N
N

N

HAL

open science

Model-Driven Architecture Based Security Analysis
Saoussen Mili, Nga Thi Viet Nguyen, Rachid Chelouah

» To cite this version:

Saoussen Mili, Nga Thi Viet Nguyen, Rachid Chelouah. Model-Driven Architecture Based Security
Analysis. Systems Engineering, 2021, 24 (5), pp.307-321. 10.1002/sys.21581 . hal-03216460

HAL Id: hal-03216460
https://hal.science/hal-03216460

Submitted on 4 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03216460
https://hal.archives-ouvertes.fr

ORIGINAL ARTICLE

Journal Section

Model-Driven Architecture Based Security
Analysis

Saoussen Milil | NgaNguyen! | Rachid Chelouah?

1ETIS Laboratory, Cergy, France
This paper proposes a Model-Driven Architecture approach

Correspondence . q
Nga Nguyen for the development of an embedded system validation plat-
Email: nga.nguyen@eisti.eu form namely Model-Based Security Analysis for Embedded

Funding information Systems (MBSAES). The security properties are formally mod-
eled and verified at an early stage of the design process of
the system, which helps to reduce late errors and develop-
ment time. A separation of the attack scenarios and the
system design from the implementation details has been
respected. To transform semi-formal models from SysML
to NuSVM model checking platform, two Model-to-Text,
horizontal and exogenous transformations have been im-
plemented. The first one employs a programming approach
with Java to create a Computational Tree Logic specifica-
tion from an Extended Attack Tree, whereas the second one
uses a template approach with Acceleo to generate NuSMV
code from SysML structural and behavioral models. To illus-
trate our approach, a case study, involving attacks aiming
to unlock car door systems, via signal jamming and code
replaying, is considered. The results of this research will
contribute to the automatic validation of system designs
against security vulnerabilities via a database of extended

attack trees building from existing atomic attacks.

KEYWORDS
MDA, SysML, model transformation, code generation, embedded

systems, security, model checking

2 |

1 | INTRODUCTION

In 2001, the Object Management Group (OMG) launched Model-Driven Architecture (MDA), an architectural frame-
work for software development to build portability, interoperability and re-usability [1]. The approach consists of
separating the business logic of the company from any technical platform, the need for separation being justified by
the fact that the business logic remains fairly stable during the product life cycle and undergoes little modification,
unlike the technical platforms. MDA provides a set of modeling and transformation techniques. It offers three de-
fault models: Computational Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific
Model (PSM). CIM describes the function of a system, i.e. the system’s environment and the requirements, without
showing constructional details. PIM details the construction of the system, i.e. composition, structure, etc. without
implementation details. Lastly, PSM defines the technical details related to the implementation of PIM specifications
within a particular type of platform. Besides these models, MDA also specifies a Platform Model which characterizes
the technical concepts such as parts of the platform and the services provided, containing information for transform-
ing models to a specific platform. Summing up, the MDA approach allows generating code associated with software,
which is PSM, from the CIM and PIM, using a transformation platform model. This process of transformation can save
time and improve robustness to software, in particular to those endowed with great complexity [2].

Depending on the source model type to transform and the destination model type to generate, we distinguish
three types of model transformation processing : Model-to-Model (M2M), Model-to-Text (M2T) and Text-to-Model
(T2M). In the literature, there are several approaches for classifying model transformations such as in [3] and [4].
A transformation can be endogenous or exogenous. A transformation is said to be endogenous when the meta-
models for source and target models are identical, while it is said to be exogenous when they are different. Another
classification in terms of level of abstraction is offered, the horizontal versus vertical transformation. The vertical
transformations of models are used to refine or abstract models and, in this case, the models are located in different
levels of abstraction. Horizontal changes do not affect the abstraction models and they are mainly used to restructure,
since these models belong to the same level of abstraction. The languages dedicated to the transformation of models
can be declarative, imperative or hybrid. A declarative language describes the meta-models to process and constraints
on these meta-models, by focusing on the what aspect. An imperative language describes how the result is achieved
by imposing a series of elementary and detailed actions that the transformation performs. A hybrid language is both
declarative and imperative.

According to [5], there are several model transformation approaches, namely programming approach, template
approach and modeling approach. In the programming approach, the idea is to program a model transformation in
the same way as any software application, using typically object-oriented languages, and the data structures are the
models involved in the transformation. The template approach defines template models and replaces their parameters
by the values of the source models. Parameterized target models are template models containing parameters, which
are substituted by the values of the source models, at a subsequent stage, during processing. This approach uses
specific languages for the definition of template models. By analogy to the MDA, the modeling approach is shaped as
transformation rules based on Model-Driven Engineering, a software development methodology focusing on models.
In this approach, a model of transformation is structured by its meta-model, and the models are independent of
execution platforms. The objective of this approach is to perpetuate the transformations models and make them
productive.

Our work is contextualized in the field of automatic code generation for security analysis on communicating em-
bedded systems. The choice of this type of system is justified on the one hand by their safety-critical and security

issues and on the other hand, by the number of attacks that they have suffered in recent years, for example some

famous remote controls takeover of connected cars. In our previous work [6], we proposed an approach allowing
the verification and validation of complex embedded systems against the propagation of attacks. This approach is
composed of three steps: 1) attack modeling with the Extended Attack Tree Profile using temporal logic operators;
2) structural and behavioral system modeling with an appropriate Connectivity Profile to enrich system models with
error propagation through components; and 3) formal validation of systems against vulnerabilities via a model checker,
thanks to automatic code generation from system models. The overall method is named Model-Based Security Anal-
ysis for Embedded Systems (MBSAES). To represent the semi-formal models in steps 1 and 2, the Systems Modeling
Language (SysML) [7] is used to introduce Extended Attack Trees (via Activity Diagrams) and to describe the system
static and dynamic points of view, through Internal Block Diagrams (IBD) and State Machine Diagrams (SMD) respec-
tively, whereas, the NuSMV language [8] is chosen for the model verification in step 3.

