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bUniversité Paris-Dauphine, PSL, LAMSADE UMR 7243 CNRS, F-75016 Paris, France
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Abstract

Robust scheduling for target tracking with a wireless sensor network (WSN), focuses
on the deployment of a WSN in a remote area to monitor a set of moving targets. Each
sensor operates on a battery and is able to communicate with reachable sensors in the
network. The targets are typically moving vehicles (planes, trains, cars,. . . ) passing
through the area. In order to monitor the targets, an activation schedule is sought such
that the sensor network is continuously collecting data about the targets. Additionally,
the transfer of the data collected to a base station deployed near the network also has to
be planned. In this work, we consider that the trajectories of the targets are estimated.
i.e., during the mission, at each time instant t, there is a given position where the target
is expected. However, such estimations are inaccurate and deviations can occur. In this
work, we formulate the problem of spatial robust scheduling. The aim is to produce
an activation schedule for the sensors such that the targets are covered as long as they
remain no farther from their estimated positions than a maximized value, called the
spatial stability radius of the schedule. Afterwards, we formulate the spatio-temporal
robustness problem. It is a bi-objective problem, with a spatial stability radius and a
temporal stability radius for covering delays and advances. Two algorithms are pro-
posed to solve these problems, and we show their efficiency through several numerical
experiments.

Keywords: Linear Programming, Sensor Network, Robust Optimization, Target
Tracking, Spatio-temporal uncertainties

1. Introduction

Wireless Sensor Networks (WSN) are a growing technology that can be found in
many fields and many applications [2, 22]. They rely on many cheap and easy-to-
configure sensors, collecting data about their environment and gathering them for an
overall process. The workload is then dispatched on many sensors such that the failure

∗Corresponding author
Email addresses: florian.delavernhe@univ-angers.fr (Florian Delavernhe),
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of a few of them does not compromise the mission of the network. The flexibility of
such a technology allows it to be deployed in infrastructure-less or dangerous areas,
where human resources or expansive technologies cannot be deployed. For example,
it is the case with military applications [21] when a WSN is deployed in an hostile
territory, without any allied infrastructures, where the sensors might be destroyed or
compromised. In such applications, the batteries of the sensors cannot be refilled or
replaced, thus the network lifetime (i.e., the time period during which the network can
fulfill its mission) is limited. For this reason, energy preservation mechanisms are often
considered when designing a solution method for WSN.

In this work, we consider the target tracking mission for a WSN [16]. In this ap-
plication, one ore more targets are moving inside an area where a WSN is deployed.
The sensors have to monitor the targets (record data about them) and the data collected
is sent to a base station using hop-communication in the network. In order to preserve
energy, there should not be more than one active sensor at a time to monitor a target.
Such mechanism greatly extends the lifetime of the network compared to a continuous
activation of the sensors [3]. In the case where the trajectories of the targets are known
ahead of the mission (e.g, a train follows tracks with a time schedule), a schedule can be
used to program the activities of the sensors and to guarantee a continuous monitoring
of the targets all along their trajectories. However, the trajectories are often estimated
and derived from previous collected information, handmade estimations, approximated
data and so on. Because these predictions are not always reliable [11] some previous
works (e.g., [8, 14]) have been proposed to build a robust schedule based upon esti-
mated trajectories, but that can stand deviations due to uncertain events. In this work,
we present a method to produce robust schedules that can stand spatial deviations from
the targets trajectory, in the case where temporal estimations are accurate. Indeed, the
spatial trajectory of a target is often only estimated, from previous observations (known
positions). It is already a difficult problem. Additionally the data may also be inaccu-
rate (due to the accuracy of GPS devices) and the target may not behave as expected
(e.g., it could take a parallel route). In [8], a small spatial deviation may lead to lose
a target. A robust spatial schedule is a possible response to these issues as it aim at
covering the greatest possible deviations. Thereafter, we extend the proposed approach
to build robust schedules that can stand both spatial and temporal deviations.

The contributions of this paper are fourfold. (i) We introduce the spatial robustness
problem for the target tracking mission with a wireless sensor network. (ii) We propose
a method to solve this problem, that computes a solution that is λ-close to the optimal
solution, where λ is a parameter. (iii) We extend the previous problem to the spatio-
temporal robustness problem, with a combination of two stability radii. (iv) For this
problem, we present a method that produces a set of weakly non-dominated solutions
that approximate the Pareto front. It is based on an epsilon-constraint method [13] and
a dichotomy algorithm [8, 14, 15].

This paper is organized as follows. First, Section 2 introduces the related work
on the topic. More precisely, it presents, with many details, the temporal robustness
problem since many features of the present work are based on it. Section 3 presents
the problem definition, and the stability radii used to represent the robustness of a so-
lution. Next, Section 4 presents the discretization phase. Its features are quite similar
to the ones used in previous works but also has novel elements to deal with spatial
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robustness. Afterwards, in Section 5, an upper bound for the spatial stability radius
is proposed, and used to improve the solution method presented in the next section.
Section 6 presents a method to address the spatial robustness problem only, then an ex-
tension of this method for the spatio-temporal problem but with a lexicographical order
of the two objectives (spatial robustness is maximized first, then temporal robustness)
and finally the classical biobjective approach is addressed to approximate the Pareto
front. Section 7 presents a set of numerical experiments for assessing the quality of the
proposed solutions and the scalability of the results, and Section 8 concludes this work.

2. Related Works

Many works in the literature address the subject of tracking an object in a spatio-
temporal context using data collected by sensors (application examples: video surveil-
lance or autonomous driving). In such problems, the objective is to find an algorithm
to infer the spatial position of a target over time with the collected data. Typically, the
position of an object, person or vehicle, has to be determined on each frame from a
recorded video. One particular problem in this research field, is robust target tracking
in a crowded environment where the targets have complicated interactions, occlusions
(i.e. a target hides another one), same appearances,. . . . Following a target becomes
a true challenge in such environments. For example, [12] address this problem and
propose a machine-learning method, that tracks the targets by learning a discriminative
appearance model for different targets. There are many works addressing this problem,
using different algorithms often from the artificial intelligence field. Among other ap-
proaches, [23] use a data driven Markov chain-Monte Carlo association, and [7] resort
to convolutional neural networks. In this part of the literature, the objective is to track
targets that are known to be part of the collected data and are not focused on how to
collect this data.

On the other hand, there are also works done in the literature on finding optimal
ways to collect data about the targets. It is the case for the temporal robustness prob-
lem, that has been treated in [14], and later extended in [8] with communication, multi-
target and energy considerations. In this problem, the objective is to find an activation
schedule for the sensors such that they capture data about a set of targets all along their
trajectories. For that purpose, the trajectories are spatially known and temporally es-
timated. Each target follows a known trajectory but can be early or late to the points
of passage. Thus, to follow a target, the solution sought only has to activate a sensor
guaranteed to be in monitoring range of the target. The sensors are limited by their bat-
teries and only one sensor can be activated per target at a time. These works [8, 14] use
the stability radius [17] adapted to the target tracking problem and propose a solution
method to produce a schedule maximizing this stability radius, and thus the robustness
to deviations. The method is based on the notion of faces, a set of spatial points cov-
ered by the same set of sensors. Thereafter, the trajectory of a target is expressed as a
series of time windows with set of candidate sensors that can monitor the target in all
the faces where it can be. The difficulty is that the time windows, and the sets of candi-
date sensors, are depending on the value of the temporal stability radius. Therefore, the
authors develop a dichotomy method that finds an interval of values where the optimal
stability radius is guaranteed to be located and with fixed association sets of candidate

3



sensors to time windows. Once this interval is found, a final linear program can be
solved to find the optimal solution. In [8], the solution is furthermore optimized to also
include energy consumption considerations. The problem of spatio-temporal robust-
ness presented in Section 3 is clearly extending this problem and the method presented
in Section 6 exploits the one introduced in [8].

