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Abstract. We study a family of optimal control problems in which one aims at minimizing a cost
that mixes a quadratic control penalization and the variance of the system, both for finite sets of
agents and for the limit problem as their number goes to infinity. While the solution for finitely
many agents always exists in a unique and explicit form, the behavior of the corresponding limit
problem is very sensitive to the magnitude of the time horizon and penalization parameter.
For the variance minimization, there exist Lipschitz-in-space optimal controls for the infinite
dimensional problem, which can be obtained as a suitable limit of the optimal controls for
the finite-dimensional problems. The same holds true for the variance maximization with a
sufficiently small final time. Instead, for large final times (or equivalently large penalizations of
the variance), Lipschitz-regular optimal controls do not exist for the macroscopic problem.

Keywords: Optimal control, Conservation Laws, Distributed Parameter Systems, Mean-Field
Control, Large Scale Complex Systems

1. INTRODUCTION

The mathematical analysis of collective behavior in large-
scale systems of interacting agents has received an increas-
ing attention during the past decades. Multi-agent systems
are ubiquitous in applications, ranging from networked
control to animal flocks and swarms, see e.g. Bullo et al.
(2009); Cucker and Smale (2007). In this context, a multi-
agent system is usually described by a family of ordinary
differential equations (ODEs for short), of the form

ẋi(t) = vN (t,x(t), xi(t)), (1)
where x = (x1, . . . , xN ) denotes the state of all the agents
and vN : [0, T ]× (Rd)N × Rd → Rd is a non-local velocity
field depending both on the running agent and on the
whole state of the system. However general and useful,
the intrinsic dependence of such models on the number
N ≥ 1 of agents makes most of the classical computational
approaches practically intractable for realistic scenarios.
One of the most natural ideas to circumvent this limitation
is to approximate the large system in (1) by a single
infinite-dimensional dynamics. This process, called the
mean-field limit procedure, describes the dynamics when
the number N of agents tend to infinity, in a specific way
(see e.g. the survey Golse (2016)). In this setting, agents
are supposed to be identical or indistinguishable, and the
assembly of particles is described by means of its spatial
density µ(·), which is represented by a measure. The
evolution in time of this global quantity is prescribed by a
? This research was partially supported by the Padua University
grant SID 2018 “Controllability, stabilizability and infimun gaps for
control systems”, prot. BIRD 187147.

non-local continuity equation, that is a partial differential
equation (PDE for short) of the form

∂tµ(t) +∇ · (v(t, µ(t), ·)µ(t)) = 0. (2)

This approach has been successfully used e.g. to model
pedestrian dynamics and biological systems (Camazine
et al. (2001); Cristiani et al. (2011)), as well as to transpose
the study of classical patterns such as consensus or flocking
to macroscopic approximations of discrete multi-agent
systems (Carrillo et al. (2010); Ha and Liu (2009)).
In addition to the modeling and analysis of this class of
dynamics, the problem of controlling multi-agent systems
is relevant in a growing number of applications, see e.g.
Caponigro et al. (2015); Burger et al. (2014); Leonard
(2013). Motivated by implementability and efficiency con-
siderations, many contributions have aimed at generalising
relevant notions of control theory to PDEs of the form
(2), serving as mean-field approximations of the discrete
systems (1) (see e.g. Berman et al. (2009); Elamvazhuthi
et al. (2018); Elamvazhuthi and Berman (2019)). A few
articles have been dealing with controllability results (see
Duprez et al. (2019, 2020)) or explicit syntheses of control
laws (e.g. Caponigro et al. (2015); Piccoli et al. (2015)).
On the other hand, the major part of the literature has
been focusing on mean-field optimal control problems, with
contributions ranging from existence results (Bonnet and
Frankowska (2021b); Fornasier et al. (2019, 2014); For-
nasier and Solombrino (2014)) to first-order optimality
conditions (Bongini et al. (2017); Bonnet (2019); Bonnet
and Frankowska (2021a); Bonnet and Rossi (2019); Cav-
agnari et al. (2020); Pogodaev (2016)).



