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Abstract
Multi-particle interference is a key resource for quantum information processing, as exemplified
by Boson Sampling. Hence, given its fragile nature, an essential desideratum is a solid and reliable
framework for its validation. However, while several protocols have been introduced to this end,
the approach is still fragmented and fails to build a big picture for future developments. In this
work, we propose an operational approach to validation that encompasses and strengthens the
state of the art for these protocols. To this end, we consider the Bayesian hypothesis testing
and the statistical benchmark as most favorable protocols for small- and large-scale applications,
respectively. We numerically investigate their operation with finite sample size, extending
previous tests to larger dimensions, and against two adversarial algorithms for classical
simulation: the mean-field sampler and the metropolized independent sampler. To evidence
the actual need for refined validation techniques, we show how the assessment of numerically
simulated data depends on the available sample size, as well as on the internal hyper-parameters
and other practically relevant constraints. Our analyses provide general insights into the
challenge of validation, and can inspire the design of algorithms with a measurable quantum
advantage.

1. Introduction

A quantum computational advantage occurs when a quantum device starts outperforming its best classical
counterpart on a given specialized task [1, 2]. Intermediate models [3–6] and platforms [7–12] have been
proposed to achieve this regime, largely reducing the physical resources required by universal computation.
The technological race towards quantum computational advantage goes nonetheless hand-in-hand with the
development of classical protocols capable to discern genuine quantum information processing [13–17].
The intertwined evolution of these two aspects has been highlighted in particular by Boson Sampling [3,
18], where several protocols have been introduced [19–35] and experimentally tested [31–46] to rule out
non-quantum processes. Boson Sampling, in its original formulation [3], consists in sampling from a
probability distribution that can be related to the evolution of indistinguishable photons in a linear-optical
interferometer. Recent analyses suggested reasonable thresholds in the number of photons n to surpass
classical algorithms [47, 48, 50].

While the sampling task itself has been thoroughly analyzed in computational complexity theory, we still
lack a comparable understanding when it comes to its validation. However, it is clear from a practical
perspective that any computational problem designed to demonstrate quantum advantage needs to be
formulated together with a set of validation protocols which account for the physical ramifications and
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resources required for its implementation. For instance, while small-scale examples can be validated by
direct solution of the Schrödinger equation and using statistical measures such as cross-entropy [6], this is
prohibitively expensive to debug a faulty Boson sampler. Moreover, for Boson Sampling a deterministic
certification is impossible [24] by the very definition of the problem [20]. Hence, it is crucial to develop
debugging tools, as well as tests to exclude undesired hypotheses on the system producing the output, that
are computationally affordable and experimentally feasible. Furthermore, due to random fluctuations
inherent to any finite-size problem, a validation cannot be considered reliable until sufficient physical
resources are spent to obtain reasonable experimental uncertainties. Ultimately, no computational problem
can provide evidence of quantum advantage unless quantitative validation criteria can be stated.

In this work, we investigate the problem of validating multi-photon quantum interference in realistic
scenarios with finite data. The paper is structured as follows: first, we discuss possible ambiguities in the
validation of Boson Sampling, which play a crucial role in large-size experiments. Then, building upon
state-of-the-art validation protocols, we address the above considerations with a more quantitative analysis.
We describe a practical approach to validation that makes the most of the limited physical resources
available. Specifically, we study the use of the statistical benchmark [30] and the Bayesian hypothesis testing
[31] to validate n-photon interference for large and small n, respectively. We numerically investigate their
operation against classical algorithms to simulate quantum interference, with a particular focus on the
number of measurements. The reported analysis strengthens the need for a well-defined approach to
validation, both to demonstrate quantum advantage and to assist applications that involve multi-photon
states.

2. Validation of Boson Sampling: framework

Our aim, in the context of Boson Sampling, consists in the unambiguous identification of a quantum
advantage in a realistic scenario. We focus on the task of validation, or verification, whose aim is to check if
measured experimental data is compatible with what can be expected from a given physical model.
Validation generally requires fewer resources and is, thus, more appropriate for practical applications than
full certification, which is exponentially hard in n for Boson Sampling [20, 51]. In both cases, these claims
must follow a well-defined protocol to distill experimental evidence that is accepted by the community
under jointly agreed criteria [52] (figure 1). As we discuss below and in section 3, we propose an
application-oriented approach to validation that takes into consideration the limited physical resources, be
them related to the evaluation of permanents [53] or to finite sample size [51]. In fact, without such
well-defined approaches, obstacles or ambiguities may arise in large-scale experiments, as we highlight in
the following. For instance, not all validation protocols are computationally efficient, which is a strong
limitation for future multi-photon applications or high-rate real-time monitoring. Also, a theoretically
scalable validation protocol may still be experimentally impractical due to large instrumental overheads or
large prefactors that enter the scaling law.

