
HAL Id: hal-03216643
https://hal.science/hal-03216643

Submitted on 4 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-Driven Abstraction of Monotone Systems
Anas Makdesi, Antoine Girard, Laurent Fribourg

To cite this version:
Anas Makdesi, Antoine Girard, Laurent Fribourg. Data-Driven Abstraction of Monotone Systems.
Learning for Dynamics and Control Conference, Jun 2021, Zurich, Switzerland. �hal-03216643�

https://hal.science/hal-03216643
https://hal.archives-ouvertes.fr

Proceedings of Machine Learning Research vol 144:1–12, 2021

Data-Driven Abstraction of Monotone Systems *

Anas Makdesi ANAS.MAKDESI@L2S.CENTRALESUPELEC.FR

Antoine Girard ANTOINE.GIRARD@L2S.CENTRALESUPELEC.FR
Université Paris-Saclay, CNRS, CentraleSupélec
Laboratoire des Signaux et Systèmes
91190, Gif-sur-Yvette, France

Laurent Fribourg FRIBOURG@LSV.FR

Université Paris-Saclay, CNRS, ENS Paris-Saclay
Laboratoire Méthodes Formelles
91190, Gif-sur-Yvette, France

Abstract
In this paper, we introduce an approach for the data-driven abstraction of monotone dynamical
systems. First, we introduce a set-valued simulating map, which over-approximates the dynamics
of an unknown monotone system, using only a set of transitions generated by it. We establish the
minimality of the introduced simulating map. Then, we show that the system, with this map as its
transition relation, is equivalent (in the sense of alternating bisimulation) to a finite-state system.
This equivalence enables the use of well-established symbolic control techniques to synthesize
controllers. We show the effectiveness of the approach on a safety controller synthesis problem.
Keywords: Monotone transition systems, data-driven control, symbolic control, abstraction.

1. Introduction

Abstraction-based synthesis techniques have been gaining momentum in recent years (see e.g.
Tabuada (2009), Belta et al. (2017) and the references therein). Using those techniques, we can
build a finite-state approximation of a dynamical system, called “symbolic abstraction”. Then,
controllers for the finite-state approximation are synthesized using algorithmic approaches adopted
from the fields of supervisory control (Ramadge and Wonham (1987)), or formal methods (Bloem
et al. (2012)). The synthesized controllers can address broad types of specifications such as safety
and reachability (Girard (2012)), behaviors described by linear temporal logic (Baier and Katoen
(2008), Belta et al. (2017)) or finite automata (Pola and Di Benedetto (2019), Sinyakov and Girard
(2019)). Those specifications go beyond the traditional properties, such as stability, to describe a
desired behavior of the controlled system over time. The synthesized controllers can then be refined
to controllers for the original system if some behavioral relationship relates the symbolic abstrac-
tion with the original system. In such cases, the refined controllers are “correct by construction”.
An example of such a relation is the alternating (bi)-simulation relation (Tabuada (2009)), or the
feedback refinement relation (Reissig et al. (2016)).

Although symbolic control is essentially a model-driven technique, we present in this paper
a data-driven approach to calculate the symbolic abstraction. Starting from a set of transitions

* This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 725144).

© 2021 A. Makdesi, A. Girard & L. Fribourg.

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

generated from an unknown monotone system, we find a simulating map over-approximating the
dynamics of any system capable of producing these transitions. This simulating map is minimal
in the sense that it is included in any other map doing the same work. We then calculate a sym-
bolic abstraction of the system represented by this simulating map, and we prove the existence of
alternating bisimulation relation between them.

Similar work to compute symbolic abstractions from data has been done in (Sadraddini and
Belta (2018), Hashimoto et al. (2020)), but while they require bounds on the system continuity
in a Lipschitz sense, our method does not have this requirement. We rather study the class of
monotone systems and build our data-driven abstraction based only on the monotonicity property
of the system.

