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On the ill-posedness of the triple deck model

Helge Dietert ∗ † David Gérard-Varet ∗ ‡

May 9, 2022

Abstract

We analyze the stability properties of the so-called triple deck model, a classical re-
finement of the Prandtl equation to describe boundary layer separation. Combining the
methodology introduced in [3], based on complex analysis tools, and stability estimates in-
spired from [4], we exhibit unstable linearizations of the triple deck equation. The growth
rates of the corresponding unstable eigenmodes scale linearly with the tangential frequency.
This shows that the recent result of Iyer and Vicol [14] of local well-posedness for analytic
data is essentially optimal.

Keywords: Unsteady Boundary Layer, Triple-Deck model, analytic instabilities, spectral anal-
ysis
MSC Codes: 76D10 35P15

1 Introduction

Our concern in this paper is the triple deck model, introduced in the 1960’s to describe the
so-called boundary layer separation. The general concern behind this model is to understand
the behaviour of Navier-Stokes solutions with velocity uν = (uν , vν) and pressure pν near a rigid
boundary, when the inverse Reynolds number ν goes to zero. Due to the no-slip condition at
the boundary, it is well-known that this is a singular asymptotic problem: the Euler solution
u0 = (u0, v0) does not describe the dynamics near the wall. In a celebrated paper [22], Ludwig
Prandtl tackled this problem through the use of matched asymptotic expansions. For planar
flows in the half plane Ω = R × R+, this means that two regions should be distinguished: one
away from the wall, where

uν(T,X, Y ) ≈ u0(t,X, Y ), pν(T,X, Y ) ≈ p0(t,X, Y ) (1)

while close to the wall, in a boundary layer, one should have

uν(T,X, Y ) ≈ uP

(

T,X,
Y√
ν

)

, vν(T,X, Y ) ≈
√
ν vP

(

T,X,
Y√
ν

)

,

pν(T, x, Y ) ≈ pP

(

T,X,
Y√
ν

) (2)
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for boundary layer profiles (uP , vP , pP ) = (uP , vP , pP )(T,X, y). Moreover, by injecting the
Prandtl boundary layer expansion in the Navier-Stokes equation and keeping the leading order
terms, we end up with the Prandl system

∂TuP + uP∂XuP + vP∂yuP − ∂2yuP + ∂XpP = 0,

∂ypP = 0,

∂XuP + ∂yvP = 0,

uP |y=0 = vP |y=0 = 0.

(P)

This system is completed by the conditions at infinity

lim
y→∞

uP (T,X, y) = u0(T,X, 0), lim
y→∞

pP (T,X, y) = p0(T,X, 0)

which ensure the matching between the boundary layer and the upper inviscid region of the
flow.

The Prandtl model has revealed very fruitful to understand steady Navier-Stokes flows in regions
where boundary layers remain attached to the boundary. However, it is well-known that down-
stream of the flow, under an adverse pressure gradient, streamlines detach from the boundary
and recirculation occur. Moreover, in the unsteady context, even upstream, Tollmien-Schlichting
instabilities may destabilize the flow. All these hydrodynamic phenomena have consequences on
the mathematical analysis of system (P), for which various negative results have been obtained:
ill-posedness results [8, 19], blow-up results [6, 7, 17, 2], instability of Prandtl expansions at the
level of the Navier-Stokes equations [10, 11, 12]. A common difficulty behind these works is the
appearance of small tangential scales, that invalidate expansions of type (2), which are assumed
to depend regularly on x. In order to capture the effect of these small scales, while still trying to
obtain reduced models, several refinements of the Prandtl model were introduced in the 1960’s
and 1970’s. The most famous ones are the triple deck model and the Interactive Boundary
Layer model (IBL). The latter one, analyzed mathematically in the recent paper [3], consists in
keeping additional O(

√
ν) terms, resulting in a coupling between the inviscid equations for the

upper region, and the (modified) Prandtl equation.
Here we focus on the triple deck model. We first extend the derivation given in [18, 25] to

the unsteady setting. The basic idea is to study perturbations to the main Prandtl flow, in the
vicinity of T = T ∗,X = X∗ (typically the time and abscissa of separation), with small scale
variations in T,X. Denoting ǫ the amplitude of the perturbation, and η, δ the small time and
tangential scales, we write

uν(T,X, Y ) ≈ uP

(

T,X,
Y√
ν

)

+ ǫũ

(
T − T ∗

η
,
X −X∗

δ
,
Y√
ν

)

≈ uP

(

T ∗,X∗,
Y√
ν

)

+ ǫũ

(
T − T ∗

η
,
X −X∗

δ
,
Y√
ν

)

+O(η) +O(δ)

vν(T,X, Y ) ≈
√
ν vP

(

T,X,
Y√
ν

)

+
√
ν
ǫ

δ
ṽ

(
T − T ∗

η
,
X −X∗

δ
,
Y√
ν

)

≈
√
ν
ǫ

δ
ṽ

(
T − T ∗

η
,
X −X∗

δ
,
Y√
ν

)

+O(
√
ν)

pν(T,X, Y ) ≈ pP (T,X) + ǫ2p̃

(
T − T ∗

η
,
X −X∗

δ
,
Y√
ν

)

(we anticipate that the amplitude of the pressure is ǫ2, see below). Injecting the ansatz into the
Navier-Stokes equations, we derive the relations satisfied by (ũ, ṽ, p̃) = (ũ, ṽ, p̃)(t, x, y). With
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notation U(y) := uP (T
∗,X∗, y), anticipating that η ≫ δ and ν ≪ ǫδ2, we get

∂xũ+ ∂y ṽ = 0, U∂xũ+ U ′ṽ = 0, ∂yp̃ = 0.

The second identity reads U2∂y
(
ṽ
U

)
= 0. Thanks to this relation and to the divergence-free

condition, we can introduce a function A = A(t, x) such that

ũ(t, x, y) = A(t, x)U ′(y), ṽ(t, x, y) = −∂xA(t, x)U(y).

In particular, we see that ũ(t, x, 0) = A(t, x)U ′(0) is non-zero. To restore the no-slip condition,
one must add a sublayer. This sublayer is referred to as the lower deck, while the main one,
corresponding originally to the Prandtl layer, is the main deck. Eventually, the upper region
outside the O(

√
ν) boundary layer is called the upper deck. Let h be the typical length scale

of the lower deck, and z = y/h. The velocity at the bottom of the main deck reads U(y) +
ǫũ(t, x, y) ≈ hU ′(0)z+ ǫũ(t, x, 0). For matching between the lower and main deck, it is therefore
natural to take h = ǫ, and to look for an asymptotics in the lower deck of the form:

uν(T,X, Y ) ≈ ǫu

(
T − T ∗

η
,
X −X∗

δ
,
Y√
νǫ

)

,

vν(T,X, Y ) ≈
√
ν
ǫ2

δ
v

(
T − T ∗

η
,
X −X∗

δ
,
Y√
νǫ

)

,

pν(T,X, Y ) ≈ ǫ2p

(
T − T ∗

η
,
X −X∗

δ
,
Y√
νǫ

)

with (u, v) = (u, v)(t, x, z). Moreover, in order to match the effects of time variation, advection,
and diffusion in the lower deck, ∂t ∼ u∂X ∼ ν∂2Y , one has to take δ ∼ ǫ3, η ∼ ǫ2. The amplitude
O(ǫ2) of the pressure term allows to retain it as well. This results in

∂tu+ u∂xu+ v∂zu− ∂2zu+ ∂xp = 0,

∂zp = 0,

∂xu+ ∂zv = 0,

u|z=0 = v|z=0 = 0.

