the same level as in the balanced case
[because in both (c) and (d) mode f2 is squeezed with
s2 = 2]. In the presence of a mean field, we also find
that unbalanced squeezing shifts the value θ for which
most entanglement is created. In other words, to achieve
maximal entanglement upon photon subtraction in two
modes with unequal squeezing, one must subtract in an
unbalanced superposition of these modes.

Through this example, we showed that entanglement
between previously uncorrelated Gaussian states can be
created by a non-Gaussian operation. This entanglement
has some additional peculiarities. For example, a quick
glance at how this procedure affects Eq. (190) shows that
we can split the state in a Gaussian, i.e., Wf(xf), and a non-
Gaussian part, i.e., 〈Â〉g|xf/〈Â〉. In this case of Eq. (259) the
Gaussian part of the state clearly remains fully separable.
This means that, in this representation, all entanglement is
originating from the non-Gaussian part of the state. Nev-
ertheless, the decomposition, Eq. (190), of the state into
a Gaussian and a non-Gaussian part most probably is not
unique for mixed states, making it challenging to study
such non-Gaussian entanglement in its most general sense.

Yet, common tools that rely on the covariance matrix,
such as Refs. [216,217], to characterize entanglement in
the photon subtracted states, Eq. (259), are doomed to
fail. In Ref. [152] it is explicitly shown that the covari-
ance matrix of a photon-subtracted state is given by the
covariance matrix of the initial Gaussian state with a posi-
tive matrix added to it. This means that photon subtraction
just adds correlated noise to the covariance matrix and if
we consider a Gaussian state that has exactly this covari-
ance matrix we can decompose it using Eq. (103). In other
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words, when there is no entanglement visible in the covari-
ance matrix of the initial Gaussian state, we do not witness
any entanglement based on the covariance matrix of the
photon-subtracted state. In this case, the non-Gaussian
entanglement is thus genuinely non-Gaussian in the sense
that it cannot be detected through Gaussian witnesses.
Hence, rather than decomposing the states in a Gaussian
and non-Gaussian part, as was done in Eq. (190), it may be
more fruitful to define non-Gaussian entanglement as any
entanglement that cannot be witnessed based solely on the
covariance matrix of the state. This approach also offers a
natural connection to the framework of Gaussian passivity
on quantum thermodynamics [245].

Another peculiarity that was presented in Refs. [152,
153] is the intrinsic nature of this non-Gaussian entan-
glement. When we transform the system into a different
mode basis, there will still be entanglement in the system.
The entanglement is said to be intrinsic because the state
is entangled in every possible mode basis. As we saw in
Eq. (249) Gaussian entanglement is never intrinsic as there
always exists a basis in which a Gaussian state is separable.

Figure 7(b) gives a rather interesting approach to under-
standing the intrinsic nature of non-Gaussian entangle-
ment. In this sketch, the second beam splitter is intended
to undo the superposition θ and return to the initial mode
basis with modes f1 and f2. Changing this beam split-
ter thus implies a basis change. If we remove this beam
splitter entirely, we find ourselves in the entanglement
distillation scenario of Sec. 2. In this case, the photon
subtraction is fully local, but it happens on a state with
Gaussian entanglement. The photon subtraction can then
increase the Rényi entanglement by a maximal amount of
log 2. When we change to a mode basis where there is
no Gaussian entanglement and the entanglement is cre-
ated through a nonlocal photon subtraction, we create a
maximal amount of Rényi entanglement given by log 2.
Changing the mode basis in a different way will combine
the physics of these two extreme cases such that there will
always be entanglement, regardless of the basis.

Extending these ideas to more general non-Gaussian
operations on more general Gaussian mixed states is a hard
and currently open problem. This reflects the general status
of entanglement theory in CV systems: we lack a struc-
tured theoretical understanding of this phenomenon and as
a consequence we also lack good tools to detect it.

D. Non-Gaussianity and Bell inequalities

In this final subsection of our study of quantum corre-
lations in non-Gaussian states, we study Bell inequalities.
First of all, we argue that it is impossible to violate Bell
inequalities when both of the states and all the mea-
surements involved can be described by positive Wigner
functions. Then, we show that the Wigner function of the

state can itself be used to formulate a Bell inequality when
we allow for nonpositive Wigner functions.

The general setup for studying nonlocality in CV
revolves around a multimode state with Wigner function
W(xf ⊕ xg) defined on a phase space R2m = R2l ⊕ R2l′ .
Bell nonlocality entails that some measurements on this
state cannot be described by a local hidden variable model
of the type, Eq. (238). In a quantum framework, the local
measurements with POVM elements {Âj } (on the modes
in f) and {B̂j } (on the modes in g) can also be described
by Wigner functions WAj (xf) and WBj (xg). Because we are
dealing with a POVM, we find that

(4π)l
∑

j

WAj (xf) = (4π)l
′ ∑

j

WBj (xg) = 1. (284)

Note that this equality holds for all possible coordinates xf
and xg. Here we assume that the measurement outcomes Aj
and Bj are discrete, but by correctly defining resolutions of
the identity we can also deal with more general probability
distributions, e.g., homodyne measurements.

The probability to get the joint measurement result
(Aj , Bk) is given by

P(Aj , Bk) = (4π)m
∫

R2l

∫

R2l′
dxfdxgW(xf ⊕ xg)WAj (xf)

WBk (xg). (285)

Now let us assume that all these Wigner functions are posi-
tive. Because they are normalized, this implies that W(xf ⊕
xg) is a probability distribution on the entire phase space
R2m, and WAj (xf) and WBj (xg) are probability distributions
on the reduced phase spaces R2l and R2l′ , respectively.
However, the model, Eq. (238), does not require probabil-
ity distributions on phase space, but rather on the possible
measurement outcomes.

This is where Eq. (284) comes into play. Because
WAj (xf) and WBj (xg) are positive, more than just treat
them as probability distributions in phase space we
can also consider Pxf(Aj ) = (4π)lWAj (xf) and Pxg(Bj ) =
(4π)l

′
WBj (xg) as the probability of getting the measure-

ment outcomes Aj and Bk, respectively. Because of Eq.
(284) we find that these probabilities are correctly normal-
ized

∑

j

Pxf(Aj ) =
∑

j

Pxg(Bj ) = 1, (286)

and because the Wigner functions are positive, we also
find that Pxf(Aj ), Pxg(Bj ) � 0. Note that the phase-space
coordinates xf and xg are no longer treated as the vari-
able, but rather as a label. The set {Pxf(Aj ) | xf ∈ R2l}
denotes a family of different probability distributions on
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the space of measurement outcomes {A1, A2, . . . }. The set
{Pxg(Bj ) | xg ∈ R2l′ } can be interpreted analogously.

We can thus recast Eq. (285) in the following form:

P(Aj , Bk) =
∫

dxfdxgW(xf ⊕ xg)Pxf(Aj )Pxg(Bk). (287)

Because W(xf ⊕ xg) is a positive and normalized Wigner
function, it is a joint probability distribution on the coordi-
nates xf and xg. These coordinates label families of proba-
bility distributions {Pxf(Aj ) | xf ∈ R2l} and {Pxg(Bj ) | xg ∈
R2l′ } for the measurement outcomes. The expression (287)
is thus fully consistent with Bell’s local hidden variable
model, Eq. (238). As a consequence, we cannot violate any
Bell inequalities when the system is prepared in a state with
a positive Wigner function and when we only have access
to POVM that have Wigner representations with positive
Wigner functions.

Let us emphasize that there is generally no reason to
assume that the probabilities Pxf(Aj ) and Pxg(Bj ) are also
consistent with quantum mechanics. In other words, there
is not necessarily any state ρ̂ such that Pxf(Aj ) = tr[ρ̂Âj ].
However, because we are dealing with Bell nonlocality, we
do not need this to be the case, since Eq. (238) allows for
arbitrary local probability distributions.

