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\begin{abstract} 

 

Counterfactual reasoning aims at predicting how the world would have been 

\emph{had a certain event occurred}, and as such has attracted attention 

from the fields of explainability and robustness in machine learning. 

While Pearl's causal inference provides appealing rules to calculate 

valid counterfactuals, it relies on a model that is unknown and hard to 

discover in practice. We formalize a mass transportation viewpoint of  

counterfactual reasoning and use distributional matching methods as a 

natural model-free surrogate approach. In particular, we show that 

optimal transport theory defines relevant counterfactuals, as they are 

numerically feasible, statistically-faithful, and can even coincide with 

counterfactuals generated by linear additive causal models. We argue this 

has consequences for interpretability and we illustrate the strength of 

the mass transportation viewpoint by recasting and generalizing the 

accepted counterfactual fairness condition into clearer, more practicable 

criteria. 

 

\end{abstract} 

 

\section{Introduction} 

\label{introduction} 

 

A \emph{counterfactual} states how the world should be modified so that a 

given outcome occurs. For instance, the statement \emph{had you been a 

woman, you would have gotten half your salary} is a counterfactual 

relating the \emph{intervention} \say{had you been a woman} to the 

\emph{outcome} \say{you would have gotten half your salary}. 

Counterfactuals have been used to express causal laws \cite{lewis:1973} 



and hence have attracted the attention in the fields of explainability 

and robustness in machine learning, as such statements can naturally 

represent the dependence of a prediction on a perturbation of input data 

without opening the black-box. 

 

State-of-the-art models for computing true counterfactuals have mostly 

focused on the \emph{nearest counterfactual instances} principle 

\cite{wachter2017counterfactual}, according to which one finds minimal 

translations, minimal changes in the features of an instance that lead to 

a desired outcome. However, this simple distance-based technique often 

fails to describe faithful alternative worlds, due to the dependence 

between features. Changing just the sex of a person in such a translation 

might convert from a typical male into an untypical female rendering true 

counterfactuals like the following: {\em if I were a woman I would be 

190cm tall and weigh 85 kg}. According to intuition, however, such 

counterfactuals are false and rightly so because they are oblivious of 

the latent statistical distribution. As a practical consequence, such 

counterfactuals typically hide biases in machine learning decision rules 

\cite{besse2020survey}. 

 

The intuitive link between counterfactual modality and causality 

motivated the use of Pearl's causal graphs and structural equations 

\cite{pearl2009causality} to address the aforementioned shortcoming 

\cite{kusner2017counterfactual,joshi2019realistic,karimi2020algorithmic,m

ahajan2020preserving}. Causal models capture the structural relations 

between variables including their dependencies and as such provide the 

basis for generating true \emph{structural counterfactuals}. The cost of 

this approach is specifying the causal model. The reliance on such a 

strong prior makes the causal approach appealing in theory, but limited 

for systematic implementation. In addition, it's not how we humans 

evaluate counterfactuals. Typically, we don't know the causal graph for a 

given situation (and we're bad at constructing them); but we have strong 

intuitions on alternative states of things. Intuitively, the 

counterfactual female counterpart of a 190cm man would not be a 190cm 

woman, but more more likely a shorter woman, fairly tall compared to her 

gender-group. Our contribution offers a mathematical theory of this 

intuition based on \emph{optimal transport}. 

 

\cite{black2020fliptest} first suggested substituting causal reasoning 

with optimal transport but didn't justify this theoretically.  We do this 

here. Optimal transport answers the counterfactual question \emph{had the 

man been a woman, how tall would have she been?} by minimizing in average 

a cost between all the paired instances. Interestingly, optimal transport 

has been used to generalize the notion of distribution function to higher 

dimensions \cite{delbarrio2020centeroutward}, and thus provide a 

statistically-faithful notion of counterpart. In addition, it recovers 

the causal relations in many scenarios: as our principal theoretical 

result, we prove that the optimal transport map for the squared euclidean 

cost generates the same alternative states as a large class of linear 

causal models. %In summary, the counterfactual models we propose [WE WERE 

NOT THE FIRST ONE TO PROPOSE THEM, BUT WE GIVE A BETTER THEORETICAL 

UNDERSTANDING] satisfy the following criteria:  

%\begin{enumerate} 

    %\item The generated counterfactuals respect the statistical 

correlation between the variables that are intervened on and the others. 

    %\item Their computation requires minimal assumptions on the data 

generative model. 



    %\item The notion of alternative counterpart they characterize is 

intuitively justifiable. 

%\end{enumerate}  

 

We will introduce the \emph{mass transportation} viewpoint of 

counterfactual models, with which we will connect causal-based methods 

with optimal-transport-based methods. First, we reformulate the 

structural counterfactual approach as a problem of finding distributional 

correspondences, and provide a closed-form for this operation under the 

\emph{single-world} assumption. On the basis of this reformulation, we 

introduce a general causality-free framework for the computation of 

counterfactuals through mass transportation techniques---e.g., optimal 

transport. This sheds new light on how to represent counterfactual 

operations, offers new perspectives to explain black-box decision rules, 

and recasts attractive causal-based specifications for counterfactuals 

into more practicable criteria. 

 

Related research falls into two categories: work that represents 

counterfactual interventions as operators through causal modeling 

\cite{plecko2020fair,karimi2020algorithmic}, and work that moves away 

from causal-based models by proposing statistically-aware data-based 

methods \cite{poyiadzi2020face,black2020fliptest}. This paper gives a new 

justification to the latter, by underlining a common structure with the 

former, and showing that the two may even coincide. 

 

\section{Preliminaries} 

 

The aim of this section is to detail the mathematical notation and 

concepts used in the paper. As background for two main topics here, 

optimal transport and causal reasoning, 

\cite{villani2003topics,villani2008optimal} provide supplementary and 

precise treatments of the first topic;  

\cite{scholkopf2019causality,bongers2020foundations} do the same for the 

second. 