These equations are the same as those in (P). But, the boundary conditions at infinity differ
from the classical ones. Assume U(∞) = 1, U ′(0) = 1 for simplicity. On one hand, matching of
the velocities of the lower and main desks yields

u(t, x, z) ∼ U ′(0)z + ũ(t, x, 0) = z +A(t, x), z → +∞.

On the other hand, as explained in [18] and apparent in the original Prandtl layer (P), the O(ǫ2)
pressure should not change across the lower and main decks, and coincide with the trace of the
pressure in the upper deck. In this upper deck, the dynamics is driven by the so-called blowing

velocity, that is the normal component coming from the main deck:
√
ν ǫ
δ ṽ(t, x,∞) ∼

√
ν

ǫ2
.

Anticipating that the upper deck must have the same amplitude, we find ǫ2 ∼
√
ν

ǫ2
, that is

ǫ = ν1/8. Finally, in the upper deck, one looks for an asymptotics isotropic in X,Y of the form

uν ≈ 1 + ν1/4u

(
T − T ∗

ν1/4
,
X −X∗

ν3/8
,
Y

ν3/8

)

, vν ≈ ν1/4v

(
T − T ∗

ν1/4
,
X −X∗

ν3/8
,
Y

ν3/8

)

,

pν ≈ ν1/4p

(
T − T ∗

ǫ2
,
X −X∗

ν3/8
,
Y

ν3/8

)

,
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Plugging the asymptotic ansatz into the Navier-Stokes equations, yields the linearized Euler
dynamics for (u, v, p) = (u, v, p)(t, x, θ):

∂xu+ ∂xp = 0, ∂xv + ∂θp = 0, ∂xu+ ∂θv = 0, v|θ=0 = ṽ(t, x,∞) = −∂xA(t, x).

This system can be solved using Fourier transform in x as

Fp|θ=0(ξ) = −isign(ξ)F∂xA(t, ·)(ξ) = |ξ|FA(t, ·)(ξ).

In physical variables this is

p|θ=0(t, x) = |∂x|A(t, x) :=
1

π
PV

∫

R

∂xA(t, x̄)

x− x̄
dx̄,

where the right-hand side is the Hilbert transform of ∂xA in variable x and PV denotes the
principal value.

Thanks to this last condition, the triple deck model can be written

∂tu+ u∂xu+ v∂zu− ∂2zu+ ∂x|∂x|A = 0,

∂xu+ ∂zv = 0,

u|z=0 = v|z=0 = 0.

lim
z→∞

u− z = A.

(TD)

The unknowns are (u, v) = (u, v)(t, x, z) and A = A(t, x). One must complete the system with
an initial data u|t=0 = u0(x, z), consistent with the structure at infinity given by the last line
of (TD). Note that if we let z → +∞ in the first equation, using u = z + A + o(1), we obtain
the redundant consistency equation:

∂tA+A∂xA+ ∂x|∂x|A = ∂x

∫ +∞

0
(u−A) dz. (3)

The different spatial scalings are shown in Fig. 1. Wrapping the derivation up, the overall idea
is to consider a perturbation around a boundary layer (uP , vP ) with small tangential scale δ
around X = X∗ and assuming that away from the lower deck (which is where uP is expected
to loose monotonicity) the inviscid terms dominate.

X

Y

ǫ
√
ν

√
ν

X∗ − δ X∗ X∗ + δ

lower deck Perturbation (u, v)

middle deck

Inviscid approximation

ũ(t, x, y) = A(t, x)U ′(y)
ṽ(t, x, y) = −∂xA(t, x)U(y)

upper deck Linearized Euler flow

Figure 1: Spatial scales of the triple deck model where δ = ν3/8 and ǫ = ν1/8.

Although formulated in the 1960’s, and extensively studied from a numerical viewpoint since
then, the triple deck system (TD) has not been much investigated mathematically. In the steady
case, one can mention the work [21] of L. Plantié, focused on a modification of the model: the
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displacement velocity A = A(x) is given while the pressure p = p(x) is kept as an unknown.
Well-posedness is established under an assumption of non-decreasing displacements, using Von
Mises transform. In the unsteady case, the only work we are aware of is the recent paper [14]
by S. Iyer and V. Vicol, which shows local in time well-posedness of (TD), for data u0 that are
analytic in x, Sobolev in y, with further Gaussian decay in y. Let us stress that although analytic
well-posedness is well-known for the classical Prandtl equation, see [23, 16] extension of such
result to (TD) is uneasy. Indeed, the evolution equation for u in (TD) contains the additional
difficult term ∂x|∂x|A ≈ ∂x|∂x|u|z=∞. This term is not skew-symmetric in L2(R × R+), with
potential severe loss of two derivatives in x. To show a positive result in analytic regularity,
the authors have to combine two main ingredients. On one hand, they control A thanks to
equation (3), in which skew-symmetry of the Benjamin-Ono operator helps. On the other hand,
they control u−A thanks to its rapid decay in y and the use of clever time-dependent cut-offs.
We refer to [14] for all necessary details.

Can we relax the assumption of analytic regularity for well-posedness? We remind that (P) is
well-posed for any data with Gevrey 2 regularity [4], and for Sobolev data that are monotonic
in y. The triple deck model being supposedly a refinement of the Prandtl one, it is natural to
look for the same kind of stability results. Encouragement can be found from the analysis of
the simplest linearization of (TD), namely around u(z) = z. The linearized system reads

∂tu+ z∂xu+ v − ∂2zu+ ∂x|∂x|A = 0,

∂xu+ ∂zv = 0,

u|z=0 = v|z=0 = 0.

lim
z→∞

u = A.

(4)

Explicit calculations, sketched in Appendix A, can be performed, and show that any family of
eigenfunctions of the form

uk(t, x, z) = eλkteikxûk(z), k ∈ R (5)

satisfies Re λk = O(1) as k → ±∞, which is consistent with Sobolev well-posedness.

Nevertheless, as we will show in this paper, there are monotonic shear flows Vs(z) = z + Us(z)
such that the linearization of (TD) around us is ill-posed below analytic regularity. More
precisely, we will prove that these linearized equations admit solutions of the form (5), with

σm := lim inf
k→+∞

Re λk/k > 0.

One could exhibit similarly solutions with lim infk→−∞ Re λk/|k| > 0. This prevents any general
well-posedness statement for data u0 that are not analytic in x. In short, for any T > 0, one
needs to impose a bound of the form ‖û0(k, ·)‖ ≤ Ce−(σmT )|k|, with some appropriate norm ‖ · ‖
in variable z, to ensure a bound on the solution over (0, T ). By the Paley-Wiener theorem,
it is well-known that such exponential decay in |k| corresponds to analytic regularity in x. In
particular, one should not hope that the analytic result of [14] can be improved in general: we
refer to [15, 9, 13] for examples on how strong linearized instabilities imply misbehaviour of the
flow of the nonlinear equations. The next section is dedicated to the statement of our main
results.

2 Results and strategy of proof

We investigate in this paper linearizations of system (TD), around shear flows of the form

u = z + Us(z), v = 0.
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Due to the diffusion term in (TD), non-affine shear flows are not solutions of the homogeneous
triple deck equation. One way to circumvent this issue is of course to start from the inhomoge-
neous equation with source −U ′′

s . Another way to proceed is to consider time-dependent shear
flows, and argue that the time variation of the flow is negligible at the time scale of the high
frequency instabilities that we shall discuss here. We refer to [8] for a rigorous reasoning in this
second direction.