Monotone systems can be found in many applications such as power networks (Zonetti et al.
(2019)), traffic networks (Kim et al. (2017)), and biomedical systems (Angeli and Sontag (2003)).
Meyer et al. (2015) applied symbolic control methods on a monotone temperature regulation system
by only sampling the system dynamics on a given grid of states and inputs. Saoud et al. (2019) pre-
sented an efficient symbolic control synthesis technique for monotone systems, which was applied
on a vehicle platooning problem.

The paper is organized as follows. In Section 2, some required preliminaries are provided.
In Section 3, we describe an approach to compute a set-valued map that over-approximates the
true system dynamics. In Section 4, we show that the dynamical system induced by this map is
alternatingly bisimilar to a finite-state abstraction. Finally, In Section 5, we show the effectiveness
of our approach by studying a cruise control problem.

2. Preliminaries

In this section, we define some notations and introduce the class of monotone dynamical systems
under consideration in this paper.

2.1. Notation

R, R+
0 , and N denote the sets of real, non-negative real, and natural numbers, respectively. The

empty set is denoted by ∅. Given a set X , we denote 2X to the set of subsets of X . We define the
partial order � on Rn as follows. Let x = (x1, . . . , xn), x′ = (x′1, . . . , x

′
n) in Rn, we say that:

x � x′ ⇐⇒ (xi ≤ x′i, ∀i = 1, . . . , n).

If x � x′ then x′ � x. A relation R ⊆ X × Y is identified with the set-valued map R : X → 2Y

where R(x) = {y ∈ Y |(x, y) ∈ R}. The domain of R is dom(R) = {x ∈ X | R(x) 6= ∅}. The
Cartesian product of the indexed sets (Xi)i∈I is denoted by

∏
i∈I

Xi.

2.2. Monotone systems

First, let us consider a discrete-time dynamical system of the form:

x+ ∈ F (x, u), x ∈ X,u ∈ U (1)

where F : X × U → 2X is a nonempty set-valued map, X ⊆ Rn, U ⊆ Rm. We say that F is
deterministic if for all x ∈ X , u ∈ U , F (x, u) is a singleton (in this case we identify the set-valued

2

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

map F with the classical map F : X × U → X), otherwise it is said to be non-deterministic. We
consider a partial order on the set of states Rn and the set of inputs Rm.

Definition 1 F is monotone if for all x, x′ ∈ X , u, u′ ∈ U with x � x′, u � u′,

∀y ∈ F (x, u), ∃y′ ∈ F (x′, u′), y � y′, and

∀y′ ∈ F (x′, u′), ∃y ∈ F (x, u), y � y′.

x1

x2

x1

x2

x′

x u

u′
F (x′, u′)

F (x, u)

Figure 1: The set-valued image of two points, one is larger than the other and the map is monotone

Figure 1 shows a set-valued image of two points. Under the previous monotonicity definition,
we do not require all the points in the image of x′ to be larger than the points in the image of x. In
the case where F is deterministic, Definition 1 becomes:

x, x′ ∈ X,u, u′ ∈ U, x � x′, u � u′ =⇒ F (x, u) � F (x′, u′)

which resembles the ordinary definition of monotone functions.

3. Learning monotone systems from data

In this section, we present a data-driven approach to compute an optimal and guaranteed over-
approximation of an unknown monotone map, using only a given set of transitions generated by
it.

3.1. Formulation

We are given a set of transitions D = {(xk, uk, x′k)| k = 1, . . . , N}, this data has been generated
by an unknown deterministic and monotone map F̃ : X × U → X .

Definition 2 A deterministic map F : X × U → X is consistent with data D if:

• F is monotone;

• F (xk, uk) = x′k, k = 1, . . . , N .

Let us remark that the true unknown map F̃ is consistent with the data. However, there are generally
an infinity of maps consistent with the data D. We denote the set of consistent maps by C(D). We
aim at computing a set-valued map that captures all of them.

3

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

x1

x2

x1

x2x
G̃(x, u)

1

2

3
4

5

6

7

1’

2’

3’
4’

5’

6’

7’

u

Figure 2: Data points (left) and their successors (right). On the left, the point x is smaller than
the points K+ = {4, 5, 7} and bigger than the points K− = {1, 2}. On the right, the
set-valued map G̃(x, u) is represented by the purple area.

