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Abstract. We study a family of optimal control problems in which one aims at minimizing a
cost that mixes a quadratic control penalization and the variance of the system, both for finitely
many agents and for the mean-field dynamics as their number goes to infinity. While solutions of
the discrete problem always exist in a unique and explicit form, the behavior of their macroscopic
counterparts is very sensitive to the magnitude of the time horizon and penalization parameter.
When one minimizes the final variance, there always exists a Lipschitz-in-space optimal controls
for the infinite dimensional problem, which can be obtained as a suitable extension of the optimal
controls for the finite-dimensional problems. The same holds true for variance maximizations
whenever the time horizon is sufficiently small. On the contrary, for large final times (or
equivalently for small penalizations of the control cost), it can be proven that there does not
exist Lipschitz-regular optimal controls for the macroscopic problem.
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1. INTRODUCTION

The mathematical analysis of collective behavior in large-
scale systems of interacting agents has received an increas-
ing attention during the past decades. Multi-agent systems
are ubiquitous in applications, ranging from networked
control to animal flocks and swarms, see e.g. Bullo et al.
(2009); Cucker and Smale (2007). In this context, a multi-
agent system is usually described by a family of ordinary
differential equations (ODEs for short), of the form

ẋi(t) = vN (t,x(t), xi(t)), (1)
where x = (x1, . . . , xN ) denotes the state of all the agents
and vN : [0, T ]× (Rd)N × Rd → Rd is a non-local velocity
field depending both on the running agent and on the
whole state of the system. However general and useful,
the intrinsic dependence of such models on the number
N ≥ 1 of agents makes most of the classical computational
approaches practically intractable for realistic scenarios.
One of the most natural ideas to circumvent this limi-
tation is to approximate the large system in (1) by a
single infinite-dimensional dynamics. This process, called
the mean-field limit, describes the evolution of the system
when the number N ≥ 1 of agents tends to infinity in
a specific way (see e.g. the survey Golse (2016)). In this
setting, agents are supposed to be identical or indistin-
guishable, and the assembly of particles is described by
means of its spatial density µ(·), which is represented by a
? This research was supported by the Padua University grant SID
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measure. The evolution in time of this global quantity is
then prescribed by a non-local continuity equation, that is
a partial differential equation (PDE for short) of the form

∂tµ(t) +∇ · (v(t, µ(t), ·)µ(t)) = 0. (2)
This approach has been successfully used e.g. to model
pedestrian dynamics and biological systems (Camazine
et al. (2001); Cristiani et al. (2011)), as well as to transpose
the study of classical patterns such as consensus or flocking
to macroscopic approximations of discrete multi-agent
systems (Carrillo et al. (2010); Ha and Liu (2009)).
In addition to the modeling and analysis of this class of
dynamics, the problem of controlling multi-agent systems
is relevant in a growing number of applications, see e.g.
Caponigro et al. (2015); Leonard (2013). Motivated by im-
plementability and efficiency considerations, many contri-
butions have aimed at generalising relevant notions of con-
trol theory to PDEs of the form (2), serving as mean-field
approximations of the discrete systems (1) (see e.g. Elam-
vazhuthi and Berman (2019)). A few articles have been
dealing with controllability results (see Duprez et al. (2019,
2020)) or explicit syntheses of control laws (e.g. Caponigro
et al. (2015); Piccoli et al. (2015)). On the other hand, the
major part of the literature has been focusing on mean-
field optimal control problems, with contributions ranging
from existence results (Bonnet and Frankowska (2021b);
Fornasier et al. (2019, 2014); Fornasier and Solombrino
(2014)) to first-order optimality conditions (Bongini et al.
(2017); Bonnet (2019); Bonnet and Frankowska (2021a);
Bonnet and Rossi (2019) and references therein).
In this article, we consider optimal control problems for-
mulated both in the ODE and PDE settings, and discuss



