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Thermodynamic identities and thermodynamic consistency of Equations of State

We present a systematic approach to construct complete equations of state (EOSs), or to ensure thermodynamic consistency of complete and incomplete forms of EOSs using a minimal and sufficient set of relations. We apply the proposed approach to some common classical equations of state for pure materials. In fact, classical equations of state come generally in an incomplete form that hides essencial properties necessary for thermodynamic consistency. If not aware of such constraints one may generalize the EOS, or fit its thermodynamic parameters from emprirical data or from ab-initio models in an inconsistent way.

I. INTRODUCTION

When a system is at thermodynamic equilibrium under a given set of conditions, it is said to be in a definite thermodynamic state. The state of the system can be described by a number of state quantities, called state functions. In the present paper, we consider closed systems with no change in composition, and in this case only two of these state quantities are independent. Hence, the state functions can be linked either by functional relations (e.g. an equations of state) which specifies a closed formula relationships between these quantities, or by thermodynamical identities linking the infinitesimal variations (or derivatives) for each triplet of these state quantities. If we limit ourselves to the 5 fundamental state functions : ρ = 1 v , p, T , s, and e, being respectively the specific density (the inverse of the specific volume), pressure, temperature, specific entropy and specific internal energy, then C 3 5 = 10 thermodynamical identities can be expressed for a closed system. Other state functions such as specific enthalpy, specific free energy and specific Gibbs energy are obtained as simple functions of these fundamental quantities (e.g. h = e + p ρ , A = e -T s, g = e+ p ρ -T s). Some authors may refer to p, v and T , as state variables for being quantities directly accessible using measure instruments, here we will use the term state function or state variable interchangebly.

If we choose ρ and s as independant thermodynamic variables, the variations of the other three fundamental variables may be expressed throught the three identities : dp = c 2 dρ + ρk T ds.

(1) de = T ds + p ρ 2 dρ.

(2)

dT = T C v ds + kT ρ dρ. (3) 
where we introduced the thermodynamic coefficients : c 2 the square of the speed of sound, k the Gruneisen parameter and C v the thermal capacity at constant volume.

Remark 1

We assume here that the choice of (ρ, s) as independant variables is possible. In general when adopting a given EOS for a material not all couple of variables are independants. For example, for perfect gazes, on can not choose e and T as independent variables.

An equation of state (EOS) given in form e = e(ρ, s) is said to be a complete EOS, because all the other state functions can be computed from it. T (ρ, s) = ∂e ∂s , p(ρ, s) = ∂e ∂s . An EOS of type p = p(ρ, T ) is not complete. See remark 2.

The quantities c 2 , k and C v are first order quantities in the sens that they are defined as derivatives (or coefficients) of the fundamental state functions (e.g. c 2 = ∂p ∂ρ ) s ), and are also functions of the state, so of the chosen independant variables (ρ, s). Identities (1)- [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF] implies that Shwartz-type relations should be verified, so we have from (1) :

∂ s c 2 ρ = ∂ ρ (ρ k T ) s (4) 
And from (2) we should have

∂ ρ T ) s = 1 ρ 2 ∂ s p ρ = kT ρ (1st Maxwell 
relation) and this is already satisfied through (3) and [START_REF] Heuze | General form of the Mie-Gruneisen equation of state[END_REF]. Finally from (3) we need to have :

∂ ρ T C v s = ∂ s kT ρ ρ (5) 
Equations ( 4) and ( 5) can be simplified to the form :

∂ s c 2 ρ = kT (k + 1) + ρT ∂ ρ (k) s (6) ∂ ρ (C v ) s = - C v 2 ρ ∂ s (k) ρ (7) 
Hence, we see that in (ρ, s) variables and up to a reference state (ρ 0 , s 0 , p 0 , T 0 , e 0 ), a complete equation of state may be given by any three thermodynamic parameters functions c 2 (ρ, s), k(ρ, s) and C v (ρ, s) as long as they are verifiying the constraints ( 6) and [START_REF] Israel | Convexity in the Theory of Lattice Gases[END_REF]. We will refer to this choice as a {(ρ, s), c 2 , C v , k} representation of the EOS.