Given two validation protocols V1 and V2 to rule out the same physical hypothesis or model, which
conclusion can be drawn if they agree for a data set of given size and unexpectedly disagree when we add
more data? In principle we can accept or reject a data set when we reach a certain level of confidence, but
which action is to be taken if this threshold is not reached after a large number of measurement events
(which hereafter we refer to as the ‘sample size’)? Shall we proceed until we pass that level, shall we reject it
or shall we make a guess on the available data? Finally, what if the classical algorithm becomes more
effective in simulating Boson Sampling for larger data sets, as for Markov chains [47], or for longer
processing times, as for adversarial machine learning algorithms [55] that could exploit specific
vulnerabilities of validation protocols?

However artificial some of the above questions may seem, such skeptical approach was indeed already
adopted [25] and addressed [26–30, 35–37] with the mean-field sampler (see appendix A): all these
considerations are necessary to strengthen the claim of quantum advantage. Under the above premise, we
therefore identify the following crucial features to be assessed in any decision on acceptance or rejection:

(a) Sample size S. The strength of a validation protocol is affected by the limited number S of collected
events, as compared to the total number of distinct n-photon output events. While this limitation is not
relevant for small-scale implementations, due to (i) the then low dimension of Hilbert space, (ii) a high
level of control and (iii) reduced losses, it represents one of the main bottlenecks for the actually
targeted large-scale instances [56]. It is thus desirable to assess the robustness and the resilience of a
protocol under such incomplete-sampling effects, to quantify the impact of always strictly finite
experimental resources on the actual applicability range of the protocol. We therefore propose to define
a (minimal) threshold sample size S which must be available for validation. Given a set of S events, a
validation protocol must be capable to give a reliable answer within a certain confidence level.
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Figure 1. To demonstrate quantum advantage, reliable and realistic approaches to validation need to be defined. Boson
Sampling should be validated with well-defined sampling time (T ) and sample size (S), since the efficacy of validation protocols
(V) changes with the number of measured events after the unitary evolution (U ).

(b) Available sampling time T . While the sampling rate is nearly constant for current quantum and
classical approaches [48], de facto making the time T not relevant, it cannot be excluded that future
algorithms may process data and output all events at once. The very quality of the simulation, i.e. the
similarity to quantum Boson Sampling in a given metric, could also improve with processing time [47,
55]. Ultimately, T must be treated as an independent parameter with respect to S, while at the same
time it should be adapted to the sample size required for a reliable validation.

(c) Unitary U . Unitary evolutions should be drawn Haar-randomly by a third agent, at the start of the
competition to avoid any preprocessing. This agent, the validator (V), uses specific validation protocols
to decide whether a sample is compatible with quantum operation.

In the thus defined setting, a data set is said validated according to the following rule (figure 1(a)):

Boson Sampling is validated if, collecting S events in time T from some random unitary U , it is accepted by all
selected validators V .

Given a unitary and a set of validation protocols, we are then left with the choice of S and T , which
need be plausible for technological standards. Demanding to sample S events in time T , these thresholds in
fact limit the size of the problem (n, m) for an experimental implementation. As for the time T , one
possibility, feasible for quantum experiments, could be for instance one hour. Within this time, a quantum
device will probably output events at a nearly constant rate, while a classical computer can output them at
any rate allowed by its clock cycle time. The choice of the sample size S is instead more intricate, since a
value too high collides with the limited T , while a value too low implies an unreliable validation V . With
these or further considerations [57], classical and quantum samplers should agree upon a combination of
(n, m, S, T ) that allows them to validate their operation.