The objective of this paper is to describe our MBSAES approach by using MDA notions. The elements of the
framework have already been introduced in [6] but MBSAES is represented in this work with a completely new per-
spective, based on MDA viewpoints. With the benefit of hindsight, these elements are clearly defined with respect
to CIM, PIM and PSM. Model transformations, i.e. attack encoding and system transformation within the Platform
Model, are detailed using OMG meta-model layers. With respect to the state of the art, MBSAES brings together
SysML models developed with specific profiles (temporal representation of attacks and connectivity of systems) with
model checking, via automatic model transformations. The main addressed research question is "how this modeling
methodology, based on model transformations and formal verification, can support security analysis to detect poten-
tial security problems in an effective way?". Separating attack scenarios and system description from implementation
details allows applying automatically formal methods, a discipline which is not easy to comprehend for systems en-
gineers, to system security analysis. Model transformations enhance the updates of model checking code according
to changes in system design with minimal time and effort. The scope of MBSAES is to help systems engineers and
security engineers to validate or discard a design solution for connected and embedded systems, from a security per-
spective, in the system design processes. The paper is structured as follows. Section 2 describes some work related to
model-driven security analysis. Section 3 details our MDA application to security analysis. The approach is illustrated
via a case study on attacks that try to unlock car doors in Section 4. Discussions and conclusion are given in Section
5.

2 | RELATED WORK

All damage caused by security breaches argues for an effective security policy. A policy that is able to adapt to the
complex nature of safety-critical embedded systems, on the one hand, and which adjusts and responds effectively to
rapid system changes, on the other. The literature reviewed in this section is selected with respect to Model-Based
Engineering, the engineering at the model level, an approach that allows, in principle, to tackle the complexity of
Cyber-Physical Systems (CPS) via security by design, abstraction, and automation, as analyzed in [9].

Basin et al. in [10] count among the first groups to introduce the Model-Driven Security (MDS) concept to solve
this problem. They proposed a UML profile called SecureUML to represent the formalization of Role-Based Access
Control (RBAC) requirements into design models. They established that integrating security properties within models
reduces the gap between system design and implementation, thus facilitating system maintenance and evolution and
enhancing portability, since migration to new technologies became simpler. An example of Order placing is used to
describe the importance of security by adding features like access control policy and action hierarchies in the model

to grant access.

In [11], the authors Jirjens and Shabalin presented UM Lsec, an extension of UML, designed for integrating the
specification of security access control into application models. UMLsec defines a vocabulary for expressing different
aspects of access control, e.g., roles, role permissions and user-role assignments, to assist the development of security-
critical systems. ArcStyler is used as a modeling and code generation tool, and an automated verification of UMLsec
diagrams is carried out via the SPIN model-checker [12]. This technique only targets software development, while the
complex architecture of CPS requires an adequate language able to model the different parts of such a system and, in
particular, the interactions between them.

The authors in [13], Ferndndez-Medina and Piattini, used MDS for the design of secure databases. Models have
been proposed to include security information in the database model, as well as a constraint language to define
security constraints. The proposed approach was applied to a real case Data Processing Center of Provincial Government
by using UML profiles.

Reznik et al. [14] presented a MDS approach on middleware platforms to develop secure applications which
integrate an implementation of the Corba Component Model with the OpenPMF security framework. An example
of platform independent definition of Air Traffic Management system, in conjunction with security policies, is used
to explain how the automatic transformations of complex systems with security definitions into platform specific
artifacts reduces the development time.

Another MDS approach called ModelSec proposed by Sanchez et al. in [15] offered a generative architecture to
manage security requirements, going from the definition of the requirements to the implementation. This architecture
automatically generates security requirements using two model transformation chains. It also ensures the separation
of security requirements and design choices. ModelSec conceived a high-level automation for code generation that
aims to deal with security specifications of the system in order to provide easier, quicker, more efficient and error-
free process. A M2M transformation is used for generating software artifacts related to system security. An example
from the paper shows that healthcare security software artifacts are automatically generated from the target platform
model of the security design models representing low-level data of the access control policy, the security database and
the target platform by using the eXtensible Access Control Markup Language (XACML). A web application example for
the management of medical patients which includes the design of a secure database shows how a role-based control
access policy and database can be automatically generated. The public, confidential and sensitive elements have been
added to the model.

In [16], Delange et al. proposed an approach to design and validate safety-critical systems that uses Architecture
Analysis and Design Language (AADL) [17] to model partitioned architectures with their requirements and proper-
ties. The models are validated through the PolyORB Kernel (POK) Checker. Use-cases have also been proposed to
demonstrate the correctness of the implementation and are available in the releases of the POK project.

Ouchani et al. [18] presented a formal framework to perform security risk assessment and security requirements
verification, by using SysML Activity Diagrams to model systems. The behaviour of attack scenarios specific to a Real
Time Streaming Protocol (RTSP) application is automatically translated into PRISM code for a formal verification. As
a result, probabilistic model-checking helps to reduce the cost of software development as errors are detected at an
early stage.

In the work of Mehrdad et al. [19], the Modeling and Analysis of Real-Time Embedded Systems (MARTE) language
[20] is extended with security aspects that represent embedded system security requirements. An example showing
how to model encryption requirements of the AuthorizePayment() operation has been proposed. A stereotype
called Encryptionis also proposed. Another example yet of vehicle authentication is presented. It consists in storing
unique identification information securely. A stereotype for secure memory modules is defined. The proposed security

profile considers different classifications and taxonomies for security such as logical security, hardware security and

security incidents.

