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We analyze the stability properties of the so-called triple deck model, a classical refinement of the Prandtl equation to describe boundary layer separation. Combining the methodology introduced in [3], based on complex analysis tools, and stability estimates inspired from [4], we exhibit unstable linearizations of the triple deck equation. The growth rates of the corresponding unstable eigenmodes scale linearly with the tangential frequency. This shows that the recent result of Iyer and Vicol [14] of local well-posedness for analytic data is essentially optimal.

Introduction

Our concern in this paper is the triple deck model, introduced in the 1960's to describe the so-called boundary layer separation. The general concern behind this model is to understand the behaviour of Navier-Stokes solutions with velocity u ν = (u ν , v ν ) and pressure p ν near a rigid boundary, when the inverse Reynolds number ν goes to zero. Due to the no-slip condition at the boundary, it is well-known that this is a singular asymptotic problem: the Euler solution u 0 = (u 0 , v 0 ) does not describe the dynamics near the wall. In a celebrated paper [START_REF] Prandtl | Über Flüssigkeitsbewegung bei sehr kleiner Reibung[END_REF], Ludwig Prandtl tackled this problem through the use of matched asymptotic expansions. For planar flows in the half plane Ω = R × R + , this means that two regions should be distinguished: one away from the wall, where u ν (T, X, Y ) ≈ u 0 (t, X, Y ), p ν (T, X, Y ) ≈ p 0 (t, X, Y )

while close to the wall, in a boundary layer, one should have

u ν (T, X, Y ) ≈ u P T, X, Y √ ν , v ν (T, X, Y ) ≈ √ ν v P T, X, Y √ ν , p ν (T, x, Y ) ≈ p P T, X, Y √ ν (2) 
for boundary layer profiles (u P , v P , p P ) = (u P , v P , p P )(T, X, y). Moreover, by injecting the Prandtl boundary layer expansion in the Navier-Stokes equation and keeping the leading order terms, we end up with the Prandl system ∂ T u P + u P ∂ X u P + v P ∂ y u P -∂ 2 y u P + ∂ X p P = 0, ∂ y p P = 0, ∂ X u P + ∂ y v P = 0,

u P | y=0 = v P | y=0 = 0. (P)
This system is completed by the conditions at infinity lim y→∞ u P (T, X, y) = u 0 (T, X, 0), lim y→∞ p P (T, X, y) = p 0 (T, X, 0) which ensure the matching between the boundary layer and the upper inviscid region of the flow.

The Prandtl model has revealed very fruitful to understand steady Navier-Stokes flows in regions where boundary layers remain attached to the boundary. However, it is well-known that downstream of the flow, under an adverse pressure gradient, streamlines detach from the boundary and recirculation occur. Moreover, in the unsteady context, even upstream, Tollmien-Schlichting instabilities may destabilize the flow. All these hydrodynamic phenomena have consequences on the mathematical analysis of system (P), for which various negative results have been obtained: ill-posedness results [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF][START_REF] Liu | Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay[END_REF], blow-up results [START_REF] Engquist | Blowup of solutions of the unsteady Prandtl's equation[END_REF][START_REF] Gargano | Singularity formation for Prandtl's equations[END_REF][START_REF] Kukavica | The van Dommelen and Shen singularity in the Prandtl equations[END_REF][START_REF] Collot | Singularities and unsteady separation for the inviscid two-dimensional prandtl system[END_REF], instability of Prandtl expansions at the level of the Navier-Stokes equations [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF][START_REF] Grenier | Spectral instability of characteristic boundary layer flows[END_REF][START_REF] Grenier | L ∞ instability of Prandtl layers[END_REF]. A common difficulty behind these works is the appearance of small tangential scales, that invalidate expansions of type [START_REF] Collot | Singularities and unsteady separation for the inviscid two-dimensional prandtl system[END_REF], which are assumed to depend regularly on x. In order to capture the effect of these small scales, while still trying to obtain reduced models, several refinements of the Prandtl model were introduced in the 1960's and 1970's. The most famous ones are the triple deck model and the Interactive Boundary Layer model (IBL). The latter one, analyzed mathematically in the recent paper [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF], consists in keeping additional O( √ ν) terms, resulting in a coupling between the inviscid equations for the upper region, and the (modified) Prandtl equation.

Here we focus on the triple deck model. We first extend the derivation given in [START_REF] Lagrée | Interacting boundary layers[END_REF][START_REF] Smith | On the high Reynolds number theory of laminar flows[END_REF] to the unsteady setting. The basic idea is to study perturbations to the main Prandtl flow, in the vicinity of T = T * , X = X * (typically the time and abscissa of separation), with small scale variations in T, X. Denoting ǫ the amplitude of the perturbation, and η, δ the small time and tangential scales, we write

u ν (T, X, Y ) ≈ u P T, X, Y √ ν + ǫũ T -T * η , X -X * δ , Y √ ν ≈ u P T * , X * , Y √ ν + ǫũ T -T * η , X -X * δ , Y √ ν + O(η) + O(δ) v ν (T, X, Y ) ≈ √ ν v P T, X, Y √ ν + √ ν ǫ δ ṽ T -T * η , X -X * δ , Y √ ν ≈ √ ν ǫ δ ṽ T -T * η , X -X * δ , Y √ ν + O( √ ν) p ν (T, X, Y ) ≈ p P (T, X) + ǫ 2 p T -T * η , X -X * δ , Y √ ν
(we anticipate that the amplitude of the pressure is ǫ 2 , see below). Injecting the ansatz into the Navier-Stokes equations, we derive the relations satisfied by (ũ, ṽ, p) = (ũ, ṽ, p)(t, x, y). With notation U (y) := u P (T * , X * , y), anticipating that η ≫ δ and ν ≪ ǫδ 2 , we get

∂ x ũ + ∂ y ṽ = 0, U ∂ x ũ + U ′ ṽ = 0, ∂ y p = 0.
The second identity reads U 2 ∂ y ṽ U = 0. Thanks to this relation and to the divergence-free condition, we can introduce a function A = A(t, x) such that ũ(t, x, y) = A(t, x)U ′ (y), ṽ(t, x, y) = -∂ x A(t, x)U (y).

In particular, we see that ũ(t, x, 0) = A(t, x)U ′ (0) is non-zero. To restore the no-slip condition, one must add a sublayer. This sublayer is referred to as the lower deck, while the main one, corresponding originally to the Prandtl layer, is the main deck. Eventually, the upper region outside the O( √ ν) boundary layer is called the upper deck. Let h be the typical length scale of the lower deck, and z = y/h. The velocity at the bottom of the main deck reads U (y) + ǫũ(t, x, y) ≈ hU ′ (0)z + ǫũ(t, x, 0). For matching between the lower and main deck, it is therefore natural to take h = ǫ, and to look for an asymptotics in the lower deck of the form:

u ν (T, X, Y ) ≈ ǫu T -T * η , X -X * δ , Y √ νǫ , v ν (T, X, Y ) ≈ √ ν ǫ 2 δ v T -T * η , X -X * δ , Y √ νǫ , p ν (T, X, Y ) ≈ ǫ 2 p T -T * η , X -X * δ , Y √ νǫ with (u, v) = (u, v)(t, x, z).
Moreover, in order to match the effects of time variation, advection, and diffusion in the lower deck, ∂ t ∼ u∂ X ∼ ν∂ 2 Y , one has to take δ ∼ ǫ 3 , η ∼ ǫ 2 . The amplitude O(ǫ 2 ) of the pressure term allows to retain it as well. This results in