In this article, we consider optimal control problems for-
mulated both in the ODE and PDE settings, and discuss
the possibility of applying the mean-field approach (i.e. to
let N → +∞) in the context of optimal control. We shall
restrict our attention to a very simple class of problems,
which anyway shows the most important issues arising in
this setting. Indeed, we aim to prove the following idea:
if optimal controls at the discrete level can be written as
Lipschitz functions of the state, with a Lipschitz constant
that is uniform with respect to the number N ≥ 1 of
agents, then such controls pass to the limit, and the re-
sulting mean-field optimal controls are Lipschitz as well.
Instead, when the Lipschitz constant of the optimal control
explodes asN → +∞, then there does not exist a Lipschitz
regular optimal control for the mean-field problem.
To this end, we write one of the simplest optimal control
problem possible for (1) and (2). We assume that the
agents evolve on the real line R, and that the controls
act linearly on each of them. We assume that there is
no interaction between the agents at the dynamical level
(i.e. v ≡ 0), and that a final cost promotes either the
minimization or the maximization of the variance (both in
the finite and infinite-dimensional setting) at the final time
T . Moreover, a running cost encodes an L2-penalization
of the controls. The relative weight between these two
costs is represented by a scalar quantity λ 6= 0, which
relative value with respect to T plays a fundamental role
in regularity of optimal controls.
In the sequel, we will therefore consider the following
discrete multi-agent optimal control problem.

(PN)
Minimize the cost functional

CN (x0,u) := 1
2N

N∑
i=1

∫ T

0
u2
i (t)dt−

1
2λVar(x(T ))

where
� the controls u : [0, T ] → [−1, 1]N are
Lebesgue measurable;
� the curve x(·) := (x1(·), . . . , xN (·)) is the
unique solution of the controlled dynamics

ẋi(t) = ui(t), xi(0) = x0
i , (3)

with initial datum

x0
i := 2i−N − 1

N − 1 for each i ∈ {1, . . . , N}.

The regularity required in (PN ) for the controls is the
standard one ensuring existence and uniqueness of the
solution to (3), see e.g. (Clarke, 2013, Chapter 23).
For the infinite-dimensional problem, defining admissible
controls is much more delicate, as one needs to ensure
existence and uniqueness of the solution to (2). For this
reason, we impose Lipschitz regularity of (t, x) 7→ u(t, x)
with respect to the space variable, together with measur-
ability with respect to the time variable. For a thorough
discussion of this issue, see e.g. Fornasier and Solombrino
(2014); Bonnet and Rossi (2021). In this context, we study
the following mean-field optimal control problem.

(P∞)
Minimize the cost functional

C∞(µ0, u) := 1
2

∫ T

0
u2(t, x)dµ(t)(x)dt− 1

2λVar(µ(T )),

where
� the controls u : [0, T ] × R 7→ [−1, 1] are
measurable in time and Lipschitz in space;

� the curve µ(·) is the unique solution of the
controlled dynamics{

∂tµ(t) +∇ · (u(t, ·)µ(t)) = 0,
µ(0) = µ0,

(4)

with initial datum µ0 := 1
2χ[−1,1].

In what follows, we will describe precisely in which sense
the problem (P∞) is the limit of (PN ) as N → +∞. For
the moment, observe that to each vector x ∈ RN of N
agent positions, one can associate the empirical measure

µN := 1
N

N∑
i=1
δxi

where x = (x1, . . . , xN ).

Via this association, one can easily show that the discrete
and continuous variances coincide, namely

Var(x) : = 1
N

N∑
i=1
x2
i −

(
1
N

∑N
i=1xi

)2

=
∫
R x

2dµN (x)−
(∫

R xdµN (x)
)2

= Var(µN ),

and the initial data (µ0
N ) associated with x0 as in (PN )

converge in the sense of measures (5) towards 1
2χ[−1,1].

The terms involving the controls are more tricky, as
some extra regularity is needed to ensure some sort of
convergence between the discrete and continuous models.
This is the crucial point of this article: we will show
that the optimizing induces sufficient regularity of
the optimal control for λ ∈ (−∞, 0) ∪ (T,+∞), while
Lipschitz solutions to (P∞) do not exist for λ ∈ (0, T ].
Theorem 1. (Main result). Let λ > T or λ < 0. Then,
there exists a minimizer u : [0, T ]×R→ R of (P∞) which
is uniformly Lipschitz with respect to the space variable.
Moreover, this minimizer is the limit of optimal controls
u∗i of (PN ), in the sense that |x∗i (t) − x| → 0 implies
|u∗i − u(t, x)| → 0. Instead, for λ ∈ (0, T ] a Lipschitz-
in-space minimizer for (P∞) does not exist.