 

\subsection{Optimal Transport} \label{OT} 

The mathematical theory of Optimal Transport provides a framework for 

constructing a joint distribution, namely a \emph{coupling}, between two 

marginal probability measures. Suppose that each marginal distribution is 

a sand pile in the ambient space. A coupling is a \emph{mass transport 

plan} transforming one pile into the other, by specifying how to move 

each elementary sand mass from the first distribution so as to recover 

the second distribution. Alternatively, we can see a coupling as a random 

matching which pairs start points to end points between the respective 

supports with a certain weight. Optimal transport defines \emph{optimal} 

transport plans, obtaining a matching by minimizing a cost function 

between paired instances. 

 

Formally, let $P, Q$ be both probabilities on $\R^d$, whose respective 

supports are denoted by $\text{supp}(P)$ and $\text{supp}(Q)$, and set a 

function $c:\R^d\times \R^d\rightarrow \R$. The \emph{Kantorovich 

formulation} of the optimal transport problem with cost $c$ is the 

optimization problem 

\begin{equation}\label{kanto} 

    \min_{\pi\in \Pi(P,Q)} \int_{\R^d\times \R^d} c(x,y) d\pi(x,y). 

\end{equation} 

$\Pi(P,Q)\subset \mathcal{P}(\R^d\times \R^d)$ denotes the set of joint 

distributions $\pi$ whose marginals coincide with $P$ and $Q$ 



respectively, i.e.  $\pi(A\times\R^d)=P(A)$ and  $\pi(\R^d\times 

B)=Q(B)$, for all measurable sets $A,B\in \R^d$. Solutions to 

\eqref{kanto} are optimal transport plans between $P$ and $Q$ with 

respect to $c$. They exist under very mild assumptions, like the non-

negativeness of the cost. 

 

For $T : \R^d \to \R^d$ a measurable map, we say that $T$ \emph{pushes 

forward} $P$ to $Q$ if $Q(B) := P (T^{-1}(B)),$ for any measurable set 

$B\subset \R^d$. This property, denoted by $T_\sharp P = Q$, means that 

if the law of a random variable $Z$ is $P$, then the law of $T(Z)$ is 

$Q$. This push-forward operator $T$ characterizes a \emph{deterministic} 

coupling between $P$ and $Q$ as every instance $x \in \text{supp}(P)$ is 

matched to $T(x) \in \text{supp}(Q)$ with probability 1. Suppose now that 

the cost $c$ is the squared euclidean distance $\norm{\cdot}^2$ in 

$\R^d$, that $P$ is absolutely continuous with respect to the Lebesgue 

measure %\textcolor{purple}{(i.e., admits a density)}  

in $\R^d$, and that both $P$ and $Q$  have finite second order moments. 

Theorem~2.12 in \cite{villani2003topics} states that there exists an 

unique solution to \eqref{kanto}, whose form is $(I \times T )_\sharp 

P$\footnote{This denotes the law of $\big(Z,T(Z)\big)$ where $Z \sim P$.} 

where $I$ is the identity function on $\R^d$ and $T : \R^d \to \R^d$ is a 

certain function called the \emph{Brenier map}. Besides, the Brenier map 

coincides $P$-almost surely with the gradient of a convex function. 

Recall that \emph{$P$-almost surely}, or equivalently \emph{$P$-almost 

everywhere}, means that it happens for all $x\in \R^d$ except maybe in a 

set $N$ such that $P(N)=0$.  Then, in this quadratic case, \eqref{kanto} 

is equivalent to the following \emph{Monge's formulation} 

\begin{equation}\label{monge} 

    \min_{T:\ T_\sharp P = Q} \int_{\R^d} \norm{x-T(x)}^2 dP(x). 

\end{equation} 

Thanks to a famous theorem from \cite{mccann1995}, under the sole 

assumption that $P$ is absolutely continuous with respect to the Lebesgue 

measure, there exists only one gradient of a convex function $\nabla 

\psi$ satisfying the push-forward condition $\nabla \psi_\sharp P = Q$. 

This simplifies the search for the Brenier map solving \eqref{monge}, as 

it suffices to find a gradient of a convex function satisfying the push-

forward condition. 

%In this paper, we use the terms \emph{transport-based} and \emph{mass 

transportation} to refer to any method defining a correspondence between 

two distributions through a random coupling or a push-forward operator, 

which includes optimal transport. 

 

\subsection{Causal reasoning} 

 

Causal reasoning relies on a \emph{structural causal model} (SCM) 

\cite{pearl2009causality}, which represents the causal relationships 

between variables. More precisely, an \emph{acyclic} structural causal 

model $\mathcal{M}$ is a triple $\langle U, V, \G \rangle$ where: 

 

\begin{enumerate} 

    \item $U$ and $V$ are two indexed sets of random variables. Abusing 

notation, we interchangeably consider $U$ and $V$ as sets of random 

variables and as random vectors; 

    \item $\G = \{G_{i}\}_{V_i \in V}$ is a collection of measurable 

$\R$-valued functions where for every $V_i \in V$, $V_i 

\stackrel{a.s.}{=} 

G_{i}\big({V_{\text{Endo}(i)}},U_{\text{Exo}(i)}\big)$. The subsets 

$V_{\text{Endo}(i)} \subset V \setminus \{V_i\}$ and $U_{\text{Exo}(i)} 



\subset U$ are respectively called the \emph{endogenous} and 

\emph{exogenous parents} of $V_i$, and denote the variables that directly 

determine $V_i$ through $G_i$. 

    \item  The graph whose nodes are the variables in $U \cup V$, such 

that an arrow is drawn from  some node $Z$ to $V_i$ if and only if $Z \in 

U_{\text{Exo}(i)} \cup V_{\text{Endo}(i)}$ is a \emph{directed acyclic 

graph} (DAG); 

\end{enumerate} 

     

The equations in 2., the \emph{structural equations}, specify the causal 

dependencies between the variables. By identifying $\G$ with a measurable 

vector function, we compactly write: $V \stackrel{a.s.}{=} \G(V,U)$. A 

structural causal model can be seen as a generative model. The variables 

in $U$ are said to be \emph{exogenous}, as their values are imposed on 

the model by an input probability distribution $\mathcal{L}(U)$. In 

contrast, the variables in $V$ are said to be \emph{endogenous}, as their 

values are outputs of the model determined through the structural 

equations and the values of $U$. In practice, the endogenous variables 

represent observed events, while the exogenous ones model latent 

background phenomena. Note that we don't assume that the endogenous 

variables are mutually independent. 