Definition 3 A set-valued map G : X × U → 2X simulates D if:

• It is monotone;

• For all F ∈ C(D), for all x ∈ X , u ∈ U , F (x, u) ∈ G(x, u).

A map G, simulating D, captures the true unknown map F̃ : for all x ∈ X , u ∈ U , F̃ (x, u) ∈
G(x, u). There are generally an infinity of maps that simulates D. We denote the set of simulating
maps by S(D).

Definition 4 G̃ : X × U → 2X is the minimal simulating map of D if:

• It simulates D;

• For all G ∈ S(D), for all x ∈ X , u ∈ U , G̃(x, u) ⊆ G(x, u).

The following proposition provides the expression of the minimal simulating map. Figure 2 illus-
trate the proposed map.

Proposition 5 There exists a unique minimal simulating map of D given by

G̃(x, u) =

 ⋂
k∈K−(x,u)

{y ∈ X| x′k � y}

 ∩
 ⋂

k∈K+(x,u)

{y ∈ X| y � x′k}


where

K−(x, u) = {k | xk � x, uk � u}, K+(x, u) = {k | x � xk, u � uk}.

Proof Let us start with existence. Let x, x? ∈ X , u, u? ∈ U with x � x?, u � u?. We define

y = (max
k∈K−(x,u)

x′k,1, . . . , max
k∈K−(x,u)

x′k,n),

where x′k,i is the ith component of the kth data point’s successor. The point y represent the smallest
point in the image G̃(x, u) because it is the smallest point in the intersection

⋂
k∈K−(x,u){y ∈

4

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

X| x′k � y}. For example, in the case of Figure 2 the point y is (x′2,1, x
′
1,2). y belongs to G̃(x, u)

and because the partial order relation is transitive, we can say that xk � x � x? and uk � u � u?

for all k ∈ K−(x, u), which mean that the set
⋂

k∈K−(x?,u?){y ∈ X| x′k � y} is included in the set⋂
k∈K−(x,u){y ∈ X| x′k � y}. Therefore, we now have:

∀y? ∈ G̃(x?, u?), y? � y ∈ G̃(x, u). (2)

Let us also define the point

y? = (min
k∈K+(x?,u?)

x′k,1, . . . , min
k∈K+(x?,u?)

x′k,n).

y? is largest point in G̃(x?, u?) and we know that x � x? � xk and u � u? � uk for all k ∈
K+(x?, u?). In the same way as above we can say:

∀y ∈ G̃(x, u), y � y? ∈ G̃(x?, u?). (3)

From (3) and (2) G̃ is monotone.
For all F ∈ C(D), for all x ∈ X , u ∈ U , F is monotone which implies that F (x, u) � x′k

for all k such that k ∈ K−(x, u) and F (x, u) � x′k for all k such that k ∈ K+(x, u). Therefore,
F (x, u) ⊆ G̃(x, u). Added to the fact that G̃ is monotone, we now have that G̃ simulates D.

Then, we want to prove that for all G ∈ S(D), for all x ∈ X , u ∈ U , G̃(x, u) ⊆ G(x, u), so let
us assume that it is wrong and that there exists x? ∈ X , u? ∈ U such that there is y ∈ G̃(x?, u?) but
y /∈ G(x?, u?). Let us consider the deterministic and monotone map F satisfying F (xk, uk) = x′k
for all k = 1, . . . , N and F (x?, u?) = y. Then, F ∈ C(D) but F (x?, u?) * G(x?, u?), which
means that G does not simulate D, and we reach a contradiction.

We now prove uniqueness. If G̃0 and G̃1 both are minimal simulating map, then G̃0(x, u) ⊆
G̃1(x, u) and G̃1(x, u) ⊆ G̃0(x, u) which mean G̃1(x, u) = G̃0(x, u) for all x ∈ X , u ∈ U .

It is worth noting that because G̃(x, u) is the intersection of areas bounded from above and
from below by the successors of the data points, adding new data points will make G̃(x, u) more
resembling to the true map F̃ . This can be expressed in following property:

D ⊆ D′ ⇒ G̃D′ ⊆ G̃D

where G̃D and G̃D′ denote the minimal simulating map of D and D′ respectively.