The dichotomy exposed above is paradigmatic of many
mean-field optimal control problems, and is investigated
in greater generality in Bonnet and Rossi (2021).
The structure of the article is the following. We first
introduce the continuity equation and regularity issues for
(P∞) in Section 2. We then explicitly solve (PN ) in Section
3, and proceed to rigorously study the limit (PN )→ (P∞)
in Section 4, proving Theorem 1. We finally draw some
conclusions in Section 5.



2. TRANSPORT EQUATIONS AND MEAN-FIELD
OPTIMAL CONTROL

In this section, we fix some notations and recall several
results about Wasserstein distances, continuity equations
and mean-field optimal control problems.
We denote by Pc(Rd) the space of probability measures
on Rd with compact support, endowed with the standard
weak topology of measures
µn ⇀

n→+∞
µ if

∫
Rd f(x)dµn(x) −→

n→+∞

∫
Rd f(x)dµ(x),

(5)
for every f ∈ C∞c (Rd). We also denote by Lip(f) the
Lipschitz constant of a Lipschitz continuous function, i.e.

Lip(f) := sup
x,y∈dom(f),x6=y

‖f(x)− f(y)‖
‖x− y‖

.

We recall the definition of solution to continuity equations.
Definition 1. We say that µ(·) ∈ C0([0, T ],Pc(Rd)) solves
a continuity equation with initial condition µ0 ∈ driven by
a vector field w : [0, T ]× Rd → Rd, i.e. that it solves{

∂tµ(t) +∇ · (w(t, ·)µ(t)) = 0,
µ(0) = µ0.

(6)

if the following distributional formulation holds∫ T
0
∫
Rd

(
∂tξ(t, x) + 〈∇xξ(t, x), w(t, x)〉

)
dµ(t)(x)dt = 0,

(7)
for any ξ ∈ C∞c ((0, T )× Rd).

The connection between continuity equations in infinite
dimension and ODEs in finite dimension is given by the
following statement, which is colloquially known as the
method of characteristics.
Definition 2. Let f : Rd → Rd be a Borel map. The push-
forward f#µ of a measure µ of Rd is the measure satisfying

(f#µ)(E) := µ(f−1(E)),
for every E ⊂ Rd such that f−1(E) is µ-measurable.
Theorem 2. (Method of characteristics). Let µ0 ∈Pc(Rd)
and w : [0, T ] × Rd → Rd be a Carathéodory vector field
condition that is locally Lipschitz and sublinear. Then,
equation (6) admits a unique solution µ(·), given by

µ(t) = (Φwt )#µ
0 for each t ∈ [0, T ],

where x ∈ Rd 7→ Φwt (x) ∈ Rd denotes the flow map of w.
Remark 1. It is known that weak solutions of continuity
equations can exist in very low regularity contexts, see e.g.
(Ambrosio et al., 2008, Chapter 8). However, such notions
are not perfectly adapted to mean-field control, as they do
not ensure well-posedness of (2) for arbitrary measures.

2.1 Wasserstein distance

We now recall the definition of Wasserstein distance, to-
gether with its connection with solutions of the continuity
equation. We will only consider 1-Wasserstein distance, as
this is sufficient for our goals in this article. For a thorough
introduction, see e.g. (Ambrosio et al., 2008, Chapter 7).
Definition 3. Given µ, ν ∈ Pc(Rd), the 1-Wasserstein
distance is defined by

W1(µ, ν) := sup
Lip(f)≤1

∫
Rd f(x) d(µ− ν)(x). (8)

A first, fundamental property of the Wasserstein distance
is that it metrises the weak convergence of measures (5)
in the following sense.
Proposition 3. It holds lim

n→+∞
W1(µn, µ) = 0 if and only if

µn ⇀
n→+∞

µ and
∫
Rd |x|dµn(x) −→

n→+∞

∫
Rd |x|dµ(x).