In[21], Apvrille and Roudier proposed SysML-Sec, an environment to design safe and secure embedded systems in
which attacks are described by using an extension of SysML Parametric Diagram. The threats are modeled as attributes
embedded into blocks representing the target of the attacks. The attacks can be linked together via constraints in
timed automata to model the timing behavior. The operators are either logical operators like AND, OR, and XOR, or
temporal causality operators like SEQUENCE, BEFORE and AFTER. Formal verification about the reachability or the
liveness of an attack and the "leads to" relationship between two attacks can be carried out by using the Uppaal model
checker [22]. They also used the free and open-source software TTool [23], which supports simulations and formal
proofs on SysML models, for both safety and security properties, right from the architecture mapping and software
hardware partitioning phases. The formal security proofs on authenticity and confidentiality of SysML-Sec designs rely
on ProVerif [24], a tool for cryptographic protocol analysis based on Horn clauses. However, since the time concept is
not supported by ProVerif, the simplified translation to ProVerif specifications could lead to some false positive results
[25].

Mota et al. [26] proposed a new model checker with the COMPASS Modeling Language (CML) whose purpose
is to provide support for modeling system-of-systems with infinite aspects. This model checker is embedded into the
Symphony IDE, which is integrated with a SysML tool (Artisan Studio), so CML model files can be generated directly
from SysML models. However, no model transformation was detailed in this work, and the formal verification concerns
safety properties rather than security requirements.

In comparison to related work, such as those reported above, the solution we devised allows refining system
models with specific properties using the "extension by profiling" mechanism. It covers both structural and behavioral
aspects, and can be applied at both software and system levels. Furthermore, to leverage the shortcomings of other
attack representation approaches, we proposed an extended attack tree format with temporal logic operators that
represent the dynamic interactions between the atomic attacks. It is also worth noting that the model transformations
and automated formal verification in these model-based security studies were used to a rather limited extent. The
main improvement of MBSAES is to bring together the profiles developed in SysML, the model transformations and
automatic model checking. In addition, a library of extended attack trees will be generated from existing atomic attacks
that allows automatic validation of system design with respect to security vulnerabilities. Real-life attacks have been
modeled, and a transformation platform has been implemented to prove the feasibility of the approach, as described
in the next section.

3 | FROM SYSTEMATIC ARCHITECTURE TO SECURITY ANALYSIS

This work focuses on a model-based approach for an early system validation, right from the design process, with
respect to security requirements. We proposed a formal validation approach based on MDA by, during the design pro-
cess, separating the domain aspect and the technical aspect. Therefore, our MDA process is composed of an iterative
design series of CIM, PIM and PSM. The CIM models contain informal descriptions of different attack scenarios and
the studied system which will be specified afterwards with PIM models by using appropriate SysML profiles. Since we
carry out the transformation from SysML models to NuSMV models, the PIM models are represented by the SysML
models, and the PSM models are constituted by the generated NuSMV code and Computational Tree Logic (CTL) [27]
specifications. M2T transformations [28] are executed for the automatic code generation. Figure 1 gives the corre-

sponding MDA models with respect to our MBSAES methodology. Each of these models is described in the following

sections.

Attack Scenario

i Extended Attack Tree Model System Models

! (Extended Attack Tree Profile) (Connectivity Profile)

i PIM == Z

|

i =

N S Se— y——— S R S -
Step 1) Attack Modeling Step 2) System Modgling
Platform Model Attack Encoding System Transformation

A) B il A]

| PSM |Temp0ra| Logic Specification | ‘ NuSMV Code

Model Checking

Step 3) Model Transformation and System Validation

Validated?

FIGURE 1 MDA-Based Security Analysis

3.1 | Computation Independent Model (CIM)

The CIM is constituted by the attack scenarios and the system description.

3.1.1 | Attack Scenario

The informal attack specification represents the security requirements of the system. This attack scenario, called global
attack, is divided into a series of atomic attacks. The latter can be considered as an attack attempt that corresponds
to an indivisible simple action as defined in [29]. These atomic attacks have the specificity to be independent of each
other. The level of attack decomposition is a choice made by the designers and justified by their desired level of

abstraction.

3.1.2 | System

The system description can be specified by the business analyst in cooperation with the business user. It represents
the system of interest, its boundary as well as its environment. The system will be transformed into a PIM by a system

engineer or an enterprise architect in the next step.

3.2 | Platform Independent Model (PIM)

Our PIMs contain the attack and the system models that are described respectively in the next subsections.

3.2.1 | Extended Attack Tree Model

As described in [6], to model the attacks, an Extended Attack Tree Profile is integrated to introduce the notion of time
using temporal operators from CTL. In temporal logic, operators such as Globally (G), Future (F), Next (X) and Until
(U) enable the description of the way conditions change over time in distributed systems. With CTL, path quantifiers
such as A (for all paths) and E (there exists a path) can be used to express some safety properties, such as a bad
thing never happens (AG not bad-thing) or a bad thing could happen (EF bad-thing). We propose to extend the
UMLASysML :: Control Node meta-class by adding stereotypes which represent CTL operators, and also to extend
the UML4SysML :: Action meta-class by introducing a set of atomic attacks. Figure 2 shows the structure of the
Extended Attack Tree Profile.

bdd <<profile>> ExtAttTree

— <
<<metaclass>»
UMLASysML ::ControlNode <<metaclasss>
UMLASysML ::Action
A
<<stereotypes» <<stereotypes > <<stereotypes>
And Or AG
<¢stereotyper» <¢stereotyped» <«¢stereotypes»
AF AX EF <«stereotypes»
cause
1 <«stereotypes> <¢stereotypes> <«¢stereotypes»
EG EX U
\ <¢stereotyper» <«<stereotyper> |)
NOT -

FIGURE 2 Extended Attack Tree Profile [6]

We can then define an extended attack tree Attack (L, N) where L is the set of leaves, and N the set of nodes. The
nodes correspond to two types of operator: unary operators like NOT, AG, AF, AX, EG, EF, EX, and binary operators,
such as AND, OR, U, —. The leaves represent the operands that specify the attacks. To represent graphically our

extended attack trees, we use SysML Activity Diagrams. An example is given in Section 4.