3.2. Partitioning of the sets of states and inputs

Let us assume that sets of states and inputs are rectangular: X = [a1, b1] × · · · × [an, bn] and
U = [c1, d1]× · · · × [cm, dm]. We can state the following result:

Proposition 6 There exist finite rectangular partitions (Xq)q∈Q, (Up)p∈P of X and U , a finite
collection (Yq,p)q∈Q,p∈P of rectangular subsets of X such that for all x ∈ Xq, u ∈ Up, G̃(x, u) =
Yq,p.

Proof First, let us introduce the following grid: on each axis of the state space, e.g., axis i, i ∈
{1, . . . , n}, we sort the corresponding components of all the data points (i.e., sort xk,i, k = 1, . . . , N),
meaning that on each axis, we have xk1i ,i ≤ · · · ≤ xkNi ,i. The sorted values on the axes of the state

5

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

space define a grid. Inputs from the data set define a similar grid on the input space. Those grids will
enclose hyperrectangle cells. Later, we will see that the value of the map G̃ will stay the same for all
the points inside a hyperrectangle in the state space, under any input inside a particular hyperrectan-
gle in the input state. To establish the finite rectangular partitions, we should also address the points
of the grids (boundaries between the cells). That is what we are doing next. To describe the partition
we will use two sets of symbolsQ = Q′∪Q′′, whereQ′ = {1, . . . , N} andQ′′ = {1, . . . , N−1}n.
The first set of symbols Q′ is dedicated to the data points, meaning:

∀q ∈ Q′, Xq = {xq}.

A symbol q ∈ Q′′ from the second set is a tuple q = (q1, . . . , qn); It determines the hyperrectangle
position on each axis (i.e., qi is an index that refers to one of the values in the list of sorted data
points’ ith components). q allows us to define (the lower and upper values of the hyperrectangle)
xq = (xkq11 ,1, . . . , xkqnn ,n) and xq = (x

k
q1+1
1 ,1

, . . . , x
kqn+1
n ,n

). Now we have all the parts to define
the partition:

∀q ∈ Q′′, Xq =
(N∏

i=1

Xi
q

)
\XD

where XD =
N⋃
k=1

{xk}, and Xi
q is defined as follows:

Xi
q =



[xkqii ,i, xkqi+1
i ,i

] if xkqii � xq and xq � xkqi+1
i

[xkqii ,i, xkqi+1
i ,i

) if xkqii � xq and xq � x
k
qi+1
i

(xkqii ,i, xkqi+1
i ,i

] if xkqii � xq and xq � xkqi+1
i

(xkqii ,i, xkqi+1
i ,i

) if xkqii � xq and xq � xkqi+1
i

An example to illustrate the partition cand be found shortly after the proof. After we define Up in
the same way, we have under our definition for the partial order, for all x in Xq and for all u in Up,
K−(x, u) and K+(x, u) remain constant. Therefore, G̃(x, u) will have the same value G̃(x, u) =
Yq,p for all x in Xq and for all u in Up. Yq,p will either be a single point Yq,p = {x′k} in the case
where Xq = {xk} and Up = {uk} such that (xk, uk, x

′
k) ∈ D or it will be define by the box Yq,p =

[y, y] where y = (max
k∈K−(x,u)

x′k,1, . . . , max
k∈K−(x,u)

x′k,n) and y = (min
k∈K+(x,u)

x′k,1, . . . , min
k∈K+(x,u)

x′k,n)

elsewhere.

Figure 3 offers an illustrative example of a finite rectangular partition (in the state space) based
on four data points. We examine the cell which has the symbol q ∈ Q′′ with q = (2, 1). We have
Xq = (x1,1, x4,1] × [x2,2, x3,2]. x1,1 is excluded because x1 � xq, whereas x4,1, x2,2, and x3,2 are
included because x2 � xq, xq � x3, and xq � x4.