To make a long story short, we have shown that Wigner
negativity is necessary for witnessing Bell nonlocality. The
interested reader can consult works such as Ref. [64] that
relate Wigner negativity to the more general concept of
quantum contextuality. However, the topic of contextuality
in CV systems is still a matter of scientific debate [246].

There has been a significant body of work about the vio-
lation of Bell inequalities in CV setups [247–249]. It is
evident that this is an arduous task once one approaches
a realistic experimental setting [250]. Here, we focus on
one particular suggestion to test Bell nonlocality based on
a state’s Wigner function [251,252].

The starting point of this approach is the CHSH inequal-
ity

∣∣∣〈X̂ Ŷ〉−〈X̂ Ŷ′〉+〈X̂ ′Ŷ〉+〈X̂ ′Ŷ′〉
∣∣∣ � 2.

As we discussed in Sec. 4, this inequality relies on some
assumptions for the observables X , X ′, Y, and Y′. In par-
ticular, we must assume that the measurement outcomes
are either −1 or 1. In a CV setting, where we generally
deal with a continuum of possible measurement outcomes,
this seems like a serious constraint. Nevertheless, we
have already encountered some natural examples during
this Tutorial. For example, photon counters yield a dis-
crete number of possible measurement outcomes. Here, we
choose a related observable that takes us all the way back
to Sec. B, where we encountered the observable

	̂(x) = D̂(−x)(−1)N̂ D̂(x).

This displaced parity operator has a rich structure, but
when it comes to actual measurement outcomes is will
return either −1 or 1. This means that we can choose
X , X ′, Y, and Y′ to be parity operators. First of all, let us
note that

	̂(xf ⊕ xg) = 	̂(xf)⊗ 	̂(xg). (288)

To see this, one can first show that (−1)N̂m =
(−1)N̂l+N̂l′ = (−1)N̂l ⊗ (−1)N̂l′ and subsequently use
D̂(xf ⊕ xg) = D̂(xf)⊗ D̂(xg) (displacements in different
modes are independent from each other).

Now we can identify the observables as follows:

X = 	̂(xf), X ′ = 	̂(x′
f),

Y = 	̂(xg), Y′ = 	̂(x′
g),

(289)

and therefore the CHSH inequality is transformed into
∣∣∣〈	̂(xf ⊕ xg)〉−〈	̂(xf ⊕ x′

g)〉+〈	̂(x′
f ⊕ xg)〉+〈	̂(x′

f ⊕ x′
g)〉

∣∣∣

� 2. (290)

As a next step, we use Eq. (78) to write

〈	̂(xf ⊕ xg)〉=(2π)mW(xf ⊕ xg), (291)

such that the inequality (290) can be recast as
∣∣∣W(xf ⊕ xg)− W(xf ⊕ x′

g)+ W(x′
f ⊕ xg)+ W(x′

f ⊕ x′
g)

∣∣∣

� 2
(2π)m

. (292)

Any state with a Wigner function that violates this inequal-
ity for some choice of coordinates xf, x′

f, xg, and x′
g pos-

sesses some form of Bell nonlocality. In Refs. [251,252]
it is argued that the inequality (292) can be violated by
sending a single photon through a beam splitter, but also
by an EPR state. The fact that a Gaussian Wigner func-
tion suffices to violate Eq. (292) sometimes comes as a
surprise, because we previously argued that one needs
Wigner negativity to violate Bell inequalities. The reason
why one can detect Bell nonlocality with this inequality
even when the Wigner function is positive stems from our
choice of observable 	̂(xf ⊕ xg). The POVM elements that
correspond to the measurement outcomes 1 and −1 have
Wigner functions that are strongly Wigner negative. As a
consequence the necessary Wigner negativity is baked into
Eq. (292) by construction.

In practice, the inequality (292) is highly sensitive to
impurities and can often be hard to violate with experimen-
tally reconstructed Wigner functions. The hunt for good
new techniques to show Bell nonlocality in CV systems
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is therefore still open. However, this subsection clearly
showed us that Wigner negativity is necessary to observe
one of the most exotic features in quantum physics. This
negativity might be baked into the state, but it could just as
well be induced by measurements. The conditional meth-
ods of Sec. B also highlight this duality, where Wigner
negativity in the measurement is used to induce Wigner
negativity in the state. It should come as no surprise that
Wigner negativity is also a necessary ingredient for the
most exotic quantum protocols. However, it should also be
highlighted that even with a little extra trust, it is possible
to design protocols that do not require Wigner negativity to
witness quantum correlations [201]. In the next section, we
discuss its importance for reaching a quantum advantage
with CV systems.

VI. NON-GAUSSIAN QUANTUM ADVANTAGES

It has been long known that systems that are entirely
built with Gaussian building blocks are easy to simulate
[25]. It should perhaps not come as a surprise that efficient
numerical tools exist to sample numbers from a multivari-
ate Gaussian distribution. The discrete variable analog of
this result comes across as less intuitive and goes by the
name “Gottesman-Knill theorem” [253]. Yet, it turns out
that something stronger than mere non-Gaussian elements
is required to render a system hard to simulate.

In Sec. D, we encountered the power of Wigner neg-
ativity by realizing that it is a necessary requirement for
Bell nonlocality. This connection between Wigner nega-
tivity and the most exotic types of quantum correlations
shows us that Wigner negativity is key to giving CV sys-
tems their most prominent quantum features. It is then
perhaps not a surprise that such Wigner negativity is also
a necessary requirement for implementing any type of
protocol that cannot be efficiently simulated by a classi-
cal computer [33,254,255]. We thus start our discussion
of quantum advantages by explaining the result of Ref.
[33]. To show the necessity of Wigner negativity, we
show an explicit simulation algorithm for general quantum
protocols without Wigner negativity.

Any quantum protocol ultimately relies on the mea-
surement of a certain set of measurement operators {Êj }
(typically a POVM) of a system prepared on a state ρ̂. In a
Wigner function formalism, we then find

pj = (4π)m
∫

R2m
dx WEj (x)W(x). (293)

Furthermore, the fact that the set {Êj } forms a POVM
implies that

(4π)m
∑

j

WEj (x) = 1. (294)

As we already discussed in Sec. D, surrounding Eq. (284),
it is crucial that the normalization condition (294) holds for
any phase-space coordinate x. In the present context, we
want to show that there is an efficient method for a classical
device to sample values from the probability distribution
{pj } when all involved Wigner functions are positive.

Let us start by assuming that the Wigner functions that
describe the POVM elements are all positive. When com-
bined with the POVM condition (294), this implies that we
can identify a set of probabilities Px(ej ) = (4π)mWEj (x)
as the probability to obtain the measurement outcome
ej , associated with the POVM element Êj . These Px(ej )

depend on a parameter x, we can thus form a family of
probability distributions {Px(ej ) | x ∈ R2m} that describe
the probability of obtaining the different results ej , depend-
ing on a chosen phase-space point. The normalization
condition (294) now states that

∑
j Px(ej ) = 1 for all x. Let

us emphasize that this family of probabilities would not be
well defined if WEj (x) were not positive Wigner functions,
as some of the probabilities would be negative.

Going back to the initial Eq. (293), we now find that

pj =
∫

R2m
dx Px(ej )W(x). (295)

To find the actual probability of getting the j th outcome
is thus given by “averaging” the probabilities Px(ej ) over
the different phase-space coordinates. Generally speaking,
this is not a real average, unless the Wigner function W(x)
of the state is an actual probability distribution on phase
space. The latter is exactly the case when W(x) is posi-
tive. Then, we can simply think of the probability pj for
obtaining event ej as pj = EW[Px(ej )], where EW is the
expectation value over the probability distribution W(x).