∂ t u + u∂ x u + v∂ z u -∂ 2 z u + ∂ x p = 0, ∂ z p = 0, ∂ x u + ∂ z v = 0, u| z=0 = v| z=0 = 0.
These equations are the same as those in (P). But, the boundary conditions at infinity differ from the classical ones. Assume U (∞) = 1, U ′ (0) = 1 for simplicity. On one hand, matching of the velocities of the lower and main desks yields

u(t, x, z) ∼ U ′ (0)z + ũ(t, x, 0) = z + A(t, x), z → +∞.
On the other hand, as explained in [START_REF] Lagrée | Interacting boundary layers[END_REF] and apparent in the original Prandtl layer (P), the O(ǫ 2 ) pressure should not change across the lower and main decks, and coincide with the trace of the pressure in the upper deck. In this upper deck, the dynamics is driven by the so-called blowing velocity, that is the normal component coming from the main deck:

√ ν ǫ δ ṽ(t, x, ∞) ∼ √ ν ǫ 2 .
Anticipating that the upper deck must have the same amplitude, we find ǫ 2 ∼ √ ν ǫ 2 , that is ǫ = ν 1/8 . Finally, in the upper deck, one looks for an asymptotics isotropic in X, Y of the form

u ν ≈ 1 + ν 1/4 u T -T * ν 1/4 , X -X * ν 3/8 , Y ν 3/8 , v ν ≈ ν 1/4 v T -T * ν 1/4 , X -X * ν 3/8 , Y ν 3/8 , p ν ≈ ν 1/4 p T -T * ǫ 2 , X -X * ν 3/8 , Y ν 3/8 ,
Plugging the asymptotic ansatz into the Navier-Stokes equations, yields the linearized Euler dynamics for (u, v, p) = (u, v, p)(t, x, θ):

∂ x u + ∂ x p = 0, ∂ x v + ∂ θ p = 0, ∂ x u + ∂ θ v = 0, v| θ=0 = ṽ(t, x, ∞) = -∂ x A(t, x).
This system can be solved using Fourier transform in x as

Fp| θ=0 (ξ) = -isign(ξ)F∂ x A(t, •)(ξ) = |ξ|FA(t, •)(ξ).
In physical variables this is

p| θ=0 (t, x) = |∂ x |A(t, x) := 1 π PV R ∂ x A(t, x) x - x dx,
where the right-hand side is the Hilbert transform of ∂ x A in variable x and PV denotes the principal value.

Thanks to this last condition, the triple deck model can be written

∂ t u + u∂ x u + v∂ z u -∂ 2 z u + ∂ x |∂ x |A = 0, ∂ x u + ∂ z v = 0, u| z=0 = v| z=0 = 0. lim z→∞ u -z = A.
(TD)

The unknowns are (u, v) = (u, v)(t, x, z) and A = A(t, x). One must complete the system with an initial data u| t=0 = u 0 (x, z), consistent with the structure at infinity given by the last line of (TD). Note that if we let z → +∞ in the first equation, using u = z + A + o(1), we obtain the redundant consistency equation:

∂ t A + A∂ x A + ∂ x |∂ x |A = ∂ x +∞ 0 (u -A) dz. (3) 
The different spatial scalings are shown in Fig. 1. Wrapping the derivation up, the overall idea is to consider a perturbation around a boundary layer (u P , v P ) with small tangential scale δ around X = X * and assuming that away from the lower deck (which is where u P is expected to loose monotonicity) the inviscid terms dominate.

X Y ǫ √ ν √ ν X * -δ X * X * + δ lower deck Perturbation (u, v) middle deck Inviscid approximation ũ(t, x, y) = A(t, x)U ′ (y) ṽ(t, x, y) = -∂ x A(t, x)U (y)
upper deck Linearized Euler flow Although formulated in the 1960's, and extensively studied from a numerical viewpoint since then, the triple deck system (TD) has not been much investigated mathematically. In the steady case, one can mention the work [START_REF] Plantié | Existence result for the boundary layer of triple deck type with known displacement[END_REF] of L. Plantié, focused on a modification of the model: the displacement velocity A = A(x) is given while the pressure p = p(x) is kept as an unknown. Well-posedness is established under an assumption of non-decreasing displacements, using Von Mises transform. In the unsteady case, the only work we are aware of is the recent paper [START_REF] Iyer | Real analytic local well-posedness for the triple deck[END_REF] by S. Iyer and V. Vicol, which shows local in time well-posedness of (TD), for data u 0 that are analytic in x, Sobolev in y, with further Gaussian decay in y. Let us stress that although analytic well-posedness is well-known for the classical Prandtl equation, see [START_REF] Sammartino | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations[END_REF][START_REF] Kukavica | On the local existence of analytic solutions to the Prandtl boundary layer equations[END_REF] extension of such result to (TD) is uneasy. Indeed, the evolution equation for u in (TD) contains the additional difficult term ∂ x |∂ x |A ≈ ∂ x |∂ x |u| z=∞ . This term is not skew-symmetric in L 2 (R × R + ), with potential severe loss of two derivatives in x. To show a positive result in analytic regularity, the authors have to combine two main ingredients. On one hand, they control A thanks to equation [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF], in which skew-symmetry of the Benjamin-Ono operator helps. On the other hand, they control u -A thanks to its rapid decay in y and the use of clever time-dependent cut-offs. We refer to [START_REF] Iyer | Real analytic local well-posedness for the triple deck[END_REF] for all necessary details.

Can we relax the assumption of analytic regularity for well-posedness? We remind that (P) is well-posed for any data with Gevrey 2 regularity [START_REF] Dietert | Well-posedness of the Prandtl equations without any structural assumption[END_REF], and for Sobolev data that are monotonic in y. The triple deck model being supposedly a refinement of the Prandtl one, it is natural to look for the same kind of stability results. Encouragement can be found from the analysis of the simplest linearization of (TD), namely around u(z) = z. The linearized system reads

∂ t u + z∂ x u + v -∂ 2 z u + ∂ x |∂ x |A = 0, ∂ x u + ∂ z v = 0, u| z=0 = v| z=0 = 0. lim z→∞ u = A. (4) 
Explicit calculations, sketched in Appendix A, can be performed, and show that any family of eigenfunctions of the form

u k (t, x, z) = e λ k t e ikx ûk (z), k ∈ R (5) 
satisfies Re λ k = O(1) as k → ±∞, which is consistent with Sobolev well-posedness.

Nevertheless, as we will show in this paper, there are monotonic shear flows V s (z) = z + U s (z) such that the linearization of (TD) around u s is ill-posed below analytic regularity. More precisely, we will prove that these linearized equations admit solutions of the form (5), with

σ m := lim inf k→+∞ Re λ k /k > 0.
One could exhibit similarly solutions with lim inf k→-∞ Re λ k /|k| > 0. This prevents any general well-posedness statement for data u 0 that are not analytic in x. In short, for any T > 0, one needs to impose a bound of the form û0 (k, •) ≤ Ce -(σmT )|k| , with some appropriate norm • in variable z, to ensure a bound on the solution over (0, T ). By the Paley-Wiener theorem, it is well-known that such exponential decay in |k| corresponds to analytic regularity in x. In particular, one should not hope that the analytic result of [START_REF] Iyer | Real analytic local well-posedness for the triple deck[END_REF] can be improved in general: we refer to [START_REF] Kamotski | On 2D Rayleigh-Taylor instabilities[END_REF][START_REF] Gérard-Varet | Remarks on the ill-posedness of the Prandtl equation[END_REF][START_REF] Guo | A note on Prandtl boundary layers[END_REF] for examples on how strong linearized instabilities imply misbehaviour of the flow of the nonlinear equations. The next section is dedicated to the statement of our main results.