We now describe the connection between solutions of the
continuity equation, such as (2), and Wasserstein distance.
Proposition 4. Let µ, ν ∈ Pc(Rd) and w : [0, T ] × Rd →
Rd be a vector field uniformly bounded, measurable in time
and Lipschitz in space with constant equal to L ≥ 0. Then
for each t ∈ [0, T ], it holds

W1((Φwt )#µ, (Φwt )#ν) ≤ eLtW1(µ, ν). (9)

Proof: See e.g. Piccoli and Rossi (2013) or Bonnet and
Frankowska (2021b) for a more general statement. �

3. SOLUTION OF (PN )

In this section, we explicitly compute the solutions of
(PN ). We use bold notations (x, r) ∈ R2N to denote
vectors in RN , as well as u ∈ [−1, 1]N . We now fix N ≥ 2
to be even, which ensures that xi(0) 6= 0. This condition is
not crucial for the result, but it simplifies the discussion.
Observe that the problem (PN ) is regular both in the
dynamics and the control. Moreover, optimal controls
exist, as the set of admissible controls [−1, 1]N is convex
and compact (see e.g. (Clarke, 2013, Theorem 23.11)).
Finally, the smoothness of the data allows us to compute
optimal controls via the Pontryagin Maximum Principle,
see e.g. (Clarke, 2013, Chapter 22).
Denoting by p a costate variable associated to x, the
Hamiltonian function of (PN ) writes

HN (x,p,u) =
N∑
i=1

(
piui − 1

2N u
2
i

)
. (10)

Given an optimal trajectory-control pair (x∗N (·),u∗N (·)),
the PMP provides the existence of a curve p∗N (·) satisfying

ṗ∗i (t) = 0
p∗i (T ) = 1

λ∂xi
Var(x∗N (T )) = 1

Nλ (x∗i (T )− x̄∗N (T )),
u∗i (t) ∈ argmax

v∈[−1,1]
[ p∗i (t)v − 1

2N v
2 ],

(11)
where x̄ = 1

N

∑N
i=1 xi is the mean value of the vector x.

Thus, the adjoint vector p∗(·) is constant and satisfies
p∗i (t) = 1

λN (x∗i (T )− x̄∗N (T )),
for any i ∈ {1, . . . , N} and all times t ∈ [0, T ]. As a con-
sequence of the maximization condition, one can express
the components of the optimal control u∗(·) explicitly as

u∗i (t) = π
(

1
λ (x∗i (T )− x̄∗N (T ))

)
. (12)

Here, we denoted by u ∈ R 7→ π(u) ∈ [−1, 1] the projection
onto the set of admissible controls [−1, 1], i.e.

π(u) :=


1 if u ≥ 1,
u if u ∈ [−1, 1],
−1 if u ≤ −1.

Our goal now is to analytically solve (PN ). First remark
that the optimal control u∗N (·) ≡ u∗N does not depend on



time, and let us denote by ū∗N its mean value. The mean
value of the state then satisfies ˙̄x∗N (t) = ū∗N , which implies

x̄∗N (T ) = T ū∗N since x̄N (0) = 0.
Then, one can show that ū∗N = 0, e.g. by observing that
choosing ũi := (u∗i − ū∗N ) instead of u∗i would have no
impact on the final cost while reducing the control cost.
Consequently x̄∗(t) = x̄(0) = 0 for all t ∈ [0, T ], and since
x∗i (T ) = xi(0) + Tu∗i equation (12) now reads as

u∗i = π
(

1
λ (xi(0) + Tu∗i )

)
. (13)

Now, we need to study the problem in several sub-cases
depending on the value of λ.

3.1 The case λ > T

Consider the right-hand side of (13) as a function of ui and
observe that it is increasing, with maximal slope T/λ < 1.
Since the left-hand side is the identity, then (13) always
admits a unique solution. See Figure 1.

Figure 1. Solution of (13) for λ > T .