3.2.2 | System Models

In this step, the system is modeled with the semi-formal language SysML. For this purpose, two types of diagrams are
used: IBD, which covers the structural aspect, and SMD, which represents the behavioral aspect. At this design level,
architecture modeling consists in representing the system, its components, and the interactions between them. IBD

describes the internal architecture of the system in terms of parts, ports and connectors. The system is represented

by a block, which can be made up of parts with varying depth levels. Parts are linked via a connector. We can also
apply a multiplicity at the end of the connector to define the number of instances associated with the links. However,
the latter does not reveal anything about the nature of the interactions. In order to identify the propagation of attacks
in communicating systems, a SysML profile, named Connectivity Profile and aimed at modeling the connectivity prop-
erties between the components of the system, is integrated. This profile is represented in Figure 3, listing the default
values of certain communication technologies. The profile extends the UML4SysML :: Connector meta-class to
other properties and methods such as scope, bit rate, frequency, energy, number of supported nodes, etc. SysML has
two types of ports: flow ports that allow the flow of data and standard ports that are suitable for invoking services. The
SysML :: Ports&Flows meta-class has also been extended to represent properties such as port state, port authen-
tication, update state and access control. The profile has a dynamic character, allowing stereotypes to be enriched
according to the nature of the modeled environment (connected cars, home automation, etc.) with heterogeneous
connections (CAN, WIFI, Bluetooth, NFC, ZigBese, ...).

bdd <<profile>> Connectivity |

<<metaclass> »
SysML::Ports&Flows

ChargingPlug

Connectivity Port

4 <<metaclassy>
UML4SysML:Connector
<¢stereotypes>
- FlowPort A
<«<enumeration>»
TechnoComType fisAtomic: Boolean
3G direction: Flow Direction
Bluetooth isConjugated: Boolean [0..1]
WIFI
4G
USB <¢stereotypess
gg'; cestereotypess ConnectivityConnector

technoTypeMame : TechnoComType
portState : Boolean
portAuthentication : Boolean
updateState : Real

technalypeMame : TechnoComType
frequency: Real

batteryLife: Real

rate: Real

range: Real

nodesMumbers: Integer

accessControl : Boolean

FIGURE 3 Connectivity Profile

During its life cycle, an instance of a block or a part can have a succession of states. The maintenance or change
of state is generally conditioned by the satisfaction of a condition or the triggering of an event. Conditions and events
are often composed of parameters, which materialize the flow of information or the data received by a component.

An illustrative example with an SMD is given in Section 4 to model the dynamic behavior of the system.

3.3 | Platform Model

Our M2T transformations are classified as exogenous and horizontal. First, the PIM model of the attack, which is an
extended attack tree, is transformed into a CTL formula, which represents the simulation model for the attack. This
transformation uses a programming approach, with Java as the implementation language. Secondly, another template-

based transformation generates a simulation model for the system, in the form of NuSMV code, from a PIM model,

which is represented via IBDs and SMDs.

3.3.1 | Attack Encoding

To generate the temporal logic expression of an attack from the Extended Attack Tree model, we used a recursive
algorithm, which is an in-order depth-first search. The tree traversal starts from the root of the attack tree, and then
concatenates the sub-expression of the right child with the node expression and the sub-expression of the left child.
The algorithm is implemented in Java. The transformation of the conceptual model into a simulation model takes place
on the M3 level, as shown in Figure 4. The meta-meta-model M3 corresponds to the highest level of abstraction in
the OMG meta-model hierarchy, with items at each lower level being dependent upon the items at the upper level.
Thus, an object diagram at the MO level is defined by a user-defined model at the M1 level, which in turn is defined

by a meta-model at the M2 level.

Requirement

M3 < Encoding

|Extended Arl:aci(:

|Tree Meta-Model| M2 A"’]A‘[‘Iplied on Applied on M2
M1 M1
MO MO

FIGURE 4 Security Requirement Encoding

The function, which makes it possible to translate a formal model into another formal model, is called encoding.
Unlike a transformation, the encoding ensures the integrity of the information, i.e. no information is lost during the
transformation. The encoding follows the meta-model mapping given in Table 1.

TABLE 1 Mapping between Extended Attack Tree and CTL Specification
Extended Attack Tree CTL Specification

Atomic attack / Leave Atomic proposition

Operator / Node CTL operator
Binary tree Priority and scope of operators
3.3.2 | System Transformation

In [3], the authors described the transformation rules allowing the mapping from a source model to a destination

model, by formalizing certain correspondences between the two models. The transformation process therefore makes

10

it possible to generate the Right-Hand Side variables from the Left-Hand Side ones. These elements are described in
Table 2 for our SysML and NuSMV mapping.

TABLE 2 SysML and NuSMV Mapping
SysML Meta-model NuSMV Meta-model SysML Meta-model NuSMV Meta-model

Block Module State State variable
Part Module Initial state init

System Main module Condition Case

Value properties Variables Transition Transition
Input/output port Input/output variables

Our transformation is based on the MOF Model-to-Text Transformation Language (MOFM2T) standard [30]. We
used Acceleo [31] which is an Eclipse implementation of the Model Transformation Language (MTL). Acceleo adopts
an imperative executable logic. As shown in Figure 5, the transformation rules are established at the M2 level between
the meta-models and executed at M1 level on the models.

M3 M3
M2 M2
,,ki:’r':’\ied on Awﬁ“\i\ed on
SysML- " ' Nusmv ';"3
rrrrrrrrrrrrrr M1 ¥ M1
MO MO

FIGURE 5 System Transformation

3.4 | Platform Specific Model (PSM)

These PSMs correspond to the temporal logic specification and the NuSMV code. A model checker will be used to
verify whether the finite-state model of the system (represented by the NuSMV code) meets the required specification
(represented by the CTL formula).

3.4.1 | Temporal Logic Specification

Once defined, a CTL specification will be validated or not by a marking algorithm that carries out an exhaustive state-
space exploration, using techniques like breadth-first search in a graph traversal. The algorithm verifies for every state
of the Kripke structure [32] that corresponds to the NuSMV code if the sub-formula of the specification is satisfied.