 

Crucially, acyclic SCMs are \emph{uniquely solvable}\footnote{Rigorously, 

the solution is unique up to sets of probability zero w.r.t. the latent 

probability space.}, and so the solution $V$ to the structural equations 

is well-defined. This solution also admits interventional variants under 

\emph{do-interventions}. A do-intervention consists in substituting a 

subset of endogenous variables $V_I \subset V$ by fixed values $v_I$, 

while keeping all the rest of the causal mechanism equal. This action, 

denoted by $do(V_I=v_I)$, defines the modified model 

$\mathcal{M}_{do(V_I=v_I)} = \langle U, V_{V_I=v_I}, \tilde{\G} \rangle$ 

where $\tilde{\G}$ is given by 

 

$$ 

    \tilde{G_{i}} := \begin{cases} 

                    v_i \text{ if } i \in I,\\ 

                    G_{i} \text{ if } i \notin I. 

                   \end{cases}   

$$ 

 

As acyclicity is preserved, it follows that the interventional solution 

$V_{V_I=v_I}$ is well-defined. The exogeneity of the exogenous variables 

is respected since $U$ is invariant under do-interventions.  

 

\subsection{Counterfactual questions} 

 

Let $(\Omega, \mathcal{A}, \P)$ be a probability space, and set $d \geq 

1$. Define the random vector $V := (X,S) \in \R^{d+1}$, where the 

variables $X : \Omega \to \mathcal{X} \subset \R^d$ represent some 

observed features, while the variable $S: \Omega \to \mathcal{S} \subset 

\R$ can be subjected to interventions. For simplicity, we assume that 

$\S$ is finite such that for every $s \in \S$, $\P(S=s)>0$. For every $s 

\in \S$, set $\mu_s := \mathcal{L}(X|S=s)$ the \emph{factual} or 

\emph{observational} probability distribution of $s$-instances, and 

denote by $\X_s$ its support. We consider the problem of computing the 

potential outcomes of $X$ when intervening on $S$. Suppose for instance 

that the event $\{X=x,S=s\}$ is observed, and set $s' \neq s$. We aim at 

answering the counterfactual question: \emph{had $S$ been equal to $s'$ 



instead of $s$, what would have been the value of $X$?} Because of 

structural and statistical correlations between the variables, computing 

the alternative state does not amount to change the value of $S$ while 

keeping the features $X$ equal. 

 

\section{Structural counterfactuals revisited}\label{structural} 

 

Causal reasoning provides a natural framework to address counterfactual 

questions. We assume that $V = (X,S)$ is the unique solution of an 

acyclic SCM, which can be defined as a 4-uplet $\mathcal{M} := \langle 

U,X,S,\mathbf{G} \rangle$, and set for each $s \in S$ the intervened 

model $\mathcal{M}_{S=s} = \langle U,X_{S=s},S_{S=s},\mathbf{G}_{S=s} 

\rangle$. For clarity, we denote by $U_X$ and $U_S$ the exogenous parents 

of respectively $X$ and $S$. In this section, we recall and translate 

Pearl's causal modeling computation of counterfactuals into a problem of 

mass transportation. We describe possible instances as probability 

measures, and interventions as couplings. 

 

\subsection{Definitions} 

 

As introduced, a counterfactual statement is a \emph{cross-world} 

statement between a factual outcome and a counterfactual outcome. Let us 

formalize the contrast between interventional, counterfactual and factual 

outcomes in terms of probabilistic distributions. For any $s \in \S$ the 

distribution of the \emph{interventional} $s$-instances is defined as 

$\mu_{S=s} := \mathcal{L}(X_{S=s})$, and for any $s' \neq s$ the 

distribution of the \emph{counterfactual} $s'$-instances given $s$ is 

defined as $\mu_{\langle s'|s \rangle} := \mathcal{L}(X_{S=s'}|S=s)$. 

According to the \emph{consistency rule} \cite{pearl2016causal}, for any 

$s \in \S$, the factual distribution can be written as $\mu_s = 

\mathcal{L}(X_{S=s}|S=s)$, which is sometimes denoted by $\mu_{\langle 

s|s \rangle}$ for the sake of coherence. The counterfactual distribution 

$\mu_{\langle s'|s \rangle}$ describes what would have been the 

observational instances of $\mu_s$ \emph{had $S$ been equal to $s'$ 

instead of $s$}; but it does not yield specific cross-world statements on 

its own, as it does not specify how instances from each distribution are 

related. The stronger notion of a counterfactual model characterizes all 

the counterfactual statements w.r.t. $S$. 

 

The literature proposed various approaches to characterize causality-

based counterfactual models. They all concur with the principle that the 

counterfactual model can be identified with the joint probability 

distributions between observable instances and intervened counterparts, 

as generated by the structural equations 

\cite{imbens2015causal,pearl2016causal,bongers2020foundations}. We follow 

\cite{pearl2016causal,kusner2017counterfactual} and propose a 

formalization of this definition that takes into account the observed 

value of $S$ before intervening on it.   

 

\begin{definition}\label{ctp} For every $s,s' \in \S$, the 

\emph{structural counterfactual coupling} between $\mu_s$ and 

$\mu_{\langle s'|s \rangle}$ is given by 

 

$$ 

\pi^*_{\langle s'|s \rangle} := \mathcal{L}\big((X, X_{S=s'})|S=s\big). 

$$ 

\noindent 



We call the collection of couplings $\Pi^* := \{\pi^*_{\langle s'|s 

\rangle}\}_{s,s'\in \S}$ the \emph{structural counterfactual model}. 

 

\end{definition} 

 

It is worth noting that, in general, the structural counterfactual 

couplings are \emph{random}, because $X$ and $X_{S=s}$ are entangled 

through $U$ following a certain probability distribution. This means 

that, according to Pearl's causal reasoning, there is not necessarily a 

one-to-one deterministic correspondence between factual instances and 

counterfactual counterparts, but a collection of weighted correspondences 

described by the structural couplings. To understand how the latent SCM 

generates such couplings, one must address the construction of the 

counterfactual distributions at the individual level. A 

\emph{counterfactual instance} represents a possible alternative state of 

$X$, with respect to an action on $S$ and an observed evidence of 

$(X,S)$. The following definition defines a counterfactual as a 

distribution rather than a random variable as in \cite{pearl2016causal}. 