Hence, when all Wigner functions are positive, the
algorithm to simulate our relevant quantum process can
simply be expressed by the following steps:

1. Sample a phase-space coordinate x from the proba-
bility distribution W(x).

2. Construct the probability distribution Px(ej ) for the
sampled value x.

3. Sample an outcome ej from the probability distribu-
tion Px(ej ).

Even though this is the general idea behind our sampling
protocol, there are some major hidden assumptions. First,
we assume here that the Wigner function for the state and
the measurement are known. Furthermore, we also assume
that we can simply sample points from any distribution
on phase space and from any distribution of measurement
outcomes Px(ej ). In particular, for the sampling aspects it
is not at all clear that these are reasonable assumptions to
make. Standard sampling protocols for multivariate prob-
ability distributions tend to get highly inefficient once the
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probability distributions become too exotic such that it is
dangerous to assume that we can “just sample.”

To address this point Ref. [33] makes more assump-
tions on the exact setup we are trying to simulate. First,
we assume that the detection is done by a series of single-
mode detectors, such that our label j now become a tuple
j = (j1, j2, . . . , jm)where jk denotes the outcome e(k)jk for the
detector on the kth mode. We can thus write the POVM
element as Êj = Ê(1)j1 ⊗ · · · ⊗ Ê(m)jm , such that

WEj(x) = WE(1)j1
(x1, p1)WE(2)j2

(x2, p2) . . .WE(m)jm
(xm, pm).

(296)

We assume that each detector has been accurately cal-
ibrated, such that all the individual Wigner functions
are known. This implies that for a given point in phase
space x = (x1, p1, . . . , xm, pm)

T, we can simply evaluate
the probabilities for each detector to produce a certain
outcome. Thus, we calculate the probability distributions
P(xk ,pk)(e

(k)
j ) = 4πWE(k)j

(xk, pk) for all the possible mea-

surement outcomes for that specific mode. We assume that
sampling outcomes e(k)j from these probability distribu-
tions P(xk ,pk)(e

(k)
j ) is a feasible task. For typical detectors

in quantum optics experiments this is a very reasonable
assumption.

The Wigner function W(x) that describes the state is
more subtle as it also includes all correlations between
modes. If the state is Gaussian, a measurement of the
covariance matrix would be sufficient to know the full
Wigner function. Because of its Gaussian features, there
are efficient tools to directly sample phase-space points.
Yet, for more general non-Gaussian positive Wigner func-
tions this sampling may be much harder. Therefore, Ref.
[33] makes an essential assumption: it assumes that we
know a protocol that combines local operations to design
the state W(x) from a known initial state with no correla-
tions between the modes. The notion of “locality” should
here be understood in the sense of acting on a small
set of modes while leaving the others fully untouched.
These local operations are also supposed to be represented
by positive Wigner functions, which depend only on the
phase-space coordinates of the subset of modes on which
they act.

Generally speaking, such Wigner positive operations
� : Hin → Hout map a state ρ̂ to a new state �[ρ̂]. In Ref.
[33], the Choi representation [256,257] is used to repre-
sent� as a state on a larger Hilbert space Hin ⊗ Hout. This
becomes particularly appealing when we go to a Wigner
representation, where the Choi representation of� is given
by a Wigner function W�(x in ⊕ x out). The action of � on

a state with Wigner function W(x in) is then given by

Wout(x out) = (4π)m
∫

R2m
dx in W�(x in ⊕ Tx out)W(x in),

(297)

where m is the number of modes of the input state. For
technical reasons, we must include the transposition oper-
ator T, Eq. (257), in the action of the channel. Because
this operation must be trace preserving, we on top get the
property that

(4π)m
∫

R2m
dx out W�(x in ⊕ Tx out) = 1. (298)

When we now assume that the operation � has a Wigner-
Choi representation W�(x in ⊕ x out), which is a positive
function, it immediately follows that the operation �

turns a Wigner positive initial state W(x in) into a Wigner
positive output state Wout(x out).

It is useful to note that such operations, Eq. (297), can be
trivially embedded in a larger space. Let us assume that we
consider a state W(xf ⊕ xg), we can simply let the operation
act on the modes g by taking

Wout(xf ⊕ x out
g ) = (4π)l

′
∫

R2l′
dxin

g W�(x in
g ⊕ Tx out

g )

× W(xf ⊕ x in
g ). (299)

Notationally, this may seem a little complicated, but, in
essence, we just carry out the integration over a subset of
the full phase space. We call these operations local Wigner
positive operations.

In our simulation protocol, we thus assume that W(x) is
created by a series of such local Wigner positive operations
of �1, . . . ,�t on a noncorrelated input state Win(xin) =
W(1)

in (x1, p1)W
(2)
in (x2, p2) . . .W

(m)
in (xm, pm).

W(x) = (4π)mt
∫

R2m
dxt . . .

∫

R2l
dxtW�t(xt ⊕ Tx) . . .

× W�2(x1 ⊕ Tx2)W�1(xin ⊕ Tx1)

× Win(xin). (300)

We assume on top that each operation is local over a small
number of modes l � m. To model this with Eq. (299),
it suffices to split xtk−1 = xl

tk−1
⊕ xl′

tk−1
and xtk = xl

tk ⊕ xl′
tk ,

such that

(4π)mW�tk
(xtk−1 ⊕ Txtk )

= (4π)lW�tk
(x l

tk−1
⊕ Tx l

tk )δ(xl′
tk−1

− xl′
tk ). (301)

Even though the notation is complicated, it simply
describes that we act on an l-mode subspace with the
operation �tk and leave the other l′ modes untouched.
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The normalization condition (298) now has an impor-
tant consequence, since it allows us to identify a
probability distribution on phase space Pxtk−1

(xtk ) =
(4π)mW�tk

(xtk−1 ⊕ Txtk ). It gives us the probability of
choosing a phase space value xtk , given that we know xtk−1 .
Because the operations are local, Eq. (301) allows us to
keep most of the phase-space coordinates constant from
step to step. Furthermore, the first step is simple. Every
pair (xk, pk) of the initial coordinate xin can be sampled
independently because Win(xin) factorizes. This now gives
us the following new algorithm:

1. Take the initial Wigner function Win(x in) =
W(1)

in (x1, p1)W
(2)
in (x2, p2) . . .W

(m)
in (xm, pm) and sample

a pair (xk, pk) from every single-mode probability
distribution W(k)

in (xk, pk). Put all these pairs together
to obtain x in = (x1, p1, . . . , xm, pm).

2. Update the coordinate by sampling new coor-
dinates based on Pxtk−1

(xtk ) = (4π)mW�tk
(xtk−1 ⊕

Txtk ). Because �tk are local operations, it suffices
to only locally update coordinates. Let us make
this clear through an example. Say we have xtk−1

= (x(k−1)
1 , p (k−1)

1 , . . . , x(k−1)
m , p (k−1)

m )T and operation
�tk acts locally on modes with labels 2, 5, and
7. Take x l

tk−1
= (x(k−1)

2 , p (k−1)
2 , x(k−1)

5 , p (k−1)
5 , x(k−1)

7 ,

p (k−1)
7 ) and use it to evaluate Pxtk−1

(x l
tk )= (4π)lW�tk

(x l
tk−1

⊕ Tx l
tk ). Now sample a new vector x l

tk =
(x(k)2 , p (k)2 , x(k)5 , p (k)5 , x(k)7 , p (k)7 ) from this probability
distribution. Then construct the new vector xtk by
taking xtk−1 and updating the coordinates associ-
ated to modes 2, 5, and 7 to the newly sampled
coordinates

3. After the operations �1, . . . ,�t have been imple-
mented by updating the phase-space coordi-
nate, take the final phase-space coordinate x =
(x1, p1, . . . , xm, pm)

T and the Wigner function describ-
ing the detectors WEj(x) = WE(1)j1

(x1, p1)WE(2)j2
(x2, p2)

. . .WE(m)jm
(xm, pm). For each detector k, use the phase-

space coordinate x to generate the probability distri-
bution P(xk ,pk)(e

(k)
j ) = WE(k)j

(xk, pk).