the possibility of applying the mean-field approach (i.e. to
let N → +∞) on their solutions. We shall restrict our at-
tention to a very simple family of problems, which exhibits
the most important issues arising in this setting. Our goal
in this context is to prove the following idea: if optimal
controls at the discrete level can be written as Lipschitz
functions of the individual agent states, with a Lipschitz
constant that is uniform with respect to N ≥ 1, then
such controls pass to the limit, and the resulting mean-
field optimal controls are Lipschitz as well. Instead, when
the Lipschitz constants of the discrete optimal controls
explode asN → +∞, then there does not exist a Lipschitz-
regular minimizer for the mean-field problem.
To this end, we study one of the simplest optimal control
problem possible for (1) and (2). We posit that the agents
evolve on the real line R, and that the controls act linearly
on each of them. We further assume that there is no
interaction between the agents at the dynamical level
(i.e. v ≡ 0), and that a final cost promotes either the
minimization or the maximization of the variance (both in
the finite and infinite-dimensional setting) at time T > 0.
Moreover, a running cost encodes an L2-penalization of
the controls. The relative weight between these two terms
is represented by a scalar quantity λ 6= 0, which value
compared with respect to T plays a fundamental role in the
regularity of optimal controls, as amply discussed below.
In the sequel, we will therefore consider the following
discrete multi-agent optimal control problem.

(PN)
Minimize the cost functional

CN (x0,u) := 1
2N

N∑
i=1

∫ T

0
u2
i (t)dt−

1
2λVar(x(T )),

where
� the controls u : [0, T ] → [−1, 1]N are
Lebesgue measurable,
� the curve x(·) := (x1(·), . . . , xN (·)) is the
unique solution of the controlled dynamics

ẋi(t) = ui(t), xi(0) = x0
i , (3)

with x0
i := 2i−N−1

N−1 for each i ∈ {1, . . . , N}.

The regularity required in (PN ) for the controls is the
standard one ensuring existence and uniqueness of the
solution to (3), see e.g. (Clarke, 2013, Chapter 23).
For the infinite-dimensional problem, defining admissible
controls is more delicate, as one needs to ensure the well-
posedness of the solution to (2). For this reason, we impose
a Lipschitz regularity of (t, x) 7→ u(t, x) with respect to
the space variable x ∈ R (for a thorough discussion of this
issue, see e.g. Bonnet and Rossi (2021)), and study the
following mean-field optimal control problem.

(P∞)
Minimize the cost functional

C∞(µ0, u) := 1
2

∫ T

0

∫
R
u2(t, x)dµ(t)(x)dt− 1

2λVar(µ(T )),

where
� the controls u : [0, T ] × R 7→ [−1, 1] are
measurable in time and Lipschitz in space,

� the curve µ(·) is the unique solution of the
controlled dynamics{

∂tµ(t) +∇ · (u(t, ·)µ(t)) = 0,
µ(0) = µ0,

(4)

with µ0 := 1
2χ[−1,1].

In what follows, we will describe precisely in which sense
the problem (P∞) is the limit of (PN ) as N → +∞. For
the moment, observe that for each vector x ∈ RN of N ≥ 1
agent positions, one can define the empirical measure

µN := 1
N

N∑
i=1
δxi

where x = (x1, . . . , xN ).

Via this association, one can easily show that the discrete
and continuous variances coincide, namely

Var(x) : = 1
N

N∑
i=1
x2
i −

(
1
N

N∑
i=1
xi

)2

=
∫
R x

2dµN (x)−
(∫

R xdµN (x)
)2

= Var(µN ),

and the initial data (µ0
N ) associated with x0 as in (PN )

converge in the sense of measures (5) towards 1
2χ[−1,1].

The terms involving the controls are more tricky, as some
extra regularity is needed to ensure some sort of conver-
gence between the discrete and continuous models. This
is the crucial point of this article: we will show that the
optimization process induces sufficient regularity
of the optimal control for λ ∈ (−∞, 0)∪(T,+∞), while
Lipschitz solutions for (P∞) fail to exist when λ ∈ (0, T ].
Theorem 1. (Main result). Let λ > T or λ < 0. Then,
there exists a minimizer u∗ : [0, T ]×R→ R of (P∞) which
is uniformly Lipschitz with respect to the space variable.
Moreover, this minimizer is the limit of optimal controls
(u∗i (·)) for (PN ), in the sense that |x∗i (t)− x| → 0 implies
|u∗i (t) − u∗(t, x)| → 0. Instead for λ ∈ (0, T ], there does
not exist a Lipschitz-in-space minimizer for (P∞).