 

\begin{definition}\label{3steps} 

 

For an observed evidence $\{X=x,S=s\}$ and an intervention $do(S=s')$, 

the \emph{structural counterfactuals} of $X$ are characterized by the 

probability distribution $\mu_{\langle s'|s \rangle}(\cdot|x)$ defined as 

 

$$ 

    \mu_{\langle s'|s \rangle}(\cdot|x) := \mathcal{L}(X_{S=s'}|X=x,S=s). 

$$ 

 

\end{definition} 

 

The possible outcomes $\mu_{\langle s'|s \rangle}(\cdot|x)$ are commonly 

generated with the so-called \textit{three-step} procedure 

\cite{pearl2016causal}, which amounts to: (1) setting a prior 

$\mathcal{L}(U)$ for the model $\mathcal{M}$, (2) computing the posterior 

distribution $\mathcal{L}(U|X=x,S=s)$, and (3) solving the structural 

equations of $\mathcal{M}_{S=s'}$ with $\mathcal{L}(U|X=x,S=s)$. As 

anticipated, the counterfactuals of an instance are not necessarily 

\emph{deterministic}, i.e. characterized by a degenerate distribution, 

but belong to a set of possible outcomes. This is due to the fact that, 

in general, there are several values of $U$ consistent with an evidence 

$\{X=x,S=s\}$. Note that, equivalently to Definition \ref{ctp}, 

Definition \ref{3steps} characterizes the counterfactual semantics. In 

particular, the \emph{disintegrated} formulation $\mu_{\langle s'|s 

\rangle} = \int \mu_{\langle s'|s \rangle}(\cdot|x) d\mu_s(x)$ shows how 

$\mu_s$ relates to the counterfactual distribution through $\mu_{\langle 

s'|s \rangle}(\cdot|x)$. 

 

To sum-up, we have shown how to see a counterfactual coupling 

$\pi^*_{\langle s'|s \rangle}$ as a transport plan between an observed 

world and an alternative world, where all the elementary correspondences 

are given by the structural counterfactuals $\{\mu_{\langle s'|s 

\rangle}(\cdot|x)\}_{x \in \X_s}$. In what follows, we study, from the 

mass transportation perspective, two specific scenarios mitigating the 

involvement of SCMs when computing counterfactuals: first, when the 

correspondences are deterministic--- then the computation can be written 

as an explicit push-forward operation; second, when $S$ can be considered 

exogenous---then the alternative world is observable.  



 

\subsection{The deterministic case}\label{do} 

 

Interestingly, when the SCM entails that the structural counterfactuals 

for each antecedent (or instance) determine a unique counterfactual 

possibility, then the counterfactual coupling is deterministic, and can 

be identified with a push-forward operator.  To reformulate structural 

counterfactuals in deterministic transport terms, we first highlight the 

relation between an individual and its intervened counterparts. 

 

From the acyclicity of the causal model, we can recursively substitute 

for the $X_i$ their functional form to obtain a measurable function $\F$ 

such that $\P$-almost surely $X = \F(S,U_X)$ and $X_{S=s} = \F(s,U_X)$ 

for any $s \in \S$. Now, let us define for every $s \in \S$ the function 

$f_s : u \mapsto \F(s,u)$. The next proposition specifies the range of 

the possible outcomes. 

 

\begin{proposition}\label{support} For any $s,s' \in \S$, $x \in \X_s$, 

$$\text{supp}\big(\mu_{\langle s'|s \rangle}(\cdot|x)\big) \subset f_{s'} 

\circ f_s^{-1}(\{x\}).$$ 

\end{proposition} 

 

For any $x \in \R^d$, we denote by $\delta_x$ the distribution assigning 

a probability 1 to this single instance, which is called the Dirac at 

$x$. Proposition \ref{support} entails that the structural 

counterfactuals determine a unique counterpart, and thus the set of 

weighted counterfactual possibilities becomes a Dirac, if the following 

\emph{single-world} assumption holds:\footnote{This assumption 

corresponds to the logical constraint of conditional excluded middle 

\cite{stalnaker:1980}.} %a singleton with an instance of probability one 

 

\begin{description} 

    \item[Assumption (SW)\namedlabel{Invertibility}{\textbf{(SW)}}] 

\textit{The functions $\{f_s\}_{s \in \S}$ are injective.} 

\end{description} 

 

While the unique solvability of acyclic models ensures that $(X,S)$ is 

completely determined by $U$, \ref{Invertibility} states that, 

conversely, $U_X$ is determined by $\{X=x,S=s\}$. This implies that the 

coupling between the factual and counterfactual distributions is 

deterministic. 

 

\begin{proposition}\label{oto} Let \ref{Invertibility} hold, and define 

for any $s,s' \in \S$, $T^*_{\mathsmaller{ \langle s'|s \rangle}} := 

f_{s'} \circ f_s^{-1} \restr{\X_s}$\footnote{$f_s^{-1} \restr{\X_s}$ 

denotes the restriction of $f_s^{-1}$ to $\X_s$.}. The following 

properties hold: 

 

\begin{enumerate} 

    \item $\mu_{\langle s'|s \rangle}(\cdot|x) = 

\delta_{T^*_{\mathsmaller{ \langle s'|s \rangle}}(x)}$ for every $x \in 

\X_s$; 

    \item $\mu_{\langle s'|s \rangle} = {T^*_{\mathsmaller{ \langle s'|s 

\rangle}}}_\sharp \mu_s$; 

    \item $\pi^*_{\langle s'|s \rangle} = (I \times T^*_{\mathsmaller{ 

\langle s'|s \rangle}})_\sharp \mu_s$. 

\end{enumerate} 

 



We say that $T^*_{\mathsmaller{ \langle s'|s \rangle}}$ is a 

\emph{structural counterfactual operator}, and identify $\T^* := 

\{T^*_{\langle s'|s \rangle}\}_{s,s'\in \S}$ to the structural 

counterfactual model $\Pi^*$. 