II. THERMODYNAMIC IDENTITIES AND THERMODYNAMIC RELATIONS

From (1)-( 3) one can derive the other 7 identities involving triplets of the 5 fundamental thermodynamic functions, to complete the set of the C 3 5 = 10 possible identities :

de = 1 ρk dp + 1 ρ 2 p - ρc 2 k dρ. (8) dT = 1 ρkC v dp + 1 ρ kT - c 2 kC v dρ. (9) dT = 1 C v de + kT - p ρC v dρ ρ , (10) 
de = p ρ 2 c 2 dp + T - pkT ρc 2 ds, (11) 
dT = kT ρc 2 dp + c 2 -k 2 T C v C v c 2 T ds, (12) 
dT = ρkT p de + p -ρkC v T pC v T ds, (13) 
dT = ρc 2 -ρk 2 T C v C v (ρc 2 -pk) de + ρkC v T -p ρC v (ρc 2 -pk) dp, (14) 
Thermodynamic identities relating 'secondary' state functions h, A and g to any two primary variables among (ρ, p, e, s, T ) can also be derived. For instance for h(p, ρ) :

dh = d(e + p ρ ) = 1 ρk dp + 1 ρ 2 p - ρc 2 k dρ + 1 ρ dp - p ρ 2 dρ = 1 + k ρk dp - ρ c 2 k dρ
We may retrieve from (8) the usual definition of k as Gruneisen parameter k = 1 ρ ∂p ∂e ρ .

Moreover, expressions for all the other thermodynamic coefficients may be derived from the identities above as functions of c 2 , C v and k (we recall that these three coefficients are linked by ( 6) and ( 7) ):

• Isothermal bulk modulus K T , Isothermal compressibility β T = 1 K T , and isothermal speed of sound (for example from (9)):

K T = ρ ∂p ∂ρ T = ρ c 2 -k 2 C v T β T = 1 ρc 2 -ρk 2 C v T , c 2 T = c 2 -k 2 C v T.
Isentropic bulk and compressibility coefficients are given by K s = ρc 2 and β s = 1 Ks .

• Isobaric thermal expansion coefficient α p and isochoric thermal expansion coefficient α v :

α p = - 1 ρ ∂ρ ∂T p = kC v c 2 -k 2 T C v . α v = ∂P ∂T ρ = ρkC v
One can also define an isentropic thermal expansion coefficient :

α s = - 1 kT = - 1 ρ ∂ρ ∂T s
• Heat capacity coefficients : Isobaric heat capacity C p , and heat ratio γ.

C p = T ∂s ∂T p = C v c 2 c 2 -k 2 T C v , γ = c 2 c 2 -k 2 T C v .
Also we note that, so far, the second principle of thermodynamics is not taken into account. We will briefly address this in section VI.

As noted an EOS of the form e = e(ρ, s) (or s = s(ρ, e), or ρ = ρ(e, s) ) is complete as p(ρ, s) and T (ρ, s) can be computed from it. Alternatively the set of equations ( 6)- [START_REF] Israel | Convexity in the Theory of Lattice Gases[END_REF] provide a systematic way to check the thermodynamic consistency (in regard to definitions and the first principle) of an EOS in ρ, s variables. It provides also a systematic way to construct a complete EOS either from empirical relations or ab-initio considerations. The choice of the representation {(ρ, s), c 2 , C v , k} is arbitrary and depending on the context, one can use other representations. We will present here few other choices that will be applied

to several examples of equations of state.

III. DIFFERENT PRESENTATIONS FOR THERMODYNAMIC STATES DE

- SCRIPTION A. Representation : {(ρ, T ), α v , c 2 T , C v }
In this presentation we suppose (ρ, T ) is a valid couple of independant variables for the thermodynamic evolution of the material. We express the different coeffcients as functions

of {α v , c 2 T , C v } : dp = c 2 T dρ + α v dT , (15) 
de = p -α v T ρ dρ ρ + C v dT , (16) 
ds = C v T dT - α v ρ 2 dρ (17)
and the consistency relations are given by :

∂ T (c 2 T ) ρ = ∂ ρ (α v ) T (18) 1 T ∂ ρ (C v ) T = - 1 ρ 2 ∂ T (α v ) ρ (19) 
The other thermodynamic parameters can be given in function of α v , c 2 T and C v by :

α p = α v ρc 2 T , k = α v ρC v (20) 
c 2 = c 2 T + α 2 v T ρC v , γ = 1 + α 2 v T ρC v c 2 T (21) C p = C v + α 2 v T ρc 2 T (22) Remark 2 A PVT relation of the form p = f (ρ, T ) sets α v and c 2
T (with relation (18) satisfied). The C v (ρ, T ) parameter is then to be defined to form a complete EOS, with the constraint (19); Hence, C v (ρ, T ) should be defined only along an isochore : T → C v (ρ 0 , T ).

