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Abstract

In bus interconnection networks every bus provides a communication medium between a set of
processors. These networks are modeled by hypergraphs where vertices represent the processors
and edges represent the buses. We survey the results obtained on the construction methods that
connect a large number of processors in a bus network with given maximum processor degree
A, maximum bus size 7, and network diameter D. (In hypergraph terminology this problem is
known as the (A, D, r)-hypergraph problem.)

The problem for point-to-point networks (the case » = 2) has been extensively studied in the
literature. As a result several families of networks have been proposed. Some of these point-
to-point networks can be used in the construction of bus networks. One approach is to consider
the dual of the network. We survey some families of bus networks obtained in this manner.
Another approach is to view the point-to-point networks as a special case of the bus networks
and to generalize the known constructions to bus networks. We provide a summary of the tools
developed in the theory of hypergraphs and directed hypergraphs to handle this approach.

1. Introduction

A bus interconnection network is a collection of processing elements (processors) and
communication elements (buses). The processors produce and/or consume messages and
the buses provide communication channels to exchange messages among the processors.
Every bus provides a communication link between two or more processors.

For practical reasons, a processor may only be connected to a limited number of
buses (this number is known as the processor degree) and a bus may only connect a
limited number of processors (this number is known as the bus size). Therefore, mes-
sages may have to be relayed by a number of intermediate processors before arriving
at their destinations, and thus the message transmission time becomes ‘a function of the
distance (measured in terms of the number of buses traversed by a message) between



processors. The maximum distance over all pairs of processors is the network diameter.
Fig. 1 depicts a bus network of degree 3, bus size 3, and diameter 1. For some other
examples see Fig. 2.

For given upper bounds on the processor degree A, bus size r, and network di-
ameter D, the construction of bus networks with maximal number of processors is an
important problem in the design of interconnection networks. Our aim is to survey the
results obtained on this problem with an emphasis on the tools used in the construc-
tion. Other design parameters such as network reliability, symmetry . properties, ease
of message routing, balanced message traffic throughout the network, implementation
issues (algorithms and architecture) should also be taken into consideration.

In the case of traditional point-to-point networks, where a link can connect only
two processors (these networks are modeled by graphs) the aforementioned problem
has been extensively studied in the literature. As a result, different families of net-
works with large number of processors for given degree and diameter have been pro-
posed. (Surveys on this topic can be found in [6, 11, 23] and also in the special issues
[3, 41].)

Although considerably less studied, the construction of bus networks (» > 2) is re-
ceiving more interest due to technological advances (see e.g. [43]). In this paper, we
survey the results obtained on the construction methods that connect a large number
of processors in a bus network, given A, D, and r.

This paper is organized as follows. Section 2 deals with the undirected bus net-
works. In Section 2.1 we give the terminology of hypergraphs and define the (A, D, r)-
hypergraph problem. In Section 2.2, an upper bound on the number of vertices in
(A, D, r)-hypergraphs (known as the Moore bound) is introduced and some general
results concerning this bound are given. Section 2.3 is devoted to the case of diam-
eter 1 in which there are infinitely many (A,D,r)-hypergraphs attaining the Moore
bound. This case is a subject of study in Combinatorial Design Theory. In Section 2.4
we survey the results in the case of degree 2, where the duality tools are helpful. In
Section 2.5, we describe compound techniques to obtain large (A,D,r)-hypergraphs.
In Section 2.6, we survey various other families of bus networks proposed in the
literature.

Section 3 deals with directed bus networks. We give the terminology in Section 3.1.
The Moore bound and the directed hypergraphs that attain it are the subject of Sec-
tion 3.2. In Section 3.3 we give two infinite families of directed hypergraphs that
approach the Moore bound asymptotically, and generalize the well-known de Bruijn
and Kautz networks.

2. Design of bus networks

We use hypergraphs to represent the underlying topology of the bus interconnection
networks. The vertices of the hypergraph correspond to the processors and the edges
correspond to the buses.