4. Sample an outcome e(k)j from the distribution
P(xk ,pk)(e

(k)
j ) for every detector.

Sampling the final phase-space coordinate x by using a
Monte-Carlo-style update rule is time consuming, but if
the operations are local it can be done efficiently. This pro-
cedure implicitly assumes that we do not just know the
state we are sampling from, but that we know the cir-
cuit of local operations that is used to create the state
from local resources. Ultimately, when one considers the
circuit representation of quantum algorithms, this is also
how a quantum algorithm works. For example, Sec. A

exactly shows that any unitary CV circuit can be built with
single- and two-mode gates. The algorithm outlined in this
section shows that we can efficiently simulate any protocol
where the local input state, the circuit’s operations, and the
measurements are described by positive Wigner functions.

One may wonder whether any positive Wigner function
W(x) can be constructed through such a circuit and, if so,
whether there is an efficient way to design such a circuit
when we know the Wigner function. If we assume that not
only the state W(x) but also all its marginals are known,
it is possible to construct a stepwise sampling procedure
through the chain rule of probability theory:

W(x) = W(xm, pm | xm−1, pm−1, . . . x1, p1)× . . .

W(x3, p3 | x2, p2, x1, p1)W(x2, p2 | x1, p1)W(x1, p1).
(302)

This process effectively executes a type of random walk
with memory. In each step of this walk, we then sample
the phase-space coordinates for one mode. Nevertheless,
this process only works when we have access to all these
conditional probabilities, which practically implies having
access to all the marginals of the distribution. In practi-
cal setups, this will often not be the case. Nevertheless,
it is quickly seen that this setup can be efficiently used
to sample from Gaussian Wigner functions where these
conditional distributions have a particularly simple form.

Thus, we have shown that it is impossible to obtain
a quantum computational advantage by using only local
states, measurements, and operations with positive Wigner
functions. This means that Wigner negativity is necessary
to reach a quantum advantage in such setups. However,
Wigner negativity is certainly not sufficient since there
are many setups of quantum systems that involve negative
Wigner functions that can be efficiently simulated [258].
It is thus interesting to take the opposite approach and
explore a setup that is known to lead to a quantum advan-
tage. In the spirit of CV setups, the most logical choice for
such a discussion is Gaussian boson sampling [259]. In the
literature, this setup has been studied mainly from the point
of view of complexity theory [260,261], but here we rather
focus on its physical building blocks.

Boson sampling [262] is a problem in which one injects
a set of N bosons (generally photons) into an m-mode
interferometer. On the output ports of this interferome-
ter, photodetectors are mounted to count the particles at
the output. Simulating this type of quantum Galton board
is a computationally hard task, implying that a quantum
advantage could be reached by implementing the setup in
a quantum optics experiment. On the other hand, it turns
out that the required number of photons to implement such
an experiment is also hard to come by. This was the moti-
vation for developing a new approach, where the input
photons are replaced by squeezed states that are injected
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in each of the interferometer inputs. Because an interfer-
ometer, built out of phase shifters and beam splitters, is a
Gaussian transformation the output state will remain Gaus-
sian. We can thus effectively say that we are sampling
photons from a state with Wigner function WG(x). In addi-
tion, there is no mean field in the setup such that the entire
state is characterized by its covariance matrix V.

When we assume that the detectors resolve photon num-
bers, the probability to detect a string of counts n =
(n1, . . . , nm) can we written as

P(n) = (4π)m
∫

R2m
dx Wn(x)WG(x). (303)

We can then use Eq. (118) to write

Wn(x) = Wn1(x1, p1) . . .Wnm(xm, pm). (304)

Even though the integral (303) is hard to compute, it is
insightful in the light of Eq. (295) and our discussion
regarding the necessity of Wigner negativity. Indeed, we
see immediately that the detectors form a crucial ele-
ment in rendering the setup hard to simulate. The same
holds when we replace the number-resolving detectors
with their on-off counterparts [263] such that nk = {0, 1}
and the Wigner functions are given by Wnk (xk, pk) = {1 −
2 exp[−(x2

k + p2
k )/2]}/(4π).

When we stick with number-resolving detectors that
project on Fock states, it is practical to reformulate the
problem in terms of P functions and Q functions, such that

P(n) =
∫

R2m
dx Pn(x)QG(x). (305)

For the detailed calculation, we refer to Ref. [259]. It turns
out that the probabilities P(n) can be expressed in terms
of the Hafnian of a matrix [264], which establishes a con-
nection to the problem of finding perfect matchings in
graph theory. This connection has led to several suggested
applications for Gaussian Boson sampling [265–267].

In the light of this Tutorial, the most interesting appli-
cation of Gaussian Boson sampling is its potential role in
quantum state engineering [205]. When only a subset of
modes are measured, we can see Gaussian Boson sampling
as a generalization of photon subtraction (and even as a
generalization of “generalized photon subtraction” [157]).
The idea is reasonably simply explained in the light of Sec.
B: when we split the system in two parts R2m = R2l ⊕ R2l′ ,
such that the Gaussian state that comes out of the interfer-
ometer now takes the form WG(xf ⊕ xg), we can postselect
on a measurement outcome n = (n1, . . . nl′) for the second
subsystem. We thus project on a state Wn(xg), which is a
product of l′ Fock states, and from Eq. (190), we obtain
that the conditional state on the remaining modes is given

by

Wf|n(xf) = 〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉g|xf

〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉 Wf(xf),

(306)

with Wf(xf) defined by Eq. (182). From Eq. (192) we recall
the expression

〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉g|xf

= (4π)l
′
∫

R2l′
dxg Wn(xg)WG(xg | xf), (307)

and because the initial state WG(xf ⊕ xg) is Gaus-
sian, we find that the conditional probability distribu-
tion WG(xg | xf) is given by Eq. (193). Ironically, to
evaluate 〈[|n1〉 〈n1| ⊗ · · · ⊗ |nl′ 〉 〈nl′ |]〉g|xf and 〈[|n1〉 〈n1| ⊗
· · · ⊗ |nl′ 〉 〈nl′ |]〉 we must essentially solve the same hard
problem as for the implementation of Gaussian Boson
sampling itself. Therefore, the exact description of the
resulting states is generally complicated.

Nevertheless, in idealized scenarios, even small Gaus-
sian Boson sampling circuits can be used to prepare inter-
esting non-Gaussian states [205]. In particular, the capacity
of Gaussian Boson sampling to produce GKP states has
taken up a prominent place in a recent blueprint for pho-
tonic quantum computation [24]. Furthermore, the results
in Sec. C suggest that states created by performing Gaus-
sian Boson sampling on a subset of modes can have
additional non-Gaussian entanglement. Yet, to be able to
use this procedure to produce highly resourceful Wigner
negative states, Sec. 2 highlights that the initial Gaussian
state needs to be such that the modes in f can steer the
modes in g. This condition can be seen as a basic quality
requirement for the Gaussian Boson samplers that are used
in Ref. [24].