Remark 3 The Helmotz free energy is defined by :

A(ρ, T ) = e(ρ, T ) -T s(ρ, T )
and if the form A(ρ, T ) is given all the thermodynamic quantities can be found from A by the following relations (in this order) : s = -∂A ∂T ρ , e = A + T s, p = ρ 2 ∂A ∂ρ T

, as we have dA = p ρ 2 dρ -sdT . From s(ρ, T ) we can compute C v and α v and from p(ρ, T ) we can compute c 2 T . Of course, this approach will automatically satisfy the relations of type (18) and (19).

On other hand giving a PVT relation p = p(ρ, T ), one sets only ∂A ∂ρ T , so A is set up to

a function A 0 = A(ρ 0 , T ) = T T 0 s(ρ 0 , T )dT + e 0 -T 0 s 0 of T : A(ρ, T ) = ρ ρ 0 p(r, T ) r 2 dr + A 0 (T ) B. Representation : {(ρ, p), c 2 , α v = ρkC v , k}
We have :

dT = 1 α v dp - c 2 α v - kT ρ dρ (23) de = 1 ρk dp + 1 ρ ( p ρ - c 2 k )dρ (24) ds = 1 ρkT dp - c 2 ρkT dρ (25) 
With the Shwartz consistency relations :

ρc 2 ∂k ∂p -ρk ∂c 2 ∂p + ρ ∂k ∂ρ + k 2 + k = 0 (26) C 2 v ρ ∂k ∂p + c 2 ρkT ∂C v ∂p + 1 ρkT ∂C v ∂ρ = 0 (27)
We note that the last identity is the same as [START_REF] Israel | Convexity in the Theory of Lattice Gases[END_REF]. The other thermodynamic coefficients can be expressed with relations presented previously in the (ρ, s, c 2 , C v , k) representation.

C. Representation : {(p, T ), C p , κ T = 1 ρ 2 c 2 T , η = αp ρ }
We can write :

dv = d(1/ρ) = -κ T dp + ηdT. ( 28 
) de = (C p -pη) dT -(ηT -pκ T )dp, ( 29 
)
ds = C p T dT -ηdp, (30) 
with the Shwartz relations :

∂κ T ∂T + ∂η ∂p = 0 ∂η ∂T + 1 T ∂C p ∂p = 0
The other thermodynamic coefficients can be expressed as :

k = α p c 2 T C p -T α 2 p c 2 T α v = ρc 2 T α p C v = C p -T α 2 p c 2 T , γ = C p C p -T α 2 p c 2 T c 2 = C p c 2 T C p -T α 2 p c 2 T IV. LINK WITH CLASSICAL THERMODYNAMIC RELATIONS
Obviously, whatever is the chosen representation, the expressions for thermodynamic parameters verify all known thermodynamic relations:

β T = 1 ρc 2 T = γ ρc 2 = γβ s , K T = ρc 2 T = ρc 2 γ = K s γ (Reech relation) with γ = C p C v = K s K T = c 2 c 2 T = c 2 c 2 -k 2 T C v , c = K s ρ = γK T ρ (Newton-Laplace) α p = ρkC v β T = ρkC p β s = kC p c 2 (Gruneissen relation) C p -C v = T α 2 ρβ T (Mayer relation), and 
β T -β s = α 2 T ρC p (Mayer relation),
The advantage of the presented approach, where a representation is chosen to work with, is being systematic and avoiding wrangling with the above famous relations to express one coefficient as function of (two/three) others. It also does not ommit the consistency relations between these coeffiscents derivatives when they are defined by empiric relations, fitting experimental data or from ab-initio considerations.

We show in the next section how this systematic approach can be applied to introduce well know Equations of State along with their consistency conditions that are usually omitted in textbooks or presented as a complex results of thermodynamic relation wrangling. 

A. Ideal and Perfect gaz EOS

The Ideal gas EOS is given by

p = ρrT. (31) 
Hence and if we use the {(ρ, T ), α v , c 2 T , C v } representation presented in section III A we get : 

α v = r ρ (32) c 2 T = rT ( 
k(ρ, T ) = r C v (T ) , α p = 1 T , c 2 = rT 1 + r C v (T ) , γ = c 2 c 2 T = 1 + r C v (T ) , C p = C v (T ) + r.
Usually the C v dependence on T only is given in textbooks through proving the dependences of e or h on T only and this is obtained by wrangling the thermodynamic relations (Maxwell relations) and identities.