 

\end{proposition} 

 

The operators in $\T^*$ describe the effect of causal interventions on 

factual distributions, without assuming any knowledge of 

$\mathcal{L}(U)$. 

 

\subsection{The exogenous case} 

 

Let $\independent$ denote the independence between random variables. The 

variable $S$ is said to be \emph{exogenous relative to} $X$ 

\cite{galles1998axiomatic} if the following holds: 

 

\begin{description} 

    \item[Assumption (RE)\namedlabel{Exogeneity}{\textbf{(RE)}}] 

\textit{$U_S \independent U_X$ and $X_{\text{Endo}(S)} = \emptyset$.} 

\end{description} 

 

\begin{figure}[H] 

    \centering 

    \begin{tikzpicture}[-latex ,auto ,node distance =2 cm ,on grid , 

    semithick , 

    state/.style ={circle ,top color =white, 

    draw, minimum width =1 cm}] 

    \node[state] (S) {$S$}; 

    \node[state] (X)[right= of S] {$X$}; 

    \node[state] (Ux)[above=of X]{$U_X$}; 

    \node[state] (Us)[above=of S]{$U_S$}; 

    \path (S) edge (X); 

    \path (Ux) edge (X); 
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    \caption{DAG satisfying \ref{Exogeneity}} 

    \label{causalmodel} 

\end{figure} 

 

This represents a scenario where: (1) there is no hidden confounder 

between $X$ and $S$, (2) no variable in $X$ is a direct cause of $S$. 

Note that \ref{Exogeneity} entails that $S \independent U_X$. Then, it is 

easy to see that at the distributional level, intervening on $S$ amounts 

to conditioning $X$ by a value of $S$.   

 

%,  and enables to substitute $U_S$ for $S$ in the structural equations. 

For simplicity, we omit the exogenous variables $U_S$ in the model, and 

reset $U := U_X$. Then, $S \independent U$, and we write $X = \F(S,U)$. 

 

\begin{proposition}\label{conditioning} 

If \ref{Exogeneity} holds, then for every $s,s' \in \S$ we have 

$\mu_{S=s'} = \mu_{s'} = \mu_{\langle s'|s \rangle}$. 

\end{proposition} 

 

Relative exogeneity is a critical assumption. Recall that the structural 

counterfactual coupling $\pi^*_{ \langle s'|s \rangle}$ represents an 

intervention transforming an observable distribution $\mu_s$ into an 



\emph{a priori} non-observable counterfactual distribution $\mu_{\langle 

s'|s \rangle}$. According to Proposition \ref{conditioning}, 

\ref{Exogeneity} renders the causal model otiose for the purpose of 

generating the counterfactual distributions, as the latter coincides with 

the observable factual distribution $\mu_{s'}$. However, the coupling is 

{\em still required} to determine how each instance is matched at the 

individual level. Remarkably, \ref{Exogeneity} provides elegant 

transitivity properties to our counterfactual operators.   

\begin{proposition}\label{cff} Suppose that \ref{Exogeneity} and 

\ref{Invertibility} hold. Then, for any $s,s',s'' \in \S$: 

 

\begin{enumerate} 

    \item The operator $T^*_{\mathsmaller{ \langle s'|s \rangle}}$ is 

invertible, such that $\mu_{s'}$-almost everywhere ${T^*}^{-

1}_{\mathsmaller{ \langle s'|s \rangle}} = T^*_{\mathsmaller{ \langle 

s|s' \rangle}}$; 

    \item $\mu_s$-almost everywhere, $T^*_{\mathsmaller{ \langle s''|s' 

\rangle}} \circ T^*_{\mathsmaller{ \langle s'|s \rangle}} = 

T^*_{\mathsmaller{ \langle s''|s \rangle}}$. 

\end{enumerate} 

 

\end{proposition} 

 

In terms of real-world modeling, \ref{Exogeneity} is intuitively 

satisfied in many scenarios. Let $X$ represent the socio-economics 

features of individuals, and suppose for example that $\S = \{0,1\}$, 

where $S=0$ stands for \textit{female} while $S=1$ stands for 

\textit{male}. In this presumably exogenous model, any factual woman 

described by $x$ is the counterfactual counterpart of her counterfactual 

male counterpart described by $T^*_{\mathsmaller{ \langle 1|0 

\rangle}}(x)$, and changing all the factual women into their 

counterfactual male counterparts recovers the factual male population. 

 

We conclude Section \ref{structural} by illustrating how our notation and 

assumptions apply to the case of \emph{linear additive} structural 

models, which account for most of the state-of-the-art models. 

 

\begin{example}\label{ex} Under \ref{Exogeneity}, a linear additive SCM 

is characterized by the structural equations 

 

$$ 

    X = MX + wS + b + U_X, 

$$ 

 

\noindent where $w,b \in \R^d$ and $M \in \R^{d \times d}$ are 

deterministic parameters. Acyclicity implies that $I-M$ is invertible, so 

that $X = (I-M)^{-1}(wS+b+U_X) =: \F(S,U_X)$. Note that 

\ref{Invertibility} holds such that for any $s \in S$, $f^{-1}_s(x) = (I-

M)x-ws-b$. Then, for any $s,s' \in \S$, $T^*_{\mathsmaller{ \langle s'|s 

\rangle}} = x + (I-M)^{-1}w(s'-s)$. 

 

\end{example} 

 

The transport viewpoint of structural counterfactual reasoning suggests 

that transport-based method can be natural substitutes for causal 

modeling, a topic we explore next. 

 

\section{Transport-based counterfactuals}\label{surrogate} 



 

\cite{black2020fliptest} mimicked the structural account of 

counterfactuals by computing alternative individuals using a 

deterministic optimal transport map, but they did not provide a 

mathematical or conceptual foundation for their idea. \ref{Invertibility} 

and \ref{Exogeneity} imply that approximating an unknown structural 

counterfactual model with deterministic couplings between observed data 

is a reasonable method. Generalizing their idea, we propose a general 

framework for transport-based counterfactual models that leads us to 

practicable SCM-free frameworks.%: a counterfactual model is an arbitrary 

notion of counterpart between \emph{observable} probability 

distributions.. 