2.1. (A,D,r)-hypergraph problem

An (undirected) hypergraph H is a pair H = (V(H),E(H)), where V(H) is a non-
empty set of elements, called vertices, and E(H) is a finite set of subsets of V(H)
called edges. The number of vertices in the hypergraph is n(H) = |V(H)| and the
number of edges is m(H) = |E(H)| where the vertical bars denote the cardinality of
the set. The degree of a vertex v is the number of edges containing it and is denoted
by Ap(v). The maximum degree over all of the vertices in H is denoted by A(H).
The size of an edge E € E(H) is its cardinality, and is denoted by |E|. The rank of H
is the size of its largest edge, and is denoted by r(H). A path in H from vertex u to
vertex v is an alternating sequence of vertices and edges u = vo, E1,01,...,Ef,0p = v
such that {v;—;,v;} CE; for all 1 <i<k. The length of a path is the number of edges in
it. The distance between two vertices u and v is the length of a shortest path between
them. The diameter of H is the maximum of the distances over all pairs of vertices,
and is denoted by D(H).

We call a hypergraph with maximum degree A, diameter D, and rank 7, a (A, D,r)-
hypergraph. The problem on bus networks ‘we considered in the introduction is known
as the (A, D, r)-hypergraph problem and consists of finding (A, D, r)-hypergraphs with
the maximum number of vertices or finding large (A, D, r)-hypergraphs. The maximum
number of vertices in any (A, D, r)-hypergraph is denoted by n(A, D, r).

In the case » = 2 (graph case), this problem has been extensively studied and is
known as the (A, D)-graph problem (see e.g. [11, 12]), and the maximum number of
vertices in any (A, D)-graph is denoted by n(A,D).

Note that parts of this problem have been studied in other contexts with different
notation. For example d or r is used for maximum degree, k£ or d is used for diameter,
and b or k is used for rank. (In the notation of Design Theory » and & are used
for maximum degree and rank, respectively.) We follow the notation of Hypergraph
Theory [2].

Finally, let us mention that the drawing of hypergraphs can be very complex and
therefore it is useful to represent a hypergraph H with a bipartite graph,

R(H) = (Vi(R) UVa(R),E(R))

called the bipartite representation graph. Every vertex v; in V(H) is represented by a
vertex v; in Vi(R) and every edge E; in E(H) is represented by a vertex e; in V5(R).
We draw an edge between v; € Vi(R) and ¢; € V5(R) if and only if v; € E; in H.

If H is a (A,D,r)-hypergraph and R(H) is its bipartite representation graph, then
the maximum degrees in V;(R) and in V,(R) are A and r, respectively. The distance
between two vertices of Vj(R) is at most 2D, but the diameter of R(H) can be 2D,
2D + 1 or 2D + 2 as the vertices of Vj(R) and V,(R) do not play the same role. So,
the (A, D, r)-hypergraph problem is partly related but different from the (A, Ay; D')-
bipartite graph problem, i.e. finding large bipartite graphs with maximum vertex degrees
Ay, A, and diameter D’ (for details of this problem see [19]). Nevertheless, this
bipartite representation can be helpful.



2.2. Moore bound and Moore geometries

A bound on the maximum number of vertices in a (A, D, r)-hypergraph (analogous
to the the classical Moore bound [40]) can easily be calculated: Each vertex belongs to
at most A edges and each edge contains at most » vertices. Thus there can be at most
A(r—1) vertices at distance one from any vertex. In general, the maximum number of
vertices at distance i from any vertex can be at most A(A — 1)~!(» — 1), Therefore,

Proposition 1. n(A,D,r)<1+ A(r — 1) 1251 (A = 1)i(r — 1),

This bound is known as the Moore bound for undirected hypergraphs, and the hyper-
graphs that attain it are known as Moore geometries.

Combined results of Fuglister [37, 38], Damerell and Georgiacodis [27], Damerell
[26], Kuich and Sauer [46], Bose and Dowling [20], and Kantor [44] show that,
for D>2, Moore geometries cannot exist, with the exception of the cycles of
length 2D+ 1 (the case A =2 and » = 2). For a comprehensive survey on these results
see [6].

For D =2 and r # 5, Moore geometries can exist only for a finite number of cases.
For » = 3, Moore geometries do not exist; and for » = 4 a Moore geometry with
A = 7 may exist (with 400 vertices, and 700 edges). However, there are no known
Moore geometries with D =2 and » > 2.

For D = 2 and » = 2 (graph case), only four Moore graphs can exist. Three of them
are the pentagon (A = 2), the Petersen graph (A = 3) and the Hoffman-Singleton
graph (A = 7) [40]. A fourth Moore graph with A = 57 may exist. This graph, if
exists, cannot be vertex-transitive (see [22], p. 102; [1]).