We assume for simplicity that

Us ∈ C∞(R+), Us(0) = 0, lim
z→∞

Us = As ∈ R,
dk

dzk
(Us −As)(z) = O(e−z) for k ≤ 3. (6)

Less stringent assumptions, notably on the decay of the profile at infinity, could be extracted
from the proof. The linearized system reads

∂tu+ (Us + z)∂xu− (1 + U ′
s)∂x

∫ z

0
u+ ∂x|∂x|A− ∂2zu = 0,

u|z=0 = 0,

lim
z→∞

u = A.

(LTD)

We have expressed v = −
∫ z
0 ∂xu thanks to the divergence-free condition and the non-penetration

condition v|z=0 = 0. We are interested in the spectral analysis of (LTD) in the high frequency
regime, i.e. looking for eigenmodes of the form

uk(t, x, y) = e−ikµkteikxûk(y), Ak(t, x) =
1

k
e−ikµkteikx, k ≫ 1. (7)

Note that by linearity, we are allowed to fix Âk = 1
k . We wish to exhibit a class of monotonic

shear flows Us such that (LTD) has non-trivial solutions of the form (7) for k large, satisfying
lim infk→+∞ Imµk > 0. To do so, we will follow the path introduced in [3] to analyze the
stability properties of the linearized Interactive Boundary Layer model (IBL)

∂tu+ (Us + z)∂xu− (1 + U ′
s)∂x

∫ z

0
u− ∂2zu = ∂tue + ue∂xue,

ue −
√
ν|∂x|

∫ +∞

0
(u− ue)dz = 0,

u|z=0 = 0,

lim
z→∞

u = ue.

(8)

This path goes through the following steps:

1. We plug the formula (7) in system (LTD), and reformulate our search for instability as a
one-dimensional eigenvalue problem in variable z, with unknown eigenvalue µk.

2. We take the formal limit k → +∞ of the eigenvalue problem, and we derive a necessary
and sufficient condition on Us for the existence of an unstable eigenvalue µ∞ to this limit
eigenvalue problem. First, we show that eigenvalues µ∞ are the zeroes of an holomorphic
function Φ∞. Namely, Φ∞(µ) = φµ,∞(0) for an explicit function φµ,∞ = φµ,∞(z). Let
us remark that this inviscid condition Φ∞(µ) = 0 had already been derived in [26], and
the existence of a zero in the unstable half-plane had been shown to hold numerically
for a specific example of a steady flow beyond a bump (see also [1]). Here, we go much
further, by using tools from complex analysis, inspired by the work of O. Penrose on
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Vlasov-Poisson equilibria [20]. We show that the existence of a zero µ∞ in the unstable
half plane { Imµ > 0} amounts to a condition on the number of crossings of the positive
real axis by some explicit curve related to Φ∞. Examples (both numerical and analytical)
of shear flows satisfying this condition are given.

3. Eventually, we show that an instability at k = +∞ persists at large but finite k. To
do so, we express again the rescaled eigenvalue µk as the zero of a function Φk. Again,
Φk(µ) = φµ,k(0) for some function φµ,k = φµ,k(z), but this function is no longer explicit.
Roughly, it satisfies the resolvent equation of a Prandtl like operator. A keypoint of our
analysis is to establish a stability estimate for this resolvent equation. Thanks to this
estimate, we are then able to show that Φk is holomorphic in { Imµ > δ} for any δ > 0
and k large enough. We are also able to show that for k large and µ in a compact set,
the solution φµ,k is close to φµ,∞. We deduce from this that Φ∞ and Φk are close in a
neighborhood of µ∞ for k large enough, and conclude by Rouché’s theorem.

As a result of the analysis sketched above, we state our main theorem:

Theorem 1 (Ill-posedness below analytic regularity).
Assume that Us satisfies (6) and that Vs(z) := z + Us(z) satisfies V ′

s > 0 on R+. Let g(u) :=
V ′′

s (y)
(V ′

s (y))
3 |y=V −1

s (u). Assume that g is strictly monotone in the neighborhood of each of its positive

zeroes, and define

n± := card
{

a > 0, g(a) = 0, − 1

V ′
s(0)

+ aPV

∫ ∞

0

g(u)

a− u
du > 0, ±g strictly increasing near a

}

.

Then, n± is finite, and if n+ − n− 6= 0, there exist solutions of (LTD) of type (7) with
lim infk→∞ Imµk > 0.

Moreover, there indeed exist shear flows Us such that n+ − n− 6= 0.

The rest of the paper will be devoted to the proof of this result. Section 3 is dedicated to
the first two steps alluded to above: rewriting of the problem as a 1-d eigenvalue problem, and
sharp analysis of the case k = +∞. Section 4 is devoted to the third step: we show how to
go from an instability at infinite k to an instability at finite k. Eventually, Section 5 collects
examples, either analytical or numerical, for which our instability criterion applies. Let us stress
that despite the similarities between (LTD) and (8), a simple adaptation of the analysis carried
in [3] is not enough to handle the triple deck model. The boundary conditions at infinity, and
notably the fact that u is unbounded far away, create specific difficulties. In particular, we
are unable to apply the kind of resolvent estimates used in [3] with such conditions at infinity.
Instead, we adapt the stability estimates that we used in [4] to obtain Gevrey 2 bounds for
solutions of the classical Prandtl equation.

3 The infinite frequency spectral problem

3.1 Reduction

We start by injecting solutions of type (7) in (LTD). From now on, we shall work in Fourier
variables only, so we can use without confusion notation uk instead of ûk. We find

(

− µk + Vs

)

uk − V ′
s

∫ z

0
uk −

1

ik
∂2zuk = −1, (9)

uk|z=0 = 0, (10)

lim
z→∞

uk =
1

k
, (11)

7



where we remind that Vs(z) = z + Us(z). Like in [3], we further write uk in terms of a stream
function φk as uk = (k−1 − φ′k) yielding

(µk − Vs)φ
′
k + V ′

sφk +
1

ik
φ′′′k = −1 +

1

k

(
µk − Us + zU ′

s

)
,

φk|z=0 = 0, φ′k|z=0 =
1

k
,

lim
z→∞

φ′k(z) = 0.

(12)

Note that from the consistency equation, we have

φk(∞) = −1 + k−1
(
µk −As) (13)

which is again redundant to system (12). Let us note that the momentum equation is a third
order ODE in z, and for general µ should require at most three boundary conditions for solv-
ability. The fact that (12)-(13) contains four boundary conditions is reminiscent of the fact that
it is an eigenvalue problem, with unknowns (µk, φk).

As explained in the previous section, in order to progress in the analysis of solutions (µk, φk)
of (12), we shall consider the formal limit of this system as k → +∞. This raises a problem of
boundary conditions: indeed, at k = +∞, the viscous term 1

ikφ
′′′
k disappears, and the operator

in z becomes first order. Therefore, we drop the condition on φ′k(0), and consider the following
infinite frequency spectral problem

(µ∞ − Vs)φ
′
∞ + V ′

sφ∞ = −1,

φ∞(0) = 0, lim
z→∞

φ′∞(z) = 0.
(14)

The formal limit of the consistency condition (13) is

φ∞(∞) = −1. (15)

It is again redundant to (14): as φ′∞ still goes to zero at infinity, taking the limit z → +∞ in the
momentum equation yields (15). This time, (14)-(15) contains three boundary conditions, for
a first order system that would require a priori only one for solvability with an arbitrary given
µ. We tackle a detailed analysis of this reduced eigenvalue problem in the next paragraph.