Finally, the experimental imperfections are also detri-
mental for the quantum advantage that is produced in
Gaussian Boson sampling. Clearly, when the Gaussian
state WG(x) can be written as a Gaussian mixture of coher-
ent states (meaning that no mode basis exists in which the
quadrature noise is below vacuum noise), the sampling
can be simulated efficiently. Because multimode coher-
ent states are always just a tensor product of single-mode
coherent states, it suffices to sample a coherent state from
the mixture, calculate all the individual probabilities for the
output detectors, and sample independent detector outputs
according to these probabilities. The presence of entan-
glement in the Gaussian state from which we sample is
thus crucial. In addition, detector efficiencies must be suf-
ficiently high such that their Wigner functions remain
nonpositive, otherwise the protocol of Ref. [33] renders
the setup easy to simulate (as explained in the first part
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of this section). A more thorough analysis of how dif-
ferent experimental imperfections render Gaussian Boson
sampling easier to simulate can be found in Ref. [268].

There are clearly still many aspects of the relation
between non-Gaussian features of quantum states on the
one hand, and the ability to achieve a quantum computa-
tional advantage on the other hand, that are not yet fully
understood. The Gaussian Boson sampling setup clearly
emphasizes the importance of entanglement in combina-
tion with Wigner negativity. Furthermore, there is the
implicit fact that a simulation scheme such as Ref. [33]
requires knowledge of the actual circuit of local operations
that was used to create the state. It does make sense to
assume that we actually have some ideas of the quantum
protocol that we are attempting to simulate, but yet one
may wonder whether there could be a reasonable setting
(in the sense that we are actually implementing a well-
controlled protocol) in which the assumptions of Ref. [33]
do not hold. This clearly shows that many fundamental the-
oretical aspects of CV quantum computation remain to be
uncovered.

VII. EXPERIMENTAL REALIZATIONS

Now that we have provided an overview of some theo-
retical aspects of non-Gaussian quantum states, we inter-
pret the “where to find them” part of the title in a very lit-
eral sense. Non-Gaussian states are generally rather fragile,
as one should expect from quantum central limit theorem
and the fact that thermal states in free bosonic theories are
Gaussian. Producing and analyzing non-Gaussian states in
a laboratory setting is indeed challenging, but nevertheless
it has been done numerous times. Our main focus in Sec.
A is quantum optics, which is the historical testbed for CV
quantum physics. However, in recent years there has been
increased attention for CV approaches in other setting such
as optomechanics, superconducting circuits, and trapped
ions.

A. Quantum optics experiments

This section provides an overview of some of the most
important milestones in the generation of non-Gaussian
states in optics. For more details, we refer the reader to
a specialized review [81].

Historically, one might argue that the first experimental
realizations of non-Gaussian states in optical setups relied
on sufficiently sensitive photon detectors. Initial demon-
strations primarily used photoemission of atoms [269,270],
which are prepared in excited states (e.g., by electron bom-
bardment) or via resonance fluorescence in ions [271]. The
development of spontaneous parametric down-conversion
(SPDC) made it possible to create a single-photon state
using only bulk optical elements [202]. However, all
these early non-Gaussian states were characterized through

counting statistics, which means that we generally classify
them as DV experiments.

It is perhaps intriguing to note that SPDC is also the
process that lies at the basis of the creation of squeezed
states of light [272], which are Gaussian. These states play
a key role in the generation of single-photon states, simply
because a weakly squeezed vacuum is mainly a super-
position of vacuum and a photon pair. By detecting one
photon of the pair, the presence of the second photon is
heralded. Hence, the approach of Ref. [202] is a basic
implementation of a conditional scheme for the generation
of non-Gaussian states as presented in Sec. B.

A genuine CV treatment of such non-Gaussian states
would only be achieved much later in a work that presents
the first tomographic reconstruction of a state with Wigner
negativity in optics [273]. Due to the developments of an
easily implementable maximum-likelihood algorithm for
state reconstruction, homodyne tomography became one
of the main tools to study non-Gaussian states in CV quan-
tum optics [274]. It did not take long before this also led to
the reconstruction of a displaced single-photon Fock state
[275] and a two-photon Fock state [276]. The combination
of increased squeezing with type-II SPDC and an array of
photon detectors to increase the number of heralded pho-
tons more recently made it possible to resolve the Wigner
function of a three-photon Fock state [277]. Similar ideas
of multiplexed photon detection have also been used to
generate superpositions of Fock states [278].

For non-Gaussian states beyond Fock states, photon
subtraction, as described in Sec. 2, is a common experi-
mental tool. Its first experimental implementation success-
fully showed the capability of generating non-Gaussian
statistics in the homodyne measurements, but it failed to
demonstrate Wigner negativity [148]. Later experiments
improved the quality of the generated states, demonstrat-
ing Wigner negativity and creating so-called “Schrödinger
kittens” [129,279,280]. The terminology is chosen because
these states resemble cat states proportional to |α〉 − |−α〉
for small values of the mean field α. Even though such
Schrödinger kittens are ultimately not very different from
squeezed single-photon states, the nomenclature makes
more sense in the context of experiments that “breed” cat
states [281]. Here, one mixes two Schrödinger kittens on
a beam splitter and performs homodyne detection on one
output port. By conditioning on instances where this homo-
dyne detector registers values close to zero, one effectively
heralds a larger cat state (the value of α has increased). A
variation of photon subtraction has also been used to create
a type of CV qubit [282].

As an alternative to photon subtraction, one can also
add a photon [159]. Even though this operation theoreti-
cally equates to applying a creation operator on the state,
it is experimentally much harder to implement than pho-
ton subtraction as it requires nonlinear optics. However,
photon subtraction can only produce Wigner negativity
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when the initial state is squeezed. Photon addition, on
the other hand, provides the advantage of always creat-
ing a Wigner negative state. A simple way to see this
is by applying a creation operator to the state and eval-
uating the Q function (70). When a photon is added to
the mode g, the Q function after photon addition has the
property Q+(α) ∼ (αTg)2QG(α), where QG(α) is the Q
function of the initial Gaussian state. This relation implies
automatically that the Q function will be exactly zero
for α = 0, and a zero of the Q function implies Wigner
negativity. This means that one can apply photon addi-
tion to highly classical states, such as a coherent state or
a thermal state, and still end up creating Wigner nega-
tivity. Such photon-added coherent states were also used
to experimentally measure [283] non-Gaussianity δ(ρ̂)

as defined in Eq. (110). Remarkably, combining photon
addition and photon subtraction operations in both pos-
sible orders provides a way to experimentally verify the
canonical commutation relations [â, â†] = 1, as was shown
in Ref. [160].

The above methods are all based on Gaussian states as
initial resources to generate non-Gaussian states. The non-
Gaussian states that are created as such can in turn serve
as useful resources to create more intricate non-Gaussian
states. Fock states are a commonly used type of input
state, for example, in the first demonstration of a large
Schrödinger’s cat state [284]. Intriguingly, by using non-
Gaussian initial states, it suffices to use homodyne detec-
tion as the conditional operation. This setup can then be
extended to a cat breeding scheme [285]. Another method
to create large cat states in optics relies on making the light
field interact with an atom [286]. The presence of entan-
glement between the “macroscopic” coherent state and the
“microscopic” atomic degrees of freedom make for an
experiment that resembles Schrödinger’s original though
experiment [106]. Once the atom and the coherent light
are entangled, a spin rotation of the atom is followed by a
measurement to project the state of the light field in either
an even or an odd cat state. This reflects the general idea
that atoms still induce much larger nonlinearities than non-
linear crystals. These nonlinearities are the direct source of
non-Gaussian effect, but they are also much harder to con-
trol. At present, experiments that rely on such higher-order
nonlinearities to create non-Gaussian states remain rare in
the optical regime.

The above methods all focus on the creation of single-
mode non-Gaussian states. For multimode systems, much
of the experimental progress has concentrated on two-
mode systems. As we extensively discussed throughout
this tutorial, an important feature in such multimode sys-
tems are quantum correlations. Some of the first exper-
imental demonstrations of non-Gaussian quantum corre-
lations were based on the Bell inequality (292). Homo-
dyne tomography and a single photon, delocalized over

two modes by a beam splitter, suffices to violate the
inequality [287,288]. However, these works also teach us
that extreme high purities are required to do so.