The dichotomy exposed above is paradigmatic of many
mean-field optimal control problems, and is investigated
in greater generality in Bonnet and Rossi (2021).
The structure of the article is the following. We first
introduce the continuity equation and regularity issues for
(P∞) in Section 2. We then explicitly solve (PN ) in Section
3, and proceed to rigorously study the limit (PN )→ (P∞)
in Section 4, proving Theorem 1. We finally draw some
conclusions in Section 5.

2. TRANSPORT EQUATIONS AND MEAN-FIELD
OPTIMAL CONTROL

In this section, we fix some notations and recall several
results about Wasserstein distances, continuity equations
and mean-field optimal control problems.
We denote by Pc(Rd) the space of probability measures
on Rd with compact support, endowed with the standard
weak topology of measures, defined as



µn ⇀
n→+∞

µ if
∫
Rd f(x)dµn(x) −→

n→+∞

∫
Rd f(x)dµ(x),

(5)
for every f ∈ C∞c (Rd). We also denote by Lip(f) the
Lipschitz constant of a Lipschitz continuous function, i.e.

Lip(f) := sup
x,y∈dom(f),x6=y

‖f(x)− f(y)‖
‖x− y‖

.

We recall the definition of solution to continuity equations.
Definition 1. We say that µ(·) ∈ C0([0, T ],Pc(Rd)) solves
a continuity equation with initial condition µ0 ∈ Pc(Rd)
driven by a vector field w : [0, T ]× Rd → Rd, i.e.{

∂tµ(t) +∇ · (w(t, ·)µ(t)) = 0,
µ(0) = µ0,

(6)

if the following distributional identity holds∫ T
0
∫
Rd

(
∂tξ(t, x) + 〈∇xξ(t, x), w(t, x)〉

)
dµ(t)(x)dt = 0,

(7)
for any ξ ∈ C∞c ((0, T )× Rd).

The connection between continuity equations in infinite
dimension and ODEs in finite dimension is colloquially
known as the method of characteristics, and is supported
by the two following statements.
Definition 2. Let f : Rd → Rd be a Borel map. The push-
forward f#µ of µ ∈P(Rd) is the measure satisfying

(f#µ)(E) := µ(f−1(E)),
for every E ⊂ Rd such that f−1(E) is µ-measurable.
Theorem 2. (Method of characteristics). Let µ0 ∈Pc(Rd)
and w : [0, T ] × Rd → Rd be a Carathéodory vector field
that is locally Lipschitz and sublinear. Then, the continu-
ity equation (6) admits a unique solution µ(·), given by

µ(t) = (Φwt )#µ
0 for each t ∈ [0, T ],

where x ∈ Rd 7→ Φwt (x) ∈ Rd is the flow map of w.
Remark 1. It is known that weak solutions to continuity
equations can exist in low regularity contexts, see (Ambro-
sio et al., 2008, Chapter 8). However, the corresponding
notions do not ensure the well-posedness of (2) for arbi-
trary measures, and are less suited to mean-field control.

2.1 Wasserstein distance

We now recall the definition of the Wasserstein distances
(see e.g. (Ambrosio et al., 2008, Chapter 7)), together with
some of their connections to solutions of continuity equa-
tions. We will only work with the 1-Wasserstein distance,
as this is sufficient for our subsequent developments.
Definition 3. Given µ, ν ∈ Pc(Rd), the 1-Wasserstein
distance between µ and ν is defined by

W1(µ, ν) := sup
Lip(f)≤1

∫
Rd f(x)d(µ− ν)(x). (8)

A first fundamental property of the 1-Wasserstein distance
is that it metrizes the weak convergence of measures (5),
in the following sense.
Proposition 3. It holds lim

n→+∞
W1(µn, µ) = 0 if and only if

µn ⇀
n→+∞

µ and
∫
Rd |x|dµn(x) −→

n→+∞

∫
Rd |x|dµ(x).

We now recall a useful stability result with respect to the
Wasserstein distance for solutions of (6).