3.2 Spectral analysis of the reduced eigenvalue problem

We wish here to determine sharp conditions under which system (14) has a non-trivial solution
(µ∞, φ∞) with Imµ∞ > 0. Given µ ∈ C \ R+, we denote by φ = φµ,∞ the solution of

(µ− Vs)φ
′ + V ′

sφ = −1,

lim
z→∞

φ′(z) = 0.
(16)

As mentioned before, for general µ, as the first equation is first order in z, one can only retain a
priori one boundary condition for solvability. It is crucial that we retain here the condition on
φ′ at infinity, instead of the condition on φ at zero. This is a main difference with the treatment
of the IBL model in [3]. Indeed, contrary to what happens in the IBL case, the solution of
the equation (µ − Vs)φ

′ − V ′
sφ = 1 with φ(0) = 0 is in general unbounded at infinity, due to

the unboundedness of Vs. Hence, it could not help to solve the eigenvalue problem (14). More
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generally no perturbative argument could be based on such solution, that is associated to the
Dirichlet condition. On the contrary, system (16) has an explicit solution

φµ,∞(z) = (µ− Vs(z))

∫ ∞

z

1

(µ− Vs(y))2
dy.

From this expression, one deduces that the consistency condition (15) is satisfied, as expected.
Defining

Φ∞(µ) := φµ,∞(0) = µ

∫ ∞

0

1

(µ − Vs(y))2
dy, (17)

we see that (µ∞, φ∞) will be a solution of (14) if and only if

Φ∞(µ∞) = 0, φ∞ := φµ∞,∞.

The rest of the paragraph is devoted to the proof of the following proposition.

Proposition 2. Let Vs, g and n± as in Theorem 1. Then, Φ∞ has at least one zero in the
unstable half-plane { Imµ > 0} if and only if the condition n+ − n− 6= 0 is satisfied.

We first state and prove two lemmas describing the behaviour of Φ∞ in various regions of C\R+:

Lemma 3. For any δ > 0 there exists R > 0 such that

|Φ∞(µ) + 1| ≤ δ

for all µ ∈ C \ R+ with |µ| ≥ R.

Proof. We write

Φ∞(µ) = µ

∫ ∞

0

1

V ′
s

V ′
s

(µ− Vs)2
︸ ︷︷ ︸

=
(

1

µ−Vs

)

′

dy = − 1

V ′
s (0)

− µ

∫ ∞

0

V ′′
s

V ′2
s

1

Vs − µ
dy

(18)

By elementary calculation, −1
V ′

s (0)
+

∫∞
0

V ′′

s

V ′2
s

dy = −1
V ′

s (0)
−

[
1
V ′

s

]∞

0
= −1. Hence we find

Φ∞(µ) + 1 =

∫ ∞

0

V ′′
s

V ′2
s

Vs
µ− Vs

dy =

∫ ∞

0

g(u)u

µ− u
du,

where g is the function in Theorem 1. Note that g decays fast at infinity because V ′′
s = U ′′

s

does, and because V ′
s → 1 at infinity. We decompose:

∫ ∞

0

g(u)u

µ− u
du =

∫ +∞

0
1{|u−Re µ|≥1}

g(u)u

µ− u
du+

∫ +∞

0
1{|u−Re µ|≤1}

g(u)u

µ− u
du.

By dominated convergence, the first term goes to zero when |µ| → +∞ in the region C \ R+,
and the second one goes to zero when |µ| → +∞ in the region {Re µ ≤ −1} ∪ {Imµ > 1}.
Eventually, for 0 < | Imµ| ≤ 1, and Re µ ≥ −1, we write the second term as follows (µ = a+ib):

∫ +∞

0
1{|u−Re µ|≤1}

g(u)u

µ− u
du =

∫ 1

−1

g(v + a)(v + a)− g(a)a

ib− v
dv + g(a)a

∫ 1

−1

1

ib− v
dv

The first term vanishes when |µ| → +∞, that is a → +∞, invoking again dominated conver-
gence, and the second one goes to zero as well taking into account that g(a)a → 0 and that
limb→0+

∫ 1
−1

1
ib−vdv exists by Plemelj formula. This concludes the proof of the lemma.
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Lemma 4. For all µ ∈ C \ R+ with Re µ ≤ 0,

ReΦ∞(µ) < 0.

Moreover,

lim
µ→0

µ∈C\R+

ReΦ∞(µ) = − 1

V ′
s (0)

< 0.

Proof. From the definition (17), denoting µ = a+ ib, we infer:

ReΦ∞(µ) =

∫ ∞

0

a((a− Vs)
2 − b2) + 2b2(a− Vs)

|µ− Vs(y)|4
dy.

For the numerator we find

a((a− Vs)
2 − b2) + 2b2(a− Vs) = a(a− Vs)

2 + b2(a− 2Vs) ≤ 0

as a ≤ 0. Unless a = b = 0 there exists also always z for which it is strictly negative, which con-
cludes the proof of the first inequality. The other one is a simple consequence of the expression

Φ∞(µ) = − 1

V ′
s(0)

+ µ

∫ ∞

0

g(u)

µ− u
dy, (19)

see (18) and the definition of g in Theorem 1. The integral
∫∞
0

g(u)
µ−u du only diverges logarith-

micaly as µ→ 0, hence the result.

We have now all the ingredients to conclude our analysis of the zeroes of Φ∞ in { Imµ > 0}.
By Lemma 3, there exists R > 0 such that

|Φ∞(µ) + 1| ≤ 1

4
, Imµ > 0, |µ| ≥ R.

Let
Ωǫ := {µ ∈ C, Imµ > ǫ, |µ| ≤ R}

With our choice of R, Φ∞ has a zero in { Imµ > 0} if and only if it has one in Ωǫ for some
ǫ > 0 small enough. As Φ∞ is a holomorphic function, its zeroes in { Imµ > 0} are isolated,
so that we can restrict to ǫ along a sequence going to zero and such that Φ∞ does not vanish
at ∂Ωǫ. Then, the number nǫ of its zeroes in Ωǫ, counted with multiplicity, is given by

nǫ =
1

2iπ

∮

∂Ωǫ

Φ′
∞(ζ)

Φ∞(ζ)
dζ.

Let γǫ be a direct parametrisation of the curve ∂Ωǫ. We have

1

2iπ

∮

∂Ωǫ

Φ′
∞(ζ)

Φ∞(ζ)
dζ =

1

2iπ

∫
Φ′
∞(γǫ(t))

Φ∞(γǫ(t))
γ′ǫ(t) dt =

1

2iπ

∫
(Φ∞ ◦ γǫ)′(t)
(Φ∞ ◦ γǫ)(t)

dt =
1

2iπ

∫

Φ∞(∂Ωǫ)

1

ξ
dξ

so that the number of roots equals the winding number of the curve Φ∞(∂Ωǫ) around 0. To
compute this winding number, one can choose a complex logarithm with a branch cut along
the positive real axis. The winding number is given by the sum of the jumps of this logarithm,
which corresponds to the number of crossings of the curve Φ∞(∂Ωǫ) with the positive real axis.
More precisely,

1

2iπ

∮

∂Ωǫ

Φ′
∞(ζ)

Φ∞(ζ)
dζ = number of crossings from below− number of crossings from above.