Results and strategy of proof

We investigate in this paper linearizations of system (TD), around shear flows of the form

u = z + U s (z), v = 0.
Due to the diffusion term in (TD), non-affine shear flows are not solutions of the homogeneous triple deck equation. One way to circumvent this issue is of course to start from the inhomogeneous equation with source -U ′′ s . Another way to proceed is to consider time-dependent shear flows, and argue that the time variation of the flow is negligible at the time scale of the high frequency instabilities that we shall discuss here. We refer to [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF] for a rigorous reasoning in this second direction.

We assume for simplicity that

U s ∈ C ∞ (R + ), U s (0) = 0, lim z→∞ U s = A s ∈ R, d k dz k (U s -A s )(z) = O(e -z ) for k ≤ 3. ( 6 
)
Less stringent assumptions, notably on the decay of the profile at infinity, could be extracted from the proof. The linearized system reads

∂ t u + (U s + z)∂ x u -(1 + U ′ s )∂ x z 0 u + ∂ x |∂ x |A -∂ 2 z u = 0, u| z=0 = 0, lim z→∞ u = A.
(LTD)

We have expressed v = -z 0 ∂ x u thanks to the divergence-free condition and the non-penetration condition v| z=0 = 0. We are interested in the spectral analysis of (LTD) in the high frequency regime, i.e. looking for eigenmodes of the form

u k (t, x, y) = e -ikµ k t e ikx ûk (y), A k (t, x) = 1 k e -ikµ k t e ikx , k ≫ 1. (7) 
Note that by linearity, we are allowed to fix Âk = 1 k . We wish to exhibit a class of monotonic shear flows U s such that (LTD) has non-trivial solutions of the form [START_REF] Gargano | Singularity formation for Prandtl's equations[END_REF] for k large, satisfying lim inf k→+∞ Im µ k > 0. To do so, we will follow the path introduced in [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF] to analyze the stability properties of the linearized Interactive Boundary Layer model (IBL)

∂ t u + (U s + z)∂ x u -(1 + U ′ s )∂ x z 0 u -∂ 2 z u = ∂ t u e + u e ∂ x u e , u e - √ ν|∂ x | +∞ 0 (u -u e )dz = 0, u| z=0 = 0, lim z→∞ u = u e . (8) 
This path goes through the following steps:

1. We plug the formula [START_REF] Gargano | Singularity formation for Prandtl's equations[END_REF] in system (LTD), and reformulate our search for instability as a one-dimensional eigenvalue problem in variable z, with unknown eigenvalue µ k .

2. We take the formal limit k → +∞ of the eigenvalue problem, and we derive a necessary and sufficient condition on U s for the existence of an unstable eigenvalue µ ∞ to this limit eigenvalue problem. First, we show that eigenvalues µ ∞ are the zeroes of an holomorphic function Φ ∞ . Namely, Φ ∞ (µ) = φ µ,∞ (0) for an explicit function φ µ,∞ = φ µ,∞ (z). Let us remark that this inviscid condition Φ ∞ (µ) = 0 had already been derived in [START_REF] Tutty | On the stability and the numerical solution of the unsteady interactive boundary-layer equation[END_REF], and the existence of a zero in the unstable half-plane had been shown to hold numerically for a specific example of a steady flow beyond a bump (see also [START_REF] Bodonyi | On short-scale inviscid instabilities in the flow past surfacemounted obstacles[END_REF]). Here, we go much further, by using tools from complex analysis, inspired by the work of O. Penrose on Vlasov-Poisson equilibria [START_REF] Penrose | Electrostatic instabilities of a uniform non-maxwellian plasma[END_REF]. We show that the existence of a zero µ ∞ in the unstable half plane { Im µ > 0} amounts to a condition on the number of crossings of the positive real axis by some explicit curve related to Φ ∞ . Examples (both numerical and analytical) of shear flows satisfying this condition are given.

3. Eventually, we show that an instability at k = +∞ persists at large but finite k. To do so, we express again the rescaled eigenvalue µ k as the zero of a function Φ k . Again, Φ k (µ) = φ µ,k (0) for some function φ µ,k = φ µ,k (z), but this function is no longer explicit. Roughly, it satisfies the resolvent equation of a Prandtl like operator. A keypoint of our analysis is to establish a stability estimate for this resolvent equation. Thanks to this estimate, we are then able to show that Φ k is holomorphic in { Im µ > δ} for any δ > 0 and k large enough. We are also able to show that for k large and µ in a compact set, the solution φ µ,k is close to φ µ,∞ . We deduce from this that Φ ∞ and Φ k are close in a neighborhood of µ ∞ for k large enough, and conclude by Rouché's theorem.

As a result of the analysis sketched above, we state our main theorem:

Theorem 1 (Ill-posedness below analytic regularity). Assume that U s satisfies (6) and that V s (z

) := z + U s (z) satisfies V ′ s > 0 on R + . Let g(u) := V ′′ s (y) (V ′ s (y)) 3 | y=V -1 s (u)
. Assume that g is strictly monotone in the neighborhood of each of its positive zeroes, and define

n ± := card a > 0, g(a) = 0, - 1 V ′ s (0) + a PV ∞ 0 g(u) a -u du > 0, ±g strictly increasing near a .
Then, n ± is finite, and if n + -n -= 0, there exist solutions of (LTD) of type [START_REF] Gargano | Singularity formation for Prandtl's equations[END_REF] with lim inf k→∞ Im µ k > 0.

Moreover, there indeed exist shear flows U s such that n + -n -= 0.

The rest of the paper will be devoted to the proof of this result. Section 3 is dedicated to the first two steps alluded to above: rewriting of the problem as a 1-d eigenvalue problem, and sharp analysis of the case k = +∞. Section 4 is devoted to the third step: we show how to go from an instability at infinite k to an instability at finite k. Eventually, Section 5 collects examples, either analytical or numerical, for which our instability criterion applies. Let us stress that despite the similarities between (LTD) and ( 8), a simple adaptation of the analysis carried in [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF] is not enough to handle the triple deck model. The boundary conditions at infinity, and notably the fact that u is unbounded far away, create specific difficulties. In particular, we are unable to apply the kind of resolvent estimates used in [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF] with such conditions at infinity. Instead, we adapt the stability estimates that we used in [START_REF] Dietert | Well-posedness of the Prandtl equations without any structural assumption[END_REF] to obtain Gevrey 2 bounds for solutions of the classical Prandtl equation. [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF] The infinite frequency spectral problem

Reduction

We start by injecting solutions of type [START_REF] Gargano | Singularity formation for Prandtl's equations[END_REF] in (LTD). From now on, we shall work in Fourier variables only, so we can use without confusion notation u k instead of ûk . We find

-µ k + V s u k -V ′ s z 0 u k - 1 ik ∂ 2 z u k = -1, (9) 
u k | z=0 = 0, ( 10 
)
lim z→∞ u k = 1 k , (11) 
where we remind that V s (z) = z + U s (z). Like in [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF], we further write u k in terms of a stream function

φ k as u k = (k -1 -φ ′ k ) yielding (µ k -V s )φ ′ k + V ′ s φ k + 1 ik φ ′′′ k = -1 + 1 k µ k -U s + zU ′ s , φ k | z=0 = 0, φ ′ k | z=0 = 1 k , lim z→∞ φ ′ k (z) = 0. ( 12 
)
Note that from the consistency equation, we have

φ k (∞) = -1 + k -1 µ k -A s ) (13) 
which is again redundant to system [START_REF] Grenier | L ∞ instability of Prandtl layers[END_REF]. Let us note that the momentum equation is a third order ODE in z, and for general µ should require at most three boundary conditions for solvability. The fact that ( 12)-( 13) contains four boundary conditions is reminiscent of the fact that it is an eigenvalue problem, with unknowns (µ k , φ k ).

