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Abstract: In this paper, we present a novel approach for the abstraction of monotone systems
with bounded disturbances. The approach is data-driven and uses a given set of samples of
the (unknown) dynamics of the system to compute an abstraction defined on partitions of the
state and input spaces. The proposed method is efficient as its computational complexity is
linear in the number of samples and in the size of the partitions. Moreover, the abstraction is
shown to be minimally conservative in the absence of disturbances. We show that the resulting
symbolic model is itself a monotone transition system and is related to the original system by an
alternating simulation relation. We present some numerical experiments to show the effectiveness
of the approach and to show how the choice of the partitions or the number of samples affects
the quality of the approximation.
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1. INTRODUCTION

Symbolic control is a computational approach to controller
synthesis, based on the use of discrete abstractions (a.k.a.
symbolic models) of continuous dynamical systems and of
discrete controller synthesis techniques (see e.g. Tabuada
(2009); Belta et al. (2017)). The main advantages of sym-
bolic control are as follows. Firstly, it can be applied to
general classes of nonlinear systems with input and state
constraints, as long as one is able to compute an over-
approximation of the system’s reachable sets, using e.g.
approaches based on mixed-monotonicity (Coogan and
Arcak (2017)) or on growth bounds (Reissig et al. (2016)).
Secondly, since controller synthesis is handled using algo-
rithmic approaches developed in the fields of supervisory
control (Ramadge and Wonham (1987)) or formal meth-
ods (Bloem et al. (2012)), the type of specifications that
can be addressed is broad: safety and reachability (Gi-
rard (2012)), behaviors described by automata (Pola and
Di Benedetto (2019)), or temporal logic formulas (Belta
et al. (2017)).

While symbolic control is usually presented as a model-
driven technique, some approaches such as those for mono-
tone systems (Meyer et al. (2015)) only require us to be
able to sample the system dynamics on a given grid of
states and inputs, and it seems natural to extend these
techniques towards a purely data-driven approach. In this
paper, we present a data-driven approach to abstraction of
monotone systems with disturbances. We assume that we
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are given a set of samples of the dynamics of the system.
Contrarily to model-driven approaches, the samples are
assumed to be taken at random and given a priori. In
addition to the data, we assume that we know bounds on
the amplitude of disturbances affecting the system. Using
only this information, we present an approach to compute
a symbolic model of the system defined on partitions of
the state and input spaces. The symbolic model and the
original system are shown to be related by an alternating
simulation relation (Tabuada (2009)) and therefore, the
symbolic model can be used to synthesize controllers that
are known to be correct by design. Moreover, we show
that in the absence of disturbances, the abstraction is
minimally conservative in the sense that it is alternatingly
simulated by all monotone systems that are consistent with
the data, but not more. In addition, we show that the sym-
bolic model is itself a monotone transition system, which
makes it amenable to efficient symbolic control synthesis
techniques presented in (Saoud et al. (2019)).

There are few approaches in the literature that deal with
data-driven symbolic control. In (Hashimoto et al. (2020)),
an approach is presented for Lipschitz dynamical systems
with partially unknown dynamics, the unknown dynamics
being assumed to belong to some regression kernel. The ap-
proaches in (Milanese and Novara (2004); Sadraddini and
Belta (2018)) also apply to Lipschitz dynamical systems
with known bounds on the Lipschitz constants but use
piecewise affine abstractions. In comparison, our approach
does not assume that the system is Lipschitz but that
it is monotone. While monotonicity is a strong property,
monotone systems can be found in many practical applica-
tions such as adaptive cruise control (Saoud et al. (2019)),



temperature regulation in buildings (Meyer et al. (2015))
or power networks (Zonetti et al. (2019)), to name a few.

In our previous work (Makdesi et al. (2021)), only the
case without disturbance was considered, meanwhile, the
approach presented in this paper can be applied to mono-
tone systems with bounded disturbances. Moreover, the
complexity of the approach presented in this paper is linear
with respect to the number of samples of the dynamics and
to the size of the partitions, when the complexity of the
previous approach was polynomial of order n + m where
n and m are dimensions of state and input spaces.