Motivated by photon-subtraction experiments and chal-
lenged by the no-go theorem of [225–227], entanglement
distillation soon became a new focus for non-Gaussian
quantum optics experiments. Some of these experiments
have focused on adding some form of non-Gaussian noise
on the initial state to circumvent the no-go theorem [228,
229]. Entanglement distillation through local photon sub-
traction from the entangled modes of a Gaussian input state
would later be demonstrated in Ref. [289]. Earlier, it had
already been shown that Gaussian entanglement can be
increased by photon subtraction in a superposition of the
entangled mode [290]. Interestingly, in the latter case, the
photon is effectively subtracted in a nonentangled mode
such that the setup is essentially equivalent to mixing a
squeezed vacuum and a photon-subtracted squeezed vac-
uum on a beam splitter. A similar photon subtraction in a
coherent superposition of modes was later carried out to
entangle two Schrödinger kittens [291]. This can proba-
bly be seen as the first realizations of purely non-Gaussian
entanglement in CV.

Photon addition has also been considered as a tool for
creating entanglement between pairs of previously uncor-
related modes [292]. The resulting state can be seen as a
hybrid entangled state proportional to |0〉 |α〉 + |1〉 |−α〉,
such states have also been produced using techniques sim-
ilar to photon subtraction [293]. For two modes, photon
addition can be implemented in a mode-selective way
[294]. This setup is particularly useful to create entan-
glement between coherent states by adding a photon in a
superposition of displaced modes.

Going beyond two modes has always remained a chal-
lenging task. For mode-selective photon subtraction from
a multimode field, one must abandon the typical imple-
mentation based on a beam splitter. For two modes, such
an alternative photon subtraction scheme was, for exam-
ple, realized in the time-frequency domain, by subtracting
a photon from a sideband [295]. Yet, going to a gen-
uine multimode scenario required the design of a whole
new photon subtractor based on sum-frequency generation
[296,297]. This finally permitted the first demonstration of
multimode non-Gaussian state in a CV setting, demonstrat-
ing non-Gaussian features in up to four entangled modes
[298].

Such highly multimode states of more than two modes
are confronted with a considerable problem: the exponen-
tial scaling of the required number of measurements for
a full state tomography. This makes it highly challeng-
ing to demonstrate non-Gaussian features such as Wigner
negativity in multimode non-Gaussian states. For single-
photon-subtracted states, it has been pointed out that good
analytical models can be used to train machine-learning
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algorithms to recognize Wigner negativity based on single-
mode measurements [299]. Furthermore, the techniques of
Ref. [128] combined with Ref. [300] should also make it
possible to use multiplexed double homodyne detection to
witness Wigner negativity in certain classes of multimode
states.

In multimode systems, we are confronted with the lim-
itations of homodyne tomography. Recently, it has been
shown that machine-learning techniques can be used to
implement an improved form of CV tomography based
on homodyne measurements [301]. Even though this setup
is computationally heavy in single-mode setups, it uses
a smaller set of states as a basis for state reconstruction,
which might make multimode versions of the protocol
more scalable. Alternatively, one can also bypass homo-
dyne measurements all together. Photon-number-resolving
detectors such as transition edge sensors [302] make it
possible to use the identity, Eq. (78), to directly measure
the Wigner function [76]. Intriguingly, this implies that
a photon-number-resolving detector and a setup to gen-
erate displacements of the state in arbitrary modes makes
it possible to directly measure the full multimode Wigner
function. Nevertheless, such a multimode protocol has so
far not been realized in any experiment.

B. Other experimental setups

Given all the experimental work in CV quantum optics,
it is perhaps surprising that the first experimental demon-
strations of quantum states with Wigner negativity hap-
pened in different fields. The very first realization of such
a state was achieved with trapped ions. Even though one
often uses the atomic transitions in these systems to iso-
late qubits for potential quantum computers, trapped ions
also have interesting motional degrees of freedom. By
exploiting a Jaynes-Cummings type interaction between
the atom and the trapping field, it is possible to use the
ions’ internal atomic degrees of freedom to create well-
controlled non-Gaussian states such as a Fock state [78]
and a Schrödinger’s cat state [303] in the motional degrees
of freedom.

Mathematically, this setup is equivalent to cavity QED,
where it was shown that photons in a cavity can be manip-
ulated through interactions with atoms [304] and the Rabi
oscillations of the injected Rydberg atoms can in turn be
used to probe the field within the cavity [305]. These meth-
ods would then be combined to experimentally generate a
single-photon Fock state of the microwave field in a cav-
ity [306], confirm its Wigner negativity [79], and probe its
full Wigner function [80]. A few years later, similar tech-
niques were used to finally generate Schrödinger cat states
and higher-order Fock states [307].

A third setup with very similar physics is found in
circuit QED. In this field, the macroscopic microwave
cavities are replaced by superconducting circuits, and

nonlinearities are induced by Josephson junctions rather
than atoms [140]. Even though these setups are often used
in a DV approach, the microwave fields involved can
equally be treated in a CV approach. The large nonlineari-
ties rather naturally create non-Gaussian states, but getting
a good sense of control over them can be challenging. Nev-
ertheless, a wide range of non-Gaussian states such as Fock
state [308] and large Schrödinger cat states [309] have
been experimentally realized. The latter have furthermore
been stabiized by engineering the decoherence processes
in the system [310]. Very recently these systems have also
been used to demonstrate the deterministic generation of
photon triplets [142].

In recent years, both, trapped ions [311] and super-
conducting circuits [312] were used to achieve another
important milestone in CV quantum computing: the exper-
imental generation of a GKP state. These highly non-
Gaussian states are useful for encoding a fault-tolerant
qubit in a CV degree of freedom. By exploiting the redun-
dancy that is offered by the infinite dimension Hilbert space
of a CV system, one can create a qubit with a certain degree
of robustness. This effectively makes it possible to imple-
ment error-correction routines, as shown in Ref. [312]. In
other words, these systems have managed to generate CV
states that are so non-Gaussian that they can be effectively
used as fault-tolerant DV states.

A final field that has shown much potential over the
last decades is cavity optomechanics. Here, an optical field
is injected into a cavity with one moving mirror (more
generally also other types of “dynamic cavities” can be
used). The goal is to cool this mirror to its ground state to
observe its quantum features. This way, one hopes to create
nonclassical states of motion in reasonably large objects.
A wide variety of such optomechanical devices exist
[313]. Several theoretical schemes have been proposed to
generate non-Gaussian states in such an optomechanical
setup [314,315]. Even though quantum features such as
photon-phonon entanglement have been demonstrated in
such systems [316,317], it remains highly challenging to
obtain good experimental control over the motional quan-
tum state. Nevertheless, some CV non-Gaussian states
states in the form of superpositions between vacuum and
a single-phonon Fock state have been experimentally real-
ized [318].

A common problem in these setups is the creation of
entanglement between the CV degrees of freedom in dif-
ferent modes. Some degree of such CV entanglement has
been experimentally achieved in trapped ion [319] and
circuit QED setups [320]. However, the number of entan-
gled modes is much lower than what has been achieved
in optics [18–21,220], where even non-Gaussian entangled
states of more than two modes have been created [298].
This shows clearly how different experimental setups have
different strengths and weaknesses. Optics comes with
the advantage of spatial, temporal, and spectral mode
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manipulations, which allows the creation of large entan-
gled states. However, the resilience of optical setups to
decoherence is due to limited interaction with the envi-
ronment. The latter implies that it is also difficult to
find controlled ways to make these systems strongly non-
Gaussian. On the other hand, the other setups, which we
discussed, require much more significant shielding from
environmental degrees of freedom. When this coupling to
other degrees of freedom can be controlled, it provides
the means to create non-Gaussian quantum states. In this
context, it is appealing to combine the advantages of differ-
ent regimes. Optomechanics offers a potential pathway to
achieve this by converting between microwave and optical
degrees of freedom [321,322].