3. Validation with finite sample size

In this section, we investigate a convenient approach to validation that distinguishes between two regimes:
until n ∼ 30 (section 3.1) and from n ∼ 30 (section 3.2). In each section, we will first summarize the main
ideas behind their operation. Then, we will discuss their performance for various (n, m), highlighting
strengths and limitations, by numerically simulating experiments with finite sample size and distinguishable
or indistinguishable photons.

3.1. Bayesian tests for small-scale experiments
The Bayesian approach to Boson Sampling validation (VB), introduced in reference [31] and recently
investigated also in reference [58], aims to identify the most likely between two alternative hypotheses,
which model the multi-photon states under consideration. In particular, VB tests the Boson Sampling
hypothesis (HQ), which assumes fully indistinguishable n-photon states, against an alternative hypothesis
(HA) for the source that produces the measurement outcomes {x}. Equal probabilities are assigned to the
two hypotheses prior to the experiment. Let us denote with pQ(xk)

(
pA(xk)

)
the scattering probability

associated with the output state xk for HQ (HA). The intuition is that, if HQ is most suitable to model the
experiment, it is more likely to collect events for which pQ(xk) > pA(xk). The idea is made quantitative

considering the confidence P({x}|Hhypo) =
∏S

k=1 phypo(xk) we assign to each hypothesis, with hypo being

3



Quantum Sci. Technol. 5 (2020) 045005 F Flamini et al

Figure 2. Confidence P(HQ|{x}) of the Bayesian test to accept, as a correct Boson Sampling experiment, events that are sampled
using distinguishable (C, green) [20] and indistinguishable (Q, red) [48] n-photon states from m-mode interferometers. Note
how curves become steeper for increasing n (n = 3, 6, 9, 12 and m = n2), making the test progressively more sample-efficient.
Inset: Bayesian protocol applied to test Q against the mean-field sampler (MF , orange) [25] for n = 4 photons and m = n2.
Curves are obtained by numerically sampling 104n-photon events, averaging over 50 random reshuffling of these events and over
100 different Haar-random unitary transformations (shaded regions: one standard deviation).

either Q or A. By applying Bayes’ theorem, after S events we have

P(HQ|{x})

P(HA|{x})
=

S∏
k=1

pQ(xk)

pA(xk)
(1)

By combining equation (1) and P(HQ|{x}) + P(HA|{x}) = 1, it follows that our confidence in the

hypothesis HQ becomes P(HQ|{x}) = χS
1+χS

, with χS =
∏S

k=1
pQ(xk)
pA(xk) .

This test requires the evaluation of permanents of n × n scattering matrices [50, 53], since

pQ(xk) =

(
m∏

i=1

si!
m∏

i=1

ti!

)−1

Per2(US,T) (2)

where US,T is the matrix obtained by repeating sk (tk) times the kth column (row) of U , sk (tk) being the
occupation number in the input (output) mode k (

∑m
k=1 sk =

∑m
k=1 tk = n). The presence of the

permanent in equation (2) sets an upper limit to the number of photons that can be studied in practical
applications [40–47]. Indeed, it is foreseeable that real-time monitoring or feedback-loop stabilization of
quantum optics experiments will only have access to portable platforms with limited computational power.
However, an interesting advantage of this validation protocol is its broad versatility, due to the absence of
assumptions on the alternative distributions. Importantly, when applied to validate Boson Sampling with
distinguishable photons, it requires very few measurements (S ∼ 20) for a reliable assessment. In figure 2,
for instance, we numerically investigate its application as a function of sample size, extending previous
simulations from n = 3 [31] to n = (3, 6, 9, 12) and m = n2.

Data for distinguishable (HC) and indistinguishable (HQ) photons were generated using exact
algorithms, respectively by Aaronson and Arkhipov [20] and by Clifford and Clifford [48]. The analysis
shows how the validation protocol becomes even more effective for increasing n, being it able to output a
reliable verdict after only ∼ 20 events. However, as mentioned, its power comes at the cost of being
computationally inefficient in n. Also, it is not possible to preprocess VB and store information for
successive re-use, since its confidence depends on the specific U and sampled events, according to pQ(xk).
Hence, in the regime n ∼ 25–35 [46, 47] it becomes rapidly harder to perform a validation in real time.
Eventually, since classical supercomputers cannot assist quantum experiments in everyday applications, VB