The use of formal methods is very useful since it offers an automated verification of the specified properties and also

11

provides counter-examples (a path or a sequence of steps leading to the undesired state) when the properties do not
hold.

34.2 | NuSMV Code

A NuSMV code is made up of Modules. Each module is associated with a finite state machine which can range from a
synchronous Mealy machine to an asynchronous network of non-deterministic processes [33]. A module can contain
sub-modules, which allows handling complex systems. We can define modular hierarchies and reusable components
with the NuSMV language. A module contains two parts. The first part, specified by the keyword V AR is dedicated
to the declaration of variables (what we will call atomic propositions) and the declaration of states. As for the second
part, it is determined by the keyword ASSIGN. It allows, on the one hand, the initialization of the variables thanks to
the init instruction and, on the other hand, the description of their respective evolution as well as the representation

of the state transitions.

4 | CASE STUDY

In this section, we apply our MDA-based security analysis to a case study which is car unlocking attacks described in
[34]. This example is selected because the attacks happened in an order that can be suitably specified by temporal
logic. This section is arranged according to the three steps of MBSAES described in Figure 1. Thus, subsection 4.1
presents CIM and PIM models for the attacks, whereas subsection 4.2 details CIM and PIM models for the system of
interest. The latter is composed of the car central locking sub-system, the doors and the remote key, as well as the

connections between them. Lastly, subsection 4.3 unveils the Platform Model as well as PSM models.

4.1 | Attack Modeling

Attacks targeting central locking systems have occurred in different scenarios, which are described as follows.

e Theattacker can interfere with the owner-emitted radio frequencies when the user locks the car. This will prevent
the locking and therefore leave the vehicle open.

e The attacker can stand as close as possible to the owner of the key, by having identified the owner beforehand,
and then activate a powerful radio repeater: the key signal can then be repeated and reaches the vehicle even if
the owner gets some distance away.

e The attacker can intercept the radio signal sent by the remote key to the car and save the associated binary
diagram. There are then two distinct sub-cases :

- If the encryption is based on fixed code, the attacker can reuse this signal when he wants ans as many time as
he wants;

- If the encryption is a rolling code (a rolling code transmitter consists of a fixed part and a randomly generated
part and the latter is always different from its previous ones), the attacker must initiate an interference after
intercepting signals. There exist tools available on the market under the name of "rolling codes cracker".

The attack scenarios on fixed code are easier to carry out, since it takes only about 8 seconds to brute force an

8-to-12 bit code, as demonstrated in the OpenSesame attack using De Bruijn sequence [34]. Actual vehicles use

12

key fobs, which are equipped with a small security hardware device with built-in authentication used to control and
secure access. With this rolling code policy, the access code is generated randomly, and changes periodically, so replay
attacks are prevented. In order to gain access to the car, jamming technique could be used when the user presses the
key to open the doors. Thus, the car is prevented from reading the signal but the attackers can receive it by using an
appropriate frequency. Once the attackers acquire the code, they could stop jamming and start replaying, but if the
user does press the key a second time (which is very frequent), a new code will invalidate the previous code held by
the attackers. That is why the attackers will not stop jamming at the first code but wait for the user to press the key
again to have the second rolling code. They will then replay the first code, which has not been invalidated since the
second code did not reach the car because of jamming, so the user can get into the car. The second code is set aside
and will be used later for carrying the attack.

So let P be the set of atomic attacks associated with the scenario of the attack based on the rolling code. We

have identified the following predicates:

e P1: The owner of the vehicle emits a rolling code signal to unlock the car by pressing a button;

e P2: The attacker jams the radio signal from the remote key;

e P3: The attacker achieves a radio signal interception and records the first rolling code;

e P4: The driver presses the key again;

e P5: The attacker continues to jam the signal emanating from the remote key;

e P6: The attacker executes again a radio signal interception to record the second rolling code;

e P7: During the user’s second attempt, the first saved code is transmitted by the attacker to open the car;

e P8: The central locking system verifies the validation of the code to ensure that the code is correct and had not
expired;

e P9: The car doors are unlocked;

e P10: The recorded second signal is set aside by the attacker for a later replay attempt.

Temporal operators allows the chronological order of attacks to be represented. So, we can gather for example the
first three predicates (P1, P2 and P3), followed by the next three predicates (P4, P5 and P6) in the next instance
(AX). Once the second code is intercepted, the attacker can replay the first code in the next step and the car will
be unlocked instantly (P7, P8 and P9). EF P10 means that there exists a path that P10 will be true in the future.
Therefore, another replay attempt can be realised to take over the car. Figure 6 represents the modeling of the attack
with the extended attack tree.

4.2 | System Modeling

The attack environment with different actors, namely the user and the attacker, and system components is given in
Figure 7. The key fob is controlled physically by the driver, through pressing on the unlock button. The remote key
transmits a radio signal to a micro-controller inside the car that will accept or deny to open the door, according to
the rolling code validation. The central locking system containing the micro-controller is connected to the doors via a
CAN BUS protocol. The attacker has a physical connection with the jammer to scramble the signal emitted from the
remote key. He also uses the frequency repeater (replayer) to send radio signals to the central locking system of the
car. The different rolling codes are saved in the recorder in order to be replayed later. Our Connectivity Profile is used
to model the technology properties such as the range of the radio transmitter (5 to 20 meters), the allowed frequency,

etc.