2.3. Case D=1

In a hypergraph of diameter | every pair of vertices belongs to at least one common
edge. The reader might see the similarity with Design Theory. (For more information
on Design Theory see e.g. [42], and for the use of Design Theory in Computer Science
see the survey [25].) Recall that an (n,r, ) design on a set of n objects (called “points”)
is a collection of subsets (called “blocks™) such that every block contains exactly r
points and every pair of points belongs to exactly A blocks. In fact, Moore geometries
of diameter 1 are the (n,r, 1) designs: '

Proposition 2. n(A, 1,7)<1 4+ A(r — 1), and the equality is attained if and only if
there exists an (n,r, 1) design. ;

Simple counting arguments show that nA = mr in an (n,r,1) design, where m is
the number of blocks (edges). Fisher’s inequality (cf. [42, p. 34]) states that A>r in
any (n,r,A) design with n > r points. If A = r, the existence of a (A, 1,7)-hypergraph
depends on the existence of a (¢>+¢+ 1, g+ 1,1) design, known as a projective plane



Fig. 1. Fano plane: (3, 1, 3)-hypergraph and its bipartite representation graph.

of order ¢, with ¢ = » — 1. This was already pointed out by Mickunas [48]. It is well
known that a projective plane exists when ¢ is a prime power. It is also known from
the Bruck—-Ryser—Chowla theorem (cf. [42, p. 56]) that a projective plane does not
exist when ¢ = 1,2(mod 4), and ¢ is not the sum of two integer squares (for example
q = 6 or ¢ = 14). Fig. 1 depicts the symmetric (7,3,1) design (also known as the
Fano plane). In this figure the circles represent the points (vertices) and the (thick)
lines represent the blocks (edges).

When the Moore bound cannot be attained, tight upper bounds on n(A,1,r) are
established in [8, 9, 4]. For A>r, the results on coverings were used. We give the
following theorem as an example.

Theorem 3 (Bermond et al. [8]). If A>r, then

2 +1 if A=0 or 1(mod3),
alhsl )= {m if A =2(mod3).

In the case D =1 and A < r, Bermond et al. [8] showed that a (A, 1,7)-hypergraph
with Ar — (A — 1)[r/A] vertices can be constructed if there exists a projective plane
of order A — 1, namely by splitting each vertex into roughly »/A vertices. Fiiredi [39]
proved that this bound is asymptotically optimal. ‘

2.4. Duality tools

The dual of a hypergraph H = (V(H),E(H)) is the hypergraph H* = (V(H™),
E(H*)) where the vertices of H* correspond to the edges of H, and the edges of
H* correspond to the vertices of /. A vertex e} is a member of an edge V;* in H*
if and only if the vertex v; is a member of E; in H. Fig. 2 shows some graphs and
their dual hypergraphs.

'
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Fig. 2. Some (2, 2, 4)-hypergraphs obtained by dual hypergraph operation.

Bermond et al. [7] observed the following relationship between a hypergraph and its
dual.

Proposition 4 (Bermond et al. [7]). If H is a (A,D,r)-hypergraph then its dual hy-
pergraph H* is a (r,D*, A)-hypergraph, where D —1 < D*< D + 1.

Note that, if G is a graph of maximum degree A and diameter D then its dual is a
(2,D*, A)-hypergraph. Furthermore,

Proposition 5 (Bermond et al. [7]). If G is a bipartite (A,D)-graph then its dual
hypergraph H* is a (2,D*, A)-hypergraph, where D* < D.

With the help of Propositions 4 and 5, it is possible to construct large (2,D,r)-
hypergraphs by using the existing large (A, D)-graphs. Below, we give some examples.
(For more examples, see [7].)

The dual hypergraph of the binary hypercube was conceived as a bus network [55],
where every edge of the hypercube represents a processor and every vertex represents
a bus. Thus every processor is connected to two buses and if the hypercube is d-
dimensional then every bus connects d processors. Using the same technique the dual
hypergraph of the generalized hypercube has also been proposed as a bus network [17].

In [52], Pradhan proposed a generalization of the shuffle-exchange network. The dual
of this network gives a hypergraph of degree 2, rank r, diameter 2k — 1 (k is a positive
integer). It has #¥*1/2 vertices.