As a last remark, it is interesting to mention that phase-
space descriptions and non-Gaussian states also appear
in atomic ensembles. This framework relies on the fact
that an ensemble of a large number of atoms can be
described by collective observables that behave very simi-
lar to bosonic systems. The associated phase space behaves
differently from the optical phase space, in the sense that it
is compact. More specifically, the phase space will cover
a sphere and the radius of this sphere will depend on
the number of atoms. Effectively, we would recover a
bosonic system in the limit of an infinite number of atoms.
However, the compactness of phase space for a finite
ensemble comes with interesting side effects: a sufficiently
high amount of spin squeezing can create non-Gaussian
states. We do not go into details for these systems, but it
should nevertheless be highlighted that non-Gaussian spin
states have received considerable attention in the literature
[323] and have been produced in a range of experiments
[324–327].

VIII. CONCLUSIONS AND OUTLOOK

In this Tutorial, we have presented a framework
based on phase-space representations to study continuous-
variable quantum systems. We then focused on the various
aspects of non-Gaussian states, where we first represented
different ways to structure the space of continuous-variable
states in a single mode in Fig. 1. Whenever possible, we
generalized results from the literature to a multimode set-
ting. However, for certain properties such as the stellar
rank, these generalizations become insufficient to classify
all possible quantum states.

We introduced two paradigms to create non-Gaussian
states, where one is a deterministic approach based on uni-
tary transformations, reminiscent of the circuit approach
for quantum-information processing. The second approach
is conditional, in the sense that it relies on condition-
ing one part of a state on measurement outcomes for
another part of a state, which is more narrowly related
to a measurement-based approach to quantum protocols.
Throughout the remainder of the Tutorial, we have largely

focused on conditional operations, since it is the most com-
monly used approach in experiments. It also provides a
natural avenue to start studying the relation between quan-
tum correlations and non-Gaussian features. We show how
the conditional approach requires certain correlations in
the initial Gaussian state to be able to induce certain type
of non-Gaussianity in the conditional state, as summarized
in Fig. 5.

On the other hand, non-Gaussian operations can also
create a type of non-Gaussian entanglement as introduced
in Sec. C. This kind of entanglement is particular as it
can not be identified with typical techniques that rely
on the state’s covariance matrix. Nevertheless, we use
Rényi-2 entanglement as a measure to illustrate the exis-
tence of such purely non-Gaussian quantum correlations
in photon-subtracted states. Even though its existence is
known from pure-state examples, it has only received lim-
ited attention in both theoretical and experimental work.
One possible reason is the difficulty of studying this type of
entanglement for mixed states, since convex roof construc-
tions tend to become highly intractable for non-Gaussian
states.

As a final theoretical aspect of the Tutorial, we high-
light the need of Wigner negativity to achieve some of the
most striking features in quantum technologies. On the one
hand, we show that Wigner negativity in either the state or
the measurement is necessary to violate a Bell inequality.
This observation can be understood in the broader con-
text of nonlocality and contextuality: Wigner negativity is
often seen as a manifestation of the contextual behavior of
quantum systems, and nonlocality can be understood as a
type of contextuality of measurements on different subsys-
tems. On the other hand, we also present results that show
how Wigner negativity is a requirement to achieve a quan-
tum computational advantage. Intuitively, it is perhaps not
surprising that states, operations, and measurements that
can all be described by probability distributions on phase
space can be efficiently simulated on a classical computer.
However, as we showed in Sec. VI, the actual simula-
tions protocol contains many subtle points. Here, too, we
conclude that there are still many open questions surround-
ing the physics of quantum computational advantages in
continuous-variable setups.

As a last step of this Tutorial, we provided an
overview of the experimental realizations of non-Gaussian
states with continuous variables. Quantum states of light
are indeed the usual suspects for continuous-variable
quantum-information processing, but it turns out to be
remarkably challenging to engineer highly non-Gaussian
states in such setups. We highlighted how trapped ions,
cavity QED, and circuit QED have proven to be bet-
ter equipped for this task, but in return they are con-
fronted with other problems. Optomechanics presents itself
as an ideal translator between these two regimes, which
may soon make it possible to combine the scalability of
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optical setups with the high nonlinearities of the
microwave domain.

In a more general sense, there are definitely many open
question to be resolved in the domain of continuous-
variable quantum physics. In this Tutorial, we have
focused extensively on questions related to non-Gaussian
features, notably in multimode systems. In the greater
scheme of things, this is only one of the many challenges
in the field. The recent demonstration of a quantum com-
putational advantage with Gaussian Boson sampling has
set an important milestone for continuous-variable quan-
tum technologies [23], but we are still far away from
useful computational protocols as set out in the roadmap
of Ref. [24]. Even though the quest for a Gottesman-
Kitaev-Preskill state [31] is one of the main experimental
priorities, there are still many open challenges in designing
the Gaussian operations that form the basis of such a setup
[328,329].

Beyond universal fault-tolerant quantum computers,
there are many other potential applications for continuous-
variable systems. They are widely used in quantum com-
munications for quantum key distribution [330] and and
secret sharing [331]. These protocols are largely based
on Gaussian states and measurements, such that also
the best possible attacks to these systems are Gaussian
[332]. Nevertheless, non-Gaussian protocols for quantum
key distribution, based on photon subtraction, have been
proposed [333]. Such non-Gaussian quantum computa-
tion protocols and their security still involve many open
questions.

Continuous-variable systems also provide a natural link
to other bosonic systems, which is why they have been sug-
gested as a platform to simulate molecular vibronic spectra
[334]. The continuous-variable approach also plays an
important role in quantum algorithms for other chemistry-
related problems such as drug discovery through molecular
docking [335] and the simulation of electron transport
[336].

Furthermore, the continuous-variable setting is also suit-
able to implement certain elements for quantum machine
learning such as quantum neural networks [337]. Even
though this is a promising platform for tackling a wide
range of problems, the proposal is highly ambitious on sev-
eral points. In the context of this Tutorial, we emphasize
the need of non-Gaussian unitary transformations. In prin-
ciple, neural networks require linear couplings between
different “neurons,” which each implement some form of
nonlinear operation. Non-Gaussian operations play the role
of this nonlinear element, making them a crucial step in
the scheme. To implement such continuous-variable neural
networks we thus require either new developments on the
implementation of non-Gaussian operations, or theoretical
modifications in the protocol to make it fit for imple-
mentable conditional non-Gaussian operations. It should
be highlighted that other machine-learning approaches

exist, such as reservoir computing, which can be entirely
based on Gaussian states [338].

A final quantum technology that may benefit from the
use of non-Gaussian states is quantum metrology, as was
recently demonstrated with motional Fock states of trapped
ions [339]. Even though early work has shown that there is
no clear benefit in using non-Gaussian operations such as
photon subtraction for parameter estimation [154], there
may still be other settings where such states are beneficial.
Non-Gaussian entanglement could, for example, have a
formal metrological advantage that is reflected in the quan-
tum Fisher information [340]. On the other hand, ideas
from quantum metrology also provide a possible approach
for measuring non-Gaussian quantum steering [341]. The
effects of non-Gaussian features on the sensitivity of the
state can in principle be captured by higher moments of
the quadrature operators [342]. It was recently shown that
postselected measurements could, indeed, offer a quantum
advantage for metrology [343]. This result is narrowly con-
nected to the field of weak measurements and makes a
connection to yet another phase-space representation: the
Kirkwood-Dirac distribution [70,344]. Hence, we circle
back to the fundamental physics of continuous-variable
systems and conclude that there are still many connections
to be made.