/7

«cause»
P2

{}‘C%er» [«C?,usse»]

«cause»
P5

\ «EF»
«cause»
P10

«cause»
P4

«cause»
P6

«cause»
P7

«cause»
P8

«cause»
P9

FIGURE 6 Extended Attack Tree for Rolling Code Attack

For the dynamic behavior of the system, we use two state machine diagrams : one for the whole system and one
for the central locking sub-system. The remote key generates a coded signal which, when recognized by the control
unit, allows the doors to be locked or unlocked. This control unit locks or unlocks the door only when the correct
bit sequence is detected. We assume in this example the use of TEA5500 type coding, which consists of a series of
24 bits. Therefore, the decoder receives 6 digits in hexadecimal, for example the combination “F4ABDC". Figure 8
represents the seven states of the automaton. At the beginning, the control unit waits in state S1 for processing the
first series of 4 bits transformed by the signal and which corresponds to an F in hexadecimal. This is why we put the
transition 71 labeled “0-1-2-3-4-5-6-7-8-9-A-B-C-D-E” which loops the initial state on itself: as long as the user does
not type an F, the system state does not change. Then, in state S2, we know that the digit F is transmitted, but as long
as it is not followed by a 4, the system does not go to state S3. The transition system continues to react according to
the received signal (code). Ultimately, either it evolves towards the S7 state to activate the opening, or it returns to
the S1 state for a new capture.

Figure 9 represents the different states of the whole system, i.e. our system of interest, and the transitions
between states. The system covers 6 states : SS1, 552,553, 554,555 and SS6. SS1 represents the initial state, in
which there is no attack and the doors are closed. In a normal mode, if the user presses the key to unlock the doors,
the system will pass to SS2, and if he presses the closing button, it will come back to SS1. However, an attacker
can jam the emitted signal and intercept the opening code, and in this case, the system falls in $S3. When the user
presses the key again, the second code will be recorded as in state SS4. If the jamming is stopped, depending on the
current state SS3 or $54, there will be a transition to $S2 to open the doors by using the non-expired code. If not,
the attacker can replay the first code, the doors will be unlocked but the system is compromised (S S5). Later, a replay
of the second code will induce an attack on the system, a state that is identified by SS6. Since we are interested in
the taking over of the car, the system states in this diagram will be used to verify if the system is protected against
the attack.

«Blocks»
RollingCodeAttach
«ConnectivityPort»
«part» . <part» =
= door: Dool DAL & lockingSystem: LockingSystem Elﬁlfeayrjbb'(ey
L !
wpropertys» = CAN
=l unlocked: Boolear IT LY «propertys
= validatedCode; Boolea radi - deptt Y o
pressedButton: Boolea
Ja r
«ConnectivityPorts «ConnectivityPort:
=i «ConnectivityPorts
«ConnectivityPort» «ConnectivityPort» radio
o)— «ConnactivityPorts
«parts
= replayer: Replaye wpart» [«ConnectivityPorts
=l recorder: Recorde “parts
«propertys =l jammer: Jammer
=l replayedFirstCode: Boolea adio «propertys e
P »
= recordedFirstCode: Booles = JamdeSana)I’- Boolear
«property» radio
= replayedSecondCode: Boolea «propertys
recordedSecondCode: Boolez o

«ConnectivityPort»

«ConnectivityPort»

a Portl

Applied stereotypes: |:| |:| |E‘ ‘z‘ technoTypeName

- @ConnectivityPort (from RootElement)

» = technoTypeName: TechnoComType [1] = Radio

Profile » & portState: Boolean [1] = true
b O portAuthentication: Boolean [1] = true
} = updateState: Real [1] = 0.0

» = accessControl: Boolean [1] = false

Connectorl

Applied sterectypes: ‘:| |:| |E| |z‘ technoTypeName

ConnectivityConnector (from RootElement)

} = technoTypeName: TechnoComType [1] = Radio

» & frequency: Real [1] = 433.92

b O batteryLife: Real [1] = 100000.0
» = rate: Real [1] = 2000.0

» & range: Real [1] = 25.0

o
3
2
[

FIGURE 7 System Internal Block Diagram

T1€{0,1,2,3,4,5,6,7,8,9,A,B,C,D.E}
B T2€{0,1,2,3,56,7,89AB,C.D,EF}
T3¢ {0,1,2,3,4,5,6,7,89,B,C,D,E,F}
T4€ {0,1,2,3,45,6,7,89,A,C,D,E,F}
T5€ {0,1,2,3,4,5,6,7,8,9,AB,C.E,F}
T6€ {0,1,2,3,4,5,6,7,8,9,A,B,D,.E,F}

FIGURE 8 Locking System State Machine Diagram

T1 user presses opening button

T2 user presses closing button
T3 attacker jams and intercepts the 1st code

unjam signal

T8 attacker replays the 2nd code
the 2nd code

T7 attacker replays the 1st code sS85

FIGURE 9 System State Machine Diagram

16 |

4.3 | Model Transformation and System Validation

Once the CIM and PIM models have been refined, we can apply model transformations described in Section 3.3 to

generate model checking code. In order to generate an executable code, an additional step has to be carried out to

refine the attack predicates. We need to map the atomic attacks into system attributes that correspond to variables

in the NuSMV code. These attributes have also been modeled in the previous IBD (Figure 7). Table 3 represents the

mapping between the predicates and the system values.

TABLE 3 Attack Predicates and System Attributes Mapping

Predicate
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10

Description
Press the unlock button

Undergo a radio signal jamming attack

Undergo a radio signal interception for the 1st code

Press the unlock button again

Undergo a radio signal jamming attack

Undergo a radio signal interception for the 2nd code

Replay the 1st code
Verify the code validation
Unlock car doors

Replay the 2nd code later

Attribute

key.pressedButton
jammer.jammedSignal
recorder.recordedFirstCode
key.pressedButton
jammer.jammedSignal
recorder.recordedSecondCode
replayer.replayedFirstCode
lockingSystem.validatedCode
door.unlocked

replayer.replayedSecondCode

The code below gives an extract from the generated NuSMV code, with the CTL specification corresponding to

the extended attack tree in Figure 6.

MODULE Key
VAR

pressedButton :

ASSIGN

boolean;

init(pressedButton) := FALSE;

next (pressedButton) := case
pressedButton = TRUE : FALSE;
TRUE : {TRUE,FALSE};

esac;

MODULE Jammer [..