The paper is organized as follows. In Section 2, we provide
some preliminaries on monotone transition systems and
their abstractions. In Section 3, we give a formal statement
of the problem under consideration in the paper. Section 4
presents the main contributions of the paper by describing
an efficient data-driven approach to abstraction of mono-
tone systems with disturbances. Finally, Section 5 presents
some numerical experiments to assess the effectiveness of
our approach and to show how the amount of data and
the choice of state and input space partitions affect the
quality of the approximation.

2. PRELIMINARIES

In this section, after defining some notations, we introduce
the necessary background on monotone transition systems.

2.1 Notations

R, R+
0 and N denote the sets of real, non-negative real,

and natural numbers, respectively. For a vector x ∈ Rn,
we denote by xi its i-th coordinate, i = 1, . . . , n. We define
a partial order � on Rn as follows: for x, x′ ∈ Rn x � x′ if
and only if xi ≤ x′i, for all i = 1, . . . , n. Similarly, x ≺ x′

if and only if xi < x′i, for all i = 1, . . . , n. We denote
[x, x′] = {y ∈ Rn| x � y � x′} and [x, x′) = {y ∈ Rn| x �
y ≺ x′}. The empty set is denoted by ∅. Given a set X we
denote 2X to the set of subsets of X. A relation R ⊆ X×Y
is identified with the set-valued map R : X → 2Y where
R(x) = {y ∈ Y |(x, y) ∈ R}.

2.2 Transition systems

Transition systems provide a unifying framework for con-
sidering continuous and discrete systems:

Definition 1. A transition system Σ is a tuple Σ =
(X,U, F, Y,H), where X is a set of states, U is a set of
inputs, F : X ×U → 2X is a transition relation, Y is a set
of outputs, and H : X → Y is an output map.

Σ is finite if X and U are finite and it is said to be
deterministic if for all x ∈ X and all u ∈ U , F (x, u) is
singleton. We call any x′ ∈ F (x, u) a u-successor of the
state x. In this work, we are assuming, for simplicity, that
for all x ∈ X, for all u ∈ U , F (x, u) 6= ∅.
Alternating simulation relations make it possible to relate
the behaviors of transition systems (see e.g. Tabuada
(2009)). Let us consider two transition systems, Σi =
(Xi, Ui, Fi, Yi, Hi), i = 1, 2 sharing the same sets of
outputs (Y1 = Y2 = Y ).

Definition 2. R ⊆ X1 × X2 is an alternating simulation
relation from Σ1 to Σ2 if the following conditions are
satisfied:

• for all x1 ∈ X1, there exists x2 ∈ X2 such that
(x1, x2) ∈ R;

• for all (x1, x2) ∈ R, H1(x1) = H2(x2);
• for all (x1, x2) ∈ R, for all u1 ∈ U1, there exists
u2 ∈ U2 such that for all x′2 ∈ F2(x2, u2), there exists
x′1 ∈ F1(x1, u1) satisfying (x′1, x

′
2) ∈ R.

We say that Σ1 is alternatingly simulated by Σ2 if there
exists an alternating simulation relation from Σ1 to Σ2.
This is denoted by Σ1 �AS Σ2.

It can be shown (Tabuada (2009)) that if Σ1 is alternat-
ingly simulated by Σ2, then any controller for Σ1 can be
refined to a controller for Σ2 so that the closed loop output
behavior of Σ2 is included in that of Σ1. This means that
a controller synthesis problem with a specification on the
output space for Σ2 can be solved by considering the same
problem for Σ1.

2.3 Monotone systems

We now introduce the class of monotone transition
systems. Let us consider the transition system Σ =
(X,U, F, Y,H), where X ⊆ Rn, U ⊆ Rm. Considering
the partial order � on Rn and Rm, we define monotone
systems as follow:

Definition 3. Σ = (X,U, F, Y,H) is a monotone transition
system if for all x, x′ ∈ X, u, u′ ∈ U with x � x′, u � u′,

∀y ∈ F (x, u), ∃y′ ∈ F (x′, u′), y � y′, and

∀y′ ∈ F (x′, u′), ∃y ∈ F (x, u), y � y′.
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Fig. 1. Example of transitions of a monotone transition
system.