Beyond the technological applications that continuous-
variable systems may have to offer, there is an important
down-to-earth perspective that must be emphasized. With
the improvement of detectors throughout the years, we
have reached a point where theory and experiment can
be considered mature to tackle single-mode problems. In
multimode systems, the same cannot be said. With the
exponential scaling of standard homodyne tomography,
experimental tools for studying large multimode states
beyond the Gaussian regime are limited. We may have
to accept that the full quantum state is out of reach
for experimental measurements. Even theoretically, highly
multimode Wigner functions quickly become cumbersome
to handle. Treating them with numerical integration tech-
niques becomes a near-impossible task, once the number of
modes is drastically increased. This makes even numerical
simulations challenging. How then can we understand and
even detect the non-Gaussian features of these systems?

One clear and important future research goal in this
field is to provide an answer to this question. For quan-
tum technologies, this may provide us with new ways to
benchmark our systems, but more fundamentally it might
teach us something new about the physics of these systems.
One place where one might look for inspiration is the field
of statistical mechanics, where statistical methods show
that even highly complex systems can produce clear emer-
gent signatures. We recently took a first step in exploring
such ideas by looking at emergent network structures for
continuous-variable non-Gaussian states [345]. The most
exciting lesson from such preliminary work is that there
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is still much to be learned about non-Gaussian quantum
states.
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APPENDIX: MATHEMATICAL REMARKS

Here we present some important well-known mathemat-
ical concepts that are regularly used in the Tutorial to make
the text more self-contained. The comments and defini-
tions given here are not very rigorous and mainly aim at
giving the reader an intuitive understanding, for a more
formal introduction one should consult a standard textbook
[41,346,347].

1. Topological vector spaces

Throughout this Tutorial, we often deal implicitly with
topological vector spaces. Vector spaces are well known
from linear algebra and can be thought of as sets of mathe-
matical objects called vectors, which can be added together
in a commutative way and multiplied by scalars. When we
consider a vector space V on a field F , this means that
for any v1, v2 ∈ V and any α1,α2 ∈ F the object α1v1 +
α2v2 ∈ V . This means that the vector space is closed under

addition and scalar multiplication. In this Tutorial, the field
F is either identified as R (for phase space) or C (for
Hilbert spaces).

The spaces that are considered in the Tutorial have much
more structure than what is given by the vector space.
First of all, we generally deal with normed spaces, which
means that our vector spaces are topological vector spaces
in the sense that there is a notion of distance defined upon
them. Generally speaking, topological vector spaces can
be equipped with exotic topologies, but here we simply
deal with norms. On top, we again add an additional struc-
ture when we assume that these norms are generated by
inner products (depending on exact properties, these inner
products go by different names such as “positive-definite
sesquilinear form”, which is what we typically consider in
quantum mechanics).

As we deal with infinite-dimensional spaces to describe
bosonic quantum states and Fock space, it is important
to set some terminology straight. When we talk about a
Hilbert space, there is the assumption that the space is com-
plete. In an infinite-dimensional inner-product space, we
can define sequences of elements in V . If we consider a
sequence (vj )j ∈N such that for any ε we can find a value
N > 0 such that ‖vj − vk‖ < ε for all j , k > N , we call
the sequence a Cauchy sequence. In other words, the dis-
tance between elements in the Cauchy sequence shrinks
as we proceed further into the sequence. The fact that a
Hilbert space is closed means that all Cauchy sequences
converge in the sense that limj →∞ vj = v ∈ V . Finite-
dimensional inner-product spaces automatically have this
property, but for infinite-dimensional spaces it must be
imposed explicitly.

Another class of structured vector space, that is often
encountered in the Tutorial, is a real symplectic space.
These spaces appear when we consider phase space, and
they are given by a real vector space with an additional
symplectic form σ instead of the usual inner product. In
the mathematical literature, one often encounters the nota-
tion (V , σ) for a symplectic space, where the symplectic
form has the following properties: we consider v1.v2 ∈ V
and find that σ(v1, v2) ∈ R, σ is bilinear, and σ(v1, v2) =
−σ(v2, v1). In all cases in this Tutorial, we also consider
that σ is nondegenerate, which means that σ(v1, v2) = 0
for all v1 ∈ V if and only if v2 = 0. When the symplectic
space is finite dimensional, it is often practical to represent
the symplectic form in terms of a matrix. In the Tutorial
this is done by associating σ(v1, v2) = vT

1�v2.
In principle, a real symplectic space is all that is needed

to develop the mathematical framework of the CCR alge-
bra. However, it is often natural when dealing with bosonic
systems to include an additional structure in the form of an
inner product. In the Tutorial, this is done implicitly by also
using the standard inner product vT

1 v2 on phase space. This
allows us to ultimately get the isomorphism (44). In the
quantum statistical mechanics literature, it is common to
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see references to a “pre-Hilbert space”, rather than a phase
space or a symplectic space. When we refer to a pre-Hilbert
space, we consider an inner-product space, which is not
necessarily complete and one must consider the closure to
be guaranteed to obtain a full Hilbert space. The reason is
that phase space, as a real vector space V with an inner
product, given by a bilinear form s(., .), and a symplectic
form σ(., .) is equivalent to a complex pre-Hilbert space
H. For finite-dimensional spaces, the equivalence between
the vector spaces is obtained via isomorphism (44):

f ∈ V �→ ∣∣ψf
〉 =

∑

j

(f2j −1 + if2j )
∣∣ϕj

〉 ∈ H, (A1)

where
∣∣ϕj

〉
for a basis of H. As we are talking about an iso-

morphism between structured vectors spaces, we also need
an identity between additional structures, which is given
by

〈ψf1 | ψf2〉=s(f1, f2)− iσ(f1, f2). (A2)

This isomorphism holds very generally and can be
extended to infinite-dimensional spaces. It provides a
very formal connection between the single-particle Hilbert
space for a many-boson system and its phase space asso-
ciated with the modes of the bosonic field. Technically,
we note that the phase space is equivalent to a pre-Hilbert
space, and the closure of this space is the single-particle
Hilbert space. Whenever the phase space (and thus the
single-particle Hilbert space) is finite dimensional, the pre-
Hilbert space is closed such that phase space and single-
particle Hilbert space really are equivalent. For a very
rigorous treatment on all these points, we refer to Ref. [42].

2. Span

Throughout the Tutorial, we often refer to the “span” of
a certain set of vectors. These vectors can be members of a
vector space, symplectic space, topological vectors space,
pre-Hilbert space, or Hilbert space, the definition of the
span is always the same. Let us here assume that V denotes
any type of vector space over a field F and consider a set
v1, . . . vn ∈ V . We can now define the span of this set of
vectors as the set of all linear combinations that can be
made with these vectors

span{v1, . . . vn} := {α1v1 + · · · + αnvn | α1, . . . ,αn ∈ F}.
(A3)

We emphasize that there is no need for the set v1, . . . vn to
form a basis, nor for the vectors to be linearly independent,
nor for the vectors to be normalized, nor for the vectors to
be orthogonal to one another.

Throughout the Tutorial, the vector spaces we encounter
are either real (in the case of phase space) such that F = R

or complex (in the case of Hilbert spaces for quantum sys-
tems) such that F = C. In the case where the vector spaces
have some topological structure (which we can colloqui-
ally understand as a mathematical sense of distance that
allows limits to be defined), it can make sense to consider
the closure of a span, denoted by

span{v1, . . . vn}, (A4)

such that any convergent sequence built with elements of
the span has its limit also included in the closure.
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