becomes prohibitive from n ∼ 35.
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Figure 3. (a) Numerically simulated evolution of C-datasets in the NM-CV plane for an increasing sample size S . Boson
Sampling with n = (4, 5, 6, 7) indistinguishable photons in m = n2 modes, for S = 2, 3, 4, . . . , 100. For large S , curves converge
to the points (pyramids) predicted by random matrix theory (RMT) [30]. Points are averaged over 100 Haar-random unitaries,
while error bars are displayed every 20 additional events. (b) Validation via statistical benchmark of numerically generated Boson
Sampling data with indistinguishable photons (red) against ones with distinguishable photons (C, green), for 100 different
unitary transformations, n = 8 photons, m = 64 modes and S = 20, 100, 200 events. Contour plots describe the confidence of
(three different instances of) neural network binary classifiers, trained at different S , from green (label: C) to red (label: Q). red
and green pyramids identify the random matrix prediction from reference [30], for S →∞. Note how the clouds of points shrink
for increasing S , making the classification of experimental points progressively more reliable. (c) Same analysis as in (b), for 200
different unitary transformations, n = 10 photons, m = 100 modes and S = 1, 2, 3, . . . 104 events. The classifier is now trained
on data from all S . Numbers on the right indicate, approximately, the sample size at the corresponding height. Once trained, this
classifier can be deployed to validate any other Haar-random experiment with the same (n, m) and any S .

3.2. Statistical benchmark for large-scale experiments
In the previous section we described how the Bayesian test is effective in validating small- and mid-scale
experiments with very few measurement events. However, the evaluation of permanents hinders its
application for large n, be it due to too large scattering matrices or to the need for speed in real-time
evaluations. To overcome this limitation, further validation protocols have been proposed in the last few
years, to find a convenient compromise between predictive power and physical resources. All these
approaches have their own strengths and limitations, and tackle the problem from different angles [16], e.g.
using suppression laws [24–28], machine learning [29, 33] or statistical properties related to multi-particle
interference [30]. In this section we will focus on the latter protocol, which arguably represents the most
promising solution for the reasons we outline below.

Statistical benchmark with finite sample size. Validation based on the statistical benchmark (VS) looks at
statistical features of the C-dataset, the set of two-mode correlators

Cij = 〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉 (3)

where (i, j) are distinct output ports and n̂i is the bosonic number operator. Two statistical features that are
effective to discriminate states with indistinguishable and distinguishable photons are its normalized mean
NM (the mean divided by n/m2) and its coefficient of variation CV (the standard deviation divided by the
mean). For any unitary transformation and input state we can retrieve a point in the plane (NM, CV),
where alternative models tend to cluster in separate clouds located via random matrix theory (figure 3(a))
[30]. Validation based on VS would then consist in (i) collecting a suitable number S of events, (ii)
evaluating the experimental point (NM, CV) associated to the Cij and (iii) identifying the cluster that the
point is assigned to. For S sufficiently large, the point will be attributable with large confidence to only one
of the models, thus ruling out the others (figure 3(b)).

VS represents the state of the art for validation protocols that do not require the evaluation of
permanents. Indeed, this approach has several advantages [39]: (a) it is computationally efficient (one only
needs to compute two-point correlators), (b) it can reveal deviations from the expected behaviour (manifest
in the NM-CV plane), (c) it makes more reliable predictions for larger n (clouds become more separate),
(d) it is sample-efficient (clouds separate relatively early, after few measurements events). However, despite
points (c, d) above, in actual conditions the experimental point is not always easy to validate. In fact, as
mentioned in point (b), hardware imperfections and partial distinguishability make the point move away
from the average route shown in figure 3(a). These issues can be addressed and mitigated by numerically

5
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Figure 4. Log-log plot of the deviation ΔC2
S = |EU [EX(˜C2

ij)] − EU [C2
ij]| = |EU [σ2

ij]/S| from equation (4) as a function of the
sample size S . Data numerically generated to mimic experiments with n = 4 photons in m = 16 modes (green: distinguishable
photons [20]; red: indistinguishable photons [48]). Averages are carried out over 500 Haar-random unitaries U and 500 different
samples of size S (number of events) from each unitary, with fixed input state (1, 1, 1, 1, 0, . . . , 0). The linear fits to the different
data sets exhibit the expected scaling ∝ S−1.

generating, for a fixed sample size S, clouds from unitary transformations that take these aspects into
account. This intuition applies to all imperfections that can be described by an error model, for instance
controlled by a set of parameters that quantify the noise level. Specifically, whenever it is possible to
numerically generate events from a probability distribution that models these imperfections, we can use this
data to train a classifier to recognize them in actual experiments. Relevant examples of error models include
the above-mentioned partial distinguishability [16, 23–26, 60–62], unbalanced losses and fabrication
imperfections in the optical elements of an interferometer [59].