(20)
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We remind that the intersection of Φ∞(∂Ωǫ ∩ {|µ| = R}) with the positive real axis is empty.
Hence it remains to understand the crossings of Φ∞([−R,R] + iǫ), for ǫ > 0 going to zero. By
Lemma 4, there exists ρ > 0, such that ReΦ∞ < 0 for −R < a < ρ, so that we can restrict to
a ∈ [ρ,R]. Over this interval, formula (19) yields that

Φ∞(a+ ib) = − 1

V ′
s(0)

+ a

∫ +∞

0

g(u)

a+ ib− u
du+ ib

∫ +∞

0

g(u)

a+ ib− u
du

−−−→
b→0+

− 1

V ′
s(0)

+ aPV

∫ +∞

0

g(u)

a− u
du − iπag(a)

(21)

using Plemelj formula, where the convergence is uniform in a ∈ [ρ,R]. We extend the definition
of Φ∞ over R∗

+ by

Φ∞(a) := − 1

V ′
s (0)

+ aPV

∫ +∞

0

g(u)

a− u
du − iπag(a), a > 0.

We notice that the quantity n+, resp. n−, defined in Theorem 1, corresponds to the number
of crossings from above, resp. from below, of the curve Φ∞(R∗

+) with the positive real axis.
Lemma 3 being uniform in b, we still have Φ∞(a) → −1 as a → +∞. Also, as in Lemma 4,
lima→0+ ReΦ∞(a) = − 1

V ′

s(0)
< 0. It follows that n± is finite and coincides with the crossings of

Φ∞([ρ,R]) up to taking ρ smaller and R larger. Finally, from the uniform convergence in (21),
we deduce that for ǫ > 0 small enough, (20) is equal to n+ − n−. This concludes the proof of
Proposition 2.

4 Persistence of the instability at finite k

This section is devoted to the proof of Theorem 1, except for the last statement, which will be
considered in the next section. We assume that n+−n− 6= 0, see the statement of the theorem.
Our goal is to show that (LTD) has solutions of type (7) with lim infk→+∞ Imµk > 0. In
other words, we need to prove that for all k large enough, there exists µk, φk solving (12) with
Imµk ≥ δ > 0 for some δ independent of k.

4.1 Resolvent Estimate

The first step is to consider the following resolvent problem







(µ− Vs)ψ
′ + (V ′

s )ψ +
1

ik
ψ′′′ = F,

ψ′|z=0 = 0, lim
z→∞

ψ′(z) = 0, lim
z→∞

ψ = 0.
(22)

Note that we do not prescribe the value of ψ at zero. Let ρ(z) = 1 + zm, m large. We denote

by
〈
,
〉

ρ
the L2(ρ) scalar product, and set ‖ · ‖ =

〈
·, ·
〉1/2

ρ
.

Proposition 5. Let µm > 0. There exists km, depending on µm such that for any µ with
Imµ ≥ µm, for any k ≥ km and any F ∈ L2(ρ), the system (22) has a unique solution
ψ = ψµ,k of the form

ψ =
(

µ− Vs +
1

ik

d2

dz2

)

B, B′|z=0 = 0, lim
z→∞

B = 0.

11



where B ∈ H3(R+) satisfies the estimates

Imµ ‖B′‖2 + 1

k
‖B′′‖2 ≤ 4

(Imµ)3
‖F‖2 (23)

and

Imµ ‖B′′‖2L2 +
1

k
‖B′′′‖2L2 ≤ C

(
√
k

(Imµ)9/2
+

1

(Imµ)2

)

‖F‖2 (24)

for a constant C depending on µm. Moreover, the map µ→ ψµ,k(0) is analytic in { Imµ > µm}.

Proof of the well-posedness statement in Proposition 5. We only detail the a priori estimates
leading to the well-posedness. For the detailed construction of solutions in a similar context,
see [3]. Inspired by our work [4], we introduce the solution B of the system

(

µ− Vs +
1

ik

d2

dz2

)

B = ψ, B′|z=0 = 0, lim
z→∞

B = 0. (25)

Through differentiation in z, we get

(

µ− Vs +
1

ik

d2

dz2

)

B′ − V ′
sB = ψ′.

Inserting the two previous identities for ψ and ψ′ in Equation (22), we find

(

µ− Vs +
1

ik

d2

dz2

)2
B′ −

[(

µ− Vs +
1

ik

d2

dz2

)

, V ′
s

]

B = F

that is
(

µ− Vs +
1

ik

d2

dz2

)2
B′ −

[ 1

ik

d2

dz2
, U ′

s

]

B = F (26)

We introduce the solution ϕ of

(

µ− Vs −
1

ik

( d

dz
+ ρ′ρ−1

)2)

ϕ = B′, ϕ|z=0 = 0, lim
z→∞

ϕ = 0. (27)

Taking the scalar product of (26) with ϕ, we find

〈(

µ− Vs +
1

ik

d2

dz2

)

B′, B′〉
ρ
− 1

ik
V ′
s(0)B(0)ϕ′(0)ρ(0)−

〈[ 1

ik

d2

dz2
, U ′

s

]

B,ϕ
〉

ρ
=

〈
F,ϕ

〉

ρ
.

The boundary term at z = 0 comes from the integration by parts of the diffusion term, taking
into account that

(

µ− Vs +
1

ik

d2

dz2

)

B′(0) = ψ′(0) + V ′
s(0)B(0) = V ′

s (0)B(0).

We perform one more integration by parts and take the imaginary part to find

Imµ‖B′‖2 + 1

k
‖B′′‖2 = Im 1

ik

〈
B′′, ρ′ρ−1B′〉

ρ
− Im 1

ik
V ′
s(0)B(0)ϕ′(0)ρ(0)

+ Im
〈[ 1

ik

d2

dz2
, U ′

s

]

B,ϕ
〉

ρ
+ Im

〈
F,ϕ

〉

ρ
.

(28)

It remains to estimate the four terms at the right-hand side. Clearly,

Im 1

ik

〈
B′′, ρ′ρ−1B′〉

ρ
≤ 1

k
‖ρ′ρ−1‖∞‖B′′‖ ‖B′‖ ≤ 1

2k
‖B′′‖2 + 1

2k
‖ρ′ρ−1‖2∞‖B′‖2. (29)

To bound the last terms, we first need to relate norms of ϕ to norms of B. We claim:

12



Lemma 6. For k large enough (depending on µm and ρ), the solution ϕ of (27) satisfies

‖ϕ‖ ≤
√
2

Imµ
‖B′‖, ‖ϕ‖L2 ≤

√
2

Imµ
‖B′‖L2 ,

‖ϕ′‖ ≤
√
k√

Imµ
‖B′‖, ‖ϕ′‖L2 ≤

√
k√

Imµ
‖B′‖L2 , ‖ϕ′′‖L2 ≤ Ck‖B′‖L2 ,

where C depends also on µm.

We take the L2(ρ) scalar product of (27) with ϕ, and retain the imaginary part:

Imµ‖ϕ‖2 + 1

k
‖ϕ′‖2 = Im 1

ik

〈
ρ′ρ−1ϕ,ϕ′〉

ρ
− Im

〈
B′, ϕ

〉

ρ

≤ 1

2k
‖ρ′ρ−1‖2∞‖ϕ‖2 + 1

2k
‖ϕ′‖2 + 1

2Imµ
‖B′‖2 + Imµ

2
‖ϕ‖2.