As explained in the previous section, in order to progress in the analysis of solutions (µ k , φ k ) of ( 12), we shall consider the formal limit of this system as k → +∞. This raises a problem of boundary conditions: indeed, at k = +∞, the viscous term 1 ik φ ′′′ k disappears, and the operator in z becomes first order. Therefore, we drop the condition on φ ′ k (0), and consider the following infinite frequency spectral problem

(µ ∞ -V s )φ ′ ∞ + V ′ s φ ∞ = -1, φ ∞ (0) = 0, lim z→∞ φ ′ ∞ (z) = 0. ( 14 
)
The formal limit of the consistency condition ( 13) is

φ ∞ (∞) = -1. ( 15 
)
It is again redundant to [START_REF] Iyer | Real analytic local well-posedness for the triple deck[END_REF]: as φ ′ ∞ still goes to zero at infinity, taking the limit z → +∞ in the momentum equation yields [START_REF] Kamotski | On 2D Rayleigh-Taylor instabilities[END_REF]. This time, ( 14)-( 15) contains three boundary conditions, for a first order system that would require a priori only one for solvability with an arbitrary given µ. We tackle a detailed analysis of this reduced eigenvalue problem in the next paragraph.

Spectral analysis of the reduced eigenvalue problem

We wish here to determine sharp conditions under which system ( 14) has a non-trivial solution

(µ ∞ , φ ∞ ) with Im µ ∞ > 0. Given µ ∈ C \ R + , we denote by φ = φ µ,∞ the solution of (µ -V s )φ ′ + V ′ s φ = -1, lim z→∞ φ ′ (z) = 0. ( 16 
)
As mentioned before, for general µ, as the first equation is first order in z, one can only retain a priori one boundary condition for solvability. It is crucial that we retain here the condition on φ ′ at infinity, instead of the condition on φ at zero. This is a main difference with the treatment of the IBL model in [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF]. Indeed, contrary to what happens in the IBL case, the solution of the equation (µ -V s )φ ′ -V ′ s φ = 1 with φ(0) = 0 is in general unbounded at infinity, due to the unboundedness of V s . Hence, it could not help to solve the eigenvalue problem [START_REF] Iyer | Real analytic local well-posedness for the triple deck[END_REF]. More generally no perturbative argument could be based on such solution, that is associated to the Dirichlet condition. On the contrary, system (16) has an explicit solution

φ µ,∞ (z) = (µ -V s (z)) ∞ z 1 (µ -V s (y)) 2 dy.
From this expression, one deduces that the consistency condition ( 15) is satisfied, as expected. Defining

Φ ∞ (µ) := φ µ,∞ (0) = µ ∞ 0 1 (µ -V s (y)) 2 dy, (17) 
we see that (µ ∞ , φ ∞ ) will be a solution of ( 14) if and only if

Φ ∞ (µ ∞ ) = 0, φ ∞ := φ µ∞,∞ .
The rest of the paragraph is devoted to the proof of the following proposition.

Proposition 2. Let V s , g and n ± as in Theorem 1. Then, Φ ∞ has at least one zero in the unstable half-plane { Im µ > 0} if and only if the condition n + -n -= 0 is satisfied.

We first state and prove two lemmas describing the behaviour of Φ ∞ in various regions of C\R + :

Lemma 3. For any δ > 0 there exists R > 0 such that

|Φ ∞ (µ) + 1| ≤ δ for all µ ∈ C \ R + with |µ| ≥ R.
Proof. We write

Φ ∞ (µ) = µ ∞ 0 1 V ′ s V ′ s (µ -V s ) 2 = 1 µ-Vs ′ dy = - 1 V ′ s (0) -µ ∞ 0 V ′′ s V ′2 s 1 V s -µ dy ( 18 
)
By elementary calculation, -1

V ′ s (0) + ∞ 0 V ′′ s V ′2 s dy = -1 V ′ s (0) -1 V ′ s ∞ 0 = -1. Hence we find Φ ∞ (µ) + 1 = ∞ 0 V ′′ s V ′2 s V s µ -V s dy = ∞ 0 g(u)u µ -u du,
where g is the function in Theorem 1. Note that g decays fast at infinity because V ′′ s = U ′′ s does, and because V ′ s → 1 at infinity. We decompose:

∞ 0 g(u)u µ -u du = +∞ 0 1 {|u-Re µ|≥1} g(u)u µ -u du + +∞ 0 1 {|u-Re µ|≤1} g(u)u µ -u du.
By dominated convergence, the first term goes to zero when |µ| → +∞ in the region C \ R + , and the second one goes to zero when |µ| → +∞ in the region { Re µ ≤ -1} ∪ { Im µ > 1}.

Eventually, for 0 < | Im µ| ≤ 1, and Re µ ≥ -1, we write the second term as follows (µ = a+ib):

+∞ 0 1 {|u-Re µ|≤1} g(u)u µ -u du = 1 -1 g(v + a)(v + a) -g(a)a ib -v dv + g(a)a 1 -1 1 ib -v dv
The first term vanishes when |µ| → +∞, that is a → +∞, invoking again dominated convergence, and the second one goes to zero as well taking into account that g(a)a → 0 and that lim b→0

+ 1 -1 1 
ib-v dv exists by Plemelj formula. This concludes the proof of the lemma.

Lemma 4. For all µ ∈ C \ R + with Re µ ≤ 0, Re Φ ∞ (µ) < 0.
Moreover,

lim µ→0 µ∈C\R + Re Φ ∞ (µ) = - 1 V ′ s (0) < 0.
Proof. From the definition [START_REF] Kukavica | The van Dommelen and Shen singularity in the Prandtl equations[END_REF], denoting µ = a + ib, we infer:

Re Φ ∞ (µ) = ∞ 0 a((a -V s ) 2 -b 2 ) + 2b 2 (a -V s ) |µ -V s (y)| 4 dy.
For the numerator we find

a((a -V s ) 2 -b 2 ) + 2b 2 (a -V s ) = a(a -V s ) 2 + b 2 (a -2V s ) ≤ 0
as a ≤ 0. Unless a = b = 0 there exists also always z for which it is strictly negative, which concludes the proof of the first inequality. The other one is a simple consequence of the expression

Φ ∞ (µ) = - 1 V ′ s (0) + µ ∞ 0 g(u) µ -u dy, (19) 
see [START_REF] Lagrée | Interacting boundary layers[END_REF] and the definition of g in Theorem 1. The integral

∞ 0 g(u)
µ-u du only diverges logarithmicaly as µ → 0, hence the result.