Kautz graphs are obtained from Kautz digraphs [15] by replacing the directed edges
with undirected ones. Kautz graphs of maximum degree » (r is even) and diameter D
have (r/2)P + (r/2)P~" vertices. The dual hypergraph of the Kautz graph of diameter
D—1, and maximum degree r, is a (2, D, »)-hypergraph with (#/2)° + (r/2)°~" vertices.

The bipartite double G of a graph G is constructed as follows [21]: For every
vertex v € V(G) there are two vertices v™ and v~ € V(G). The vertices v and vy
are adjacent in G, if and only if the vertices v; and v; are adjacent in G. Let G be the
bipartite double of the de Bruijn graph (see [15], or [53]) of maximum degree » (» is
even), and diameter D — 1. Then G is regular of degree r, has 2(r/2)P~! vertices and
diameter D. The dual hypergraph of G is a (2,D,r)-hypergraph with 2(#/2)” vertices.

An extension of the bipartite double of de Bruijn graphs, is the “Cs graphs” of
Delorme and Farhi [28]. The vertices of “C; graphs” are labeled by (i; ay,...,ax), where
i belongs to Z, (set of integers modulo ¢), and a; (1<j<k), belongs to an alphabet
A of d letters. The vertex (i;ay,...,a;) is joined to the vertices (i + 1;ay,...,ar, o) and
(i — l;a,ay,...,ax—1) wWhere « is any letter from the alphabet A. These graphs have
qd* vertices and maximum degree 2d. Their diameter depends on the values of ¢ and
k. For example, if ¢ = 3, the diameter is always k + 1. If ¢ = 5, the diameter is k + 1
for k=1 or 4mod5), and k + 2, otherwise.

Bermond et al. [7] used the dual hypergraphs of “Cs graphs” to obtain large (2, D, r)-
hypergraphs. A particular case of the “Cs graphs” (¢ = 5 and k = 1) is the graph G
obtained from the pentagon by replacing each vertex with »/2 vertices and every edge
with the edges of a complete bipartite graph K,/ ,» (see Fig. 2). Let H be the dual
hypergraph of G. Then A has diameter 2, rank », and %rz vertices.

The result for the cases ¢ =3 and ¢ = 5 are given in the following theorem (the
case ¢ = 3 was pointed out by Rote). Although these results are for even values of r,
they can be extended to the odd values as well. :

Theorem 6 (Bermond et al. [7]). If r is even, then
n(2,0,r)>3(3)".

n(2,D,r) > 5(%)” if D=0 or 2(mod5).
Furthermore, from the work of Kleitman (unpublished) and from [24] and [S1], it
follows that
Theorem 7. If r is even, then n(2,2,r) = 3r2.

Finally, we note that the duals of the asymmetric block designs give hypergraphs of
diameter two [16, 50].

2.5. Compound techniques

One of the techniques used to construct large (A, D, »)-hypergraphs is to start from
good ones for small values of A, D and r, then to combine them to build larger ones.



Bond [18] constructs (A, D, r)-hypergraphs by taking » copies of a (A —1,D — 1,7)-
hypergraph and joining the vertices with the same labels through a common edge.
Thus,

Proposition 8 (Bond [18]). n(A,D,r)=r-n(A —1,D — 1,r).

For example, from Theorem 6, n(2,1,#) = 3r/2 (for r even), thus we obtain
n(3,2,7)=3r2/2.

A somewhat more sophisticated construction is the following: Consider a (p(r —
1)+ 1,r,1) design, that is a (p,1,»)-hypergraph H. Replace each vertex x of H by
a copy of a (A,D,r)-hypergraph H' on p vertices, in such a way that each of the p
edges of H containing x contain exactly one vertex of the copy H. The hypergraph
thus obtained is denoted by H[H’], and has degree A+ 1, diameter 2D + 1, and edge
size r. Therefore,

Proposition 9 (Bermond et al. [6]). n(A + 1,2D + 1,r)=n(A,D,r) - (1 + (r — 1) -
n(A,D,r)).

For example, we have n(l,1,7) = r. If ¢ = r — | is a prime power, there exists
a (r(r — 1)+ 1,r,1) design and in that case n(2,3,7)=r> — r2 + r. For these values
of r, the result is better than the lower bound n(2,3,r)> %r3 obtained in Theorem 6.
Slight improvements can still be obtained (see [29]). For instance, n(2,1,r) = 3r/2
(for r even), and thus n(3,3,7) > 1(9* — 92 +6r) if there exists a (3r(r —1)+1,7,1)
design. '

Bermond et al. (see [5, 29]) have used more elaborate techniques mixing transver-
sal designs (or orthogonal latin squares) and large bipartite regular graphs of diam-
eter five. (For the construction of large bipartite graphs see [19].) These techniques
give the best-known large hypergraphs of diameter two. For example they proved that
n(3,2,r) = 3r? if r = 0(mod3) and n(4,2,7) > 2r? if » = 0(mod 4), and » # 8, 24.