Figure 1 shows the transition relations of two pairs of
states and inputs. We can see that under our definition for
the monotonicity, we do not require all the u′-successor
of x′ to be bigger than u-successor of x. In the case
of deterministic systems, the equation in Definition 3
becomes:

x � x′, u � u′ =⇒ F (x, u) � F (x′, u′) (1)

which coincides with the classical definition of monotone
systems (see e.g. Coogan and Arcak (2017)).

3. PROBLEM FORMULATION

Let us consider a transition system Σ = (X,U, F, Y,H),
defined on sets of states X = Rn and inputs U = Rm and



whose dynamics is given by the set-valued map F : X ×
U → 2X .

F (x, u) = F(x, u) +W, x ∈ X,u ∈ U (2)

where F : X × U → X is an unknown monotone
deterministic map (i.e. satisfying (1)), and W ⊆ Rn is a
bounded set of disturbances with known lower and upper
bounds w, w ∈ Rn, i.e. W = [w,w]. It is straightforward to
show that Σ is a monotone transition system. The output
set Y and the output map H will be specified later.

In the following, we consider the system Σ as a black box,
and we only have access to data generated by the system.
Let us assume that we are given data consisting of a set
of transitions

D = {(xk, uk, yk) | yk ∈ F (xk, uk), k = 1 . . .K}.

The main problem considered in this paper is that of
computing from the data D, a symbolic model ΣD that
is alternatingly simulated by Σ. Indeed, as mentioned
previously, that would make it possible to use ΣD to
synthesize a controller for Σ.

For i = 1, . . . , n, j = 1, . . . ,m, let be given finite partitions
(χi

qi)qi∈Qi and (νjpj )pj∈P j of R where Qi = {0, . . . , N i},
P j = {0, . . . ,M j} and

χi
0 = (−∞, ai1)
χi
qi = [aiqi , a

i
qi+1), qi = 1, . . . , N i − 1

χi
Ni = [aiNi ,+∞)

νj0 = (−∞, bj1)

νjpj = [bjpj , b
j
pj+1), pj = 1, . . . ,M j − 1

νjMj = [bjMj ,+∞)

where ai1 < · · · < aiNi and bj1 < · · · < bjMj . Let us define

Q = Q1 × · · · ×Qn and P = P 1 × · · · × Pm and consider
the finite rectangular partitions (Xq)q∈Q, (Up)p∈P of X
and U , given for q = (q1, . . . , qn) and p = (p1, . . . , pm) by

Xq = χ1
q1 × · · · × χn

qn , Up = ν1p1 × · · · × νmpm .

We denote by xq, xq, up, up the infimum and supremum,
with respect to partial order �, of Xq and Up. Note
that some components may be infinite if the intervals are
unbounded.

We now define the set of outputs of Σ as Y = Q and its
output map as H given by H(x) = q if and only if x ∈ Xq.

We now provide a formal statement of our problem:

Problem 1. Given disturbance lower and upper bounds
W , W , the data set D and partitions (Xq)q∈Q, (Up)p∈P ,
compute a symbolic model ΣD = (Q,P, F ′, Y,H ′) such
that ΣD �AS Σ.

4. DATA DRIVEN SYMBOLIC MODEL

In this section, we provide a solution to Problem 1. Based
on the data set and the given partitions, we are looking
for a minimal over-approximation of the unknown system
dynamics.

4.1 Over-approximation of the transition relation

We define a box-shaped map G : Q × P → 2X with
an upper bound G and a lower bound G: i.e. G(q, p) =

[G(q, p), G(q, p)], for all q ∈ Q, p ∈ P . G(q, p) is defined
component-wise as follows for i = 1, . . . , n:

G
i
(q, p) =


min

(xk,uk)�(xq,up)
yik + wi − wi

if ∃(xk, uk) � (xq, up),

+∞ otherwise.

(3)

Similarly, G(q, p) is defined component-wise as follows for
i = 1, . . . , n:

G i(q, p) =


max

(xk,uk)�(xq,up)
yik + wi − wi

if ∃(xk, uk) � (xq, up),

−∞ otherwise.