For 1
2k‖ρ′ρ−1‖2∞ ≤ µm

4 , we get in particular

Imµ

4
‖ϕ‖2 ≤ 1

2Imµ
‖B′‖2

which implies the first estimate. We also find

1

2k
‖ϕ′‖2 ≤ 1

2Imµ
‖B′‖2

which implies the second estimate. Similar (and even simpler) calculations yield

‖ϕ‖L2 ≤
√
2

Imµ
‖B′‖L2 , ‖ϕ′‖L2 ≤

√
k√Imµ

‖B′‖L2 .

To obtain the last inequality of the lemma, we multiply by ϕ′′ and integrate. Denoting 〈 , 〉L2

the classical L2 scalar product, we get

1

k
‖ϕ′′‖2L2 + Imµ‖ϕ′‖2L2 = Im 1

ik
〈
(
2
(
ρ′ρ−1

)′
ϕ′ +

(
ρ′ρ−1

)′′
ϕ,ϕ′′〉L2 + Im 〈V ′

sϕ,ϕ
′〉L2 + Im 〈B′, ϕ′′〉L2

≤ 1

4k
‖ϕ′′‖2L2 +

1

k
‖2
(
ρ′ρ−1

)′‖2∞‖ϕ′‖2L2 +
1

4k
‖ϕ′′‖2L2 +

1

k
‖
(
ρ′ρ−1

)′′‖2∞‖ϕ‖2L2

+
Imµ

4
‖ϕ′‖2L2 +

1

Imµ
‖V ′

s‖2∞‖ϕ‖2L2

+
1

4k
‖ϕ′′‖2L2 + k‖B′‖2L2 .

Using the previous estimate for ‖ϕ‖L2 , we deduce that for k large enough

1

4k
‖ϕ′′‖2L2 +

Imµ

4
‖ϕ′‖2L2 ≤

(
C + k

)
‖B′‖2L2

for a constant C depending on µm. The last estimate of the lemma follows.

We now go back to the identity (28), where we have to bound the last three terms at the
right-hand side. The easiest is

Im
〈
F,ϕ

〉

ρ
≤ 1

(Imµ)3
‖F‖2 + (Imµ)3

4
‖ϕ‖2 ≤ 1

(Imµ)3
‖F‖2 + Imµ

2
‖B′‖2. (30)
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The commutator term splits into

Im
〈[ 1

ik

d2

dz2
, U ′

s

]

B,ϕ
〉

ρ
= Im

〈 2

ik
U ′′
sB

′, ϕ
〉

ρ
+ Im

〈 1

ik
U ′′′
s B,ϕ

〉

ρ

≤ 2

k
‖U ′′

s ‖∞‖B′‖ ‖ϕ‖ + CH

k
‖U ′′′

s (1 + z)‖∞‖B′‖ ‖ϕ‖,

where we used the Hardy inequality ‖ B
1+y‖ ≤ CH‖B′‖. Using the first estimate in the lemma,

we end up with

Im
〈[ 1

ik

d2

dz2
, U ′

s

]

B,ϕ
〉

ρ
≤ C

(Imµ)k
‖B′‖2. (31)

Eventually, for the trace term, we have through Sobolev imbedding:

Im 1

ik
(U ′

s(0) + 1)B(0)ϕ′(0)ρ(0) ≤ C

k
‖B‖∞‖ϕ′‖1/2

L2 ‖ϕ′′‖1/2
L2

≤ C

k
‖ρ−1/2‖L2‖B′‖ ‖ϕ′‖1/2

L2 ‖ϕ′′‖1/2
L2

≤ C ′

k1/4(Imµ)1/4
‖B′‖ ‖B′‖L2

(32)

for constants C,C ′ depending on µm.

Collecting (29)-(30)-(31), we find that for k large enough, depending on µm,

Imµ‖B′‖2 + 1

k
‖B′′‖2 ≤ 4

(Imµ)3
‖F‖2

that is (23).

To establish estimate (24), we introduce the solution ϕ1 of

(

µ− Vs −
1

ik

d2

dz2

)

ϕ1 = B′′′, ϕ1|y=0 = 0, lim
y→∞

ϕ1 = 0. (33)

Taking the usual L2 scalar product of (26) with ϕ1, we obtain

〈
(

µ− Vs +
1

ik

d2

dz2

)

B′, B′′′〉L2 +
1

ik
V ′
s (0)B(0)ϕ′

1(0) − 〈
[ 1

ik

d2

dz2
, U ′

s

]

B,ϕ1〉L2 = 〈F,ϕ1〉L2 .

Hence,

Imµ‖B′′‖2L2 +
1

k
‖B′′′‖2L2 = Im 〈V ′

sB
′, B′′〉L2

+ Im 1

ik
V ′
s (0)B(0)ϕ′

1(0)ρ(0)

+ Im 〈
[ 1

ik

d2

dz2
, U ′

s

]

B,ϕ1〉L2 − Im 〈F,ϕ1〉L2 .

The last three terms can be treated like before, replacing ϕ by ϕ1. First, the estimates in
Lemma 6 are replaced by

‖ϕ1‖L2 ≤
√
2

Imµ
‖B′′′‖L2 , ‖ϕ′

1‖L2 ≤
√
k√Imµ

‖B′′′‖L2 , ‖ϕ′′
1‖L2 ≤ Ck‖B′′′‖L2 ,
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with the same proof. Then, estimate (31) becomes

Im 〈
[ 1

ik

d2

dz2
, U ′

s

]

B,ϕ1〉L2 ≤ C

(Imµ)k
‖B′‖ ‖B′′′‖L2 ≤ 1

4k
‖B′′′‖2L2 +

C2

(Imµ)2k
‖B′‖2.

Proceeding as in (32), we find

Im 1

ik
V ′
s (0)B(0)ϕ′

1(0) ≤
C

k1/4(Imµ)1/4
‖B′‖ ‖B′′′‖L2 ≤ 1

4k
‖B′′′‖2L2 +

C2
√
k√Imµ
‖B′‖2.

Also,

−Im 〈F,ϕ1〉L2 ≤ ‖F‖L2 ‖ϕ1‖L2 ≤ ‖F‖L2

√
2

Imµ
‖B′′′‖L2 ≤ 1

4k
‖B′′′‖2L2 +

2

(Imµ)2
‖F‖2L2 .

The remaining term is controlled by

Im 〈V ′
sB

′, B′′〉 ≤ C‖B′‖L2 ‖B′′‖L2 ≤ C2

2(Imµ)
‖B′‖2 +

Imµ

2
‖B′′‖L2 .

Collecting these bounds, we end up with

Imµ

2
‖B′′‖2L2 +

1

4k
‖B′′′‖2L2 ≤ C

(
√
k√Imµ

‖B′‖2 + 1

Imµ
‖B′‖2 + 2

(Imµ)2
‖F‖2L2

)

.

From this bound and (23), we deduce (24)

Imµ‖B′′‖2L2 +
1

k
‖B′′′‖2L2 ≤ C

(
√
k

(Imµ)9/2
+

1

(Imµ)2

)

‖F‖2

for some constant C depending on µm.