The topic of spatial uncertainties in target trajectory has been addressed for the
problem of Moving Object Database [19]. The objective of such a problem is to extend
the database technologies to moving objects, with location continuously changing over
time (see [9]). However, querying on the location of a target is difficult. Indeed, its
position at time t is prone to uncertainties that can be inherent to the imprecision of
the devices locating the object or the discrete time updates of the locations. There are
two approaches to model uncertainty on the location of a target. The first approach is to
resort to the probability density function that associates a possible location for the target
with a probability. The second approach is more related to our work since the possible
locations are defined by an area of the plane. The idea is that for instants t and t +1, the
locations are known. However, it is not the case in the time interval between these two
instants. The most natural idea is to consider a straight line trajectory between the two
points but it is unrealistic and more complex motion model are sought [18]. Hence,
bounding the possible locations of the target inside areas has been studied with various
figures: cones, beads [10] or two inverted half cones. In [20], the authors bound the
trajectory inside sheared cylinders. Such figures arise as the intersection of the discs of
radius r (r is a given value) centered on the estimated positions of the target for every
time instant t in the considered time interval. The obtained result is very similar to
the uncertain area obtained in our spatio-temporal robustness problem (see Section 3),
with as difference, the time interval depending on a varying temporal radius. When
the motion of a target is constrained by a road network such models are inadequate.
Alternative models can be considered [19], however the context of a road network is
out of the scope of the present work, where targets can move in any direction.

3. Problem Definition

The purpose of this work is to use a wireless sensor network (WSN) to monitor
a set of moving targets, whose trajectories are subject to uncertainties. The network
is composed of a set I of m homogeneous sensors, which are all randomly deployed
inside an area where a set J of n targets are estimated moving in a given time horizon T .
Each target has a spatio-temporal trajectory estimated during T such that the function
τ j(t) returns the estimated position of the target j at instant t ∈ T . We consider that a
trajectory is a set of straight segments. The data collected by a sensor always have to
be transferred to the base station, which is inside the area and is not subject to power
limitation. The data can be transferred directly or with multi-hop-communication, i.e.,
a sensor transmits its data to another sensor which forwards it to the base station or to
another sensor. Each sensor i ∈ I is limited by the energy available in its battery, equal
to Ei and nonrefillable. We do not explicitly minimize energy consumption as in [8],
but we add a constraint limiting the number of sensors activated at the same time and
thus limiting energy consumption. This constraint enforces that at any time, no more
than one sensor is used to monitor any target. Thus, at time instant t, there is no more
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than n sensors activated to monitor the n targets. However, a sensor can be activated to
monitor multiple targets at the same time. A sensor can monitor only the targets inside
its sensing range Rs and is able to transfer or receive data from another sensor or the
base station if it is inside its communication range Rc. N(i) defines the neighborhood
of a sensor i ∈ I, i.e. all the sensors in communication range of i (distance less than
or equals to Rc). We consider stable connections between the sensors, and thus the
neighborhood of a sensor does not vary over time. The sensors are multi-role [6] and
thus are able to monitor the targets, receive and transfer data. A sensor can execute
multiple activities (monitoring, receiving, transferring) at the same time. There are
therefore three non-exclusive consumption modes:

• pS Watts are consumed when monitoring a target.

• pT Watts are consumed when emitting data.

• pR Watts are consumed when receiving data.

β is a parameter representing the amount of data (in bytes) collected per target, and
per unit of time. At time instant t, a sensor i ∈ I monitoring x̃1 targets is collecting x̃1β
bytes per unit of time, which implies a power consumption of x̃1 pS Watts for moni-
toring. If the same sensor receives B bytes per unit of time from other sensors, where
B = x̃2β corresponds to data collected by the monitoring of x̃2 targets by other sensors,
then i consumes pR 1

β
B = x̃2 pR Watts for receiving incoming data. This implies that

the re-transmission of these data toward the base station incurs a power consumption
of x̃2 pR Watts for sensor i. Sensor i is therefore transmitting C = x̃1β + B bytes per
unit of time to other sensors or to the base station. Hence its power consumption is
x̃1 pS + x̃2 pR + (x̃1 + x̃2)pT Watts.

We seek to produce a continuous coverage of the targets (monitoring and transfer
of the data to the base station) over the horizon of time T . It is done by implementing,
in the network, an activation schedule with all the sensors’ activities planned before
the start of the mission. This schedule is computed in such a way that it covers the
estimated trajectories of the targets. A robust schedule is sought to achieve this goal.
Such a schedule also guarantees to cover some deviations from the estimated trajecto-
ries, and the offered robustness is measured by two stability radii. As defined by [17],
and [14] for the target tracking mission, a stability radius is a robustness indicator. A
schedule remains feasible as long as some uncertain parameters remain below the sta-
bility radius centered at the estimated values of these parameters. With two stability
radii, the robustness of the schedule proposed in this work is twofold. The first indica-
tor is the spatial stability radius denoted by R which also denotes its numerical value.
It aims to provide robustness against spatial deviation from the estimated trajectories,
e.g. the target is passing through a parallel route. Then at every instant t ∈ T , the
network covers the target j,∀ j ∈ J wherever it is inside the disc (or the ball, in a three
dimensional context) of radius R and centered on τ j(t). Hence, the schedule remains
feasible if the distance between the target and its estimated position is always less than
or equal to R. The second stability radius, ρ which also denotes its numerical value,
is temporal (see [8]). In our problem, this means that the schedule is guaranteed to
monitor the targets, as long as their temporal trajectories are in the stability radius ρ

5



centered around their estimated times. In other words, it means that a target is covered
as long as it has no delay or advance greater than ρ. Thus, each point p of the estimated
trajectory of a target j ∈ J, such that ∃t, τ j(t) = p, is covered during the time window
[t − ρ, t + ρ].

Combining the two stability radii gives a more complex problem than just con-
sidering the two separately. Indeed, a non null spatial stability radius means that the
schedule, at each instant, has to cover several points in space where the target can be.
By contrast, with a non null temporal stability radius, the schedule has to cover delays
and advances to the many possible locations where a target can be. More formally,
having a schedule with a spatial stability radius R and a temporal ρ means that the tar-
get j ∈ J at time t is guaranteed to be covered if it is inside a disc (or ball) centered on
τ j(t′) such that t′ ∈ [t−ρ, t+ρ]. In other words, the target is guaranteed to be covered if
it is always not farther than R meters from a point of its estimated trajectory, estimated
to be reached less than ρ seconds earlier or later. The uncertain area formed by these
stability radii, at time t, is the intersection of all the discs of radius R centered on all
the estimated points of the trajectory in [t − ρ, t + ρ]. The shape of the area is sheared
cylinders. Such figure can be found in the literature of uncertain spatial trajectory as
in [20] (see Section 2).

We want to maximize both the spatial stability radius R and the temporal stability
radius ρ. The problem is bi-objective with two conflicting objectives. A quick example
to asses this conflict is the coverage of a single point trajectory, i.e., a stationary target
to cover during one unit of time. In this example, the optimal solution for the spatial
stability seeks for the closest sensor to this point with enough energy for the one time
coverage of this point. Whereas, the optimal temporal stability radius seeks for one
sensor in range of this point with the maximal amount of energy (to cover it as long as
possible). The method sought needs to be able to produce a set of solutions representing
well the Pareto front. In this work, we present a method that computes a set of weakly
nondominated solutions widely and evenly spread on the Pareto front.

All notations related to our problem are summarized in Table 1.

4. Discretization

Discretization is the process of transforming a part of the geometric data of the
problem into a set of discretized data. Thereafter, these data can be used for modeling
and solving the problem. The discretization used in this work reuses the principles
presented in [8] for the temporal stability radius. These principles have been extended
in the present work for the spatial stability radius and afterwards to the bi-objective
problem. Note that in this work, we make the assumption that the given estimated
trajectories are sets of segments, i.e., the targets have straight trajectories between dif-
ferent waypoints. It is also assumed that the target move at constant speed on each
segment, but speed may change from a segment to the next one.