Proposition 4. Let µ, ν ∈ Pc(Rd) and w : [0, T ] ×
Rd → Rd be a uniformly bounded, measurable in time
and Lipschitz in space vector field, with Lipschitz constant
equal to L ≥ 0. Then for each t ∈ [0, T ], it holds

W1((Φwt )#µ, (Φwt )#ν) ≤ eLtW1(µ, ν). (9)

Proof: See e.g. Piccoli and Rossi (2013) or Bonnet and
Frankowska (2021b) for a more general statement. �

3. SOLUTIONS OF (PN )

In this section, we explicitly compute the solutions of
(PN ). We use bold notations (x,p) ∈ R2N to denote
vectors in RN , as well as u ∈ [−1, 1]N . We choose N ≥ 2
to be even, which ensures that xi(0) 6= 0. This condition
is not crucial for our result, but simplifies the discussion.
Observe first that (PN ) is regular both with respect to
the dynamics and control variables. Moreover, optimal
controls do exist since the set of admissible controls
[−1, 1]N is convex and compact (see e.g. (Clarke, 2013,
Theorem 23.11)). Finally, the smoothness of the data
allows us to compute optimal controls via the Pontryagin
Maximum Principle, see e.g. (Clarke, 2013, Chapter 22).
Denoting by p a costate variable associated to a state
vector x, the Hamiltonian of problem (PN ) writes as

HN (x,p,u) :=
N∑
i=1

(
piui − 1

2N u
2
i

)
. (10)

Given an optimal trajectory-control pair (x∗N (·),u∗N (·)),
the PMP provides the existence of a curve p∗N (·) satisfying

ṗ∗i (t) = 0,
p∗i (T ) = 1

λ∂xi
Var(x∗N (T )) = 1

Nλ (x∗i (T )− x̄∗N (T )),
u∗i (t) ∈ argmax

v∈[−1,1]
[ p∗i (t)v − 1

2N v
2 ],

(11)
where x̄ = 1

N

∑N
i=1 xi is the mean value of the vector x.

Thus, the adjoint vector p∗N (·) is constant, and satisfies
p∗i (t) = 1

λN (x∗i (T )− x̄∗N (T )),
for any i ∈ {1, . . . , N} and all times t ∈ [0, T ]. As a con-
sequence of the maximization condition, one can express
the components of the optimal control u∗(·) explicitly as

u∗i (t) = π
(

1
λ (x∗i (T )− x̄∗N (T ))

)
. (12)

Here, we denoted by u ∈ R 7→ π(u) ∈ [−1, 1] the projection
onto the set of admissible controls, namely

π(u) :=


1 if u ≥ 1,
u if u ∈ [−1, 1],
−1 if u ≤ −1.

Our goal now is to analytically solve (PN ). First remark
that the optimal control u∗N (·) ≡ u∗N does not depend on
time, and let us denote by ū∗N its mean value. The mean
value of the state then satisfies ˙̄x∗N (t) = ū∗N , which implies

x̄∗N (T ) = T ū∗N since x̄N (0) = 0.
Then, one can show that ū∗N = 0, e.g. by observing that
choosing ũi := (u∗i − ū∗N ) instead of u∗i would have no
impact on the final cost while reducing the control cost.
Consequently x̄∗(t) = x̄(0) = 0 for all t ∈ [0, T ], and since
x∗i (T ) = xi(0) + Tu∗i equation (12) now reads as

u∗i = π
(

1
λ (xi(0) + Tu∗i )

)
. (13)



Now, we need to study the problem in several situations
depending on the value of the penalization parameter λ.

3.1 The case λ > T

Consider the right-hand side of (13) as a function of ui, and
observe that it is increasing, with maximal slope T/λ < 1.
Since the left-hand side is the identity, then (13) always
admits a unique solution (see Figure 1 below).

Figure 1. Solution of (13) for λ > T .

If |xi(0) + Tu∗i | ≤ λ, then the projection coincides with
the identity operator. In this case, equation (13) reads
as λu∗i = xi(0) + Tu∗i . We can then write u∗i = xi(0)

λ−T
whenever such formula yields a control ui ∈ [−1, 1], i.e. for
xi(0) ∈ [−(λ−T ), λ−T ]. For other indices, one can easily
check that the unique solution for xi(0) > λ−T is u∗i = 1.
Similarly for xi(0) < −(λ−T ), the unique solution to (13)
is u∗i = −1. This gives the following optimal controls

u∗i =


1 if xi(0) > λ− T,
xi(0)
λ− T

if xi(0) ∈ [−(λ− T ), λ− T ],
−1 if xi(0) < −(λ− T ).