Remark 7 In the following sections and in our numerical tests we will actually make the output
G̃(x, u) = Yq,p for all the points x, u in the sets Xq = [xkq11 ,1, xkq1+1

1 ,1
)× · · · × [xkqnn ,n, xkqn+1

n ,n
)

and Up = [ukp11 ,1, ukp1+1
1 ,1

) × · · · × [ukpmm ,m, ukpm+1
m ,m

), q ∈ Q = {1, . . . , N − 1}n, p ∈ P =

{1, . . . , N − 1}m. With this new definition of G̃(x, u), G̃ is not strictly speaking the minimal sim-
ulating map, but this new simulating map is easier to deal with, and it differs from the minimal
simulation map only on a set of measure 0.

6

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

x2

x1,1

2

3

4

1

x4,1

x2,2

x3,2

q

xq

xq

Figure 3: The partitioning of the state space based on the data points. Arrows indicate to which set,
the boundaries between adjacent sets, belong.

In order to compute the sets (Xq)q∈Q, (Up)p∈P and (Yq,p)q∈Q,p∈P from the data set D we should
follow those steps:

1. We sort the first component of our data points, then the second component, and so on till we
reach the nth component.

2. We do the same for input data till we reach the mth component.

3. We partition the sets of states and inputs according to the sorted components.

4. We calculate G̃(x, u) for every set.

4. Bisimilar finite abstraction

In this section, we show the equivalence (in the sense of alternating bisimulation) between the
system defined by the calculated minimal simulating map and a finite state transition system.

Definition 8 A transition system Σ is a tuple Σ = (X,U, F, Y,H), where X is a set of states, U is
a set of inputs, F : X × U → 2X is a transition relation, Y is a set of outputs, and H : X → Y is
an output map.

Σ is finite ifX andU are finite. Now let us consider two transition systems Σi = (Xi, Ui, Fi, Yi, Hi),
i = 1, 2. We assume that the systems are observed over the same set of outputs Y = Y1 = Y2.

Definition 9 R ⊆ X1 × X2 is an alternating bisimulation relation between Σ1 and Σ2 if for all
(x1, x2) ∈ R,

1. H1(x1) = H2(x2)

2. ∀u1 ∈ U1, ∃u2 ∈ U2, ∀x′2 ∈ F2(x2, u2), ∃x′1 ∈ F1(x1, u1) such that (x′1, x
′
2) ∈ R

7

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

3. ∀u2 ∈ U2, ∃u1 ∈ U1, ∀x′1 ∈ F1(x1, u1), ∃x′2 ∈ F2(x2, u2) such that (x′1, x
′
2) ∈ R

Σ1 and Σ2 are alternatingly bisimilar if

1. ∀x1 ∈ X1, ∃x2 ∈ X2, such that (x1, x2) ∈ R

2. ∀x2 ∈ X2, ∃x1 ∈ X1, such that (x1, x2) ∈ R

In the following, let us consider that X1 = X , U1 = U , F1 = G̃ as defined in Remark 7. Let
X2 = Q, U2 = P as in Remark 7, and let us consider the transition map F2 : Q× P → 2Q defined
by

F2(q, p) = {q′ ∈ Q| Xq′ ∩ Yq,p 6= ∅}.

We consider the output set Y = Q and output maps given by H1(x) = q if x ∈ Xq and H2(q) = q.
Let us remark that Σ2 is a symbolic dynamical system (i.e. with finite set of states and inputs). In
addition, let us assume that X =

⋃
q∈QXq and U =

⋃
p∈P Up.

Theorem 10 Σ1 and Σ2 are alternatingly bisimilar and the alternating bisimulation relation is
given by

R = {(x, q) ∈ X ×Q| x ∈ Xq}.