We have now all the ingredients to conclude our analysis of the zeroes of Φ ∞ in { Im µ > 0}. By Lemma 3, there exists R > 0 such that

|Φ ∞ (µ) + 1| ≤ 1 4 , Im µ > 0, |µ| ≥ R. Let Ω ǫ := {µ ∈ C, Im µ > ǫ, |µ| ≤ R}
With our choice of R, Φ ∞ has a zero in { Im µ > 0} if and only if it has one in Ω ǫ for some ǫ > 0 small enough. As Φ ∞ is a holomorphic function, its zeroes in { Im µ > 0} are isolated, so that we can restrict to ǫ along a sequence going to zero and such that Φ ∞ does not vanish at ∂Ω ǫ . Then, the number n ǫ of its zeroes in Ω ǫ , counted with multiplicity, is given by

n ǫ = 1 2iπ ∂Ωǫ Φ ′ ∞ (ζ) Φ ∞ (ζ) dζ.
Let γ ǫ be a direct parametrisation of the curve ∂Ω ǫ . We have

1 2iπ ∂Ωǫ Φ ′ ∞ (ζ) Φ ∞ (ζ) dζ = 1 2iπ Φ ′ ∞ (γ ǫ (t)) Φ ∞ (γ ǫ (t)) γ ′ ǫ (t) dt = 1 2iπ (Φ ∞ • γ ǫ ) ′ (t) (Φ ∞ • γ ǫ )(t) dt = 1 2iπ Φ∞(∂Ωǫ) 1 ξ dξ
so that the number of roots equals the winding number of the curve Φ ∞ (∂Ω ǫ ) around 0. To compute this winding number, one can choose a complex logarithm with a branch cut along the positive real axis. The winding number is given by the sum of the jumps of this logarithm, which corresponds to the number of crossings of the curve Φ ∞ (∂Ω ǫ ) with the positive real axis. More precisely,

1 2iπ ∂Ωǫ Φ ′ ∞ (ζ) Φ ∞ (ζ)
dζ = number of crossings from below -number of crossings from above.

(

) 20 
We remind that the intersection of Φ ∞ (∂Ω ǫ ∩ {|µ| = R}) with the positive real axis is empty. Hence it remains to understand the crossings of Φ ∞ ([-R, R] + iǫ), for ǫ > 0 going to zero. By Lemma 4, there exists ρ > 0, such that Re Φ ∞ < 0 for -R < a < ρ, so that we can restrict to a ∈ [ρ, R]. Over this interval, formula [START_REF] Liu | Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay[END_REF] yields that

Φ ∞ (a + ib) = - 1 V ′ s (0) + a +∞ 0 g(u) a + ib -u du + ib +∞ 0 g(u) a + ib -u du ---→ b→0 + - 1 V ′ s (0) + a PV +∞ 0 g(u) a -u du -iπag(a) (21) 
using Plemelj formula, where the convergence is uniform in a

∈ [ρ, R]. We extend the definition of Φ ∞ over R * + by Φ ∞ (a) := - 1 V ′ s (0) + a PV +∞ 0 g(u) a -u du -iπag(a), a > 0.
We notice that the quantity n + , resp. n -, defined in Theorem 1, corresponds to the number of crossings from above, resp. from below, of the curve Φ ∞ (R * + ) with the positive real axis. Lemma 3 being uniform in b, we still have Φ ∞ (a) → -1 as a → +∞. Also, as in Lemma 4, lim a→0 + Re Φ ∞ (a) = -1 V ′ s (0) < 0. It follows that n ± is finite and coincides with the crossings of Φ ∞ ([ρ, R]) up to taking ρ smaller and R larger. Finally, from the uniform convergence in ( 21), we deduce that for ǫ > 0 small enough, ( 20) is equal to n + -n -. This concludes the proof of Proposition 2.

Persistence of the instability at finite k

This section is devoted to the proof of Theorem 1, except for the last statement, which will be considered in the next section. We assume that n + -n -= 0, see the statement of the theorem. Our goal is to show that (LTD) has solutions of type [START_REF] Gargano | Singularity formation for Prandtl's equations[END_REF] with lim inf k→+∞ Im µ k > 0. In other words, we need to prove that for all k large enough, there exists µ k , φ k solving [START_REF] Grenier | L ∞ instability of Prandtl layers[END_REF] with Im µ k ≥ δ > 0 for some δ independent of k.

Resolvent Estimate

The first step is to consider the following resolvent problem

   (µ -V s )ψ ′ + (V ′ s )ψ + 1 ik ψ ′′′ = F, ψ ′ | z=0 = 0, lim z→∞ ψ ′ (z) = 0, lim z→∞ ψ = 0. ( 22 
)
Note that we do not prescribe the value of ψ at zero. Let ρ(z) = 1 + z m , m large. We denote by , ρ the L 2 (ρ) scalar product, and set

• = •, • 1/2 ρ .
Proposition 5. Let µ m > 0. There exists k m , depending on µ m such that for any µ with Im µ ≥ µ m , for any k ≥ k m and any F ∈ L 2 (ρ), the system (22) has a unique solution ψ = ψ µ,k of the form

ψ = µ -V s + 1 ik d 2 dz 2 B, B ′ | z=0 = 0, lim z→∞ B = 0.
where B ∈ H 3 (R + ) satisfies the estimates

Im µ B ′ 2 + 1 k B ′′ 2 ≤ 4 ( Im µ) 3 F 2 (23)
and

Im µ B ′′ 2 L 2 + 1 k B ′′′ 2 L 2 ≤ C √ k ( Im µ) 9/2 + 1 ( Im µ) 2 F 2 (24)
for a constant C depending on µ m . Moreover, the map

µ → ψ µ,k (0) is analytic in { Im µ > µ m }.
Proof of the well-posedness statement in Proposition 5. We only detail the a priori estimates leading to the well-posedness. For the detailed construction of solutions in a similar context, see [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF]. Inspired by our work [START_REF] Dietert | Well-posedness of the Prandtl equations without any structural assumption[END_REF], we introduce the solution B of the system

µ -V s + 1 ik d 2 dz 2 B = ψ, B ′ | z=0 = 0, lim z→∞ B = 0. ( 25 
)
Through differentiation in z, we get

µ -V s + 1 ik d 2 dz 2 B ′ -V ′ s B = ψ ′ .
Inserting the two previous identities for ψ and ψ ′ in Equation ( 22), we find

µ -V s + 1 ik d 2 dz 2 2 B ′ -µ -V s + 1 ik d 2 dz 2 , V ′ s B = F that is µ -V s + 1 ik d 2 dz 2 2 B ′ - 1 ik d 2 dz 2 , U ′ s B = F (26) 
We introduce the solution ϕ of

µ -V s - 1 ik d dz + ρ ′ ρ -1 2 ϕ = B ′ , ϕ| z=0 = 0, lim z→∞ ϕ = 0. ( 27 
)
Taking the scalar product of ( 26) with ϕ, we find

µ -V s + 1 ik d 2 dz 2 B ′ , B ′ ρ - 1 ik V ′ s (0)B(0)ϕ ′ (0)ρ(0) - 1 ik d 2 dz 2 , U ′ s B, ϕ ρ = F, ϕ ρ .
The boundary term at z = 0 comes from the integration by parts of the diffusion term, taking into account that

µ -V s + 1 ik d 2 dz 2 B ′ (0) = ψ ′ (0) + V ′ s (0)B(0) = V ′ s (0)B(0).
We perform one more integration by parts and take the imaginary part to find

Im µ B ′ 2 + 1 k B ′′ 2 = Im 1 ik B ′′ , ρ ′ ρ -1 B ′ ρ -Im 1 ik V ′ s (0)B(0)ϕ ′ (0)ρ(0) + Im 1 ik d 2 dz 2 , U ′ s B, ϕ ρ + Im F, ϕ ρ . ( 28 
)
It remains to estimate the four terms at the right-hand side. Clearly,

Im 1 ik B ′′ , ρ ′ ρ -1 B ′ ρ ≤ 1 k ρ ′ ρ -1 ∞ B ′′ B ′ ≤ 1 2k B ′′ 2 + 1 2k ρ ′ ρ -1 2 ∞ B ′ 2 . ( 29 
)
To bound the last terms, we first need to relate norms of ϕ to norms of B. We claim: Lemma 6. For k large enough (depending on µ m and ρ), the solution ϕ of (27) satisfies

ϕ ≤ √ 2 Im µ B ′ , ϕ L 2 ≤ √ 2 Im µ B ′ L 2 , ϕ ′ ≤ √ k √ Im µ B ′ , ϕ ′ L 2 ≤ √ k √ Im µ B ′ L 2 , ϕ ′′ L 2 ≤ Ck B ′ L 2 ,
where C depends also on µ m .