In this section, we use Figure 1 to illustrate discretization. It is very similar to the
one used in [8], with however an added segment in the trajectory for a better illustration
of our new contributions. There are three sensors, 1, 2 and 3, with yellow discs showing
their monitoring ranges. A single target is moving alongside the black arrow, its starting
position is marked by a × in the figure. It starts its trajectory in a part of the area only
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Sets
I = {1, . . . ,m} Set of sensors
J = {1, . . . , n} Set of targets

Indexes
i ∈ I Index of sensor
j ∈ J Index of target

Parameters
Ei Energy of the battery of sensor i
pS Power consumption in watts for sensing
pR Power consumption in watts for receiving data
pT Power consumption in watts for transmitting data
Rc Communication range of a sensor
Rs Sensing range of a sensor
T Time horizon
τ j(t) Estimated position of target j ∈ J at time t ∈ [0,T ]
N(i) Set of all the sensors in range of communication of sensor i
β Units of data collected during on unit of monitoring time

Decision variables
ρ The temporal stability radius, also denoting its value
R The spatial stability radius, also denoting its value

Table 1: Summary of the notations

covered by sensor 1, gets under the range of sensor 2 under the range of sensor 3 before
leaving the range of sensor 1 and finally finishing its trajectory there. The time horizon
is T = [0, 20] and B is the base station.

4.1. Discretizing the estimated trajectories and possible communications

In our problem, we want to represent the trajectories of the targets as sets of can-
didate sensors available during time windows. A face f is a set of spatial points that
are all covered by the same set of sensors. Therefore, for a schedule, being able to
monitor a target j at time t corresponds to have a sensor covering all the faces where j
can possibly be at time t (i.e., all the points inside the uncertain area obtained with the
stability radii). Hence, any given pair (R, ρ) defines at each instant t for a target j ∈ J,
a set of faces where the target has to be covered. More precisely, the WSN has to cover
all the faces having a nonempty intersection with at least one disc of radius R centered
at τ j(t′), such that t′ is in [t − ρ, t + ρ] ∩ T . The intersection of all these faces defines
a set of candidate sensors (i.e., a face) that can cover the target (if the intersection is
empty, then the target cannot be covered). With the example of Figure 1, if at time
instant t, the face {1} and the face {1, 2} need to be covered, the set of candidate sensors
is {1} ∩ {1, 2} = {1}.

We delimit the time windows, where a target can be monitored by a same set of
candidate sensors, using the notion of tick. Our definition of a tick is an extension of
the one used in [8], adapted now to the spatial stability radius. In the present work, a
tick is a tuple (tick ID, sensor ID, target ID, date, position) such that the date and the
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•
1

•
2

•
3

•
B

Figure 1: Example with three sensors

position are variables depending of R and ρ. Note that the sensor ID can be empty to
represent the beginning or the end of the target trajectory as shown later. It represents
the first or last point of a part of the trajectory such that a sensor covers entirely the
uncertain area defined by the spatial stability radius. The associated date is the earliest
or latest date when the target is guaranteed to be covered on this point (i.e., inside the
temporal stability radius). Thus, the elements associated to a tick (position and date)
depend of the values of the stability radii. For a given R, the position associated to a
tick is a point on the trajectory of the target such that the disc of radius R centered on
this point is tangent to the sensing range. The date is the estimated date for this point
plus or minus ρ depending if the sensor becomes or is no longer candidate.

If a sensor becomes candidate, it is an entering tick; and it is a leaving tick if a
sensor is no longer candidate. The k-th tick of target j ∈ J is denoted by t j

k. It is
associated to a date dt j

k
and a spatial position pt j

k
on the estimated trajectory. dt j

k
is

the earliest (if leaving) or latest (if entering) date when the target j is expected to be
anywhere inside the disc centered on position pt j

k
and with a radius R. The tick t j

k is also

associated to a sensor s j
k and σ j

k, an integer value which is +1 if the tick is entering, and
−1 if it is leaving. By convention, the start and the end of a trajectory are represented
with a first and a last tick, which are respectively leaving and entering [14]. These
ticks are used to represent a target starting or finishing its journey earlier or later, they
are not associated to a sensor and only the temporal stability radius is affecting them.
These ticks can be understood as representations of the instants when the target leaves
or enters the empty set of candidate sensors. For a target j ∈ J, a time window ∆

j
k is

the duration between two successive ticks t j
k and t j

k+1. The k-th time window is such
that k ∈ K j = {1, 2, . . . ,H j}, where H j is the number of time windows for target j. The
set of candidate sensors for a time window k ∈ K j is S j(k). The set of ticks for target
j,∀ j ∈ J is denoted by T j such that T j = {1, . . . ,H j + 1}.

The possible direct communications in the network between the sensors and the
base station, are represented by the communication digraph ~Gc = (I∪{B}, A), where A is
all the pairs of elements of I∪{B} that are close enough for direct communication. Since
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the sensors are not supposed to move, the graph remains unchanged for the entire time
horizon. To represent the data transfer to the base station, we use a flow representation.
The flow is computed from the monitoring sensor to the base station, in ~Gc. With the
example of Figure 1, we obtain the digraph ~Gc of Figure 2.

1 2

3

B 1 2

3

Figure 2: The communication digraph ~Gc for the example of Figure 1

In the example of Figure 1, for R = 0 and ρ = 0, the estimated trajectory of the
target can be discretized with only the four faces that the target should visit: {1}, {1,2},
{1,2,3} and {2,3}. The problem has therefore five ticks and four time windows presented
in Table 2.

Face {1} {1,2}
Time window length (given) ∆1

0 = 5 ∆1
1 = 10

Tick Tick 0 Tick 1 Tick 2
t1
0 = 0 t1

1 = 5 t1
2 = 15

σ1
0 = −1 σ1

1 = +1 σ1
2 = +1

s1
0 = ∅ s1

1 = 2 s1
2 = 3

Face {1,2,3} {2,3}
Time window length (given) ∆1

2 = 2.5 ∆1
3 = 3

Tick Tick 3 Tick 4
t1
3 = 17.5 t1

4 = 20.5
σ1

3 = −1 σ1
4 = +1

s1
3 = 1 s1

4 = ∅

Table 2: The five ticks of the example of Figure 1

Tick 1 represents the beginning of the trajectory of the target, thus it is not asso-
ciated to any sensor. In fact, this tick is useful for representing cases where a target
starts moving along its trajectory earlier than estimated. Tick 2 represents the moment
when the target is entering the range of sensor 2. For example here, σ1

1 = +1 since tick
2 is an entering tick, thus the date t1

1 is increasing and with increasing stability radii
the instant when sensor 2 becomes candidate is delayed. Tick 3 models the time when
the target is entering the range of sensor 3. Tick 4 models the target leaving the range
of sensor 1, it is a leaving tick thus σ1

3 = −1. Finally, the last tick represents the end
of the trajectory, to deal with those situations where the target reaches its destination
later than estimated. Once again, by convention, this tick is not associated to a sensor.
The value of ∆1

0, the length of the first estimated time window (with the target only
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in range of sensor 1) is equal to t1
1 − t1

0 = 5 − 0 = 5, i.e., the instant when sensor 2
becomes candidate minus the instant the target starts its trajectory. The other ∆1

k values
are obtained similarly.