-]

MODULE Recorder [...]
MODULE Replayer [...]
MODULE LockingSystem [...]

MODULE Door [...]
MODULE main
VAR

key: Key;

jammer: Jammer;

recorder : Recorder;

replayer : Replayer;
lockingSystem : LockingSystem;
door : Door;

state : {SS1, SS2, SS3, SS4, SS5, SS6};

ASSIGN
init(state) := SS1;
next(state) := case

-- T3 From SS1 to SS3 -----------------m -
state = SS1 & key.pressedButton & jammer.jammedSignal & recorder.recordedFirstCode : SS3;
-- other transitiomns ...
TRUE : state;
esac;
DEFINE
P1 := key.pressedButton;
-- P2 to P10 ...
SPEC AG !'(P1 & P2 & P3 & (AX (P4 & P5 & P6 & (AX (P7 & P8 & P9 & (EF P10))))))

By running the generated NuSMV code and the specification SPEC AG !(RollingCodeAttack), there exists a path
through which the attack can take place as shown in the counterexample in Figure 10. At the beginning, the systemisin
a nominal state, with the doors closed. Then, the user presses the key while the signal is being jammed by the attacker,
allowing the latter to intercept the first code. When the user presses again the key, the attacker records the second
code. The attacker will then replay the first code, which is still valid to open the doors, henceforth compromising
the system. Later on, he can replay the second code to open the car, showing the weakness of the system. As
recommended in [34], different solutions could be used to protect systems against this kind of attack, such as adding
a challenge/response via transceivers instead of the one-way communication between the remote controller and the

micro-controller, or using time-based algorithms to protect against unwanted replay.

5 | CONCLUSION

In this paper, we have proposed MBSAES, a model-based approach for security analysis consisting of three steps : i)
conceptual modeling of the security requirements, ii) conceptual modeling of the system, and iii) transformation of the
models for verification. These three steps are mapped to MDA concepts, by separating the conceptual modeling from
the technical platform. The former allows the manipulation of an intermediate model which facilitates communication
between the project manager and the client, while the latter carries out the formal verification. We have thus devel-
oped semi-formal models which do not carry many ambiguities for the expression of needs and which are relatively
easy to interpret. The SysML language was chosen because of its adaptability and its extensibility by profiling. A profile
called Extended Attack Tree has been introduced, allowing a formal and temporal modeling of attacks. A Connectivity
Profile has also been proposed to enable the propagation of flows between the different communicating subsystems
which are most often heterogeneous. Within the defined framework, we have developed two transformation pro-
cesses following the MDA paradigm. The first one ensures a mapping from an Extended Attack Tree to a CTL formula,

by using a Java program. The second one aims at generating NuSMV code from SysML models using a transformation

-- specification AG !(((P1 & P2) & P3) & AX (((P4 & P5) & P6) & AX (((P7 & P8) & P9) & EF P10))) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
key.pressedButton = FALSE
jammer . jammedSignal = FALSE
recorder.recordedFirstCode = FALSE
recorder.recordedSecondCode = FALSE
replayer.replayedFirstCode = FALSE
replayer.replayedSecondCode = FALSE
lockingSystem.validatedCode = FALSE
door.unlocked = FALSE
state = 551
-> State: 1.2 <-
key.pressedButton = TRUE
jammer . jammedSignal = TRUE
recorder.recordedFirstCode = TRUE
state = 553
-> State: 1.3 <-
key.pressedButton = FALSE
-> State: 1.4 <-
key.pressedButton = TRUE
recorder.recordedSecondCode = TRUE
state = 554
-> State: 1.5 <-
key.pressedButton = FALSE
replayer.replayedFirstCode = TRUE
lockingSystem.validatedCode = TRUE
door.unlocked = TRUE
state = 555
-> State: 1.6 <-
replayer.replayedFirstCode = FALSE
replayer.replayedSecondCode = TRUE
state = 556

FIGURE 10 Rolling Code Attack Counter Example

by template with Acceleo. The hence generated models are checked on the NuSMV model checker. Thanks to this,
we can accurately detect the conditions that led to an attack if the system is not protected against it. With respect
to the addressed research question, the processes in our hybrid methodology, combining semi-formal modelling and
formal verification, can be done automatically and early, which will facilitate the secure-by-design approach. We have
applied MBSAES to two well-known cyber-attacks, perpetrated on a Jeep Cherokee in 2014 and on a Tesla Model
S in 2016 [6], respectively. These different complex examples provide strong support for our method, and actual
design errors were detected with counterexamples. This aligns with the intended outcomes of the Systems Security
Engineering working group [35] from the International Council on Systems Engineering (INCOSE) whose mission is to

provide means and methods for enabling and facilitating effective system security analysis in systems engineering.

The present work is meant to be extended further in the following directions. First, we need to work on a bench-
mark that allows evaluating MBSAES systematically, on the way it helps to reduce late errors, development time and
system complexity via the security by design paradigm and the abstraction and automation mechanisms. In addi-
tion, we contemplate the construction of a library of attack patterns as well as attack compositions to represent the
combination and propagation of errors. This database will be generated from existing vulnerabilities on connected
objects coming from for example the MITRE Common Weakness Enumeration (CWE) and the Common Attack Pat-
tern Enumeration and Classification (CAPEC) dictionaries [36]. Attack patterns will be modeled with CTL by using our
Extended Attack Tree model. Although temporal logic specifications are well suited to model attack scenarios with
a stepwise execution of actions, it is noted that the formalism should be enriched to model the parallel behaviour of
attacks. This database of extended attack trees with temporal operators can be built automatically and systems will

be validated against these attacks. In this way, we can detect rapidly the security flaws during the design phase, based

19

on existing vulnerabilities on connected systems. In a system-of-systems perspective, this allows to choose the best

solutions among diverse system architecture candidates, from the security viewpoint. Besides, our methodology will

be further extended with the arrival of SysML v2 [37] for which the verification and validation of complex systems will

be one of the future pillars. A more formal specification of SysML syntax, semantics and the mappings between them,

by using a declarative approach, will reduce the gap between this systems modeling language and a formal verification

language.