Coming back to the EOS, and knowing a refrence state (ρ 0 , T 0 , p 0 , e 0 , s 0 ) the expression of other state functions can be derived by integrating the thermodynamic identities II:

p(ρ, T ) = rρT e(T ) = T T 0 C v (t)dt + e 0 s(ρ, T ) = -r ln( ρ ρ 0 ) + T T 0 C v (t) t dt + s 0
The Helmotz free energy is given by :

A(ρ, T ) = e -T s = T T 0 C v (t)dt -T T T 0 C v (t) t dt + r.T.ln( ρ ρ 0 ) + e 0 -T s 0
These formulae simplifies further if C v is supposed constant, which is called by some authors the Perfect Gaz EOS.

p = rρT , e = C v (T -T 0 ) + e 0 , s = -r ln( ρ ρ 0 ) + C v ln( T T 0 ) + s 0 ,
We note that in this case, one can not chose T 0 = 0 or ρ 0 = 0 as 1 T and 1 ρ needs to be integrable at T 0 and ρ 0 . Hence the Perfect Gaz model cannot be valid around these conditions (absolute zero and infinite volume). Other ab-initio models for C v with C v (T ) ≈ T 3 (e.g. Debye model ) or C v (T ) ≈ T near T = 0, are consistent with the Ideal Gaz EOS.

B. Other form for Perfect gaz EOS

Some authors introduce the perfect gaz EOS with the relation

p = ρ(Γ -1)e ( 34 
)
with a constant parameter Γ.

It is important to note that this form is indeed consistent with (31) only and only if the

two conditions hold      C v is constant
There is a reference state such as e 0 = C v T 0

If any one of the conditions does not hold then the form (34) is rather a special form of Mie-Gruneissen EOS, for witch the Gruneissen parameter is given by k = Γ -1 and for which a varying C v function is adminissible only if it depends on s only, as we will see in section V F. To stress it more one cannot adopt 34 along with a correlation C v = C v (T ).

C. Van de Waals EOS

The Van der Waals EOS is given by a pvt relation :

p = ρrT 1 -bρ -aρ 2
We have from the PVT relation

c 2 T = rT (1 -bρ) 2 -2aρ , α v = rρ 1 -bρ
and the relation (19) implies :

∂ ρ C v ) T = 0
As for the perfect gaz, the VDW EOS is completely defined by a T → C v (T ) function.

Having a model C v (T ) we can compute the other thermodynamic properties as functions of ρ and T .

k(ρ, T ) = r 1 -bρ . 1 C v (T ) , α p = r(1 -bρ) rT -2aρ(1 -bρ) 2 , c 2 = rT (1 -bρ) 2 1 + r C v (T ) -2aρ, γ = c 2 c 2 T = 1 + r 2 T rT -2aρ(1 -bρ) 2 . 1 C v (T ) , C p = C v (T ) + r 2 T rT -2aρ(1 -bρ) 2 .
Also, given a reference state, we have the other state functions given by :

e = e 0 -a(ρ -ρ 0 ) + T T 0 C v (t)dt s = s 0 - ρ ρ 0 r x(1 -bx) dx + T T 0 C v (t) t dt = s 0 + r.ln( 1/ρ -b 1/ρ 0 -b ) + T T 0 C v (t) t dt
and for the free energy :

A(ρ, T ) = A 0 -a(ρ -ρ 0 ) -rT ln( 1/ρ -b 1/ρ 0 -b ) + T T 0 C v (t)dt -T T T 0 C v (t) t dt
We note that here that in contrast of the ideal gaz, a constant C v model (which is compatible with VDW EOS) does not imply necessarly a contant γ or a constant C p . A constant C v with VDW EOS implies in fact a special case of Mie-Gruneisen model k = k(ρ)

presented in the section V F.