All the notations introduced for discretization are summarized in Table 3.

t j
k Tick ID of the k-th tick of target j

dt j
k

The date of the tick t j
k

pt j
k

The spatial position (on the estimated trajectory of j)

corresponding to the tick t j
k

s j
k Sensor ID of the tick t j

k (becoming, or no longer, candidate)

σ
j
k +1 if t j

k is an entering tick, −1 otherwise
K j The set of time windows for the target j
H j The number of time windows for the target j
∆

j
k The k-th time window of target j

S j(k) The set of candidate sensors for the time window k
T j Set of all ticks of target j

Table 3: Summary of the notations for discretization

4.2. Dates and points associated to the ticks

In the previous section, we introduced the notion of tick. As mentioned, the actual
position and date associated to a tick depends on the values of the stability radii. The
ticks are first computed considering the trajectory estimation as shown in Table 2. Af-
terwards, with given values of R and ρ, the ticks are spatially and temporally moved
and some are added. As presented in the definition of a tick, it always represents the
first instant covered by the stability radii when a sensor is no longer candidate or the
first instant when a sensor is guaranteed to cover the target wherever it is inside the
stability radii. An entering tick is always postponed when one of the stability radii
increases as this delays the instant when a sensor is candidate. By contrast, a leaving
tick is advanced when a stability radius value increases. It is necessary to compute the
tick dates and positions according to the values of the radii. Changing the dates of the
ticks means also that the time windows and sets of candidate sensors are changing with
different values of R and ρ. However, they can easily be computed once the tick dates
are updated, using the initial set of candidate sensors (guaranteed to cover the start of
the trajectory) and using the ticks ordered by date.

To illustrate the ticks moving or the ticks added, we re-use the example of Figure 1.
With different given values of R > 0, the situation changes, and it is illustrated by
Figures 3a, 3b and 3c, where for more clarity only the sensor 2 is represented. In
each figure, the value R is equal to the radius of the red circle. Each red dot on the
estimated trajectory is the center of a circle of radius R and tangent to the sensing range
of sensor 2. Hence, these dots all represent ticks that delimit the part of the trajectory
(in black) that can be covered by sensor 2 for the corresponding value of R. The red
part of the trajectory is not guaranteed to be covered by sensor 2 when considering
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a spatial stability radius R. The red dots, on which the red circle is centered, always
represent the same tick, with a varying position depending of R. As we can see in this
example, the position of this tick is always computed such that its distance with the
closest point on the sensing range is equal to R.

•
2

••

(a)

R
•
2

•

•
••

(b)

R
•

(c)

Figure 3: Moving ticks of the example of Figure 1

4.3. Computation of the date and position of a tick

As seen in [8], the date of a tick changes with the value of ρ to represent delays and
advances. In the present work, for a given temporal stability radius ρ, the date of the
tick t j

k is:

dt j
k

= τ j(pt j
k
) + ρσ

j
k,∀ j ∈ J,∀k ∈ T j (1)

Thus, the date of a tick depends on both R (for pt j
k
, the corresponding estimated posi-

tion) and ρ.
When R increases, the k-th tick of target j ∈ J, t j

k, is moved such that pt j
k

is always
on the estimated trajectory of j and is R meters away from the limit of the range of the
sensor s j

k. i.e., the disc of radius R centered at pt j
k

has to be inscribed in the sensing disk
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of sensor s j
k, and is tangent to this disc. This is shown by the red circles of Figures 3a,

3b, 3c. Moving the spatial positions of the ticks accordingly to the definition of a tick
always makes them delimiting the first or the last point of a section of the estimated
trajectory where a sensor is candidate. Note that when R increases, an entering tick
t j
k, j ∈ J, k ∈ T j can reach the end of the trajectory of j and is therefore removed:

the sensor will not become candidate. The same applies for a leaving tick that can
reach the start of the trajectory, thus the tick is removed and the sensor is no longer
candidate to monitor the target at the beginning of its trajectory. For a target j ∈ J,
if a leaving tick and an entering tick of the same sensor are passing through the same
date, and exchanging their date order, they are both removed. In that case, the sensor is
no longer candidate to monitor a nonempty section of the estimated trajectory passing
through its sensing range. In the example of Figure 3b, each remaining part of the
trajectory where sensor 2 is still candidate is delimited by the two ticks (represented
by red dots). With a greater value R such that we obtain Figure 3c, these ticks have
moved and eventually have reached the same date. When this happened, they have
been removed as the sensor 2 is never candidate to cover the target for this section of
the trajectory.

With a given value of R, the position pt j
k
,∀ j ∈ J, k ∈ T j can be computed with a non

linear function using the coordinates of s j
k and the coordinates of the line segments of

the estimated trajectory of j. The value of ρ does not change pt j
k
. We consider, in the

rest of this paper, the function γ j
k(R) that geometrically computes the position pt j

k
for the

value R. This function solves a second order polynomial function, in a constant time. It
just finds a point in the plane, as the intersection between a circle and a segment. More
precisely, the function finds a point on the trajectory of the target, with a distance to the
corresponding sensor equal to Rs − R. Hence:

pt j
k

= γ
j
k(R),∀ j ∈ J,∀k ∈ T j (2)

To summarize, for any given value of R and ρ, the position of a tick is computed
using the linear function (2) and its date is calculated with (1).

4.4. Adding ticks

Moreover, there are ticks that appear when R reaches certain values. For example
in Figure 1, when R is large enough, it is possible to have multiple time windows where
sensor 2 is not longer candidate as it is illustrated in Figure 3b. Each one of the red dots
in this figure is the center of a disc of radius R and tangent to the sensing range. In that
particular case, the status of sensor 2 alternates between not candidate, and candidate,
whereas for R = 0 or for R as in Figure 3a, it was simply first not candidate, then
candidate until the end. To represent such events, new ticks are needed and thus new
time windows appear. In the example of Figure 3b, the ticks appear in the last way
point and at the end of the estimated trajectory.

A tick is added at a spatial point p if p is on the estimated trajectory of a target j ∈ J,
under the sensing range of a sensor s and is further from s than any other neighbor point
on the estimated trajectory. In other words, there is no ξ such that all the points on the
estimated trajectory and in the disc of radius ξ centered at p, are further from s than
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from p. This means that p will be the first point of its neighborhood no longer covered
by s when R increases. It is also not corresponding to an other tick that moved to
this point. Since we only consider the estimated trajectories of the targets as sets of
consecutive line segments, such points are only the extremities of the segments. A tick
corresponding to a sensor s appears to one extremity e if and only if the value of R is
greater than the distance between e and s minus Rs.

If the extremity e is the start or the end of the trajectory, only one tick is added,
otherwise two ticks are added (one entering and one leaving). The introduction of new
ticks leads to define new time windows with less candidate sensors.

Figure 3b illustrates these principles. On the chronological order of the estimated
trajectory, the ticks are the following. The first tick is the initial tick, the target arrives
in range of 2 when R = 0. The two following ticks appeared on the last waypoint of
the target when R is large enough so that the uncertainty disc centered at this extremity
is no longer entirely inscribed in the range of sensor 2. The last tick appeared alone at
the end of the trajectory.

To summarize, discretization transforms the estimated trajectories of the targets
into sets of ticks and with given values of ρ and R, the ticks are associated to different
positions and dates, some ticks are removed and some are added. The ticks delimit
time windows and moving them adds or removes sensors from the set of candidates
sensors to monitor the target.

5. Upper bounds on the spatial stability radius of a schedule

Two upper bounds are proposed for the spatial stability radius, with the final upper
bound returned being the lowest of both. The bounds are computed considering ρ = 0
and used only when maximizing R as shown in Algorithm 3. The computation of this
upper bound is used to reduce the running time of the solution method by reducing the
search space.