As suggested in reference [39], and more closely investigated in figures 3(b) and (c), a convenient
approach is to employ machine learning to assign experimental points to one of the two clouds, with a
certain confidence level. Specifically, one can train a classifier with numerically generated data [20, 48] for a
certain (n, m, S), that can even include error models, and then deploy it for all applications in that regime.
In this sense, S can be seen as the label of the model that can classify (validate) data for a given (n, m). This
intuition can be extended to a classifier that is trained on data from multiple S [see figure 3(c)], which is
likely more practical. For a fixed S, the computational resources to sample events from a distribution given
by n distinguishable (indistinguishable) photons scale polynomially [20] (exponentially [48]) in n.
However, once trained, this classifier can be considered as an off-the-shelf tool that is readily applicable to
validate multi-photon interference with no additional computational overhead, which is ideal for large-size
experiments. In appendix B, we also discuss how such a classifier can even be combined with other
protocols, which search the data for different distinctive structures, to boost its accuracy.

Finite-size effects in validation protocols. So far, we qualitatively discussed the role of a limited sample
size for the validation of multi-photon quantum interference. To provide a more quantitative analysis of
finite-size effects for the task of validation, and in particular for VS, in the following we study the scaling of
the parameters involved in the above validation protocol with S. The goal of this section is to elaborate on a
standard test which should be implemented in all validation protocols, to guarantee their experimental
feasibility.

Let us start by considering a fixed unitary circuit U, for which we calculate the correlators Cij from
equation (3). Such evaluation in principle assumes the possibility to collect an arbitrary number of
measurement events. In practical applications, however, sample sizes will always be limited. Hence,
finite-size effects play a role in the estimation of the above correlators. According to the central limit
theorem, the correlator retrieved from the experimental data can be represented as C̃ij = Cij + Xij, where Xij

is a random number normally distributed with zero mean and variance σ2
ij S−1. The σ2

ij depend on the
unitary evolution U and should either be evaluated from the data or be estimated using random matrix
theory. Now, to infer, from noisy C-datasets [30], the centre of the cloud of points in the NM-CV plane, we
need to average not only over the Haar measure, but also over Xij.

6
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Consequently, we have to assess the impact of finite-size effects on the estimate of the moments (NM,
CV). First, since the noise induced by the finite sample size averages out, namely EX(C̃ij) = Cij, we have that

ÑM = NM. The estimation of CV is a bit more subtle because we need to evaluate the mean of C̃ij
2
. Since

EX(C̃ij
2
) = C2

ij + σ2
ij S−1, then

EU [EX(C̃2
ij)] = EU [C2

ij] +
EU [σ2

ij]

S (4)

and, hence, |C̃V| > |CV|. Note that EU [EX(C̃2
ij)] and EX[EU(C̃ij

2
)] cannot be easily compared, since the

latter involves averaging the distribution of Xij over the unitary group. However, using the properties of the
normal distribution under convex combinations, we can deduce that both orders of averaging yield
approximately the same result (and the same scaling in S), in particular once S is large and the distribution
is concentrated close to its mean. Numerical simulations for 3 � n � 15 and m = n2 indeed confirm its
validity (figure 4). Specifically, we observe that, upon averaging over different Haar-random unitaries with

S events per realization, the deviation of the experimentally-measured C̃ij
2

from the analytically predicted
values decreases as fast as 1/S. Hence, their estimation from finite-size data sets shows no exponential
overhead that would hinder a practical application of the validation protocol.

4. Discussion

Validation of multi-photon quantum interference is expected to play an increasing role as the
dimensionality of photonic applications increases, both in the number of photons and modes. To this end,
and as notably emphasized by the race towards quantum advantage via Boson Sampling, it is necessary to
define a set of requirements for a validation protocol to be meaningful. Ultimately, these requirements
should allow to establish strong experimental evidence of quantum advantage that is accepted by the
community within a jointly agreed framework.