(14)

3.2 The case λ = T

In this case, equation (13) has no solution whenever the
projection coincides with the identity, as xi(0) 6= 0 for
every i ∈ {1, . . . , N}. A simple computation shows that
the only solution is the following

u∗i =
{

1 if xi(0) > 0,
−1 if xi(0) < 0. (15)

3.3 The case λ ∈ (0, T )

In this case, equation (13) does not have a uniquely defined
solution when the projection operator coincides with the
identity. Indeed for xi(0) ∈ [−(T−λ), T−λ], both xi(0)

λ−T and
sign(xi(0)) are solutions. One can prove that this second
choice provides the minimizer of the cost, and that the
corresponding optimal control is given by (15).

3.4 The case λ < 0

In this scenario, one aims at minimizing both Var(x(T ))
and the running control cost. One can show that the Pon-
tryagin Maximum Principle still reads as (11), and thus
(13) holds too. Therein, the right-hand side is decreasing

and bounded, and (13) always admits a unique solution.
Direct computations, similar to the previous ones, allow
to prove that the optimal controls are given by

u∗i =


−1 if xi(0) > −(λ− T ),
xi(0)
λ− T

if xi(0) ∈ [(λ− T ),−(λ− T )],
1 if xi(0) < λ− T.

(16)

3.5 Comparison

We now highlight two important features of the optimal
controls written above. First, for each pair of parameters
(λ, T ), the value of u∗i only depends on xi(0) and not on
the actual number N ≥ 1 of agents. This will play a crucial
role in the following Section 4.
Second, we aim to evaluate the following quantity, that can
be seen as the Lipschitz constant of the optimal control

L(t) := max
i 6=j

|u∗i − u∗j |
|x∗i (t)− x∗j (t)|

.

By recalling that u∗i , u∗j are constant in time and that
x∗i (t) = xi(0) + tu∗i , we can isolate the following scenarios.
• λ > T : Here |x∗i (t)−x∗j (t)| is increasing in time, thus

L(t) ≤ L(0) ≤ xi(0)− xj(0)
(λ− T )(xi(0)− xj(0)) = 1

λ− T
.

Remark that in this case, the Lipschitz constant is
uniformly bounded with respect to N ≥ 1.

• λ ∈ (0, T ] : In this case, one can easily see that the
maximum is reached at i = N

2 and j = i + 1, i.e for
the maximal negative initial position and the minimal
positive one. It then holds

L(t) = |1− (−1)|
|(xi(0)− t)− (xj(0) + t)| = N − 1

1 + t(N − 1) .

Contrary to the previous case, this constant depends
explicitly on N and can be arbitrarily large as N →
+∞ when t ∈ [0, T ] is small.

• λ < 0 : The result is similar to the case λ > T . Here,
the maximal value is attained for t = T , hence
L(t) ≤ L(T ) =

|xi(0)− xj(0)|∣∣(λ− T )
(
xi(0)− xj(0) + T

(xi(0)−xj(0)
λ−T

))∣∣ = 1
|λ|
.

Also in this case, the Lipschitz constant is indepen-
dent of N ≥ 1 and uniformly bounded.

4. SOLUTION OF (P∞)

In this section, we prove our main result Theorem 1.
The interest of the proof is two-fold. First, it shows the
fundamental role played by the parameters (λ, T ) in the
existence of regular solutions to (P∞). Second, it leverages
quite simply and directly the explicit form of the solution
to the discretized problems (PN ) derived above.
The idea of the proof is the following. When λ > T or
λ < 0, we have seen that there exists a Lipschitz minimizer
for (PN ), and we can use it to build a regular minimizer for
(P∞). On the contrary when λ ∈ (0, T ], the minimizers of
(PN ) are not regular and we contradict the optimality of