 

\begin{definition} 

 

\begin{enumerate} 

    \item A \emph{counterfactual model} is a collection $\Pi := \{\pi_{ 

\langle s'|s \rangle}\}_{s,s' \in \S}$ of couplings on $\X \times \X$ 

such that for any $s,s' \in \S$, the first marginal of 

$\pi_{\mathsmaller{ \langle s'|s \rangle}}$ is $\mu_s$, the second 

marginal is $\mu_{s'}$, and $\pi_{ \langle s|s \rangle} = (I \times 

I)_\sharp \mu_s$. An element of $\Pi$ is called a \emph{counterfactual 

coupling}. We say that $\Pi$ is a \emph{random counterfactual model} if 

at least one coupling for $s \neq s'$ is not deterministic. 

    \item A \emph{deterministic counterfactual model} is a collection $\T 

:= \{T_{\mathsmaller{ \langle s'|s \rangle}}\}_{s,s' \in \S}$ of mappings 

from $\X$ to $\X$ satisfying for any $s,s' \in \S$, ${T_{\mathsmaller{ 

\langle s'|s \rangle}}}_\sharp \mu_s = \mu_{s'}$ and $T_{\mathsmaller{ 

\langle s|s \rangle}} = \text{I}$. An element of $\T$ is called a 

\emph{counterfactual operator}. 

\end{enumerate} 

 

\end{definition} 

 

%\textcolor{purple}{(I feel that this paragraph is not 

necessary)}\textcolor{yellow}{While most machine learning research has 

considered causal interventions as a mechanism to generate unobserved 

alternative distributions \cite{scholkopf2019causality, 

kusner2017counterfactual, barocas-hardt-narayanan}, this definition 

defines an approach motivated by designing practicable SCM-free 

frameworks: a counterfactual model is an arbitrary notion of counterpart 

between \emph{observable} probability distributions.}  

 

%In a random model, the counterpart is not necessarily a single instance 

but a quantum state of weighted possible outcomes, which is consistent 

with the structural notion of counterfactual when \ref{Invertibility} 

does not hold. So \textcolor{purple}{(I do not understand why there is a 

\say{So} relating to the previous sentence, but we can maybe delete the 

previous sentence as I think we talked about the idea of multiple 

possible outcomes several times before)}  

One challenge for this approach is to choose the model appropriately in 

order to define a relevant notion of counterpart.   Even though the 

family of trivial couplings is a well-defined counterfactual model, it is 

not intuitively justifiable. Better suited counterfactual models can be 

constructed through optimal transport theory. Optimal transport with the 

squared euclidean cost is known to preserve quantiles in dimension one, 

and has been used to generalize the notion of distribution function to 

higher dimensions \cite{delbarrio2020centeroutward}. In this sense, it 



satisfies our statistical intuitions on counterfactual reasoning. In 

addition, if the factual distributions are absolutely continuous w.r.t. 

the Lebesgue measure, then for any $s,s' \in \S$, the Brenier map between 

$\mu_s$ and $\mu_{s'}$ is the unique counterfactual operator that can be 

written as the gradient of a convex function. As the structural 

counterfactual operator from Example \ref{ex} is the gradient of a convex 

quadratic function, we obtain the following result. %Note that, while the 

existence of a deterministic structural counterfactual model $\T^*$ 

requires a strong hypothesis, the existence of a solution to 

\eqref{monge} only necessitates assumptions on the distributions to be 

mapped. In addition, for very common cases, a structural counterfactual 

operator is a Brenier map. %However, in some cases the method yields a 

unique model... 

 

\begin{theorem}\label{linear} 

 

Let $\mathcal{M}$ be a linear additive SCM satisfying \ref{Exogeneity} 

(see Example \ref{ex}). If the factual distributions are absolutely 

continuous w.r.t. Lebesgue measure, then for any $s,s' \in \S$, the 

structural counterfactual operator $T^*_{\mathsmaller{ \langle s'|s 

\rangle}}$ is the Brenier map between $\mu_s$ and $\mu_{s'}$. 

 

\end{theorem} 

 

Whether or not elements of the structural counterfactual model $\Pi^*$ 

are solutions to a Kantorovich or Monge problem for a certain cost 

function is presumably difficult to prove for more complex SCMs. Theorem 

\ref{linear} supports the intuition that substituting $\Pi^*$ with a 

surrogate $\Pi$ from optimal transport provides a decent approximation of 

the do-calculus. Using a model close to $\Pi^*$ would be ideal in terms 

of interpretability of a decision-making process, but an expert can 

always propose and defend a different notion of similarity $\Pi$. 

 

The computational complexity of building an optimal transport plan 

between a $n$-sample to a $m$-sample is in $\mathcal{O}\big((n+m)nm 

\log(n+m)\big)$, but we can substantially improve on this to reach 

$\mathcal{O}\big(nm\big)$ with entropy-regularized versions 

\cite{cuturi2013sinkhorn}. As the computation is distribution-wise, not 

point-wise, it yields all the cross-world or counterfactual statements 

corresponding to a given change $s \to s'$ for the considered data-

points. In contrast, computing a structural counterfactual coupling is 

less convenient and more challenging. First, inferring the causal graph 

from observational data is NP-hard, with an exponential worst-case 

complexity with respect to the number of nodes 

\cite{cooper1990computational,chickering2004large,scutari2019learning}. 

Second, this is not enough to compute counterfactuals, as we must still 

specify the structural equations. Third, even though the three-step 

procedure  generates samples from the structural counterfactuals of a 

given instance through a specified SCM \cite{perov2020multiverse}, it 

needs to be applied at each point in order to infer the whole coupling.  

 

%\textcolor{red}{Computing the Brenier map (necessarily n=m) as in 

Theorem 4.1 is in O((n3log(n)) (roughly cubic), which also provides a 

bound for computing a causal structure.}\textcolor{purple}{<--This I am 

not sure. Even though OT recovers the "true" intervention, it does not 

give the SCM.} In adddition, this straightforward surrogate technique 

dismisses the time-consuming design and inference of a causal model that 

would have been necessary for each new setting. 