In the present work, we implement such a program and describe a set of critical points that
experimenters will need to agree upon in order to validate the operation of a quantum device. With the goal
of building a solid framework for validation, we then discuss a practical approach that applies the most
suitable state-of-the-art protocols in realistic scenarios. We report numerical analyses on the application of
two key validation protocols, the Bayesian hypothesis testing and the statistical benchmark, with finite-size
data, providing compelling evidence in support of this approach.

A clear and illustrative example for the above considerations is provided in appendix A, where we
numerically studied the competition between a recent classical simulation algorithm and the statistical
benchmark, respectively to counterfeit and to validate Boson Sampling, while they process an increasing
number of measured output events. The analysis quantifies the general intuition that there must be a
trade-off between speed and quality in approximate simulations of Boson Sampling. We also provide a
formal analysis on the performance of the validation protocol with finite-size samples, showing that the
estimation of relevant quantities converges fast to the predicted values. We expect that similar features will
be crucial for larger-scale demonstrations and, as such, a key prerequisite to be investigated in all validation
protocols.

Finally, in appendix B we introduce a novel approach to validation that can bring together the strengths
of multiple protocols. This approach uses a meta-algorithm (AdaBoost) to combine protocols based on
machine learning into a single validator with boosted accuracy. This strategy becomes more advantageous
for a larger number of such protocols with comparable performance, as well as with very noisy data.
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Appendix A. Classical simulation and the role of sample size

To shed some light on the critical aspects of validation, and as a benchmark of the state of the art in this
context, we now provide a qualitative analysis inspired by the metropolized independent sampling (M), a
recent algorithm to classically simulate Boson Sampling [47]. The idea behind M is reminiscent of the
mean-field sampler (MF) [25], an adversarial classical algorithm that was capable to hack one of the first
validation protocols [32] using limited classical resources. In the race towards quantum computational
supremacy, the introduction of MF has prompted the development of more sophisticated techniques to
tackle classical simulations. For instance, besides the Bayesian test (see inset in figure 2), also the statistical
benchmark is highly effective to validate Boson Sampling against MF (see figure A1(a)). For our scope, the
key difference between the two algorithms is that, while for MF the quality of the simulation does not
really change over time, M samples from a distribution that gets closer to Q the more events are evaluated
(i.e. for a larger S).

The goal of M is to generate a sequence of n-photon events {ei} from a Markov chain that mimics the
statistics of an ideal Boson Sampling experiment. Given a sampled event ei, a new candidate event ei+1 is
efficiently picked according to the probability distribution of distinguishable photons pD, and accepted with
probability

P(ei → ei+1) = min

(
1,

pI(ei+1) pD(ei)

pD(ei+1) pI(ei)

)
(5)

where pI(ei) is the output probability corresponding to event ei for indistinguishable photons. While the
approach remains computationally hard, since it requires the evaluation of permanents [53, 63], the
advantage is that only a limited number of them needs to be evaluated to output a new event, rather than
the full distribution as in a brute-force approach. Ultimately, after a certain number of steps in the chain,
M is guaranteed to sample close to the ideal Boson Sampling distribution pI [64]. Hence, not only does the
sample size S play a key role to improve the reliability of validation protocols, as shown in section 3, but it
can be crucial also to increase the quality of the outcome of a classical simulation. This is a relevant point to
keep in mind, even though M has since been surpassed by an algorithm that is both provably faster and
exact [48, 49]. In fact, in future, novel classical algorithms might be developed [54] that depend on S more
efficiently.