Proof of the analyticity statement in Proposition 5. The last thing to be shown is the analyticity
of the map µ→ ψµ,k(0). As before, we write ψ = ψµ,k. We proceed as follows: let χn(z) = χ

(
z
n

)
,

for some smooth non-negative χ which is one near the origin and zero in the large. We consider
the approximate problem







(µ− (Us + zχn))ψ
′ + (U ′

s + (zχn)
′)ψ +

1

ik
ψ′′′ = F,

ψ′|z=0 = 0, lim
z→∞

ψ′(z) = 0, lim
z→∞

ψ = 0.
(34)

Above calculations apply to to this approximate system as well, and yield a solution

ψn =
(

µ− (Us + zχn) +
1

ik

d2

dz2

)

Bn, B′
n|z=0 = 0, lim

z→∞
Bn = 0

where Bn satisfies the same estimates (23)-(24) uniformly in n. In particular, B′
n ∈ L2(ρ). The

difference with the original system is that this implies ψ′
n ∈ L2(ρ): it can be deduced from the

formula

ψ′
n =

(

µ− (Us + zχn) +
1

ik

d2

dz2

)

B′
n − (U ′

s + (zχn)
′)Bn

as the base flow Us + zχn is not diverging at infinity. Using the bounds for Bn, one obtains an
estimate of the type ‖ψ′

n‖ ≤ Cn‖F‖, with a bound that may depend on n through χn, but is
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uniform in µ inside { Imµ > µm}. Using further the equation in (34), we find that ψ′
n ∈ H2(ρ),

and a bound of the form ‖ψ′
n‖H2(ρ) ≤ Cn‖F‖. Introducing the operator

Ln : H2(ρ) ∩H1
0 (ρ) → L2(ρ), u 7→ −(Us + zχn)u− (U ′

s + (zχn)
′)
∫ ∞

z
u+

1

ik
u′′

we then know that its resolvent (µ+Ln)
−1 is well-defined for Imµ > µm, and as any resolvent

operator is analytic in µ. Hence, ψ′
n = (µ + Ln)

−1F is analytic in µ with values in H2(ρ), and
by imbedding µ→ ψn(0) is analytic as well.

To conclude that µ → ψ(0) is analytic, it remains to show that ψn(0) −−−−−→
n→+∞

ψ(0) uniformly

on the compact sets of { Imµ > µm}. Note that, by (25), we have

|ψn(0) − ψ(0)| = |µ(Bn(0)−B(0)) +
1

ik
∂2z (Bn −B)(0)|

≤ C
(

‖B′
n −B′‖L2(ρ̃) + ‖B′′

n −B′′‖L2(ρ̃) + ‖B′′′
n −B′′′‖L2

)

for all µ in a compact set K, for any weight function ρ̃ ≥ 1 such that 1
ρ̃ ∈ L1(R+), where the

constant C depends on K and k. The last step is to establish that the right-hand side goes to
zero (uniformly in µ ∈ K), which can be done through an estimate of the difference. Namely,
combining (26) and its analogue

(

µ− (Us + zχn) +
1

ik

d2

dz2

)2
B′

n −
[ 1

ik

d2

dz2
, U ′

s + (zχn)
′
]

Bn = F

we see that
(

µ− Vs +
1

ik

d2

dz2

)2
(Bn −B)′ −

[ 1

ik

d2

dz2
, U ′

s

]

(Bn −B) = Rn

where, denoting ψn = z(χn − 1):

Rn =
[ 1

ik

d2

dz2
, ψ′

n

]

B′
n

−
(

µ− Vs +
1

ik

d2

dz2

)

(ψnBn)− ψn

(

µ− Vs +
1

ik

d2

dz2

)

Bn

− ψ2
nBn.

Applying (23) and (24) with weight ρ̃ = (1 + z)−8ρ instead of ρ, we find that

‖B′
n −B′‖L2(ρ̃) + ‖B′′

n −B′′‖L2(ρ̃) + ‖B′′′
n −B′′′‖L2 ≤ C‖Rn‖L2(ρ̃)

for a constant C that again may depend on K or k. Eventually, using that B′
n is bounded

uniformly in n in H1(ρ), one can check that ‖Rn‖L2(ρ̃) goes to zero as n→ ∞. For instance,

∥
∥
∥
∥

[ 1

ik

d2

dz2
, ψ′

n

]

B′
n

∥
∥
∥
∥
L2(ρ̃)

. ‖ψ′′′
n (1 + z)−2‖∞‖B′

n‖L2(ρ) + ‖ψ′′
n(1 + z)−2‖∞‖B′′

n‖L2(ρ)

. ‖ψ′′′
n (1 + z)−4‖∞ + ‖ψ′′

n(1 + z)−4‖∞ .
1

n
.

All other terms defining Rn can be treated with similar ideas.

16



4.2 Conclusion

We remind that our goal is to find solutions (µk, φk) of (12) with lim infk→+∞ µk > 0. From the
analysis of Section 3, notably Proposition 2, we already know that the system (14) has a solution
(µ∞, φ∞) with Imµ∞ > 0. We shall find µk, φk with µk close to µ∞. We fix µm = 1

2 Imµ∞.

We shall first prove that for any µ with Imµ ≥ µm and k ≥ km, with km given by Proposition 5,
one can construct a solution φ = φµ,k of

(µ − Vs)φ
′ + V ′

sφ+
1

ik
φ′′′ = −1 +

1

k

(
µ− Us + zU ′

s

)
,

φ′|z=0 =
1

k
, lim

z→∞
φ′(z) = 0.

(35)

The first equation implies the compatibility condition φ(∞) = −1+ 1
k

(
µ−As). We look for an

approximation of φ under the form

φapp = φµ,∞ + φbl

where φµ,∞ solves (16) and where φbl = φbl(z) is a boundary layer term that allows to recover
the right Neumann boundary condition at z = 0 and the right Dirichlet condition at infinity.
Namely, φbl is the solution of

µφ′bl +
1

ik
φ′′′bl = 0, φ′bl(0) = −φ′µ,∞(0) +

1

k
, φ′bl(∞) = 0, φbl(∞) =

1

k

(
µ−As).

The solution is explicitly given by

φbl(z) =
1

k

(
µ−As

)
+

∫ z

∞
e−

√
−ikµ ydy

(

− φ′µ,∞(0) +
1

k

)

. (36)

Thanks to this choice, it is straightforward to check that the difference ψ = φ− φapp satisfies a
system of type (22) with

F := Vsφ
′
bl − V ′

sφbl −
1

ik
φ′′′µ,∞ +

1

k

(
µ− Us + zU ′

s

)
. (37)

By Proposition 5, there exists a solution ψ to this system, so that

φµ,k = φapp + ψ = φµ,∞ + φbl + ψ

defines a solution of (35). Defining

Φk(µ) := φk,µ(0).

We shall prove that for k large enough, there exists µk in the disk D(µ∞,
1
2 Imµ∞) := {z ∈ C :

|µ∞−z| < 1
2 Imµ∞} such that Φk(µk) = 0. Hence, (µk, φk := φµk,k) will be the desired solution

to (12). More precisely, we state

Proposition 7. There exist constants C,K > 0 such that Φk is holomorphic in D(µ∞, 12 Imµ∞)
and

|Φk(µ)−Φ∞(µ)| = |φµ,k(0)− φµ,∞(0)| ≤ Ck−1/4, ∀µ ∈ D(µ∞,
1

2
Imµ∞), k ≥ K.
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Before proving this proposition, let us show how it implies the existence of a zero µk of Φk.
We already know that Φ∞ is holomorphic, and that µ∞ is one of its zeroes, therefore isolated.
Hence, for δ > 0 small enough, ǫ := inf |µ−µ∞|=δ |Φ∞(µ)| > 0. For all k large enough so that

|Ck−1/4| ≤ ǫ
2 , we conclude by Proposition 7 and Rouché’s theorem that Φk has a zero in

D(µ∞, δ).