(4)

The following result shows that G provides an over-
approximation of the unknown map F :

Proposition 4. For all q ∈ Q, p ∈ P , for all x ∈ Xq, u ∈ Up,

F (x, u) ⊆ G(q, p).

Proof. Let us consider q ∈ Q, p ∈ P , x ∈ Xq, u ∈ Up.
If there exists (xk, uk) � (xq, up), we have for all i ∈
{1, . . . , n}:

F i(xq, up) + wi ≤ F i(xk, uk) + wi

for all k such that (xk, uk) � (xq, up). Therefore,

F i(xq, up) + wi ≤ min
(xk,uk)�(xq,up)

F i(xk, uk) + wi.

We also have, for all k = 1, . . . ,K,

F i(xk, uk) + wi ≤ yik.
Hence,

F i(xq, up) + wi ≤ min
(xk,uk)�(xq,up)

yik + wi − wi

≤ G i
(q, p).

We have also F i(xq, up) + wi ≤ G i
(q, p) when G

i
(q, p) =

+∞. In a similar way we can show that F i(xq, up) +

wi ≥ G i(q, p). Hence, F (x, u) ⊆ G(q, p). 2

Actually, we can claim a slightly stronger result than that
of Proposition 4:

Claim 5. Let F̃ : X × U → 2X be of the form (2) and

such that yk ∈ F̃ (xk, uk), for all k = 1, . . . ,K, we have

F̃ (x, u) ⊆ G(q, p), for all q ∈ Q, p ∈ P , for all x ∈ Xq,
u ∈ Up.

The proof of the previous claim is identical to that of
Proposition 4 and is therefore omitted. The previous claim
essentially states that G is an over-approximation of all
maps of the form (2) that are consistent with the data. The
following result states that in the absence of disturbances,
it is actually the minimal over-approximation:

Proposition 6. Let w = w = 0, let G̃ : Q × P → 2X be a
box-shaped map such that the statement of Claim 5 holds.
Then, we have for all q ∈ Q, p ∈ P , G(q, p) ⊆ G̃(q, p).

Proof. Let us consider q ∈ Q, p ∈ P . From (3), we get
that for all (xk, uk) � (xq, up), F(xk, uk) � G(q, p). By



(3) and monotonicity of F , we also have for all (xk, uk) �
(xq, up), F(xk, uk) � G(q, p). Then, we can choose a

monotone map F̃ : X × U × X such that F̃(xk, uk) =

F(xk, uk), for all k = 1, . . . ,K and F̃(xq, up) = G(q, p).

Since Claim 5 holds, it follows that F̃(xq, up) ∈ G̃(q, p).

Therefore, G(q, p) ∈ G̃(q, p). Using a similar approach, we

can show that G(q, p) ∈ G̃(q, p). Since G̃ is a boxed-shaped

map, we get [G(q, p), G(q, p)] ⊆ G̃(q, p). 2

The previous proposition shows that the conservatism of
our approach is minimal in the absence of disturbances. In
the presence of disturbances, the absence of information
on the actual value of the disturbance at samples prevents
us from achieving minimal conservatism.

4.2 Resulting symbolic model

We can now define the following transition system ΣD =
(Q,P, F ′, Y,H ′) where for all q ∈ Q, p ∈ P , F ′(q, p) =
{q′ ∈ Q| Xq′ ∩G(q, p) 6= ∅} and H ′(q) = q.

Let us remark that, formally Q and P are finite subsets of
Rn and Rm so they are equipped with partial orders. Let
us state the main result of the paper:

Theorem 7. ΣD �AS Σ and the alternating simulation
relation is given by

R = {(x, q) ∈ X ×Q| x ∈ Xq}.
Moreover, the symbolic model ΣD is a monotone transition
system.

Proof. Let us start by the alternating simulation relation.
It is obvious from the definitions of R,H,H ′ that the first
two conditions of the alternating simulation relation are
satisfied. For the last condition, we have from Proposition
4, F (x, u) ⊆ G(q, p) for all q ∈ Q, p ∈ P , for all x ∈ Xq,
u ∈ Up. Therefore, for all (x, q) ∈ R, for all p ∈ P , there
exists u ∈ Up such that for all x′ ∈ F (x, u), where x′ ∈ Xq′ ,
x′ ∈ G(q, p) implies that we have q′ ∈ F ′(q, p). From the
definition of x′, q′ we have (x′, q′) ∈ R.