D. Redlich-Kwong EOS

The RK EOS is given by :

p = ρrT 1 -bρ - aρ 2 T σ (1 + bρ)
where a, b, r and σ are constant parameters. From the PVT relation : we get

c 2 T = rT (1 -bρ) 2 -aρ 2 + ρb (1 + ρb) 2 , α v = rρ 1 -bρ + aρ 2 σ T σ+1 (1 + bρ)
and the relation (19) implies :

∂ ρ C v ) T = aσ(σ + 1) (1 + bρ) 1 T σ+1
Hence we have a special dependence of C v on ρ :

C v (ρ, T ) = aσ(σ + 1)ln(1 + bρ) bT σ+1 + φ(T )
The R-K EOS is completely defined by the function φ(T ) function. A T only dependent C v is NOT compatible with the K-S equation state unless a = 0, σ = 0 or σ = -1. Having a model C v (ρ, T ) we can compute the other thermodynamic properties as functions of ρ and

T . k(ρ, T ) = r (1 -bρ)C v + aρσ T σ+1 (1 + bρ)C v , α p = r 1-bρ + aρσ T σ+1 (1+bρ) rT (1-bρ) 2 -aρ 2+ρb (1+ρb) 2 c 2 = c 2 T + α 2 v T ρC v , γ = c 2 c 2 T , C p = C v + α 2 v T ρc 2 T .
Also, given a reference state, and from de = -a(σ + 1)

T σ (1 + ρb) dρ + aσ(σ + 1)ln(1 + bρ) bT σ+1 + φ(T ) dT
we have :

e = e 0 + a(σ + 1) bT σ ln( bρ 0 + 1 bρ + 1 ) - a(σ + 1)ln(1 + bρ 0 ) b 1 T σ - 1 T σ 0 + T T 0 φ(t)dt = e 0 - a(σ + 1) b ln(1 + bρ) T σ - ln(1 + bρ 0 ) T σ 0 + T T 0 φ(t)dt
And for the entropy identity :

ds = aσ(σ + 1)ln(1 + bρ) bT σ+2 + φ(T ) T dT - r ρ(1 -bρ) + aσ T σ+1 (1 + bρ) dρ s = s 0 - ρ ρ 0 r x(1 -bx) dx + T T 0 φ(t) t dt + aσ bT σ+1 ln( 1 + bρ 0 1 + bρ ) - aσln(1 + bρ 0 ) b 1 T σ+1 - 1 T σ+1 0 = s 0 + r.ln( 1/ρ -b 1/ρ 0 -b ) + T T 0 φ(t) t dt - aσ b ln(1 + bρ) T σ+1 - ln(1 + bρ 0 ) T σ+1 0
So for the free Helmotz energy :

A(ρ, T ) = A 0 -rT ln( 1/ρ -b 1/ρ 0 -b ) - a(σ + 1) b ln(1 + bρ) T σ - ln(1 + bρ 0 ) T σ 0 + T aσ b ln(1 + bρ) T σ+1 - ln(1 + bρ 0 ) T σ+1 0 + T T 0 φ(t)dt -T T T 0 φ(t) t dt (35) A(ρ, T ) = A 0 -rT ln( 1/ρ -b 1/ρ 0 -b ) - a b ln(1 + bρ) T σ + a(σ + 1) b ln(1 + bρ 0 ) T σ 0 -T aσ b ln(1 + bρ 0 ) T σ+1 0 + T T 0 φ(t)dt -T T T 0 φ(t) t dt (36) A(ρ, T ) = A 0 -rT ln( 1/ρ -b 1/ρ 0 -b ) - a b ln(1 + bρ) T σ + a b σ + 1 - T T 0 σ ln(1 + bρ 0 ) T σ 0 + T T 0 φ(t)dt -T T T 0 φ(t) t dt (37) 
The formulae we give here for A(ρ, T ), and for C p for example, are more explicit than the one given in [START_REF] Matsumoto | Thermodynamic Quantities of Redlich-Kwong Gases in Isobaric Processes of Coexistence of Two Phases[END_REF], with a direct link with the C v (ρ, T ) correlation (that can be fitted experimentally).

E. Peng Robinson p = R T V m -b - a α(T ) V 2 m + 2bV m -b 2 (38) a ≈ 0.45724 R 2 T 2 c p c (39) b ≈ 0.07780 R T c p c (40) α = 1 + κ 1 -T 1 2 r 2 (41) κ ≈ 0.37464 + 1.54226 ω -0.26992 ω 2 (42) T r = T T c (43) 
We rewrite the P.R. EOS with the specific quantities as :

p = r T ρ 1 -bρ - a(T )ρ 2 1 + 2bρ -b 2 ρ 2
We can compute directly (v = 1 ρ ):

c 2 T = - rT (v -b) 2 + 2a(T ) (v + b) [v 2 + 2bv -b 2 ] 2 , α v = r v -b - a ′ (T ) v 2 + 2bv -b 2
and this EOS imposes that :