If |xi(0) + Tu∗i | ≤ λ, then the projection coincides with
the identity operator. In this case, equation (13) reads
as λu∗i = xi(0) + Tu∗i . We can then write u∗i = xi(0)

λ−T
whenever such formula yields a control ui ∈ [−1, 1], i.e. for
xi(0) ∈ [−(λ−T ), λ−T ]. For other indices, one can easily
check that the unique solution for xi(0) > λ−T is u∗i = 1.
Similarly for xi(0) < −(λ−T ), the unique solution to (13)
is u∗i = −1. This gives the following optimal controls

u∗i =


1 if xi(0) > λ− T,
xi(0)
λ− T

if xi(0) ∈ [−(λ− T ), λ− T ],
−1 if xi(0) < −(λ− T ).

(14)

3.2 The case λ = T

In this case, equation (13) has no solution whenever the
projection coincides with the identity, as xi(0) 6= 0 for
every i ∈ {1, . . . , N}. A simple computation shows that
the only solution is the following

u∗i =
{

1 if xi(0) > 0,
−1 if xi(0) < 0. (15)

3.3 The case λ ∈ (0, T )

In this case, equation (13) does not have a uniquely defined
solution when the projection operator coincides with the

identity. For xi(0) ∈ [−(T − λ), T − λ] one has that both
xi(0)
λ−T and sign(xi(0)) solve it. One can prove that this
second choice provides the minimizer of the cost. The
optimal control then coincides with (15).

3.4 The case λ < 0

In this case one aims at minimizing Var(x(T )), together
with the cost of the control. Moreover, the Pontryagin
Maximum Principle still reads as (11), thus (13) holds
too. In this case, the right-hand side is decreasing and
bounded, then (13) always admits a unique solution.
Direct computations, similar to the previous ones, allow
to prove that the optimal controls are given by

u∗i =


−1 if xi(0) > −(λ− T ),
xi(0)
λ− T

if xi(0) ∈ [(λ− T ),−(λ− T )],
1 if xi(0) < λ− T.

(16)

3.5 Comparison

We now highlight two important features of the optimal
controls written above. First, for each pair of parameters
(λ, T ), the value of u∗i only depends on xi(0) and not on
the actual number N ≥ 1 of agents. This will play a crucial
role in the following Section 4.
Second, we aim to evaluate the following quantity, that can
be seen as the Lipschitz constant of the optimal control:

L(t) := max
i 6=j

|u∗i − u∗j |
|x∗i (t)− x∗j (t)|

.

By recalling that u∗i , u∗j are constant in time and that
x∗i (t) = xi(0) + tu∗i , we have the following scenarios.
• λ > T : here |x∗i (t)−x∗j (t)| is increasing in time, thus

L(t) ≤ L(0) ≤ xi(0)− xj(0)
(λ− T )(xi(0)− xj(0)) = 1

λ− T
.

Remark that the Lipschitz constant is bounded, uni-
formly with respect to N ≥ 1.

• λ ∈ (0, T ] : in this case, one can easily see that the
maximum is attained for i = N

2 and j = i + 1, i.e
for the maximal negative initial position and the the
minimal positive one. This implies

L(t) = |1− (−1)|
|(xi(0)− t)− (xj(0) + t)| = N − 1

1 + t(N − 1) .

Contrary to the previous cases, this constant depends
explicitly on N and can be arbitrarily large as N →
+∞ when t ∈ [0, T ] is small.

• λ < 0 : The result is similar to the case λ > T . Here,
the maximal value is attained for t = T , hence
L(t) ≤ L(T ) =

|xi(0)− xj(0)|∣∣(λ− T )
(
xi(0)− xj(0) + T

(xi(0)−xj(0)
λ−T

))∣∣ = 1
|λ|
.

Also in this case, the Lipschitz constant is indepen-
dent on N and bounded.