any candidate Lipschitz minimizer for (P∞) by studying
the mean-field limit of the discretized problems.
With this goal in mind, we explicitly build controlled
vector fields that will be optimal for (PN ) and possibly
for (P∞). We will define a candidate optimal vector field
u∗ : [0, T ]× Rd → Rd by requiring that

u∗(t, x∗i (t)) = u∗i (t), (17)
for every i ∈ {1, . . . , N} and almost every t ∈ [0, T ].
Therefore, we need to consider the following three cases.
• λ > T : The optimal controls u∗i (·) satisfy (14), and
we first consider the case xi(0) > λ− T . By setting

u∗(t, y) = 1, y ≥ λ− T + t,

one then has u∗(t, xi(0) + t) = 1, so that (17) holds.
The case xi(0) < −(λ − T ) is completely similar. If
xi(0) ∈ [−(λ− T ), λ− T ], then (17) reads as

u∗
(
t, xi(0) + t

xi(0)
λ− T

)
= xi(0)
λ− T

.

This condition is verified by choosing the velocity field
u∗(t, y) := y

λ− T + t
, y ∈ [−(λ− T + t), λ− T + t].

These three cases can be merged into the formula

u∗(t, y) = π

(
y

λ− T + t

)
. (18)

• λ ∈ (0, T ] : We now consider from (15), and set
u∗(t, y) = sign(y), y ∈ (−∞,−t) ∪ (t,+∞). (19)

We do not define u∗(t, y) for y ∈ [−t, t].
• λ < 0 : Starting from (16), we easily show that

u∗(t, y) = π

(
y

λ− T + t

)
,

satisfies (17).
The optimal agent trajectories x∗N (·) along with the veloc-
ity field u∗(·, ·) are illustrated for each scenario in Figure
2. In the sequel, we will need the following useful lemma.
Lemma 5. Let u : [0, T ] × R → R be measurable in
time, Lipschitz in space and bounded. For each initial
data x0

N of (PN ), define the control uN (·) via ui(t) :=
u(t, xi(t)). If µ0 ∈ Pc(Rd) and the empirical measures
µ0
N := 1

N

∑N
i=1 δx0

i
have uniformly compact support, then

µ0
N ⇀
N→+∞

µ0 implies CN (x0
N ,uN ) −→

N→+∞
C∞(µ0, u).

Proof: Consider the trajectory µN (t) := 1
N

∑N
i=1 δxi(t),

where xN (·) is the unique solution of (3). By definition
of the controls uN (·), we know that µN (·) solves{

∂tµ(t) +∇ · (u(t, ·)µ(t)) = 0,
µ(0) = µ0

N ,

and the regularity of u(t, ·) ensures that such a solution is
unique. By a direct computation, one can check that

CN (x0
N ,uN ) = C∞(µ0

N , u). (20)
Denote now by µ(·) the unique solution of (4) with control
(t, x) 7→ u(t, x) and initial datum µ0. By the Lipschitz reg-
ularity of u(t, ·) and Proposition 4, the distance estimate

W1(µN (t), µ(t)) 6 eLTW1(µN (0), µ(0)), (21)
holds for all times t ∈ [0, T ]. Since the measures (µN (0))
have uniformly bounded support and u(·, ·) is bounded,

y = −(1 + T ) y = 1 + T

t
=

0
t

=
T

−1 = x0
1
. . . . . . . . . x0

N = 1

y = −(1 + T ) y = 1 + T

t
=

0
t

=
T

−1 = x0
1
. . . . . . . . . x0

N = 1

y = −(1 + T ) y = 1 + T

t
=

0
t

=
T

−1 = x0
1
. . . . . . . . . x0

N = 1

Figure 2. Trajectories of N = 40 agents (foreground) with the
magnitude of u∗(t, y) (background) in the case where λ > T

(top), λ ∈ (0, T ] (middle) and λ < 0 (bottom).

then (µN (t)) and µ(t) have uniformly bounded support.
Recall that Var(µ) =

∫
R x

2dµ(x) − (
∫
R xdµ(x))2, and

observe that the function x 7→ x2 can be replaced by a
map φ(·) with Lipschitz constant L2, that coincides with
the latter on the supports of (µN (t)), µ(t). Notice now that
the function x ∈ R 7→ φ(x)/L2 is 1-Lipschitz, hence∣∣∫