The first upper bound searches for the first value of R that creates a face with no
candidate sensor, thus the stability radius cannot exceed this value; that is, the lowest
value of R with which there is an empty set of candidate sensors associated to a non-
null time window. It always corresponds to either the intersection between two ticks
(see [8]), or the appearance of a new time window. To find this value of R, we need to
compute, for each extremity of each segment of the estimated trajectories, the last time
window that will appear. Because each of the time windows corresponds to one sensor
no longer candidate for this extremity, the last time window corresponds to a face with
no candidate sensor. These values are computed as the maximum distance between
the extremity and any sensor whose distance to this extremity is less than or equal
to R. The second part in the computation of this bound is, for each segment, to find
the lowest value of R that corresponds to an intersection between two ticks such that
the intersection point is no longer covered by any other sensor when the intersection
occurs. So, for each intersection of ticks, we need to compute the position of others
ticks. These values are computed using the position of the sensors and the segments’
coordinates. The complexity of this bound is O(MN3) with N the number of possible
ticks and M the number of faces. Both values are pseudo-polynomial (see Section 6.4)
and upper-bounded by 2qm with q the number of segments in the trajectories of the
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targets and m the number of sensors. However, this upper bound removes a lot of
possible values for R.

The second upper bound computes the values of R such that there is not enough
energy in some set of candidate sensors to cover the target during the total length of
the initial time window. To this end, we consider the problem with R = 0, and for
all targets and all time windows, we compute the total energy in the batteries of the
candidate sensors, and the total energy needed in the corresponding time windows, i.e.,
∀ j ∈ J,∀k ∈ K j, we compute

∑
i∈S j(k)

Ei, and (t j
k+1−t j

k)×(pS +pT ). The former is the energy

available and the latter the energy needed. Then, for each candidate sensor (∀i ∈ S j(k)),
we compute the minimal value of R for which the sensor is no longer guaranteed to
cover the target at any time during this time window. This values uses the closest point
from the sensor which is on the estimated trajectory and inside the time window. It is
obtained using the segments’ coordinates and the sensors’ coordinates. When such a
value is reached, the battery of the sensor can be removed from the available energy.
Thus to find a lower bound, we need to find the lowest value of R for which the energy
available is less than the energy needed. The complexity of this bound is O(NM) with
N the number of possible ticks and M the number of faces (both pseudo-polynomial,
see Section 6.4).

Algorithm 1 synthesizes the computation of the first upper bound, denoted by UB.
Its value is initialized to Rs (a trivial upper bound). Compute All Ticks(problem,( j, k))
computes and returns the set of ticks of problem that will pass through the k-th time
window of j. Intersection(problem,tick1,tick1,( j, k)) returns a pair (p,R) such that R is
the greatest value of the spatial stability radius with the two ticks having the same as-
sociated position p, and p is estimated to be visited by target j in its k-th time window.
Is In Range Of No Sensor(problem,p,R) returns True provided that with a spatial sta-
bility radius value R, the position p is not cover by any sensor, and False otherwise.

Algorithm 1: First Upper Bound on R
Data: problem is the discretized problem data, with the ticks, time windows,

candidate sensors,. . .
Result: the value of the first upper bound on R
UB← Rs

for j ∈ J, k ∈ K j do
T ICK ← Compute All Ticks(problem,( j, k))
for tick1 in T ICK do

for tick2 in T ICK do
(p,R)← Intersection(problem,tick1,tick1,( j, k))
if Is In Range Of No Sensor(problem,p,R) then

UB←min(UB,R)

return UB

Algorithm 2 synthesizes the computation of the second upper bound. This upper
is initialized to Rs as in Algorithm 1. Next Non Covering Sensor(problem,( j, k), R)
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returns (i,R′) such that R′ is the lowest value greater than or equal to R such that sensor
i ∈ S j(k) cannot be used for any instant of the k-th time window of target j when
considering a stability radius greater than R′.

Algorithm 2: Second Upper Bound on R
Data: problem is the discretized problem data, with the ticks, time windows,

candidate sensors,. . .
Result: the value of the second upper bound on R
UB← Rs

for j ∈ J, k ∈ K j do
Eavailable ←

∑
i∈S j(k)

Ei

Eneeded ← (t j
k+1 − t j

k) × (pS + pT )
while Eneeded ≤ Eavailable do

(i,R′)← Next Non Covering Sensor(problem,( j, k), R)
Eavailable ← Eavailable − Ei

R← R′
UB← min(UB, R)

return UB

6. Solution Method

We present in this work a solution method for the biobjective problem. This method
relies on two algorithms, each one optimizes a different objective while the other one
is fixed. For the temporal stability radius, we use the algorithm introduced in [8]. Note
that we use only the first step of the algorithm presented in [8], maximizing ρ, and do
not consider the energy minimization afterwards. For the spatial stability radius, we
use a novel algorithm, presented in Section 6.1. The solution method combines the
two algorithms and has two steps. First, Section 6.2 presents the solution method for
the hierarchical case (R is the primary objective), and secondly this method is extended
for the biobjective problem (both objectives matter as much). Section 6.4 analyses the
complexity of the overall method and thus the method for the spatial robustness.

6.1. Solving the spatial robustness problem

The solution process for the maximization of the spatial stability radius is very
similar to the maximization of the temporal stability radius presented in [8].

The difficulty when solving such a problem is that the set of time windows and the
sets of candidate sensors depend on the value of the stability radius. Moreover, the
sizes of the time windows depend on the dates of the ticks and thus of their positions,
that are computed by applying a non linear function on R. Therefore, to maximize the
spatial robustness, we cannot solve one linear program where R is a decision variable.
With a linear program, we can only test the feasibility of a given value of R.

The solution process builds feasible schedules for different given values of R until
a schedule with a value of R guaranteed to be close enough of the optimal solution is
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found. i.e., we iterate until two values of R, a and b, have been found such that there
exists a feasible solution for R = a but not for R = b, and 0 ≤ b − a ≤ λ with λ a
given parameter that controls the optimality gap. At the end of the solution process,
the optimal solution value is guaranteed to be in [a, b) and thus the method returns the
schedule obtained with R = a. The smaller λ is, the more precise the method is but the
more running time it requires.

In order to decide if the problem is feasible for a given value of R, we just need
to compute the corresponding time windows and candidate sensors, by moving and
adding the ticks corresponding to this value. These ticks and positions are obtained
as presented in Section 4 when considering ρ = 0 and without considering a tick for
the start of the trajectory and one for the end. Afterwards, the linear program (LP)
referred to as Model 1 is solved in order to find a feasible schedule. The model is linear
since the value of R is a given constant. This LP is in fact a satisfaction problem as it
has no objective function, only a feasible solution is sought. The model solved is the
following:∑

j∈J

∑
k∈K j |i∈S j(k)

x jik pS +pR 1
β

∑
i′∈N(i)

fi′i +pT 1
β

∑
i′∈N(i)

fii′ ≤ Ei ∀i ∈ I (3)∑
j∈J

∑
k∈K j |i∈S j(k)

x jikβ +
∑

i′∈N(i)
fi′i −

∑
i′∈N(i)

fii′ = 0 ∀i ∈ I (4)∑
i∈S j(k)

x jik = ∆
j
k ∀ j ∈ J,∀k ∈ K j (5)

x jik ≥ 0 ∀ j ∈ J,∀k ∈ K j,∀i ∈ S j(k) (6)
fii′ ≥ 0 ∀i ∈ I,∀i′ ∈ N(i) (7)

Model 1: Model solved for the spatial robustness problem

The decision variables x jik,∀ j ∈ J,∀i ∈ I,∀k ∈ K j are the monitoring times of the
target j by the sensor i during its k-th time window. Constraints (3) correspond to
the limitations of the batteries. Constraints (4) are flow constraints, where the data
collected and received by a sensor is transmitted. Constraints (5) states that the sum of
the activities of the sensors in a time window is equal to its length. The following table
(Table 4) summarize the added notations.

x jik The duration of the monitoring activity
by the sensor i ∈ I of the target j ∈ J during the time window k ∈ K j

fii′ The total amount of data transferred
during the horizon of time from i ∈ I to i′ ∈ N(i)

Table 4: Summary of the notations for the model

We use two dichotomy methods to find the values of R to test. First, we use a
dichotomy on a discrete set of values of R that create time windows, or change the sets
of candidate sensors. These values correspond to ticks added or ticks meeting (i.e.,
two ticks are moved to the same date). Note that when a value of R corresponds to
the addition of ticks, it has a time window with a null length which does not need to
be considered. It means that this time window should only be considered when R is
greater than this value. This set of values is reduced by removing all the values greater
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than the upper bound. This first dichotomy returns an interval [a, b) where the optimal
solution is located. Secondly, we use a continuous dichotomy on this interval to find a
feasible schedule such that its value of R is no farther than λ from the optimal solution.
This second dichotomy returns the interval [c, d) such that 0 ≤ d− c ≤ λ. The schedule
found with its spatial stability radius equal to c is the returned solution. The linear
program presented in model 1 is solved at each stage of the dichotomy to reduce the
aforementioned intervals.