4. SOLUTION OF (P∞)

In this section, we prove our main result Theorem 1.
The interest of the proof is two-fold. First, it shows the



fundamental role of (λ − T ) in existence of the solution
of (P∞). Second, for the method of proof, that is indeed
based on the discretised problem (PN ) solved above.
The idea of the proof is the following. For the cases in
which a Lipschitz minimizer exists (i.e. λ > T or λ < 0),
we explicitly build the minimizer for (P∞), based on our
previous knowledge of minimizers of (PN ). Similarly, in
the case of non-existence of a Lipschitz minimizer (i.e.
λ ∈ (0, T ]), we use the limit of the discretised version (PN )
to contradict the optimality of any candidate Lipschitz
minimizer for (P∞).
With this goal in mind, we explicitly build controlled
vector fields that will be optimal for (PN ) and possibly
for (P∞). We will define a candidate optimal vector field
u∗ : [0, T ]× Rd → Rd by requiring that

u∗(t, x∗i (t)) = u∗i (t), (17)
for every i ∈ {1, . . . , N} and almost every t ∈ [0, T ].
Therefore, we need to consider the three following cases.
• λ > T : the optimal controls u∗i (·) satisfy (14), and
we first consider the case xi(0) > λ− T . By setting

u∗(t, y) = 1, y ≥ λ− T + t,

one then has u∗(t, xi(0) + t) = 1, so that (17) holds.
The case xi(0) < −(λ− T ) is completely similar.
If xi(0) ∈ [−(λ− T ), λ− T ], then (17) reads as

u∗
(
t, xi(0) + t

xi(0)
λ− T

)
= xi(0)
λ− T

.

This condition is verified by choosing the velocity field

u∗(t, y) := y

λ− T + t
, y ∈ [−(λ− T + t), λ− T + t].

These three cases can be then merged into the formula

u∗(t, y) = π

(
y

λ− T + t

)
. (18)

• λ ∈ (0, T ] : we now start from (15), and set
u∗(t, y) = sign(y), y ∈ (−∞,−t) ∪ (t,+∞). (19)

We do not define u∗(t, y) for y ∈ [−t, t].
• λ < 0 : starting from (16), we easily show that

u∗(t, y) = π

(
y

λ− T + t

)
,

satisfies (17).
The optimal agent trajectories x∗N (·) along with the veloc-
ity field u∗(·, ·) are illustrated for each scenario in Figure
2. In the sequel, we will need the following useful lemma.
Lemma 5. Let u : [0, T ] × R → R be measurable in
time, Lipschitz in space and bounded. For each initial
data x0

N of (PN ), define the control uN (·) via ui(t) :=
u(t, xi(t)). If µ0 ∈ Pc(Rd) and the empirical measures
µ0
N := 1

N

∑N
i=1 δx0

i
have uniformly compact support, then

µ0
N ⇀
N→+∞

µ0 implies CN (x0
N ,uN ) −→

N→+∞
C∞(µ0, u).

Proof: Consider the trajectory µN (t) := 1
N

∑N
i=1 δxi(t),

where xN (·) is the unique solution of (3). By definition
of the controls uN (·), we know that µN (·) solves{

∂tµ(t) +∇ · (u(t, ·)µ(t)) = 0,
µ(0) = µ0

N ,

y = −(1 + T ) y = 1 + T

t
=

0
t

=
T

−1 = x0
1
. . . . . . . . . x0

N = 1

y = −(1 + T ) y = 1 + T

t
=

0
t

=
T

−1 = x0
1
. . . . . . . . . x0

N = 1

y = −(1 + T ) y = 1 + T

t
=

0
t

=
T

−1 = x0
1
. . . . . . . . . x0

N = 1

Figure 2. Trajectories of N = 40 agents (foreground) with the
magnitude of u∗(t, y) (background) in the case where λ > T

(top), λ ∈ (0, T ] (middle) and λ < 0 (bottom).

and the regularity of u(t, ·) ensures that such a solution is
unique. By a direct computation, one can check that

CN (x0
N ,uN ) = C∞(µ0

N , u). (20)
Denote now by µ(·) the unique solution of (4) with control
(t, x) 7→ u(t, x) and initial datum µ0. By the Lipschitz
regularity of u(t, ·) and Proposition 4, it then holds

W1(µN (t), µ(t)) 6 eLTW1(µN (0), µ(0)), (21)
for all times t ∈ [0, T ]. Since the (µN (0)) have uni-
formly bounded support and u(·, ·) is bounded, then µN (t)
and µ(t) have uniformly bounded support. Recall that
Var(µ) =

∫
R x

2dµ(x)− (
∫
R xdµ(x))2, and observe that the

function x 7→ x2 can be replaced by a map φ(·) with
Lipschitz constant L2, that coincides with the latter on
the supports of (µN (t)), µ(t). Notice now that the function
x ∈ R 7→ φ(x)/L2 is 1-Lipschitz, hence



∣∣∫
R x

2d(µN (T )− µ(T ))(x)
∣∣ ≤ L2W1(µN (T ), µ(T )).