We now prove the monotonicity of the symbolic model.
Let q1, q2 ∈ Q, p1, p2 ∈ P with q1 � q2 and p1 � p2. Let
us consider the set of points

K+(qi, pi) = {(xk, uk) | (xk, uk) � (xqi , upi
)}, i = 1, 2.

Let us remark that (q1, p1) � (q2, p2) implies that
(xq1 , up1

) � (xq2 , up2
), which in turn implies that we have

K+(q2, p2) ⊆ K+(q1, p1). It follows from (3) that

G(q1, p1) � G(q2, p2). (5)

Equation (4), with the same reasoning, leads to

G(q1, p1) � G(q2, p2). (6)

Then, let q′1 ∈ F ′(q1, p1), we have that q′1 � q′1, where
q′1 is such that G(q1, p1) ∈ Xq′1

. Let q′2 be such that

G(q2, p2) ∈ Xq′2
, then from (5), it follows that q′1 � q′2,

and therefore that q′1 ∈� q′2. Also, by definition of F ′, we
get that q′2 ∈ F ′(q2, p2). Along the same lines and using
(6), we can prove that for all q′2 ∈ F ′(q2, p2), there exists
q′1 ∈ F ′(q1, p1) such that q′1 ∈� q′2. Hence, the transition
system ΣD is monotone. 2

Knowing that ΣD is a monotone system, makes it possible
to use efficient discrete controller synthesis techniques
(Saoud et al. (2019)).

We would like to end the section with a discussion regard-
ing the computational complexity of the approach. The
computational cost of computing the symbolic model is
dominated by that of computing the functions G and G.
Using equations (3) and (4), it appears that this can be
done with a complexity in O(N × |Q| × |P |), i.e. linear
with respect to the number of data samples and also with
respect to the size of the partition.

5. NUMERICAL EXAMPLE

In this section, we report some numerical experiments to
show the performance of our approach.

Let us consider a model with two vehicles moving in one
lane on an infinite straight road. The leader is uncontrol-
lable (vehicle 2) while the follower is controllable (vehicle
1). A discrete-time approximation of this model is given
by equations:

d(k + 1) = d(k) + (v1(k)− v2(k))T0 + w1(k)

v1(k + 1) = v1(k) + α(u(k), v1(k))T0 + w2(k)

v2(k + 1) = v2(k) + w3(k)

(7)

Here u(k) is the control input which is the torque applied
to the wheels, and d(k) is the signed distance between
the vehicles. w(k) = [w1(k), w2(k), w3(k)] are disturbances
which belong to a rectangular set W with known lower and
upper bounds. α is a nonlinear function given by

α(u, v) = u−M−1(f0 + f1v + f2v
2).

The vector of parameters f = (f0, f1, f2) ∈ R3
+ describes

road friction and vehicle aerodynamics whose numeri-
cal values are taken from (Nilsson et al. (2015)): f0 =
51 N, f1 = 1.2567 N s/m, f2 = 0.4342N s2/m2. For the
rest of parameters, we chose M = 1370 kg, T0 = 0.5 s.

The system can be made monotone by making the change
of variable v2(k) = −v2(k). We only use this model to
generate the random set of data points which then is used
by the algorithm to calculate the symbolic abstraction.

We sample the component of the data points, input and
disturbance from uniform distributions in the sets

XD = [−100, 0]× [10, 30]× [−22,−18]

UD = [−3, 3]

WD = [−0.1, 0.1]× [−0.1, 0.1]× [−0.1, 0.1]

We define the partitions for each coordinate of the state
space as follow:

(−∞, ai1), [ai1,
1

N i
(aiNi − ai1) + ai1), . . . ,

[
N i − 1

N i
(aiNi − ai1) + ai1, a

i
Ni), [aiNi ,+∞)

with [a11, a
1
N1 ] × [a21, a

2
N2 ] × [a31, a

3
N3 ] ⊂ XD. In a similar

way we define the partitions for u:

(−∞, b1), [b1,
1

M
(bM − b1) + b1), . . . ,

[
M − 1

M
(bM − b1) + b1, bM ), [bM ,+∞)

with [b1, bM ] ⊂ UD.