2.6. Various families of bus networks

In this section we survey various direct constructions of bus networks. Some of these
constructions apply only in particular cases such as maximum degree 2, or degree equal
to the diameter. For A = 2, Finkel and Solomon [34] have proposed two networks,
called snowflake bus network and dense snowflake bus network. These networks have
r°%2 D processors.

A construction method based on hypercubes to obtain bus networks of varying degree
and bus size is the spanning bus hypercube [56]. In an r-ary, d-dimensional spanning
bus hypercube each bus connects processors in one direction (i.e. processors sharing a
bus spanning the hypercube in the ith dimension have identical coordinates except in
the ith position). Therefore, each processor is connected to d buses. Recall that in this
network the diameter is equal to the degree.



The Dual-bus hypercube [56] is derived from the spanning bus hypercube by remov-
ing some spanning buses so that every processor is connected only to two spanning
buses.. (Note that the term “dual” in this construction does not refer to the dual hy-
pergraph of any graph, but it simply states the fact that every processor is connected
to two buses.) The number of processors in this network is relatively small (of order
P2 to be compared with 3(5)P obtained in Theorem 6).

An iterative method to construct bus networks of degree A and the bus size r is
the “lens interconnection strategy” [35]. In this method, at level-1 all of the » — 1
processors are on all of the A — 1 buses. At this level every processor is deficient, i.e.
it is connected to only A — 1 of the A buses allowed. The buses are also deficient,
since each bus has only » — 1 processors. At level-k, A — 1 copies of the level-(k — 1)
lens network are taken and connected together as follows: For each deficient processor
a new bus is introduced and is connected to the corresponding processor. A number of
new processors are introduced such that each new processor is on the same bus in each
copy, and each new bus has » processors on it. The number of processors at level-k is
n= fo:l(A — 1)*7i(r — 1)". The diameter of the level-k lens interconnection network
is 2k. If A = r, this scheme produces symmetric networks, that is every processor’s
view of the network is the same. Furthermore, in this special case, the dual of this
network is also a lens network. By connecting the deficient processors to the deficient
buses at the last level, the completed lens is obtained which has diameter |3k ].

Another method to construct bus networks is to partition the set of links in a point-
to-point network into the buses. A particular case of this method is the spanning bus
hypercube (see above). Ferreira et al. [32] considered such a generalization of grids
(called hypergrids) and studied communication problems on them. See also the works
of Stout [54] and Prasanna and Raghavendra [47] where buses are used on top of a
classical grid to speed up the algorithms. (Also see [49] for meshes with reconfigurable
buses.)

Doty [30] partitioned the links of the point-to-point de Bruijn networks to buses, and
obtained bus networks with large number of vertices. Bermond et al. [10] gave formal
methods for this partitioning. Similarly, Kautz bus networks are obtained from the
point-to-point Kautz networks by grouping certain links into buses [10]. The number
of processors in de Bruijn bus networks is (%)D, and the number of processors in
Kautz bus networks is (%L)D +(%)D_1, where D is the diameter, and A and » always
assume even values. ,

In Table 1 we list some properties of some of the networks discussed above, for
comparison.

3. Directed bus networks
De Bruijn and Kautz bus networks are in fact obtained by extending the definition of

de Bruijn and Kautz digraphs to directed bus networks. In the directed bus networks the
processors on a bus are divided into two, not necessarily disjoint, sets. The processors



Table 1
Comparison of some bus networks

Network Max. Diam. No of No of Node Bus
Deg. nodes buses conn. conn.

Snowflake 2 LI 1 i i

Dual of
binary 2 r r2r=1 2r 2(r—1) 2
hypercube

Dual-bus
hypercube 2 2k—1 o k=1 20—1) 2

Dual of
Kautz 2 D G +(5)P! (5P + (52 20—=1) 2
graphs

Dual of
Cs graphs 2 D 3(5)°P 3(4)°P!