 

%{\color{purple}What I think we could say according to the references 

from Stefan Bauer. There exist several results regarding causal 

discovery, which is the problem of inferring the Bayesian network from 

data. This is in general a NP-hard problem with an exponential at-worst 

complexity, but a quadratic complexity can be attained should the graph 

be sparse \cite{claassen2013learning, 

Chickering1996,cooper1990computational,scutari2019learning}. However, 

this is not enough to compute counterfactuals, as the model won't be 

fully specified (i.e. the structural equations remain unknown). (Maybe 

one could fit a model once the graph is known to have an approximation of 

the SCM.) When the SCM if fully specified, we can compute counterfactuals 

through the 3steps procedure. For a given factual instance, the procedure 

gives a sample of the counterfactual counterparts, and can be achieved in 

a linear time with respect to the desired size of the counterfactual 

sample \cite{perov2020multiverse}. It is not directly comparable to 

optimal transport as the latter does not produce a sample, but matches 

instances. OT does not require to do the procedure for each factual 

instance, but instead directly align the two distribution samples, which 

is a much more convenient may of storing the counterfactual coupling than 

having samples related to every factual instance.} 

 

%{\color {cyan} in the case of theorem 4.1, does the complexity of 

computing the unique optimal transport plan at O(nm)? What can we say 

about the complexity of computing the Brenier map?---c'etait Ã§a ma 

question. Bon peut etre une question bete} 

 

\section{Applications}\label{applications} 

 

In this section we look at two applications of transport based 

counterfactuals---explicability or interpretability and fairness of a 

\textit{black-box} algorithm. Counterfactuals have been used already in 

both areas 

\cite{wachter2017counterfactual,kusner2017counterfactual,karimi:etal:2020

}. \cite{karimi:etal:2020} exploit automated reasoning based methods to 

find counterfactuals that can explain program behavior, and these methods 

have computational complexity problems given that they must test for 

satisfiability or unsatisfiability that is at least NP hard (depending on 

the logic fragment used). On the other hand a transport based method by 

aligning  two entire probability distributions can provide a set of 

explanatory counterfactuals that mimic the causal approach in polynomial 

time, which means that the transport based approach can apply to the 

interpretability of programs for which a SAT based approach is not 

practically possible. In addition, the transport based method capturing 

as it does in some cases the causal structure of the phenomenon has a 

firmer conceptual basis as an explanatory tool than standard 

heuristically guided approaches relying either on local approximation by 

simpler linear models as LIME \cite{ribeiro2016should} or relying on the 

computation of indices measuring the contribution of each variable and 

its importance as in  SHAP \cite{lundberg2017shap} or in \cite{me2020}. 

 

We now turn to the fairness application. Suppose that the random variable 

$S$ encodes the observed \emph{sensitive} or \emph{protected attribute} 

(e.g., race, gender) which divides the population into different classes 

in a machine learning prediction task. The counterfactual framework, by 

capturing the structural or statistical links between the features and 

the protected attribute, proposes sharper notions of fairness than 

\emph{statistical parity}, which only gives a notion of \emph{group 



fairness}, and does not control discrimination at a subgroup or an 

individual level: a conflict illustrated by \cite{dwork2012fairness}. We 

first use the mass transportation formalism introduced in Section 

\ref{structural} to reformulate the \textit{counterfactual fairness} 

\cite{kusner2017counterfactual} condition, which is achieved when 

individuals and their structural counterfactual counterparts are treated 

equally. %The predictor is defined as $\hat{Y} := h(X,S)$, where $h : 

\mathcal{X} \times \S \to \{0,1\}$ is deterministic. For every $s \in \S$ 

we introduce the intervened counterpart of the predictor as 

$\hat{Y}_{S=s} := h(X_{S=s},s)$.  

 

%The most common notion of fairness is the so-called \emph{statistical 

parity}, which is satisfied when the rate of positive outcomes is equal 

across protected classes: for any $s,s' \in \S$ 

 

%$$ 

%%    \P(h(X,S)=1|S=s) = \P(h(X,S)=1|S=s'). 

%$$ 

 

%Note that this corresponds to $h(X,S) \independent S$ in the case of 

binary classification. However, this criterion provides limited 

information for analyzing how unfair an algorithm is. In particular, it 

only gives a notion of \emph{group fairness}, and does not control 

discrimination at a subgroup or an individual level: a conflict 

illustrated by \cite{dwork2012fairness}. **  

 

%\subsection{Structural counterfactual fairness} 

 

\begin{definition}\label{cf} A predictor $\hat{Y}=h(X,S)$ is 

\emph{counterfactually fair} if for every $s,s' \in \S$ and $\mu_s$-

almost every $x$, 

 

$$ 

   \mathcal{L}(\hat{Y}_{S=s}|X=x,S=s) = 

\mathcal{L}(\hat{Y}_{S=s'}|X=x,S=s), 

$$ 

where $\hat{Y}_{S=s} := h(X_{S=s},s)$. 

 

\end{definition} 

 

For each individual, this condition guarantees the truth of the 

counterfactual statement \emph{had the protected attribute been changed, 

the outcome would have been the same}. The structural counterfactual 

transport plans allow for simpler characterizations of counterfactual 

fairness. 

 

\begin{proposition}\label{rcf} 

 

\begin{enumerate} 

    \item A predictor $h(X,S)$ is counterfactually fair if and only if 

for every $s,s' \in \S$ and $\pi^*_{ \langle s'|s \rangle}$-almost every 

$(x,x')$, 

    $$ 

    h(x,s) = h(x',s'). 

    $$ 

    \item If \ref{Invertibility} holds, then a predictor $h(X,S)$ is 

counterfactually fair if and only if for every $s,s' \in \S$ and $\mu_s$-

almost every $x$, 



    $$ 

    h(x,s) = h(T^*_{\mathsmaller{ \langle s'|s \rangle}}(x),s'). 

    $$ 

    \item If \ref{Invertibility} and \ref{Exogeneity} hold, then a 

predictor $h(X,S)$ is counterfactually fair if and only if for every 

$s,s' \in \S$ such that $s<s'$ and $\mu_s$-almost every $x$, 

    $$ 

    h(x,s) = h(T^*_{\mathsmaller{ \langle s'|s \rangle}}(x),s'). 

    $$ 

\end{enumerate} 

 

\end{proposition} 

 

The condition \ref{Invertibility} has two main advantages in terms of 

clarity and practicability of the formulation. First, it highlights the 

clear relationship between factual and counterfactual quantities. Second, 

testing counterfactual fairness requires only the knowledge of the 

structural equations, but not the one of $\mathcal{L}(U)$. Note that, if 

\ref{Exogeneity} holds, then counterfactual fairness is a stronger 

criterion than the statistical parity across groups. 