∂ ρ C v = -T /ρ 2 ∂ T r v -b - a ′ (T ) v 2 + 2bv -b 2 ∂ ρ C v = T a ′′ (T ) 1 + 2bρ -b 2 ρ 2 Hence C v (ρ, T ) = T a ′′ (T ) 2 √ 2b ln √ 2 -1 + bρ √ 2 + 1 -bρ + φ(T )
And for the other thermodynamic coefficient we have :

k = α v ρC v = rv (v -b)C v - a ′ (T )v (v 2 + 2bv -b 2 )C v c 2 = c 2 T + T C v rv (v -b) - a ′ (T )v (v 2 + 2bv -b 2 ) 2 γ = 1 + T C v rv (v-b) -a ′ (T )v (v 2 +2bv-b 2 ) 2 -rT (v-b) 2 + 2a(T ) (v+b) [v 2 +2bv-b 2 ] 2 C p = C v + T rv (v-b) -a ′ (T )v (v 2 +2bv-b 2 ) 2 -rT (v-b) 2 + 2a(T ) (v+b) [v 2 +2bv-b 2 ] 2 . C p = T a ′′ (T ) 2 √ 2b ln √ 2 -1 + bρ √ 2 + 1 -bρ + φ(T ) + T rv (v-b) -a ′ (T )v (v 2 +2bv-b 2 ) 2 -rT (v-b) 2 + 2a(T ) (v+b) [v 2 +2bv-b 2 ] 2 .
Hence for e as function of T and ρ :

de = p -α v T ρ dρ ρ + C v dT , (44) 
ds = C v T dT - α v ρ 2 dρ (45) de = T a ′ (T ) -a(T ) 1 + 2bρ -b 2 ρ 2 dρ + T a ′′ (T ) 2 √ 2b ln √ 2 -1 + bρ √ 2 + 1 -bρ + φ(T ) dT e(ρ, T ) = e 0 + T a ′ (T ) -a(T ) 2 √ 2b ln √ 2 -1 + bρ √ 2 + 1 -bρ + T T 0 φ(t)dt
And for the entropy :

ds = a ′′ (T ) 2 √ 2b ln √ 2 -1 + bρ √ 2 + 1 -bρ + φ(T ) T dT - r ρ(1 -bρ) - a ′ (T ) 1 + 2bρ -b 2 ρ 2 dρ s = s 0 +r.ln( 1/ρ -b 1/ρ 0 -b )+ T T 0 φ(t) t dt- 1 2 √ 2b a ′ (T )ln √ 2 -1 + bρ √ 2 + 1 -bρ -a ′ (T 0 )ln √ 2 -1 + bρ 0 √ 2 + 1 -bρ 0
So for the free Helmotz energy :

A(ρ, T ) = A 0 + T a ′ (T ) -a(T ) 2 √ 2b ln √ 2 -1 + bρ √ 2 + 1 -bρ + T T 0 φ(t)dt -T T T 0 φ(t) t dt- rT.ln( 1/ρ -b 1/ρ 0 -b ) + T 2 √ 2b a ′ (T )ln √ 2 -1 + bρ √ 2 + 1 -bρ -a ′ (T 0 )ln √ 2 -1 + bρ 0 √ 2 + 1 -bρ 0 (46) 
F. Mie-Gruneissen

All the EOS's presented before were in the form P = f (ρ, T ), hence we used a (ρ, T ) representation. The general Mie-Gruneissen EOS presented in this section (and the Stiffened gaz EOS of the next section) are given in the form e(p, ρ) or p(ρ, e).

The Mie-Gruneissen EOS is given by p(ρ, e) = p K (ρ) + ρk(ρ)(e -e K (ρ))

or in (ρ, p) formulation

e(p, ρ) = e K (ρ) + 1 ρk(ρ) (p -p K (ρ))
with two functions e K (ρ) and p K (ρ), satisfying the relation [START_REF] Heuze | General form of the Mie-Gruneisen equation of state[END_REF] de

K (ρ) dρ = p K (ρ) ρ 2
so that e K and p k are defined along an isentrope s = s 0 .

We suppose also that we know a reference state (ρ 0 , e 0 , p 0 , s 0 , T 0 ), so that p K (ρ 0 ) = p 0 = p(e 0 , ρ 0 ) and e K (ρ 0 ) = e 0 = e(ρ 0 , p 0 ).