Algorithm 3 summarizes the overall method. Move Spatial(problem, x) is the func-
tion returning problem discretized with its time windows, candidate sensors, etc, ob-
tained when R = x. It computes the dates and positions associated to a tick with
(1) and (2), using R as an input. Let us remind that it simply uses a geometric func-
tion, computing intersection points between line segments and circles in constant time.
NextValueDichotomy(List of values, a, b) returns a value x of List of values obtained
by a dichotomy in open interval (a, b), if such a value exists, and x = a otherwise.
Compute Upper Bound returns the best upper bound (lowest) from Section 5 for prob-
lem.

6.2. Solving the hierarchical problem

To solve the hierarchical problem, where R is optimized first and then ρ, we just
need to consecutively use the solution methods for spatial then temporal stability radii.
Both methods rely on the same notion of tick, and the optimization of ρ can use the
resulting ticks of the maximization of R. Indeed, in both cases, a tick is an instant
separating two time windows and it is associated to a physical position. This position
is the last or the first position guaranteed to be covered by a sensor. The optimization
of the spatial stability radius is computing points on the estimated trajectories of the
targets corresponding to ticks, and maximizing ρ is considering that the targets can
arrive earlier or later to these points thus moving the ticks. The only difference is that
the temporal stability radius is using two more ticks per target to represent the start and
the end of the trajectory. Thus, after maximizing R, we need to add these two ticks for
each target. It is a leaving tick for the beginning of the trajectory and an entering tick
for the end, as presented in [8].

The only particularity is that if the optimal value Ropt of R returned corresponds
to the addition of one or two ticks, such ticks should not be included for the temporal
solution process. Indeed, as mentioned before (Section 6.1), the resulting time window
has only to be considered when R is greater than Ropt which can never happen.

To conclude, the hierarchical problem can easily be solved by first maximizing R
using the method presented in Section 6.1. Afterwards, we quickly add or remove a few
ticks from the tick pool obtained with the optimal value of R and finally we maximize
ρ using the method introduced in [8].

6.3. Computing solutions for the spatio-temporal problem

In this section, we focus on the bi-objective formulation of the problem, where
there is no preference defined on the objectives. Thus, the method sought needs to
produce a set of solutions representing trade-offs between the objectives. This set has to
approximate as best as possible the Pareto front of the problem. We use an ε-constraint
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Algorithm 3: Maximization of R
Data: problem is the discretized problem data, with the ticks, time windows,

candidate sensors,. . . obtained when R = 0. List of values is the set of
values of R corresponding to ticks added or ticks meeting. λ is the
precision sought.

Result: −1 if the problem is unfeasible, otherwise a value of R ≥ 0 λ-close
from the optimal solution

Rub ← Compute Upper Bound(problem) ;
Rlb ← 0 ;
problem←Move Spatial(problem,Rub) ;
if Solve Model 1(problem) = feasible then

return Rub

problem←Move Spatial(problem,Rlb) ;
if Solve Model 1(problem) , feasible then

return −1
/* Rub unfeasible upper bound, Rlb feasible lower bound */

/* Start of the discrete dichotomy */

R← Next Value Dichotomy(List of values,Rlb,Rub) ;
while Rlb , R do

problem←Move Spatial(problem,R) ;
if Solve Model 1(problem) = feasible then

Rlb ← R ;
else

Rub ← R ;

R← Next Value Dichotomy(List of values,Rlb,Rub) ;

/* Start of the continuous dichotomy */

while Rub − Rlb ≥ λ do
R← (Rub + Rlb)/2 ;
problem←Move Spatial(problem,R) ;
if Solve Model 1(problem) = feasible then

Rlb ← R ;
else

Rub ← R ;

return Rlb
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method [13] that produces a set of weakly non-dominated solutions. With our method,
the solutions returned can only have their spatial stability radius improved and by at
most ε (a parameter) only. Each solution is generated using a hierarchical solution
process similar to the one introduced in Section 6.2. Each generated solution has its
value of R bounded by R+, where R+ is lower than the R value of the last solution found.
It also has a lower bound ρ− on ρ, also depending on the value of ρ of the last solution
found. R+ is decreases in the process while ρ− increases.

The global idea is to start from an extreme point of the Pareto front, and to generate
a series of weakly nondominated points by bounding one objective with decreasing
values and increasing the other. The computation of one solution is reusing the last
obtained solution as a starting point and is expected to be faster than if all computations
would be performed from scratch. Indeed, the proposed approach starts directly with
set of time windows and candidate sensors known to be feasible for R = R+ and ρ = ρ−.
Only ρ can be increased.

The overall method is presented in Algorithm 4. Solve Maximization R maximizes
the value of R in the given problem using the method presented in Section 6.1. It
returns −1 if the problem is unfeasible. The function Solve Maximization ρ maximizes
ρ in the given problem with the method presented in [8]. Its last parameter is a lower
bound on the optimal value of ρ. Move spatial returns the problem with the ticks, time
windows and candidate sensors obtained with the given value of R as mentioned for
Algortihm 3.

Algorithm 4: Approximating the Pareto front
Data: problem is the discretized problem data, with the ticks, time windows,

candidate sensors,. . . obtained when R = 0 and ρ = 0. ε is the minimal
value of the decrease of R between two different returned solutions

Result: Set of solutions approximating the Pareto front
Solutions← ∅ ;
Rub ← Solve Maximization R(problem) ;
if Rub < 0 then

return Solutions;

R+ ← Rub;
ρ− ← 0;
ρub ← Solve Maximization ρ(problem,ρ−);
do

problem←Move Spatial(problem,R+);
ρ− ← Solve Maximization ρ(problem,ρ−);
Add(Solutions, (R+,ρ−)) ;
R+ ← R+ − ε ;

while ρ− < ρub;
return Solutions ;

The first step is to find the upper bounds Rub and ρub, for respectively R and ρ. To
obtain these bounds, the method just needs to solve independently the maximization of
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ρ and the maximization of R. Note that if no value has been found for Rub, the problem
is not feasible even for the estimated trajectories (R = 0, ρ = 0) and the algorithm stops.
For ρub, we use the exact same method as in [8], with a lower bound equal to 0 (the
problem is known to be feasible). Rub is the starting point of the method, i.e., the value
of R of the first computed solution. ρub is the ending point, i.e., the method stops when
a solution with a temporal stability radius equal to ρub is found.

The method generates solutions with decreasing values of R, denoted by R+, and
increasing values of ρ, denoted by ρ−. For each iteration of the method, it starts by
creating the problem corresponding to the spatial stability radius R+. Afterwards, it
optimizes the value of ρ for this given R. The method searches for a solution with
ρ ≥ ρ−, and such a lower bound is useful in reducing the running time. The solutions
found with R ≤ R+ and ρ = ρ− are weakly dominated by a solution already found,
and possibly dominated by the Pareto front, thus they are not kept. The other solutions
found are added to the set of returned solutions. The value of R+ is decreased by a
constant ε, a parameter that controls the number of solutions that will be returned.
Finally, the lower bound ρ− for the next solution is updated in such a way that it is
equal to the ρ value of the last solution found.