The aim of our present analysis is to investigate the role of the sample size in a validation of the samples
generated by M, via VS. Indeed, a crucial issue in a hypothetical competition between M and VS concerns
the number of events S available to accept or reject a data set. While larger sets provide deeper information
to VS to identify fingerprints of quantum interference, on the other hand M approaches the target
distribution pI as more steps are made along the chain. However, in order to output a large number of
events in time T , M requires physical and computational resources that set a limit to the tractable
dimension of the problem. We are then interested in the intermediate regime, the one relevant for
experiments, to determine whether convergence is reached fast enough to mislead VS. In the specific case of
M, we then need to look at the scaling in n of its hyper-parameters: burn-in (the number Bn of events to be
discarded at the beginning of the chain) and thinning (the number Tn of steps to skip to reduce correlations
between successive events). Eventually, the time required to classically simulate Boson Sampling will scale as
T = τp (Bn + S Tn), where τp is the time to evaluate a single scattering amplitude according to
equation (5). Considering the estimate provided by the supercomputer Tianhe-2 [50], and for fixed (T , S),
we find the constraint Bn = α n−2 2−n T − S Tn where α ∼ c0.8782 × 1011 and c is the number of processing
nodes. If we assume Tn = 100 [47] for all n and V , we get an estimate of the maximum Bn allowed by (T ,
S). The key issue is that this estimate does not guarantee that M achieves the target distribution fast
enough, since Bn decreases (exponentially) in n. Moreover, the minimum Bn is expected to increase with n,
since on average the Markov chain needs to explore more states before picking a good one.

To better clarify the above considerations, we simulate a competition between M and VS for n = 10
photons in m = 100 modes on figure A2. Data for distinguishable and indistinguishable photons were
generated with exact algorithms, respectively by Aaronson and Arkhipov [20] and by Clifford and Clifford
[48]. The analysis proceeds through five main steps: (1) randomly pick a unitary transformation U
according to the Haar measure; (2) simulate the generation of Sn-particle output events; (3) extract the
C-dataset from these S events; (4) evaluate the corresponding (NM, CV) point and plot it in figure A2(a);
(5) repeat steps 1–4 200 times, to simulate as many different experiments. Upon completion, evaluate
average and variance of PM and plot them in figure A2(b). With this analysis, we get a quantitative intuition
on how the confidence of a validation changes with S, as does the quality of the classical simulation. Similar
behaviour is found also for other choices of n and m. In particular, we observe how a stronger thinning (up
to T10 = 100, as in reference [47]) is reflected in the quality of the simulation, where M behaves very
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Figure A1. Numerically simulated evolution of C-datasets in the NM-CV-S space (a) and in the NM-CV plane (b) for an
increasing sample size S . (a) Boson Sampling with n = 4 indistinguishable photons (Q, red) or distinguishable photons (C,
green) and mean-field sampler (MF , orange) [25] in an m = 16-mode Haar-random transformation, for S = 104 events.
Pyramids identify the random matrix prediction for S →∞ [30]. (b) Boson Sampling with indistinguishable or distinguishable
photons and metropolized independent sampling (MIS), with collision events (M) or without (M MIS

CF , extracted from data in
reference [47]; M CF, data subset of M) for n = 20 photons, m = 400 modes and up to S = 2 × 104 events. Curves without
collision events (which can be resolved under stronger zoom) have a smoother evolution due to reduced fluctuations in the
C-dataset. Note that the statistical benchmark captures the presence of collision events (in Q, C,M), which have an impact on
the statistics since the protocol probes two-particle processes.

similar to the ideal Boson sampler for small as well as for large sample sizes. Conversely, a faster M that
trades quality for speed by computing fewer permanents (T10 = 10, 30) is more easily detectable by VS.
Constraints due to a speed vs quality compromise (figures 3(b)–(d)) define a generic scenario for a classical
simulation which is run with a specific choice of T and S.

Appendix B. Combining and boosting validation protocols

So far, all validation protocols have always been applied separately and independently. Certainly, this fact
shows the multifaceted nature of this line of research, where effective solutions have been developed using
very different strategies. Yet, it also reflects its somewhat fragmented condition, since each protocol does not
benefit from potential insights provided by the others. This limitation becomes relevant in realistic
scenarios with noise and finite data sets, since each validation protocol suits some task better than the
others, with different degrees of sample efficiency and resilience.