Proof We will prove the statement for all x1 ∈ X1, there exists x2 ∈ X2, such that (x1, x2) ∈ R.
The proof of the second statement is similar, and is therefore omitted. For all x1 ∈ X1, x1 should
belong to one of the cells in the partition x1 ∈ Xq, so (x1, x2) ∈ R if we take x2 = q. Moreover,
we will have:

1. From the definition of Σ1 and Σ2, we have H1(x1) = H2(x2);

2. For all u1 ∈ U1, there exists p ∈ P such that u1 ∈ Up. So let us take u2 = p. For all
x′2 ∈ F2(x2, u2), we are sure that there exists x′1 ∈ F1(x1, u1) = G̃(x1, u1) = Yq,p such that
x′1 ∈ Xx′2

because we know, from the definition of F2, that for any x′2 ∈ F2(x2, u2) we have
Xx′2
∩ Yq,p 6= ∅, which means (x′1, x

′
2) ∈ R;

3. For all u2 = p ∈ P , there exists u1 ∈ Up, and for all x′1 ∈ F1(x1, u1), we know that
F1(x1, u1) = Yq,p, and Yq,p ⊆ X which means that there exists x′2 such that Xx′2

∩ Yq,p 6= ∅.
In another way, there exists x′2 ∈ F2(x2, u2) such that x′1 ∈ Xx′2

. In the end we have
(x′1, x

′
2) ∈ R.

As a consequence of the previous Theorem, it is optimal to use the abstraction provided by
the finite-state transition system Σ2 to synthesize a controller. This controller will work for all
the systems consistent with the data; the finite-state transition system is alternatingly bisimilar to a
system whose dynamics is simulating all of them. Not finding a controller using Σ2 means that there
is an uncontrollable system consistent with the data; any other map simulating the data will contain
this uncontrollable system. Therefore, this is the best result we can find under the monotonicity
condition.

8

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

5. Controller synthesis for safety specifications

To test the validity of the learnt abstraction, we want to use it to synthesize a controller for a safety
problem, a commonly addressed problem in the field of symbolic control. Given a system Σ =
(X,U, F, Y,H) where F = G̃, and a safety specification Xs ⊆ X , we want to find a controller
to keep the trajectories of this system inside the set Xs. This can be done by computing a safe
controlled invariant defined as follows:

Definition 11 A set I ⊆ X is a safe controlled invariant for the system Σ and the safe set Xs if it
satisfies:

• I ⊆ Xs

• ∀x ∈ I and ∃u ∈ U,F (x, u) ⊆ I

We can use the symbolic abstraction presented in the previous section and the iterative algorithm
described in Tabuada (2009) to find the maximal safe controlled invariant.

5.1. Numerical implementation (cruise control problem)

Let us consider a model with two vehicles moving in one lane on an infinite straight road. The
leader has a fixed velocity vc while the follower is controllable. A discrete-time approximation of
this model is given by equations:

dk+1 = dk + (vk − vc)T0
vk+1 = vk + α(uk, vk)T0,

(4)

Here uk is the control input which is the torque applied to the wheels. dk is the signed distance
between the vehicles.

α(u, v) = u−M−1(f0 + f1v + f2v
2);

The vector of parameters f = (f0, f1, f2) ∈ R3
+ describes the road friction and vehicle aerodynam-

ics whose numerical values are taken from Nilsson et al. (2015): f0 = 52 N, f1 = 1.2567 N s/m,
f2 = 0.4342N s2/m2. For the rest parameters we chose:vc = 20 m/s,M = 1370 kg, T0 = 0.1 s.
This model is only used to generate the data. We wanted the follower car to stay in a distance be-
tween 10m and 30m from the leader, while maintaining a speed between 19m/s and 21m/s. Let
us remark that over these ranges of values the system (4) is monotone. We sampled randomly 300
points inside this safe set. We sampled also 300 random input values. We calculated the successors
from the model given by (4). Data points, successors, and inputs are shown in Figure 4.

Calculating the abstraction took 923 s to be finished (CPU: 2.9 GHz Intel Core i7, RAM: 8 Go
2133 MHz DDR34, Matlab R2020b). It took 341 s to calculate the invariant set. The red area in
Figure 5 represents the invariant set that we found. It should be noted that the size of the abstraction
grows polynomially with the number of data points. In the example there are two states nx = 2 and
one input nu = 1. The number of sets in the partitioning is Nnx+nu = N3 where N is the number
of data points. This makes using a big number of data points computationally difficult.

9

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

(a) Data points in blue and their succes-
sors in red.