We take the L 2 (ρ) scalar product of ( 27) with ϕ, and retain the imaginary part:

Im µ ϕ 2 + 1 k ϕ ′ 2 = Im 1 ik ρ ′ ρ -1 ϕ, ϕ ′ ρ -Im B ′ , ϕ ρ ≤ 1 2k ρ ′ ρ -1 2 ∞ ϕ 2 + 1 2k ϕ ′ 2 + 1 2 Im µ B ′ 2 + Im µ 2 ϕ 2 .
For

1 2k ρ ′ ρ -1 2 ∞ ≤ µm 4 , we get in particular Im µ 4 ϕ 2 ≤ 1 2 Im µ B ′ 2
which implies the first estimate. We also find

1 2k ϕ ′ 2 ≤ 1 2 Im µ B ′ 2
which implies the second estimate. Similar (and even simpler) calculations yield

ϕ L 2 ≤ √ 2 Im µ B ′ L 2 , ϕ ′ L 2 ≤ √ k √ Im µ B ′ L 2 .
To obtain the last inequality of the lemma, we multiply by ϕ ′′ and integrate. Denoting , L 2 the classical L 2 scalar product, we get

1 k ϕ ′′ 2 L 2 + Im µ ϕ ′ 2 L 2 = Im 1 ik 2 ρ ′ ρ -1 ′ ϕ ′ + ρ ′ ρ -1 ′′ ϕ, ϕ ′′ L 2 + Im V ′ s ϕ, ϕ ′ L 2 + Im B ′ , ϕ ′′ L 2 ≤ 1 4k ϕ ′′ 2 L 2 + 1 k 2 ρ ′ ρ -1 ′ 2 ∞ ϕ ′ 2 L 2 + 1 4k ϕ ′′ 2 L 2 + 1 k ρ ′ ρ -1 ′′ 2 ∞ ϕ 2 L 2 + Im µ 4 ϕ ′ 2 L 2 + 1 Im µ V ′ s 2 ∞ ϕ 2 L 2 + 1 4k ϕ ′′ 2 L 2 + k B ′ 2 L 2 .
Using the previous estimate for ϕ L 2 , we deduce that for k large enough

1 4k ϕ ′′ 2 L 2 + Im µ 4 ϕ ′ 2 L 2 ≤ C + k B ′ 2 L 2
for a constant C depending on µ m . The last estimate of the lemma follows.

We now go back to the identity (28), where we have to bound the last three terms at the right-hand side. The easiest is

Im F, ϕ ρ ≤ 1 ( Im µ) 3 F 2 + ( Im µ) 3 4 ϕ 2 ≤ 1 ( Im µ) 3 F 2 + Im µ 2 B ′ 2 . ( 30 
)
The commutator term splits into

Im 1 ik d 2 dz 2 , U ′ s B, ϕ ρ = Im 2 ik U ′′ s B ′ , ϕ ρ + Im 1 ik U ′′′ s B, ϕ ρ ≤ 2 k U ′′ s ∞ B ′ ϕ + C H k U ′′′ s (1 + z) ∞ B ′ ϕ ,
where we used the Hardy inequality B 1+y ≤ C H B ′ . Using the first estimate in the lemma, we end up with

Im 1 ik d 2 dz 2 , U ′ s B, ϕ ρ ≤ C ( Im µ)k B ′ 2 . (31) 
Eventually, for the trace term, we have through Sobolev imbedding:

Im 1 ik (U ′ s (0) + 1)B(0)ϕ ′ (0)ρ(0) ≤ C k B ∞ ϕ ′ 1/2 L 2 ϕ ′′ 1/2 L 2 ≤ C k ρ -1/2 L 2 B ′ ϕ ′ 1/2 L 2 ϕ ′′ 1/2 L 2 ≤ C ′ k 1/4 ( Im µ) 1/4 B ′ B ′ L 2 (32) for constants C, C ′ depending on µ m .
Collecting (29)-( 30)-(31), we find that for k large enough, depending on µ m ,

Im µ B ′ 2 + 1 k B ′′ 2 ≤ 4 ( Im µ) 3 F 2 that is (23).
To establish estimate [START_REF] Smith | On the non-parallel flow stability of the Blasius boundary layer[END_REF], we introduce the solution ϕ 1 of

µ -V s - 1 ik d 2 dz 2 ϕ 1 = B ′′′ , ϕ 1 | y=0 = 0, lim y→∞ ϕ 1 = 0. ( 33 
)
Taking the usual L 2 scalar product of ( 26) with ϕ 1 , we obtain

µ -V s + 1 ik d 2 dz 2 B ′ , B ′′′ L 2 + 1 ik V ′ s (0)B(0)ϕ ′ 1 (0) - 1 ik d 2 dz 2 , U ′ s B, ϕ 1 L 2 = F, ϕ 1 L 2 .
Hence,

Im µ B ′′ 2 L 2 + 1 k B ′′′ 2 L 2 = Im V ′ s B ′ , B ′′ L 2 + Im 1 ik V ′ s (0)B(0)ϕ ′ 1 (0)ρ(0) + Im 1 ik d 2 dz 2 , U ′ s B, ϕ 1 L 2 -Im F, ϕ 1 L 2 .
The last three terms can be treated like before, replacing ϕ by ϕ 1 . First, the estimates in Lemma 6 are replaced by

ϕ 1 L 2 ≤ √ 2 Im µ B ′′′ L 2 , ϕ ′ 1 L 2 ≤ √ k √ Im µ B ′′′ L 2 , ϕ ′′ 1 L 2 ≤ Ck B ′′′ L 2 ,
with the same proof. Then, estimate (31) becomes

Im 1 ik d 2 dz 2 , U ′ s B, ϕ 1 L 2 ≤ C ( Im µ)k B ′ B ′′′ L 2 ≤ 1 4k B ′′′ 2 L 2 + C 2 ( Im µ) 2 k B ′ 2 .
Proceeding as in (32), we find

Im 1 ik V ′ s (0)B(0)ϕ ′ 1 (0) ≤ C k 1/4 ( Im µ) 1/4 B ′ B ′′′ L 2 ≤ 1 4k B ′′′ 2 L 2 + C 2 √ k √ Im µ B ′ 2 .
Also,

-Im F, ϕ 1 L 2 ≤ F L 2 ϕ 1 L 2 ≤ F L 2 √ 2 Im µ B ′′′ L 2 ≤ 1 4k B ′′′ 2 L 2 + 2 ( Im µ) 2 F 2 L 2 .
The remaining term is controlled by

Im V ′ s B ′ , B ′′ ≤ C B ′ L 2 B ′′ L 2 ≤ C 2 2( Im µ) B ′ 2 + Im µ 2 B ′′ L 2 .
Collecting these bounds, we end up with

Im µ 2 B ′′ 2 L 2 + 1 4k B ′′′ 2 L 2 ≤ C √ k √ Im µ B ′ 2 + 1 Im µ B ′ 2 + 2 ( Im µ) 2 F 2 L 2 .
From this bound and ( 23), we deduce ( 24)

Im µ B ′′ 2 L 2 + 1 k B ′′′ 2 L 2 ≤ C √ k ( Im µ) 9/2 + 1 ( Im µ) 2 F 2
for some constant C depending on µ m .