In this section, we present a novel, synergistic approach to validation, which aims at combining the
strengths of these protocols to form a joint, enhanced validator. Specifically, we focus on validation
protocols that make use of machine learning, and propose to combine them with a meta-algorithm
(AdaBoost [65]) that attempts an adaptive boosting of their individual performance. The output of
AdaBoost is a weighted sum of the predictions of these learning algorithms (‘weak learners’), which are
asked, sequentially, to pay more attention to the instances that were incorrectly classified by the previous
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Figure A2. (a) Validation via statistical benchmark [30] of Boson Sampling with indistinguishable photons (Q, red) against one
with distinguishable photons (C, green) and metropolized independent sampling [47] (M, blue) with thinning T = 100 and
burn-in B = 0, for 200 simulated experiments with different Haar-random unitary transformations, n = 10 photons, m = 100
modes and S = 200, 400, 600 events. Contour plots describe the confidence of a neural network classifier, from green (low) to
yellow (high), in labeling a point as Q. Red and green pyramids identify the random matrix prediction from reference [30], for
S →∞. (b)–(d) Confidence PM of the same classifier in labeling (NM, CV) points generated by M as M (blue), Q (red) or C
(green), for simulated experiments with T = 100 (b) from (a), T = 30 (c) and T = 10 (d). Values are averaged over all (NM,
CV) points generated by M, while shaded regions correspond to one standard deviation. Notice that in (b), with strong
thinning, there still is a difference between Q and M data, though not significant due to larger fluctuations. Plots highlight the
speed vs quality trade-off in classical simulations of Boson Sampling. See the main text for a step-by-step description of this
analysis.

learners. As long as the performance of each learner is slightly better than chance, the classifier resulting
from AdaBoost provably converges to a better validation protocol.

We numerically test this approach by combining two validation protocols that employ machine learning:
the statistical benchmark VS [30] [equipped with a simple neural network classifier trained on numerically
generated data, as in figures 3(b) and (c)] and the visual assessment VV [29], which uses dimensionality
reduction algorithms and convolutional neural networks. Here we do not consider the Bayesian approach,
since, in its current formulation, it does not fit the framework of machine learning. A schematic description
of our proof-of-concept analysis, which we carry out for n = 10 and m = 100, is shown in figure A3.

Since VS requires fewer events than VV to validate ideal, noiseless experiments [20, 48], to perform this
test we trained VS on data sets with a tunable amount noise, purposely assembled to be hard to validate. To
this end, samples (S = 2 × 103) for 500 Haar-random unitary transformations were constructed by
sampling with a certain probability p (or 1 − p) from a Boson sampler with fully indistinguishable (or
distinguishable) photons. This probability p was then varied in time, to simulate, for instance, a periodic
drift in the synchronization of the input photons. As expected with these settings, we find that AdaBoost
maintains the original accuracy of VS and VV when applied to, respectively, batches of VS and VV that are
already highly accurate. This is mainly due to complexity of these classifiers, which are already strong
learners and, hence, hard to enhance by AdaBoost. Analogous results are found with mixed batches of VS

and VV, for which AdaBoost returns a joint classifier that practically focuses on the most accurate one in the
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Figure A3. Machine learning techniques, such as AdaBoost [65], can combine individual validation protocols to boost the
overall accuracy. A schematic overview of the approach is shown in this figure. Experiments associated with NTest

U + NTrain
U

Haar-random unitary transformations (a) are simulated using exact algorithms to numerically sample S events from quantum
[48] (Q) and classical [20] (C) Boson Sampling (b). (c) NTrain

U sets of S events for both Q and C are pre-processed by a collection
of validation protocols. Here, we considered the statistical benchmark VS [30] and the visual assessment VC [29], which produced
NTrain

U input data in the form of, respectively, pairs of moments (NM, CV) and images (using t-SNE [66] for dimensionality
reduction). (d) Each protocol has its own classifier, in this case a neural network (NN) for VS and a convolutional neural network
(CNN) for VV, respectively. These classifiers are then applied sequentially on the same input data, iteratively adjusting their
weights (AdaBoost) to focus on misclassifed data. (e) The resulting, joint protocol has higher accuracy on test data than each
individual classifier.

set. A different result is obtained, instead, by combining several weak VV, for which we purposely spoil the
training of the convolutional neural network (accuracy A ∼ 51% instead of A ∼ 98%) by reducing the
number of training epochs. In this case, AdaBoost does in fact enhance the accuracy of VV up to A ∼ 57%.

In future, we expect that this approach will prove useful in non-ideal conditions with experimental
noise, where validation protocols do not operate in the ideal settings where they were conceived.
Furthermore, the above analyses can show larger boosts if applied to actual experiments that involve
structured (non-Haar-random) interferometers, for which protocols such as VS and VV can have lower
accuracies and different behaviors. Finally, still in non-ideal settings, more favorable boosts can be obtained
if new validation protocols are developed that are as sample-efficient as VS.
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