(b) Inputs generated for data points.

Figure 4: Generated Transitions

Figure 5: The calculated invariant set along with the sampled data points.

6. Conclusion

An algorithm for data-driven abstraction was introduced. To find the abstraction, we first calculated
a map that minimally over-approximates the system dynamics. We showed that this abstraction con-
tains all the information we can acquire from the data and the monotonicity condition. We demon-
strated the effectiveness of our approach on a safety controller synthesis problem. The approach
suffers from a scalability problem as the abstraction size grows polynomially with the number of
data points.

As for the future, a way to deal with uncertainties and noises in the data points should be
studied. Also, The scalability problem should be addressed maybe with the help of data aggregation
techniques. The authors also want to investigate the use of data collected on-line to improve the
calculated controller.

10

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

References

David Angeli and Eduardo D Sontag. Monotone control systems. IEEE Transactions on automatic
control, 48(10):1684–1698, 2003.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT press, 2008.

Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal methods for discrete-time dynamical
systems, volume 89. Springer, 2017.

Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of
reactive (1) designs. Journal of Computer and System Sciences, 78(3):911–938, 2012.

Antoine Girard. Controller synthesis for safety and reachability via approximate bisimulation. Au-
tomatica, 48(5):947–953, 2012.

Kazumune Hashimoto, Adnane Saoud, Masako Kishida, Toshimitsu Ushio, and Dimos Dimarog-
onas. Learning-based safe symbolic abstractions for nonlinear control systems. arXiv preprint
arXiv:2004.01879, 2020.

Eric S Kim, Murat Arcak, and Sanjit A Seshia. Symbolic control design for monotone systems with
directed specifications. Automatica, 83:10–19, 2017.

Pierre-Jean Meyer, Antoine Girard, and Emmanuel Witrant. Safety control with performance guar-
antees of cooperative systems using compositional abstractions. IFAC-PapersOnLine, 48(27):
317–322, 2015.

Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D Ames, Jessy W Grizzle,
Necmiye Ozay, Huei Peng, and Paulo Tabuada. Correct-by-construction adaptive cruise con-
trol: Two approaches. IEEE Transactions on Control Systems Technology, 24(4):1294–1307,
2015.

Giordano Pola and Maria Domenica Di Benedetto. Control of cyber-physical-systems with logic
specifications: a formal methods approach. Annual Reviews in Control, 47:178–192, 2019.

Peter J Ramadge and W Murray Wonham. Supervisory control of a class of discrete event processes.
SIAM journal on control and optimization, 25(1):206–230, 1987.

Gunther Reissig, Alexander Weber, and Matthias Rungger. Feedback refinement relations for the
synthesis of symbolic controllers. IEEE Transactions on Automatic Control, 62(4):1781–1796,
2016.

Sadra Sadraddini and Calin Belta. Formal guarantees in data-driven model identification and control
synthesis. In International Conference on Hybrid Systems: Computation and Control, pages 147–
156, 2018.

Adnane Saoud, Elena Ivanova, and Antoine Girard. Efficient synthesis for monotone transition
systems and directed safety specifications. In IEEE 58th Conference on Decision and Control,
pages 6255–6260, 2019.

11

DATA-DRIVEN ABSTRACTION OF MONOTONE SYSTEMS

Vladimir Sinyakov and Antoine Girard. Formal controller synthesis from specifications given by
discrete-time hybrid automata. HAL preprint hal-02361404, 2019.

Paulo Tabuada. Verification and control of hybrid systems: a symbolic approach. Springer Science
& Business Media, 2009.

Daniele Zonetti, Adnane Saoud, Antoine Girard, and Laurent Fribourg. A symbolic approach to
voltage stability and power sharing in time-varying dc microgrids. In European Control Confer-
ence, pages 903–909. IEEE, 2019.

12

	Introduction
	Preliminaries
	Notation
	Monotone systems

	Learning monotone systems from data
	Formulation
	Partitioning of the sets of states and inputs

	Bisimilar finite abstraction
	Controller synthesis for safety specifications
	Numerical implementation (cruise control problem)

	Conclusion