Proof of the analyticity statement in Proposition 5. The last thing to be shown is the analyticity of the map µ → ψ µ,k (0). As before, we write ψ = ψ µ,k . We proceed as follows: let χ n (z) = χ z n , for some smooth non-negative χ which is one near the origin and zero in the large. We consider the approximate problem

   (µ -(U s + zχ n ))ψ ′ + (U ′ s + (zχ n ) ′ )ψ + 1 ik ψ ′′′ = F, ψ ′ | z=0 = 0, lim z→∞ ψ ′ (z) = 0, lim z→∞ ψ = 0. (34) 
Above calculations apply to to this approximate system as well, and yield a solution

ψ n = µ -(U s + zχ n ) + 1 ik d 2 dz 2 B n , B ′ n | z=0 = 0, lim z→∞ B n = 0
where B n satisfies the same estimates ( 23)-( 24) uniformly in n. In particular, B ′ n ∈ L 2 (ρ). The difference with the original system is that this implies ψ ′ n ∈ L 2 (ρ): it can be deduced from the formula

ψ ′ n = µ -(U s + zχ n ) + 1 ik d 2 dz 2 B ′ n -(U ′ s + (zχ n ) ′ )B n
as the base flow U s + zχ n is not diverging at infinity. Using the bounds for B n , one obtains an estimate of the type ψ ′ n ≤ C n F , with a bound that may depend on n through χ n , but is uniform in µ inside { Im µ > µ m }. Using further the equation in (34), we find that ψ ′ n ∈ H 2 (ρ), and a bound of the form ψ ′ n H 2 (ρ) ≤ C n F . Introducing the operator

L n : H 2 (ρ) ∩ H 1 0 (ρ) → L 2 (ρ), u → -(U s + zχ n )u -(U ′ s + (zχ n ) ′ ) ∞ z u + 1 ik u ′′
we then know that its resolvent (µ + L n ) -1 is well-defined for Im µ > µ m , and as any resolvent operator is analytic in µ. Hence, ψ ′ n = (µ + L n ) -1 F is analytic in µ with values in H 2 (ρ), and by imbedding µ → ψ n (0) is analytic as well.

To conclude that µ → ψ(0) is analytic, it remains to show that ψ n (0) -----→ n→+∞ ψ(0) uniformly on the compact sets of { Im µ > µ m }. Note that, by [START_REF] Smith | On the high Reynolds number theory of laminar flows[END_REF], we have

|ψ n (0) -ψ(0)| = |µ(B n (0) -B(0)) + 1 ik ∂ 2 z (B n -B)(0)| ≤ C B ′ n -B ′ L 2 (ρ) + B ′′ n -B ′′ L 2 (ρ) + B ′′′ n -B ′′′ L 2
for all µ in a compact set K, for any weight function ρ ≥ 1 such that 1 ρ ∈ L 1 (R + ), where the constant C depends on K and k. The last step is to establish that the right-hand side goes to zero (uniformly in µ ∈ K), which can be done through an estimate of the difference. Namely, combining [START_REF] Tutty | On the stability and the numerical solution of the unsteady interactive boundary-layer equation[END_REF] and its analogue

µ -(U s + zχ n ) + 1 ik d 2 dz 2 2 B ′ n - 1 ik d 2 dz 2 , U ′ s + (zχ n ) ′ B n = F we see that µ -V s + 1 ik d 2 dz 2 2 (B n -B) ′ - 1 ik d 2 dz 2 , U ′ s (B n -B) = R n
where, denoting ψ n = z(χ n -1):

R n = 1 ik d 2 dz 2 , ψ ′ n B ′ n -µ -V s + 1 ik d 2 dz 2 (ψ n B n ) -ψ n µ -V s + 1 ik d 2 dz 2 B n -ψ 2 n B n .
Applying [START_REF] Sammartino | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations[END_REF] and [START_REF] Smith | On the non-parallel flow stability of the Blasius boundary layer[END_REF] with weight ρ = (1 + z) -8 ρ instead of ρ, we find that

B ′ n -B ′ L 2 (ρ) + B ′′ n -B ′′ L 2 (ρ) + B ′′′ n -B ′′′ L 2 ≤ C R n L 2 (ρ)
for a constant C that again may depend on K or k. Eventually, using that B ′ n is bounded uniformly in n in H 1 (ρ), one can check that R n L 2 (ρ) goes to zero as n → ∞. For instance, 1 ik

d 2 dz 2 , ψ ′ n B ′ n L 2 (ρ) ψ ′′′ n (1 + z) -2 ∞ B ′ n L 2 (ρ) + ψ ′′ n (1 + z) -2 ∞ B ′′ n L 2 (ρ) ψ ′′′ n (1 + z) -4 ∞ + ψ ′′ n (1 + z) -4 ∞ 1 n .
All other terms defining R n can be treated with similar ideas.

Conclusion

We remind that our goal is to find solutions (µ k , φ k ) of ( 12) with lim inf k→+∞ µ k > 0. From the analysis of Section 3, notably Proposition 2, we already know that the system (14) has a solution (µ ∞ , φ ∞ ) with Im µ ∞ > 0. We shall find µ k , φ k with µ k close to µ ∞ . We fix µ m = 1 2 Im µ ∞ . We shall first prove that for any µ with Im µ ≥ µ m and k ≥ k m , with k m given by Proposition 5, one can construct a solution φ

= φ µ,k of (µ -V s )φ ′ + V ′ s φ + 1 ik φ ′′′ = -1 + 1 k µ -U s + zU ′ s , φ ′ | z=0 = 1 k , lim z→∞ φ ′ (z) = 0. (35) 
The first equation implies the compatibility condition φ(∞) = -1 + 1 k µ -A s ). We look for an approximation of φ under the form

φ app = φ µ,∞ + φ bl
where φ µ,∞ solves ( 16) and where φ bl = φ bl (z) is a boundary layer term that allows to recover the right Neumann boundary condition at z = 0 and the right Dirichlet condition at infinity. Namely, φ bl is the solution of

µφ ′ bl + 1 ik φ ′′′ bl = 0, φ ′ bl (0) = -φ ′ µ,∞ (0) + 1 k , φ ′ bl (∞) = 0, φ bl (∞) = 1 k µ -A s ).
The solution is explicitly given by

φ bl (z) = 1 k µ -A s + z ∞ e - √ -ikµ y dy -φ ′ µ,∞ (0) + 1 k . (36) 
Thanks to this choice, it is straightforward to check that the difference ψ = φ -φ app satisfies a system of type [START_REF] Prandtl | Über Flüssigkeitsbewegung bei sehr kleiner Reibung[END_REF] with

F := V s φ ′ bl -V ′ s φ bl - 1 ik φ ′′′ µ,∞ + 1 k µ -U s + zU ′ s . (37) 
By Proposition 5, there exists a solution ψ to this system, so that

φ µ,k = φ app + ψ = φ µ,∞ + φ bl + ψ defines a solution of (35). Defining Φ k (µ) := φ k,µ (0). 
We shall prove that for k large enough, there exists

µ k in the disk D(µ ∞ , 1 2 Im µ ∞ ) := {z ∈ C : |µ ∞ -z| < 1 2 Im µ ∞ } such that Φ k (µ k ) = 0. Hence, (µ k , φ k := φ µ k ,k
) will be the desired solution to [START_REF] Grenier | L ∞ instability of Prandtl layers[END_REF]. More precisely, we state

Proposition 7. There exist constants C, K > 0 such that Φ k is holomorphic in D(µ ∞ , 1 2 Im µ ∞ ) and |Φ k (µ) -Φ ∞ (µ)| = |φ µ,k (0) -φ µ,∞ (0)| ≤ Ck -1/4 , ∀µ ∈ D(µ ∞ , 1 2 Im µ ∞ ), k ≥ K.
Before proving this proposition, let us show how it implies the existence of a zero µ k of Φ k . We already know that Φ ∞ is holomorphic, and that µ ∞ is one of its zeroes, therefore isolated. Hence, for δ > 0 small enough, ǫ := inf |µ-µ∞|=δ |Φ ∞ (µ)| > 0. For all k large enough so that |Ck -1/4 | ≤ ǫ 2 , we conclude by Proposition 7 and Rouché's theorem that Φ k has a zero in D(µ ∞ , δ).