Theorem: The method generates a set of weakly non-dominated solutions. For
each solution, only R can be increased and no more than ε.

Proof (weakly non-dominated): Each solution is obtained with the method used
to optimize the value of ρ that produces optimal value of ρ for a given R, and ρ is
always decreasing if R increases.

Proof (no more increase than ε): Let us consider a solution S 1 returned by the
method with a temporal stability radius ρ1 and a spatial stability radius R1. If S 1 is
the first solution found, with R1 the maximal value of R, clearly there is no solution s2
with a radius R2 > R1. Otherwise, the method has found a solution s2 with a spatial
radius R2 = R1 + ε and an optimal temporal radius ρ2 ≤ ρ1 for this given value of R.
Since S 1 has been returned (i.e., non dominated by any solution found yet), we know
that ρ2 < ρ1. We conclude that there is no solution s3 with a radius R3 > R1 + ε and
ρ3 = ρ1.

6.4. Complexity analysis

In this section, we study the complexity of our methods. First, it is important
to determine the complexity of the discretization. The discretization algorithms are
polynomial in the number of faces, ticks and time windows. Fortunately, these numbers
are bounded by the same polynomials as for the temporal problem presented in [8, 14].
Thus, the discretization phase has a pseudo-polynomial complexity.

For the spatial maximization complexity, we need to determine how many linear
programs are solved in the dichotomies. The first dichotomy is performed on a discrete
set of values. The size of this set in the worst case is equal to the number of intersections
between the ticks plus the number of ticks (they can all possibly be added). There are
at most 2qm ticks, with m the number of sensors and q the number of line segments
in the estimated trajectories. The second dichotomy stops when the interval width is
smaller than λ. The width of this interval is divided by 2 at each iteration, where a linear
program is solved. In the worst case, the initial interval is [a, b] such that a = 0 and b is
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the greatest value of the set used in the first dichotomy, i.e., b is the upper bound on R.
This upper bound is guaranteed to be bounded by Rs. Indeed, greater values correspond
to empty sets of candidate sensors since the uncertainty disc to cover at any instant t is
larger than the range of any sensor. Therefore, in the worst case, the dichotomy iterates
until Rs

2γ < λ where γ the number of iterations. Hence, at most
⌈
lg( Rs

λ
)
⌉

linear programs
are solved in the worst case in this dichotomy.

The time complexity of the spatio-temporal method is the following. The com-
plexity for the computation of the upper bounds Rub and ρub is the addition of the
complexity of the method to maximize ρ (given in [8]) and the method for R presented
in Section 6.1. The number of generated solutions is the integer value

⌈
Rs
ε

⌉
, since Rs

is the largest possible value of R of a feasible solution. For each solution, the method
maximizes ρ as shown in [8], where linear programs are solved for different values
of ρ taken in a discrete set of (2qm)2 values (possible intersections between ticks).
Therefore, the number of solved linear programs is at most

⌈
Rs
ε

⌉
×

⌈
lg

(
(2qm)2

)⌉
.

7. Numerical experiments

In this section, we present several experiments. The objective is to study the effect
of several parameters on the running time of both the spatial robustness problem and the
spatio-temporal problem. Indeed, the complexity of the problem is heavily depending
on the number of sensors, targets, desired precision (both ε and λ), etc. The running
time of our method is expected to be long when the complexity increases and we want
to study the scalability of the method. We would like to know when the running time
is still acceptable. We also study the efficiency of the method and more particularly the
quality of the solutions returned for different values of ε. Indeed, when ε decreases,
the running time increases significantly but more solutions are returned, and a close
approximation of the Pareto front is found. Therefore, with these experiments, we
study the potential trade-off between the running time and the quality of the solutions.

The experiments aim to answer the following research questions:

• RQ 1: How fast is the method with different numbers of sensors?

• RQ 2: How fast is the method with different numbers of targets?

• RQ 3: How good are the solutions produced with different values of ε?

To achieve this, we resort to an instance generator presented in the next subsection.
For each experimentation, the generator produces a set of 50 instances with varying
parameters. The average CPU running times of corresponding instances are reported
in this section, always expressed in seconds. The method is implemented in C++, with
IBM CPLEX 12.7 [1] and all the experiments were run on a computer with Ubuntu
20.04 powered by an Intel Core i7-10850H CPU processor at 2.70 GHz × 12 cores and
16 GBytes of RAM. The method is called with λ = 0.0001 and ε = 1. This default
value of λ produces solutions that are considered of acceptable quality and as it will be
show in the experiments, the value of ε achieves a good trade-off between quality and
running time.
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7.1. Instance generator

The experiments presented in the next sections are run on instances generated with
the method presented here. Each instance is generated randomly with different param-
eters as inputs. These parameters and their default values are the following:

• The number of sensors m is set to 100 by default

• The number of targets n is set to 2 by default

• The interval from which a random level of battery is picked for each sensor is
[200, 300]

All the other parameters (power consumption, sensing and communication ranges,
etc) are the same for all our instances and are reported in Table 5. The generator starts
by randomly deploying the sensors in the 300× 300 area. The estimated trajectories of
the targets are also randomly drawn in the zone with a straight trajectory such that it
starts at instant t = 0 and finishes at time t = 1000. Finally, the coordinates of the base
station are randomly picked inside the range of a randomly selected sensor. β is equal
to 1 in all our experiments.

Parameter Value
Size of the area 300 × 300
pS = pR = pT 1

Sensing range Rs 50
Communication range Rc 100

β 1
Parameter Default value

n 2
m 100

Energy of the sensors [200, 300]

Table 5: Value of the parameters in the instance generator

7.2. Impact of the number of sensors on execution time

In this experiment, we generate 50 instances for different numbers of sensors.
The number of sensors is well known to impact the complexity of the problem and
thus is expected to heavily impact the running time of our method. The different
numbers of sensors tested are {100, 150, 200, 400}. These values represent realistic
({100, 150, 200}) and difficult ({400}) instances with dense and challenging networks.
Lower values are not tested since they may generate infeasible instances due to net-
work disconnectivity. The other parameters for instance generation are the default
values given in Table 5. The average results are reported in Table 6 with the running
time of the discretization process and the number of returned solutions. We also report
the running time only for the spatial optimization and the running time for the entire
spatio-temporal optimization, both excluding the discretization. Note that therefore,
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#Sensors Discretization time (s) Spatial time (s) Spatio-temporal time (s) #Solutions
100 0.004 0.054 0.396 10.26
200 0.036 0.617 10.138 21.60
300 0.153 1.779 45.492 29.00
400 0.487 3.579 104.053 32.98

Table 6: Impact of the number of sensors

the overall process’ running time for one instance is the addition of its discretization’s
time and its spatio-temporal’s time.

As expected, the discretization process needs more running time when the number
of sensors increases. However, it remains low even with 400 sensors. For both the spa-
tial robustness and the spatio-temporal robustness, the running time increases quickly
with the number of sensors. However, in both cases it always stays acceptable since
in average, in the worst case, the running time is less than two minutes. Increasing
the number of sensors also increases the number of generated solutions, which means
that the optimal value of R increases with the number of sensors since it offers more
opportunity to cover the targets.

7.3. Impact of the number of targets on execution time

We now study how the running time is scaling with the number of targets. For that
purpose, we generate 50 instances for different number of targets n ∈ {1, 2, 3, 4, 5}. The
other parameter for instance generation are the default values given in Table 5. For
each tested value, we report in Table 7 the average running time of both the spatial
method and the spatio-temporal method, and the average running time of the dicretiza-
tion process.