Spanning
bus A A A Aps—1 A(r—1) A
hypercube

Completed

lens r [3k]  k(r—1) k(r— 1)
(fA=r)

de Bruijn

A A2 AryD—1 1
e = 2 &Y (& S

,_.
=

painy

~V

V>
gl

|
N
N®
=

St AryD 4 (AryD—1 A% A AryD—2
r r\D— r r\D—
ggavbrks A D>2 (F)Y+(F) S+ 1)

Notes:
1. The bus size is » in all of the networks.
2. All bus networks in this table are undirected.
3. In the Dual of Cs graphs r assumes even values.
4. In de Bruijn and Kautz bus networks A and » assume even values. s

in one set can use the bus only to send messages while the processors in the other
set can use the bus only to receive messages. Formally, we represent the directed bus
networks with directed hypergraphs.

3.1. Terminology and notation

A directed hypergraph H, is a pair (V(H),E(H)), where V(H) is a non-empty set
of elements (called vertices) and E(H) is a set of ordered pairs of non-empty subsets
of V(H) (called hyperarcs). If E = (E~, E1) is a hyperarc in £(H), then the non-
empty vertex sets £~ and E*1 are called the in-set and the out-set of the hyperarc E,
respectively. The sets £~ and E* need not be disjoint. |[E~| is the in-size, and |E™|
is the out-size of hyperarc E. The maximum in-size and the maximum out-size of a



directed hypergraph H are, respectively,

sT(H)= max |E”| and s*'(H)= max |E*|.
E€EH) E€E(H)
If s= =s% =1, a directed hypergraph is nothing more than a digraph.

Let v be a vertex in V(H). The in-degree of v is the number of hyperarcs that
contain v in their out-set, and is denoted by dy(v). Similarly, the out-degree of vertex
v is the number of hyperarcs that contain v in their in-set, and is denoted by d&};(v).
The maximum in-degree and the maximum out-degree of H are, respectively,

o = = + — +
d~(H) Uén‘%(”d”(v) and d7(H) vgllﬂ)lsl)dﬂ(v)'

A walk in H from vertex u to vertex v is an alternating sequence of vertices and
hyperarcs u = vg, E1, 01, E2,02,...,Ex, v = v such that v;_; € E; and v; € E,+ for each
1 <i<k. The length of a walk is equal to the number of hyperarcs on it. The distance
and the diameter are defined analogously to those in the undirected case.

We can represent the incidence relations between the vertices and hyperarcs in a
directed hypergraph A using a bipartite digraph,

R(H) = (Vi(R) UV (R),E(R))

called the bipartite representation digraph. Every vertex v; in V(H) is represented by
a vertex v; in Vi(R) and every hyperarc E; in E(H) is represented by a vertex e; in
Va(R). We draw an arc from v; € Vi(R) to e; € Va(R) if and only if v; € E; in H,
and we draw an arc from e; € V»(R) to v; € Vi(R) if and only if v; € Ej+ in H.

If only the adjacency relations between the vertices in a directed hypergraph H are
considered, we can use the underlying multi-digraph H (also called associated multi-
digraph and denoted by A(H)). The vertex set of H is the same as that of H. There
are as many arcs from u to v in H , as there are hyperarcs E in H such that # € £~ and
v € E*. Then a hyperarc of H corresponds to a “bipartite complete digraph” (shortly
diclique), and a directed hypergraph corresponds to a multi-digraph with a partitioning
of its arc set into dicliques.

3.2. Directed Moore hypergraphs

We call a directed hypergraph with maximum out-degree d, maximum out-size s, and
diameter D, a (d,D,s)-directed hypergraph. The (d, D, s)-directed hypergraph problem
is the directed analogue of the (A, D, »)-hypergraph problem: Find directed hypergraphs
of maximum out-degree (resp. in-degree) d, diameter D, and maximum put-size. (resp.
in-size) s, such that the number of vertices in the hypergraph is maximized. The
maximum number of vertices in any (d, D, s)-directed hypergraph can be at most

D
1 +ds+(ds) + -+ (ds)° = > (ds)'.
i=0



We call this upper bound the Moore bound for directed hypergraphs, and we call the
hypergraphs attaining it the directed Moore hypergraphs.