Proof of Proposition 7. We have

Φ k (µ) -Φ ∞ (µ) = φ µ,k (0) -φ µ,∞ (0) = φ bl (0) + ψ(0). First, from (36), φ bl (0) = 1 k µ -A s - 1 √ -ikµ -φ µ,∞ (0) + 1 k (38) 
so that for all µ ∈ D(µ ∞ , δ) it holds that |φ bl (0)| ≤ Ck -1/2 . Then, with the notations of Proposition 5,

|ψ(0)| = µ -V s + 1 ik d 2 dz 2 B(0) = µB(0) + 1 ik B ′′ (0) ≤ C B ′ + B ′′ 1/2 L 2 B ′′′ 1/2 L 2 ≤ Ck 1/2 F
where the last inequality is a consequence of the estimates in Proposition 5, with F defined in (37). Note that

|F (z)| ≤ V s z L ∞ |zφ ′ bl (z)| + V ′ s L ∞ φ bl (z) - 1 k (µ -A s ) + |V ′ s (z) -1| 1 k (µ -A s ) + 1 k |U s (z) -A s | + 1 k |zU ′ s (z)|.
Using this inequality, one gets F ≤ Ck -3/4 , and eventually |ψ(0)| ≤ Ck -1/4 . The estimate of Proposition 7 follows. As regards the analyticity of µ → Φ k , it follows from the analyticity of µ → φ bl (0) and of µ → ψ(0). The former is deduced directly from formula (38), having in mind the analyticity of φ µ,∞ (0) = Φ ∞ (0). The latter is deduced from the analyticity statement of Proposition 5. More precisely, the statement is given there for a source term F that is independent of µ, but it is still true, with the same proof, for an F analytic in µ, which is the case here, cf. (37). This concludes the proof of the proposition.

Examples of instabilities

In this final part of the paper, we exhibit examples, both numerical and analytical, for which the quantity n + -n -mentioned in Theorem 1 is indeed non-zero.

For the theoretical existence of unstable modes, we note that (17) can be written as Φ ∞ (µ) = ∞ 0 q µ (V s (y)) dy with the function q µ : u → µ(µ -u) -2 . For a fixed µ, we now look at q µ ([0, ∞)) and by the idea of Section 6 of [START_REF] Dalibard | High frequency analysis of the unsteady interactive boundary layer model[END_REF], we can construct smooth profiles V s with Φ ∞ (µ) = 0 if and only if the origin is in the interior of the convex hull of q µ ([0, ∞)). Indeed for Re µ > 0 and Im µ > 0, the origin is in the convex hull of q µ ([0, ∞)) so that unstable modes exist, see Figure 2 as an example. The advantage of the stability criterion is that it is explicitly computable and has an immediate visual interpretation as the image of Φ ∞ (R + iǫ) for ǫ > 0.

As an example, we consider V s (y) = x + 4x e -2x .

In this case we find the resulting curve is shown in Figure 3. Here we see that it is stable as it is not crossing the positive real axis.

As another example, we consider V s (y) = sin(2x) e -x + x (1 -e -x ).

(40)

In this case we find the resulting curve is shown in Figure 4. Here we see that unstable modes exists as the positive real axis is crossed once.

A Stability for U s = 0

The assumptions of Theorem 1 are not satisfied in the case where U s vanishes identically. On the contrary, one can show in this setting that any family of solutions of (LTD) of type where the roots are chosen with positive real part so that (ξ + η k )W -W ′′ = 0.

Using the boundary condition on ω ′ (0) and the decay condition of ω at infinity, we get

W (ξ) = ik|k|(ik) -1/3 Ai(ξ + η k ) Ai(η k , - 1 
)
where Ai is the so-called Airy function of the first kind, and Ai(•, -1) denotes its derivative, cf. [START_REF] Drazin | Hydrodynamic stability[END_REF]. Then the consistency equation (41) yields the dispersion relation

1 = ik|k| Ai(η k , 1) Ai(η k , -1) , (42) 
where Ai(•, 1) is the antiderivative of Ai that vanishes at +∞, and we recall η k = (ik) -2/3 λ k .

We will now use these relations to determine the asymptotic behaviour of unstable eigenvalues λ k (meaning Re λ k > 0) when |k| → +∞. We distinguish between three regimes: η k goes to zero, goes to infinity, or is O(1) as |k| → +∞.

• If η k → 0

Figure 1 :

 1 Figure 1: Spatial scales of the triple deck model where δ = ν 3/8 and ǫ = ν 1/8 .

Figure 2 :

 2 Figure 2: Image of q µ ([0, ∞)) for µ = 1 + i.

  u k (t, x, z) = e λ k t e ikx ûk (z), A k (t, x) = e λ k t e ikx , k ∈ R, has growth rate ( Re λ k ) + = O(1) as |k| → +∞. We now sketch the proof of this claim. It builds upon classical works on the linear stability of Couette or Blasius flows within Navier-Stokes, cf.[START_REF] Drazin | Hydrodynamic stability[END_REF][START_REF] Smith | On the non-parallel flow stability of the Blasius boundary layer[END_REF][START_REF] Wasow | On small disturbances of plane couette flow[END_REF].The trick is to differentiate the linearised equation once by z and express the result in terms of ω(z) := û′ k (z). Then the linearised evolution (4) yields the eigenmode equation (λ k + ikz)ω -ω ′′ = 0 with the boundary conditions ω ′ (0) = ik|k|, lim z→∞

Figure 3 :

 3 Figure 3: Image of Φ ∞ (R + iǫ) for V s from (39) with ǫ = 0.1, ǫ = 0.5 and ǫ = 0.01.
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We find

where Ai(0,1) Ai(0,-1) = 3 -2/3 Γ(1/3), see [5, equation (A11)]. This yields a contradiction.

We use the asymptotic expansion given in [START_REF] Drazin | Hydrodynamic stability[END_REF], see equations (A12)-(A13)-(A14). In the case k > 0, we find

where a(p) = 1 72 (12p 2 + 24p + 5). Using the η k = (ik) -2/3 λ k we find Re λ k ≤ 0.

Hence we see that a subsequence of η k should converge to some η 0 satisfying Ai(η 0 , 1) = 0. As Re λ k > 0, one finds that -5π/6 < arg(η k ) < π/6 and thus -5π/6 ≤ arg(η 0 ) ≤ π/6. Similarly, in the case k < 0, one should have -π/6 ≤ arg(η 0 ) ≤ 5π/6.

These two scenarios are excluded by the following proposition, which can be found in [START_REF] Wasow | On small disturbances of plane couette flow[END_REF]: the function Ai(•, 1) has no zero in the closed sector -5π/6 ≤ arg(η) ≤ 5π/6. This concludes the proof of spectral stability.