By using the fact that u(t, ·) is Lipschitz and bounded,
so is u2(t, ·) with some constant Lu. We can also esti-
mate (

∫
R x dµ(x))2 with similar computation, since the

integrand is 1-Lipschitz. Then, direct computations show∣∣∣C∞(µ0
N , u)− C∞(µ0, u)

∣∣∣ ≤ ∫ T

0
LuW1(µN (t), µ(t))

+ 1
|λ|

(
L2W1(µN (T ), µ(T )) +W1(µN (T ), µ(T ))2

)
.

By combining (20)-(21), we conclude the proof. �

We are now ready to prove our main result Theorem 1.
Proof of Theorem 1. We study the three cases separately.
We first consider the situation in which λ > T , and
prove that the Lipschitz-in-space control u∗(·, ·) given by
(18) is optimal for (P∞). By contradiction, assume that
there exists another Lipschitz control ũ(·, ·) such that
C∞(µ0, ũ) < C∞(µ0, u∗), and define ũN (·) as ũi(t) :=
ũ(t, x̃i(t)). Then by Lemma 5, there exists N ≥ 1 large
enough such that
CN (x0

N , ũN ) = C∞(µ0
N , ũ) < C∞(µ0

N , u
∗) = CN (x0

N ,u
∗
N ).

which contradicts the fact that u∗(·, ·) is optimal for (PN ),
as proven in Section 3. The case λ < 0 is analogous.
We now sketch the proof for the case λ ∈ (0, T ]. By
contradiction, assume that ũ(·, ·) is optimal for (P∞) and
that u(t, ·) is Lipschitz with constant L > 0. By Lemma 5,
for each ε > 0 there exists Nε ≥ 1 such that

|CN (x(0), ũN )− C∞(µ0, ũ)| < ε, (22)
where ũN (·) is defined as before by ũi(t) := ũ(t, xi(t)) for
almost every t ∈ [0, T ]. Our goal is now to compute

cN := CN (x0
N , ũN )− CN (x0

N ,u
∗
N ),

where u is given by (15). Since u∗(·) is optimal for (PN ),
it necessarily holds cN ≥ 0. Then, we have two cases.
• If cN ≥ d for some d > 0 and all N ≥ 1, there exists
a Lipschitz approximation û(t, ·) of (19) such that

CN (x0
N , ũN )− CN (x0

N , ûN ) > d/2,
independently of N . By letting N → ∞ in (22), and
thus ε→ 0, it holds

C∞(µ0, û) ≤ C∞(µ0, ũ)− d/2,
which contradicts the optimality of ũ(·, ·).
• If (cN ) is not bounded from below by a positive
constant, there exists a subsequence (that we do not
relabel) such that cN → 0, i.e. the cost CN (x0

N , ũN )
is arbitrarily close to the optimal value CN (xN0 ,u∗N ).
However, a direct computation of solutions of (3) with
any L-Lipschitz control shows that the cost does not
converge, which leads to a contradiction.

5. CONCLUSIONS

In this article, we showed that the problem of either maxi-
mizing or minimizing the variance for multi-agent optimal
control problems and for their mean-field approximation
as N → +∞ exhibit very different behaviors, depending
on the relative weight between the quadratic control pe-
nalization and the variance. When minimizing the variance
functional, or maximizing it with a sufficiently small time

horizon, the optimal controls for (PN ) allow to build an
optimal control for (P∞) that is Lipschitz. On the contrary
when the time horizon is large in the variance maximiza-
tion problem, the discrete optimal controls cannot give rise
to a regular vector field, and this allows to prove that there
exist no Lipschitz solutions to (P∞).
This interplay between Lipschitz solutions for the macro-
scopic problem and the construction of suitable Lipschitz
feedbacks at the microscopic level has been investigated in
greater generality in Bonnet and Rossi (2021).
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