Ergincan and Gregory [31] showed that Moore bound for directed hypergraphs cannot
be attained if ds > 1 or D > 1. If ds = 1 then the directed Moore hypergraph is
nothing more than a directed cycle of length D+ 1. Finding directed Moore hypergraphs
of diameter 1 is equivalent to finding matrix factorizations J — I = XY, where J is
the all-ones matrix, / is the identity matrix, X is an n X m (0, 1)-matrix and Y is
an m X n (0, 1)-matrix; both X and Y have constant row sums [31]. There may exist
several such matrix factorizations even if some extra conditions (for example m = n)
are introduced. This problem is also equivalent to the partitioning of the arc set of a
complete symmetric digraph into dicliques.

Since the directed Moore hypergraphs exist only in a few cases, it is of interest
to construct directed hypergraphs with a large number of vertices. In the following
section we survey two families of directed hypergraphs that approach the Moore bound
asymptotically.

3.3. De Bruijn and Kautz hypergraphs

De Bruijn and Kautz hypergraphs are the generalizations of de Bruijn digraphs and
Kautz digraphs to directed hypergraphs. De Bruijn and Kautz digraphs can be defined
in at least three different ways (see [15]). These definitions are based on (1) alphabets,
(2) line digraph iterations on complete digraphs, and (3) arithmetical congruences.

In the same manner, de Bruijn hypergraphs can be defined using three different
definitions as mentioned above, and Kautz hypergraphs can be defined using the last
two definitions. Details of these definitions can be found in [10]; here we will only
mention some techniques used in the generalization.

To generalize the second definition, a new notion was introduced [14]: The directed
line hypergraph, L(H), of a directed hypergraph H has the following vertex'set and
hyperarc set:

V(L(H)) = U {(uEv) |u€ E~, ve E*},
E€E(H)

EWH) = | {(EvF)|E* 30, F~ 50}
vEV(H)

The in-set and the out-set of a hyperarc (EvF') are, respectively,

(EvF)™ = {(uEv) |u€ E~} and (EvF)" ={(vFu)|ue F*}.

Note that the vertices and the hyperarcs of L(H') correspond to the paths of length one
in H and its directed dual H*, respectively. (Also note that L(H) as defined above
does not denote the line graph of a hypergraph defined in [2, p. 31.]).



For maximum out-degree ¢, maximum out-size s and diameter D, de Bruijn hyper-
graphs have (ds)P vertices and Kautz hypergraphs have (ds)”+(ds)”~! vertices. They
also have other good properties such as optimum connectivity [13].

In the arithmetical definition of de Bruijn and Kautz hypergraphs the vertices are
numbered from 0 to n—1 and the hyperarcs are numbered from 0 to m—1 where # is the
number of vertices and m is the number of hyperarcs. The incidence relations between
the vertices and hyperarcs are given using arithmetic congruences. For example, in
Kautz hypergraphs vertex v is incident to the hyperarcs '

Ej=dv+a(modm) 0<a<d-—1,
and the out-set of hyperarc E is
v; = —sE — f(modn) 1<f<s.

The arithmetical definition lets us define hypergraphs with properties similar to those
of de Bruijn and Kautz hypergraphs, but on any number of vertices » and hyperarcs
m, so long as the following two conditions hold:

dn=0(modm) and sm = 0(mod n).

Nice properties, such as optimal connectivity are obtained when dn = sm (see [13]).
Furthermore, the bipartite representation digraphs of Kautz hypergraphs give large bi-
partite digraphs. (In the case d = s these digraphs were already found by Fiol and
Yebra [36].)

4. Conclusion

We hope to have shown to the reader how different tools of the theory of hypergraphs
and directed hypergraphs can be helpful in the design of the large bus interconnection
networks. There remains a lot to do on this topic in different ways. There are still
studies on the tools developed, in particular for directed hypergraphs. One can also
consider finding new large bus interconnection networks. However, one of the promis-
ing areas will be to study the properties such as routing, communication, bus load,
algorithm construction, and implementation issues for the existing networks.

An important problem in the implementation of the bus networks is the communi-
cation method used on the buses to resolve the conflicts. There is a rich literature on
this subject with performance evaluation of different models. We did not include this
topic in the survey.

The nature of the data exchanges and the technology to be used in the implementation
of the buses are very important issues in the design of bus interconnection networks. If
the data exchanges are limited to certain permutations among the processors, solutions
that do not cause conflicts have been proposed in [45] and [33]. Recently, an imple-
mentation using fiber optics, which realizes simultaneous broadcasting without conflicts
on the buses, has been proposed [43].
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