References

[7

[8

(10]

11

[12]

[13]

=
]

[15]

[16]

=
X

MDA Guide Version 1.0.1. Object Management Group; 2003.
MDA Guide rev. 2.0. Object Management Group; 2014.

Czarnecki K, Helsen S. Classification of model transformation approaches. In: 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture, vol. 45 Anaheim, USA; 2003. p. 1-17.

Mens T, Van Gorp P. A taxonomy of model transformation. Electronic Notes in Theoretical Computer Science, Interna-
tional Workshop on Graph and Model Transformation 2006 March;152:125-142.

Blanc X. MDA en action Ingénierie Logicielle Guidée par les Modéles. Eyrolles; 2005.

Mili S, Nguyen N, Chelouah R. Transformation-based Approach to Security Verification for Cyber-Physical Systems. IEEE
Systems Journal 2019 December;13:3989 - 4000.

Systems Modeling Language version 1.6. Object Management Group; 2019.

Cimatti A, Clarke E, Giunchiglia F, Roveri M. NuSMV: a new symbolic model checker. International Journal on Software
Tools for Technology Transfer 2000;2(4):410-425.

Nguyen P, Wang S, Yue T. Model-Based Security Engineering for Cyber-Physical Systems: A Systematic Mapping Study.
Information and Software Technology 2016 11;83.

Basin D, Doser J, Lodderstedt T. Model driven security for process-oriented systems. In: 8th ACM Symposium on Access
Control Models and Technologies Como, Italy; 2003. p. 100-109.

Jurjens J, Shabalin P. Automated verification of UMLsec models for security requirements. In: International Conference
on the Unified Modeling Language Lisbon, Portugal: Springer; 2004. p. 365-379.

Holzmann GJ. The Model Checker SPIN. IEEE Transactions on Software Engineering 1997 May;23(5).

Fernandez-Medina E, Piattini M. Designing secure databases. Information and Software Technology 2005
May;47(7):463-477.

Reznik J, Ritter T, Schreiner R, Lang U. Model Driven Development of Security Aspects. Electronic Notes in Theoretical
Computer Science 2007;163:65-79.

Sanchez O, Molina F, Garcia-Molina J, Toval A. ModelSec: A Generative Architecture for Model-Driven Security. Journal
of Universal Computer Science 2009;15(15):2957-2980.

Delange J, Pautet L, Feiler P. Validating safety and security requirements for partitioned architectures. In: International
Conference on Reliable Software Technologies Brest, France: Springer; 2009. p. 30-43.

Feiler PH, Lewis BA, Vestal S, Colbert E. An Overview of the SAE Architecture Analysis & Design Language (AADL)
Standard: A Basis for Model-Based Architecture-Driven Embedded Systems Engineering. In: International Federation
for Information Processing / Workshop on Architecture Description Languages Toulouse, France; 2004. .

20

(18]

(21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

Ouchani S, Jarraya Y, Mohamed OA. Model-based systems security quantification. In: IEEE International Conference
on Privacy, Security and Trust Montreal, Quebec, Canada; 2011. p. 142-149.

Saadatmand M, Cicchetti A, Sjodin M. On the need for extending MARTE with security concepts. In: International
Workshop on Model Based Engineering for Embedded Systems Design Newport Beach, USA; 2011. .

Faugére M, Bourbeau T, Simone R, Gérard S. MARTE: Also an UML profile for modeling AADL applications. In: 12th
International Conference on Engineering of Complex Computer Systems Auckland, New Zealand; 2007. p. 359-364.

Apvrille L, Roudier Y. SysML-Sec attack graphs: compact representations for complex attacks. In: International Work-
shop on Graphical Models for Security Verona, Italy: Springer; 2015. p. 35-49.

Larsen KG, Pettersson P, Yi W. UPPAAL in a nutshell. International Journal on Software Tools for Technology Transfer
1997;1(1-2):134-152.

Roudier Y, Apvrille L. SysML-Sec: A model driven approach for designing safe and secure systems. In: IEEE International
Conference on Model-Driven Engineering and Software Development Angers, France; 2015. p. 655-664.

Blanchet B. Proverif automatic cryptographic protocol verifier user manual. CNRS, Departement d’Informatique, Ecole
Normale Superieure, Paris 2005;.

Li L. Safe and secure model-driven design for embedded systems. PhD thesis, Université Paris-Saclay; 2018.

Mota A, Farias A, Woodcock J, Larsen P. Model checking CML: tool development and industrial applications. Formal
Aspects of Computing 2015 09;27:975-1001.

Wolper P. The tableau method for temporal logic: An overview. Logique et Analyse 1985;p. 119-136.

Rose LM, Matragkas N, Kolovos DS, Paige RF. A feature model for model-to-text transformation languages. In: Proceed-
ings of the 4th International Workshop on Modeling in Software Engineering IEEE Press; 2012. p. 57-63.

Pudar S, A pragmatic method for integrated modeling of security attacks and countermeasures, lowa State University,
USA,; 2007.

MOF Model to Text Transformation Language. Object Management Group; 2008.

Acceleo User Guide, https://wiki.eclipse.org/Acceleo/User_Guide;.

Clarke EM, Grumberg O, Peled D. Model checking. MIT press; 1999.

NuSMV: a new symbolic model checker, http:/nusmv.fbk.eu;.

Kamkar S. Drive it like you hacked it: New attacks and tools to wirelessly steal cars. DEFCON 2015;23.
INCOSE System Security Engineering Working Group hiomrgse;.

Common Vulnerabilities and Exposures. http:/cve.mitre.org. The MITRE Corporation;, http://cve.mitre.org/.

Systems Modeling Language (SysML) v2 Request For Proposal (RFP). Object Management Group; 2017.