R x
2d(µN (T )− µ(T ))(x)

∣∣ ≤ L2W1(µN (T ), µ(T )).
We can also estimate (

∫
R x dµ(x))2 with similar computa-

tion, since the integrand is 1-Lipschitz. Because u(t, ·) is
Lipschitz and bounded, the map u2(t, ·) is Lipschitz with
some constant Lu. Merging these facts, one can check that∣∣∣C∞(µ0

N , u)− C∞(µ0, u)
∣∣∣ ≤ ∫ T

0
W1(µN (t), µ(t))dt

+ 1
|λ|

(
L2W1(µN (T ), µ(T )) + CW1(µN (T ), µ(T ))

)
,



where C > 0 is a constant uniform in N ≥ 1. The proof of
our claim follows by combining (20) and (21). �

Proof of Theorem 1. We study the three cases separately.
We first consider the situation in which λ > T , and
prove that the Lipschitz-in-space control u∗(·, ·) given by
(18) is optimal for (P∞). By contradiction, assume that
there exists another Lipschitz control ũ(·, ·) such that
C∞(µ0, ũ) < C∞(µ0, u∗), and define ũN (·) as ũi(t) :=
ũ(t, x̃i(t)). Then by Lemma 5, there exists N ≥ 1 large
enough such that
CN (x0

N , ũN ) = C∞(µ0
N , ũ) < C∞(µ0

N , u
∗) = CN (x0

N ,u
∗
N ).

which contradicts the fact that u∗(·, ·) is optimal for (PN ),
as proven in Section 3. The case λ < 0 is analogous.
We now sketch the proof for the case λ ∈ (0, T ]. By
contradiction, assume that ũ(·, ·) is an optimal control for
(P∞) such that ũ(t, ·) is Lipschitz with constant L > 0.
By Lemma 5, for each ε > 0 there exists Nε ≥ 1 such that

|CN (x(0), ũN )− C∞(µ0, ũ)| < ε, (22)
where ũN (·) is defined as before by ũi(t) := ũ(t, xi(t)) for
almost every t ∈ [0, T ]. Our goal now is to estimate

cN := CN (x0
N , ũN )− CN (x0

N ,u
∗
N ),

where u∗N is given by (15). Since u∗N (·) is optimal for (PN ),
it necessarily holds that cN ≥ 0. Then, we have two cases.
• If cN ≥ d for some d > 0 and all N ≥ 1, there exists
a Lipschitz approximation û(t, ·) of (19) such that

CN (x0
N , ũN )− CN (x0

N , ûN ) > d/2,
independently of N ≥ 1. By letting N → ∞ in (22),
and thus ε→ 0, it then holds

C∞(µ0, û) ≤ C∞(µ0, ũ)− d/2,
which contradicts the optimality of ũ(·, ·).
• If (cN ) is not bounded from below by a positive
constant, there exists a subsequence (that we do not
relabel) such that cN → 0, i.e. the costs CN (x0

N , ũN )
get arbitrarily close to the optimal value CN (xN0 ,u∗N ).
However, a direct computation of solutions of (3) with
any L-Lipschitz control shows that the cost does not
converge, which leads to a contradiction.

5. CONCLUSIONS

In this article, we showed that the problem of either maxi-
mizing or minimizing the variance for multi-agent optimal
control problems and for their mean-field approximation
as N → +∞ exhibit very different behaviors, depending
on the relative weight between the quadratic control pe-
nalization and the variance. When minimizing the variance
functional, or maximizing it with a sufficiently small time
horizon, the optimal controls for (PN ) allow to build an
optimal control for (P∞) that is Lipschitz-in-space. On
the contrary, when the time horizon is large in the vari-
ance maximization problem, the discrete optimal controls
cannot be extended into a regular vector field, which allows
to prove that there exist no Lipschitz solutions to (P∞).
This interplay between, on the one hand, the existence
of Lipschitz solutions for mean-field optimal control prob-
lems, and on the other hand the construction of suitable
Lipschitz feedbacks at the microscopic level has been inves-
tigated in greater generality in Bonnet and Rossi (2021).
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