In order to measure the conservatism in our abstraction
we introduce the performance criterion



µ(D, Q, P ) =

∑
q,p

(
vol(Xq × Up)×

∑
q′∈F ′(q,p) vol(Xq′)

)
∑

q,p (vol(Xq × Up)) vol(WD)

∀q ∈ Q,∀q′ ∈ Q,∀p ∈ P such that

Xq ⊆ XD, X ′q ⊆ XD, Up ⊆ UD
Intuitively, µ(D, Q, P ) measures the degree of conser-
vatism of the abstraction. The denominator represents the
volume of the unknown map F for the part of space where
we can find an approximation, whereas the numerator
represents the volume of our over-approximation. µ can
take its value in the interval [1,∞) and the the smaller its
value is, the more accurate the abstraction.

5.1 Abstraction

For our first experiment, we fixed the partitions and
computed the abstraction using different numbers of data
points. For a given number of data points, we sampled
five different random sets of data, and calculated the
associated abstraction. For the partitions, we chose N1 =
30, N2 = 30, N3 = 20, M = 12, a11 = −80, a1N1 =
−20, a21 = 15, a2N2 = 25, a31 = −21.5, a3N3 = −18.5, b1 =
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Fig. 3. Average value of µ(D, Q, P ) with respect to the
number of data points

−2.5, bM = 2.5. In Figure 2, the average times needed to
compute the abstraction for the five sets of samples are
plotted with respect to the number of data points. We can
see that the computation time increases linearly with the
number of data points. In Figure 3, the average values of
µ are plotted with respect to the number of data points.
We can see how increasing the number of data points can
reduce the conservatism of our abstraction.

For the second experiment, we fixed the data set D, but
changed the size of the partitions. For each instance, we
increased all the values of N1, N2, N3,M and calculated
the abstraction. We chose a number of data points N =
104, and we fixed the values a11 = −80, a1N1 = −20, a21 =
15, a2N2 = 25, a31 = −21.5, a3N3 = −18.5, b1 =
−2.5, bM = 2.5. In Figure 4, we can see how the time
of execution increases linearly with the size of partitions.
Figure 5 shows how increasing the number of partition
elements also improves the abstraction.

5.2 Controller synthesis

We briefly show that our abstractions are suitable for
controller synthesis purposes. Since the leader vehicle is
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Fig. 5. µ(D, Q, P ) with respect to the number of elements
of the partitions



uncontrollable, it is natural to consider a specification
given under the form of the following assume-guarantee
contract:

∀k ∈ N v2(k) ∈ [v2, v2] =⇒ (8)

∀k ∈ N, v1(k) ∈ [v1, v1] ∧ d(k) ∈ [d, d].

Essentially, the specification states that if the velocity of
the leader remains within bounds [v2, v2], then the velocity
of the follower and the distance remain within bounds
[v1, v1] and [d, d], respectively. In the following, we consider
the numerical values d = −80, d = −20, v1 = 15, v1 = 25,
v2 = −21.5, v2 = −18.5.

The synthesis of symbolic controllers enforcing assume-
guarantee contracts such as (8) has been considered in
(Saoud et al. (2020)) and we use similar techniques in the
present case. The abstraction was computed based on a
data set of 106 samples with the same partition as that
reported in the first experiment above. The controllable set
of the resulting symbolic controller is shown on Figure 6.

Fig. 6. Controllable set of the symbolic controller enforcing
the assume-guarantee contract (8)

6. CONCLUSION

In this paper, we presented a data-driven approach for
computing abstractions of monotone systems. The ap-
proach is computationally tractable and the abstractions
can be used to design controllers that are correct by de-
sign. In the future, we would like to develop data-driven
approaches to estimate the bounds on the disturbances,
which currently are assumed to be known. We also aim at
developing similar approaches for other classes of systems,
such as e.g. Lispchitz continuous systems. We would also
like to extend our approach to refine symbolic models and
controllers online while collecting samples of closed loop
behaviors.
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