#Targets Discretization time (s) Spatial time (s) Spatio-temporal time (s) #Solutions
1 0.003 0.06 0.46 16.62
2 0.003 0.05 0.40 10.26
3 0.004 0.04 0.18 2.78
4 0.006 0.03 0.07 0.58
5 0.007 0.02 0.03 0.06

Table 7: Impact of the number of targets

First of all, the number of generated solutions decreases very fast with the number
of targets. Indeed, the value of R decreases when the number of targets to monitor
increases, and since the number of generated solutions directly depends on R, there are
less solutions when the number of targets increases. With 5 targets, there are only a
few generated solutions and a lot of instances are infeasible. Actually, there is only one
feasible instance with three returned solutions..

0nly the running time of the discretization process increases with the number of
targets, whereas the maximization of ρ and R is achieved faster with more targets in
this experiment. At first sight, the fact that the running time decreases when the number
of targets increases may sound counter-intuitive. Indeed, the problem becomes more
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complex (more decision variables and more constraints) when targets are added. How-
ever, this evolution can be explained by the lower number of generated solutions. For
example, with 1 target, in average the spatio-temporal method requires approximately
0.03s of CPU time per solution. With 5 targets, it is around 0.63s per solution. This
behavior is seen for each tested value, i.e., with more targets, the method always needs
more time to find a solution, and the increase is significant. The average running time
per solution for the overall process is presented in Table 8.

#Targets Running time per solution (s)
1 0.03
2 0.04
3 0.06
4 0.13
5 0.63

Table 8: Average running time required by the overall method to generate a single solution

Additionally, we study the solution process with high number of targets. How-
ever, we also vary the available energy in the batteries of the sensors, in order to avoid
having numerous unfeasible instances. The considered numbers of targets are n ∈
{15, 75, 100, 150, 200}, with respectively {[6000, 8000], [30000, 40000], [40000, 53333],
[60000, 80000], [80000, 106666]} energy available for the sensors. i.e., with 15 targets,
the energy available for each sensor in randomly picked between 6000 and 8000, with
75 it is between 30000 and 40000 and so on. For each tested value, a new set of 50
instances is generated. The objective here is to assess the scalability of our method on
instances with a large number of targets when the number of feasible solutions is not
too low. The average running times are presented in Table 9, similarly to the previous
tables. Additionally, we report the average number of models solved.

#Targets Discretization time (s) Spatial time (s) Spatio-temporal time (s) #Model solved
15 0.05 0.08 2.67 128.5
75 1.31 0.23 8.44 75.98

100 2.33 0.30 11.92 75.62
150 5.45 0.45 19.12 68.24
200 10.74 0.61 27.92 70.42

Table 9: Impact of a very large number of targets

As can be seen, each part of the overall process needs more time when the number
of targets increases. It is an important increase and with 200 targets, the running time
of the overall process is around 40 seconds per instances. This increase affects the
discretization process, which is very sensitive to the number of targets. The method
proposed also needs more time to optimize the stability radii. However, as we can see
in this experiment, the number of linear programs solved is not increasing, and thus the
increase on the running time of the spatio-temporal method is only explained by the
complexity of these linear programs.

Despite these increases, the overall running time stays acceptable and we conclude
that the method is scaling well with the number of targets. From these two first ex-
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periments, we deduce that the number of sensors is a more critical parameter than the
number of targets.

7.4. Impact of ε on solution quality and execution time
In this experiment, we study the impact of ε on both the running time of our method

and on the quality of the set of returned solutions. In order to evaluate this quality, we
use the hypervolume metric [4]. It is one of the most popular metrics to assess the
quality of the sets of solutions with a multi-objective problem. It computes the hyper-
volume between a reference point and the set of returned solutions. The higher the
hypervolume, the better it is. The hypervolume is only used to assess the quality of the
approximation of the Pareto front returned and is not considered in the running time. It
is computed on the set of returned solutions using Pygmo [5], a library of Python pro-
gramming language. The different values tested for ε are {10, 5, 1, 0.1, 0.01}. The first
values ({10, 5}) are expected to generate only a few solutions with poor hypervolumes,
but they are quickly generated. By contrast, the smallest values ({0.1, 0.01}) produce a
lot of good solutions but are expensive to compute. We generate a set of 10 instances
and apply our method with each value of ε on each instance. The results are reported
in Table 10 with the running time of the overall method in seconds, the number of lin-
ear programs solved, the number of weakly non-dominated solutions returned and the
hypervolume. All the values returned are average values over the 50 instances.

ε Spatio-temporal (s) #Models solved #Returned solutions Hypervolume
10 0.15 46.6 2.7 311.69
5 0.18 56.6 4.0 591.16
1 0.40 138.3 14.7 810.41

0.1 2.84 1044.8 133.1 859.52
0.01 27.35 10106.5 1317.8 864.42

Table 10: The method with different values of ε

As expected, the running time is heavily impacted by the value of ε. Indeed, the
method always needs more time with smaller ε values. The running times are small
with the first three values ({10, 5, 1}) but greater with ε = 0.01. It can be easily ex-
plained by the number of returned solutions, and thus the number of models solved,
which depends on the value of ε. However, the running time remains acceptable even
with small ε values, since in that case, the instances are solved in about one minute.

In the case where ε = 0.01, there are approximately 1318 returned solutions in
average, and these solutions are all really close from the Pareto front (only R can be
increased, and by no more than 0.01). With such a value, we can expect the set of
solutions to produce a very good hypervolume since it approaches closely the Pareto
front. This value is used as a reference value for the hypervolume and to study the
efficiency of the sets of solutions returned by the other values of ε. With ε ∈ {1, 0.1},
the hypervolumes are really close from the reference value. It means that the returned
solutions are evenly spread and are likely to be on the Pareto front. However, these
solutions are obtained way faster than with ε = 0.01. The hypervolumes returned with
{10, 5} are much worst and this can easily be explained by the low number of returned
solution, which is only 2.7 and 4.0 in average.
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To conclude on this experiment, the value of ε is very important and defines a
trade-off between the quality of the solutions and the computational effort. The value
ε = 1 seems to be the best trade-off since it produces a good hypervolume, that is not
increasing much with smaller ε, and requires a modest running time.

8. Conclusion

This work proposes a novel formulation of the target tracking problem under spatio-
temporal deviations. It extends the previous work on temporal uncertainties ([8]) by
adding the spatial uncertainties. The problem is therefore to find robust schedules
against both types of uncertainty, using two stability radii. The proposed method
to solve this problem generates a set of solutions that approximate the Pareto front.
This method has been tested through extensive experimentation, testing its scalability
against an increase of the number of sensors and the number of targets. The experi-
mentation concluded that the running times stay relatively low for all the tested values.
Moreover, an additional experiment has been performed to investigate the impact of
the parameter ε which controls the number of generated solutions, their quality and
the computational effort. It shows that good sets of solutions may be returned when
ε is around 1, as this setting keeps the running time reasonably low with acceptable
solution qualities compared to what is obtained with lower ε values.
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[9] Ralf Hartmut Güting and Markus Schneider. Moving objects databases. Elsevier, 2005.

[10] Kathleen Hornsby and Max J Egenhofer. Modeling moving objects over multiple granu-
larities. Annals of Mathematics and Artificial Intelligence, 36(1-2):177–194, 2002.

[11] Hoyoung Jeung, Qing Liu, Heng Tao Shen, and Xiaofang Zhou. A hybrid prediction model
for moving objects. In 2008 IEEE 24th international conference on data engineering, pages
70–79. IEEE, 2008.

[12] Cheng-Hao Kuo, Chang Huang, and Ramakant Nevatia. Multi-target tracking by on-line
learned discriminative appearance models. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 685–692. IEEE, 2010.

[13] Marco Laumanns, Lothar Thiele, and Eckart Zitzler. An efficient, adaptive parameter vari-
ation scheme for metaheuristics based on the epsilon-constraint method. European Journal
of Operational Research, 169(3):932–942, 2006.
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