Proof of Proposition 7. We have

Φk(µ)− Φ∞(µ) = φµ,k(0) − φµ,∞(0) = φbl(0) + ψ(0).

First, from (36),

φbl(0) =
1

k

(
µ−As

)
− 1√−ikµ

(

− φµ,∞(0) +
1

k

)

(38)

so that for all µ ∈ D(µ∞, δ) it holds that |φbl(0)| ≤ Ck−1/2. Then, with the notations of
Proposition 5,

|ψ(0)| =
∣
∣
∣

(

µ− Vs +
1

ik

d2

dz2

)

B(0)
∣
∣
∣ =

∣
∣
∣µB(0) +

1

ik
B′′(0)

∣
∣
∣

≤ C
(

‖B′‖+ ‖B′′‖1/2
L2 ‖B′′′‖1/2

L2

)

≤ Ck1/2‖F‖

where the last inequality is a consequence of the estimates in Proposition 5, with F defined in
(37). Note that

|F (z)| ≤
∥
∥
∥
Vs
z

∥
∥
∥
L∞

|zφ′bl(z)|+ ‖V ′
s‖L∞

∣
∣φbl(z)−

1

k
(µ−As)

∣
∣+ |V ′

s (z)− 1| 1
k
(µ−As)

+
1

k
|Us(z)−As|+

1

k
|zU ′

s(z)|.

Using this inequality, one gets ‖F‖ ≤ Ck−3/4, and eventually |ψ(0)| ≤ Ck−1/4. The estimate
of Proposition 7 follows. As regards the analyticity of µ 7→ Φk, it follows from the analyticity
of µ 7→ φbl(0) and of µ → ψ(0). The former is deduced directly from formula (38), having in
mind the analyticity of φµ,∞(0) = Φ∞(0). The latter is deduced from the analyticity statement
of Proposition 5. More precisely, the statement is given there for a source term F that is
independent of µ, but it is still true, with the same proof, for an F analytic in µ, which is the
case here, cf. (37). This concludes the proof of the proposition.

5 Examples of instabilities

In this final part of the paper, we exhibit examples, both numerical and analytical, for which
the quantity n+ − n− mentioned in Theorem 1 is indeed non-zero.

For the theoretical existence of unstable modes, we note that (17) can be written as

Φ∞(µ) =

∫ ∞

0
qµ(Vs(y)) dy

with the function qµ : u 7→ µ(µ−u)−2. For a fixed µ, we now look at qµ([0,∞)) and by the idea
of Section 6 of [3], we can construct smooth profiles Vs with Φ∞(µ) = 0 if and only if the origin
is in the interior of the convex hull of qµ([0,∞)). Indeed for Re µ > 0 and Imµ > 0, the origin
is in the convex hull of qµ([0,∞)) so that unstable modes exist, see Figure 2 as an example.
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Figure 2: Image of qµ([0,∞)) for µ = 1 + i.

The advantage of the stability criterion is that it is explicitly computable and has an imme-
diate visual interpretation as the image of Φ∞(R + iǫ) for ǫ > 0.

As an example, we consider
Vs(y) = x+ 4x e−2x. (39)

In this case we find the resulting curve is shown in Figure 3. Here we see that it is stable as it
is not crossing the positive real axis.

As another example, we consider

Vs(y) = sin(2x) e−x + x (1− e−x). (40)

In this case we find the resulting curve is shown in Figure 4. Here we see that unstable modes
exists as the positive real axis is crossed once.

A Stability for Us = 0

The assumptions of Theorem 1 are not satisfied in the case where Us vanishes identically. On
the contrary, one can show in this setting that any family of solutions of (LTD) of type

uk(t, x, z) = eλkteikxûk(z), Ak(t, x) = eλkteikx, k ∈ R,

has growth rate (Re λk)+ = O(1) as |k| → +∞. We now sketch the proof of this claim. It builds
upon classical works on the linear stability of Couette or Blasius flows within Navier-Stokes, cf.
[5, 24, 27].

The trick is to differentiate the linearised equation once by z and express the result in terms
of ω(z) := û′k(z). Then the linearised evolution (4) yields the eigenmode equation

(λk + ikz)ω − ω′′ = 0

with the boundary conditions
ω′(0) = ik|k|, lim

z→∞
ω = 0

and the consistency equation

1 =

∫ ∞

0
ω(z) dz (41)
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Figure 3: Image of Φ∞(R+ iǫ) for Vs from (39) with ǫ = 0.1, ǫ = 0.5 and ǫ = 0.01.

by using that ω = û′k(z) and limz→∞ ûk(z) = 1. The idea is then to make a change of variable
in the complex plane to get back to the Airy equation

ξϕ(ξ) − ∂2ξϕ(ξ) = 0.

We set
ηk := (ik)−2/3λk, ξ := (ik)1/3y, W (ξ) := ω(y)

where the roots are chosen with positive real part so that

(ξ + ηk)W −W ′′ = 0.

Using the boundary condition on ω′(0) and the decay condition of ω at infinity, we get

W (ξ) = ik|k|(ik)−1/3Ai(ξ + ηk)

Ai(ηk,−1)

where Ai is the so-called Airy function of the first kind, and Ai(·,−1) denotes its derivative, cf.
[5]. Then the consistency equation (41) yields the dispersion relation

1 = ik|k| Ai(ηk, 1)

Ai(ηk,−1)
, (42)

where Ai(·, 1) is the antiderivative of Ai that vanishes at +∞, and we recall ηk = (ik)−2/3λk.
We will now use these relations to determine the asymptotic behaviour of unstable eigenval-

ues λk (meaning Re λk > 0) when |k| → +∞. We distinguish between three regimes: ηk goes
to zero, goes to infinity, or is O(1) as |k| → +∞.

• If ηk → 0
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Figure 4: Image of Φ∞(R+ iǫ) for Vs from (40) with ǫ = 0.1 and ǫ = 0.5.

We find

1 ∼ ik|k| Ai(0, 1)

Ai(0,−1)

where Ai(0,1)
Ai(0,−1) = 3−2/3Γ(1/3), see [5, equation (A11)]. This yields a contradiction.

• If |ηk| → +∞

We use the asymptotic expansion given in [5], see equations (A12)-(A13)-(A14). In the case
k > 0, we find

1 ∼ ik|k|
ηk

(1− 3a(1)
2 (ηk)

−3/2)

(1− 3a(−1)
2 (ηk)−3/2)

where a(p) = 1
72(12p

2 + 24p+ 5). Using the ηk = (ik)−2/3λk we find Re λk ≤ 0.

• If ηk ∼ O(1)

Then
Ai(ηk, 1) = Ai(ηk,−1)ik|k|.

Hence we see that a subsequence of ηk should converge to some η0 satisfying Ai(η0, 1) = 0. As
Re λk > 0, one finds that −5π/6 < arg(ηk) < π/6 and thus −5π/6 ≤ arg(η0) ≤ π/6. Similarly,
in the case k < 0, one should have −π/6 ≤ arg(η0) ≤ 5π/6.

These two scenarios are excluded by the following proposition, which can be found in [27]:
the function Ai(·, 1) has no zero in the closed sector −5π/6 ≤ arg(η) ≤ 5π/6. This concludes
the proof of spectral stability.
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