From the EOS and the identity de = 1 ρk dp + 1 ρ 2 (p -ρc 2 k )dρ we have then k = k(ρ), and also

c 2 (p, ρ) = k ′ k + k + 1 ρ (p -p K (ρ)) + p ′ K (ρ)
A first consistency relation is automatically satisfied given the relation e(p, ρ). Using ( 27)

or [START_REF] Matsumoto | Thermodynamic Quantities of Redlich-Kwong Gases in Isobaric Processes of Coexistence of Two Phases[END_REF] we have :

∂ ρ (C v ) s = 0
Hence C v depends only on s and then we have for the temperature

dT T = 1 C v (s) ds + k(ρ) ρ dρ
Hence to completely define the EOS in a (ρ, s) presentation we are free to choose the two functions k(ρ) et C v (s). We can then compute all the quantities in the representation ρ, s: Hence for the speed of sound we have :

ln(T ) =
∂ s (c 2 ) ρ = [k(ρ)(k(ρ) + 1) + ρk ′ (ρ)] .Θ(ρ).f (s) so c 2 (ρ, s) = [k(ρ)(k(ρ) + 1) + ρk ′ (ρ)] .Θ(ρ) s s 0 f (σ)dσ + c 2 0 (ρ) = [k(ρ)(k(ρ) + 1) + ρk ′ (ρ)] Θ(ρ)F s 0 (s) + c 2 0 (ρ) = [k(ρ)(k(ρ) + 1) + ρk ′ (ρ)] Θ(ρ)F s 0 (s) + p ′ K (ρ)
For the pressure and from dp = c 2 dρ + ρkT ds = c 2 dρ + ρk(ρ)f (s)Θ(ρ)ds we get :

p(ρ, s) = ρk(ρ)Θ(ρ) s s 0 f (σ)dσ + p K (ρ) = ρk(ρ)Θ(ρ)F s 0 (s) + p K (ρ)
and we can check that :

c 2 (ρ, s) = k(ρ) + ρk ′ (ρ) + k 2 (ρ) .Θ(ρ).F (s) + p ′ K (ρ) = k ′ (ρ) k + k(ρ) + 1 ρ (p -p K (ρ)) + p ′ K (ρ)
Also :

c 2 T (ρ, s) = c 2 -k 2 T C v = k 2 (ρ) + k(ρ) + ρk ′ (ρ) .Θ(ρ)F (s) -k 2 (ρ).Θ(ρ).f (s).C v (s) + p ′ K (ρ) = Θ(ρ) k 2 (ρ) + k(ρ) + ρk ′ (ρ) F (s) -k 2 (ρ).f (s).C v (s) + p ′ K (ρ)
and the heat ratio is given by :

γ(ρ, s) = c 2 c 2 T = [k(ρ)(k(ρ) + 1) + ρk ′ (ρ)] F (s) + p ′ K (ρ)/Θ(ρ) [k(ρ)(k(ρ) + 1) + ρk ′ (ρ)] .F (s) -k 2 (ρ).f (s).C v (s) + p ′ K (ρ)/Θ(ρ) and C p (ρ, s) = γ(ρ, s) C v (s).
Finnaly, the complete form e(ρ, s) is given by :

e(ρ, s) = Θ(ρ)F (s) + ρ ρ 0 p K (r) r 2 dr. e(ρ, s) = Θ(ρ)F (s) + e K (ρ)
To summarize, the Mie-Grunenssein EOS is completely defined by the functions k(ρ), C v (s) and p K (ρ) (or e K (ρ) = e 0 + ρ ρ 0 p K (x)

x 2 dx) and a reference state (ρ 0 , T 0 , s 0 , p 0 , e 0 ). The dependance of C v on s only implies that the Mie-Grunenssen EOS is not compatible with all models for C v . A model of C v as fonction of T is not compatibile with it. However the Debye model

C v = C v ( T Θ(ρ) ) is compatible as T Θ(ρ) = f (s).
The Einstein model, with a constant Enstein temperature Θ E , and C v of the form

C v = 3R Θ E T 2 e Θ E T e Θ E T -1 2 
is not. Two models that are compatible are for example

C v = 3R Θ T 2 e Θ T e Θ T -1 2 (Enstein -Debye)
and

C v = 9R Θ T 3 Θ T 0
x 4 e x (e x -1) 2 dx (Debyemodel)

G. Gruneissen and Stiffened gaz EOS

We consider the special case of Mie-Gruneissen EOS where the Gruneisen parameter k is supposed constant and where C v is supposed constant as well.

In this case

Θ(ρ) = T 0 ρ ρ 0 k c 2 = k + 1 ρ (p -p K (ρ)) + p ′ K (ρ) f (s) = e s-s 0 C v . F (s) = C v e s-s 0 C v -1 = C v (f (s) -1) 
.

c 2 = Θ(ρ)k(k + 1)C v (f (s) -1) + p ′ K (ρ) c 2 T = Θ(ρ) (k C v f (s) -k(k + 1)C v ) + p ′ K (ρ)
and the heat ratio is given by :

γ(ρ, s) = c 2 c 2 T = k(k + 1)C v f (s) -k(k + 1)C v + p ′ K (ρ)/Θ(ρ) kC v f (s) -k(k + 1)C v + p ′ K (ρ)/Θ(ρ)
It is worth noting that even in this simple case the heat ration γ is not necessarly constant and equal to k + 1 as usually assumed.

Only the special case p

′ K (ρ) = k(k + 1)C v Θ(ρ) so p K (ρ) = p 0 -ρ 0 T 0 kC v + ρkC v Θ(ρ) gives γ(ρ, s) = γ = k + 1.
and also implies the simple PVT relation : In the previous section we did only explicit the implications of the first law of thermodynamics and of the function state defintions, on the consistency of equations of state.

p = p 0 + ρC v T.
The second law of thermodynamics and its implication on mechanical and termal stability of the described matter, can also be used to express more constraints on the ''degrees of freedom" in an EOS relation.

First we consider a e(v = 1 ρ , s) representation and compute

x = ∂ 2 e ∂v 2 = c 2 v 2 = ρ 2 c 2 y = ∂ 2 e ∂s 2 = T C v z = ∂ 2 e ∂s∂v = - kT v x y -z 2 = T C v c 2 -k 2 T C v v 2 = T C v c 2 T v 2
Mechanical statibility implies for instance (See [START_REF] Ilya | Chemical Thermodynamics[END_REF] page 209) :

c 2 T > 0,
while thermal stability implies

C v > 0.
A more general condition for statbilty of equilibrium states, implied by the second law of thermodynamics is the convexity of e(v, s) (see the introduction of [START_REF] Israel | Convexity in the Theory of Lattice Gases[END_REF]). Hence if the hessien matrix of e(ρ, v) is definite positive, wich boild down to the same identities C v > 0, c 2 > 0 and c 2 T > 0. This also implied γ > 0 and Cp > 0 , and by Mayer relation Cp -Cv = T α 2 c 2 T > 0 we have γ > 1.

VII. CONCLUSION

We presented a way to construct a complete set of thermodynamic relations and reviewed the thermodynamic consistency of many classical Equaion of States. The approach presented is general and can be used when 'inventing' new equations of state in research work or when fitting an EOS and thermodynamic coeffiscients with laboratory data. The approch allows to explicit ''the degrees of freedom'' for each EOS to avoid violating the thermodynamic consistency. As example, we explained by an elementary approach why many classical

  V. A REVISIT OF SOME CLASSICAL EQUATIONS OF STATE Equations of state are useful in describing the properties of fluids, mixtures of fluids, solids, and other forms of matter. Many examples of EOS are adopted to relate the different state functions of a given material, in diferent areas of physical sicences (fluids, mechanics, geology, astrophysics...etc).

  33) with relation (18) satisfied. Equation (19) implied then that C v is function of T only. So, we conclude that a complete Ideal Gaz EOS is completely defined by a function T → C v (T ) and the PVT relation (31). All the thermodynamic coefficients can be calculated throught equations (20)-(22).

and e = e 0 +

 0 C v T -p 0 -ρ 0 T 0 kC v ρ .This case is exactly the Stiffened Gaz EOS[START_REF] Flatten | On solutions to equilibrium problems for systems of stiffened gases[END_REF] [3], with the Helmotz potential :A(ρ, T ) = C v T 1 -ln( T T 0 ) + (γ -1)ln( ρ ρ 0 ) -s 0 T + p ∞ ρ + e *We stress out that a relation of type p = ρ(Γ -1)(e -e * ) -Γp ∞ , with constant Γ is not suffiscent to have this simple PVT relation and to have a constant heat ratio γ = Γ, even if one supposes a constant C v .VI. NOTE ON THE IMPLICATION OF THE SECOND LAW OF THERMODY-NAMICS AND STABILITY

equations of state, such as stiffened gaz (with constant heat ratio γ) can not be generalized by making C v dependent on the temperature T without violating thermodynamical consistency.