 

\begin{proposition}\label{stronger} Suppose that \ref{Exogeneity} holds. 

If the predictor $h(X,S)$ satisfies \textit{counterfactual fairness}, 

then it satisfies \textit{statistical parity}, namely $h(X,S) 

\independent S$. The converse does not hold in general. 

\end{proposition} 

 

%\subsection{Generalized counterfactual fairness} 

 

One can think of being counterfactually fair as being invariant by 

counterfactual operations w.r.t. the protected attribute. In order to 

define SCM-free criteria, we generalize this idea to the models 

introduced in Section \ref{surrogate}. 

 

\begin{definition}\label{tcounter} 

 

\begin{enumerate} 

    \item Let $\Pi = \{\pi_{\langle s'|s \rangle}\}_{s,s' \in \S}$ be a 

random counterfactual model. A predictor $h(X,S)$ is \emph{$\Pi$-

counterfactually fair} if for every $s,s' \in \S$ and $\pi_{\langle s'|s 

\rangle}$-almost every $(x,x')$, 

    $$ 

    h(x,s) = h(x',s'). 

    $$ 

    \item Let $\T = \{T_{\langle s'|s \rangle}\}_{s,s' \in \S}$ be a 

deterministic counterfactual model. A predictor $h(X,S)$ is \emph{$\T$-

counterfactually fair} if for every $s,s' \in \S$ and $\mu_s$-almost 

every $x$, 

    $$ 

    h(x,s) = h(T_{\mathsmaller{ \langle s'|s \rangle}}(x),s'). 

    $$ 

\end{enumerate} 

 

\end{definition} 

 

Because the proof of Proposition \ref{stronger} only relies on the 

assumption that the couplings are transport plans between the factual 

distributions, the following proposition holds. 



 

\begin{proposition}\label{Tcf} Let $\Pi$ be a counterfactual model 

(deterministic or not). If a predictor $h(X,S)$ satisfies $\Pi$-

counterfactual fairness, then it satisfies statistical parity, namely 

$h(X,S) \independent S$. The converse does not hold in general. 

\end{proposition} 

 

Using Definition \ref{tcounter} as an individual-level fairness criterion 

has several practical advantages. In contrast to Definitions \ref{cf} and 

Proposition \ref{rcf}, it relies on a well-defined counterfactual model 

that obviates any assumptions about the causal model. This alternative 

approach to counterfactual fairness alleviates the impracticability of 

causal reasoning, trading the detection of structural links between 

variables for the discovery of statistical correlations. Besides, as 

Definition \ref{cf} amounts to $\Pi^*$-counterfactual fairness when 

\ref{Exogeneity} holds, one can think of Definition \ref{tcounter} as an 

approximation of counterfactual fairness. 

 

\section{Conclusion} 

 

We focused on the challenge of designing sound counterfactuals when the 

causal model is unknown. We framed the computation of counterfactuals 

through causal models as a problem of mass transportation, and studied 

two key scenarios of counterfactual reasoning through this viewpoint. On 

the basis of this reformulation, we introduced a general formalism for 

the computation of counterfactual counterparts based on any 

distributional matching technique. In particular, we showed that optimal 

transport defines relevant counterfactual models, as it is tailored for 

numerical implementation, satisfies statistical intuitions, and can even 

recover the structural dependencies of linear additive SCMs. On the 

strength of this alternative counterfactual modeling, we proposed 

original counterfactual fairness conditions, free of prior assumptions on 

the data-generation process. This offered new conceptual and practical 

perspectives for counterfactual reasoning. 
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\appendix 

 

This supplementary material addresses the mathematical proofs of the 

paper. 

 

\section{Lemmas} 

 

We start by proving two key results we mentioned in Section 

\ref{structural}. The first one specifies formulas for $X$ and its 

interventional variants. 

 

\begin{lemma}\label{F} 

There exists a measurable function $\F$ such that $\P$-almost surely $X = 

\F(S,U_X)$ and $X_{S=s} = \F(s,U_X)$ for any $s \in \S$. 

\end{lemma} 

 

\begin{proof} 



 

Recall that, rigorously, the structural equations hold almost surely. 

Throughout this proof, we implicitly work with a fixed input $\omega$ for 

the random variables, where $\omega$ belongs to some measurable set 

$\Omega_0 \subset \Omega$ such that $\P(\Omega_0)=1$ and 

 

\begin{align*} 

    X_i &= 

G_{X_i}\big(X_{\text{Endo}(X_i)},S_{\text{Endo}(X_i)},U_{X_i}\big),\\ 

    S &= G_{S}\big(X_{\text{Endo}(S)},U_S\big). 

\end{align*} 

 

Because the graph of $\mathcal{M}$ is a DAG, it has a topological 

ordering on the variables in $X$. Then, we can recursively substitute the 

$X_i$ according to this ordering to obtain 

$$ 

    X = \tilde{\F}\big(S_{\text{Endo}(X)},U_X\big), 

$$ 

where $\tilde{\F}$ is a measurable function. Remark that either 

$S_{\text{Endo}(X)}=\{S\}$ or $S_{\text{Endo}(X)} = \emptyset$, depending 

on whether $S$ is a parent of $X$ in the graph. Then, without loss of 

generality, we can define $\F$ such that $\F(S,U_X) := 

\tilde{\F}\big(S_{\text{Endo}(X)},U_X\big)$. Consequently, $X = 

\F(S,U_X)$. Now, recall that $do(S=s)$ preserves the structural equations 

of $X$, and does not impact $U$. Then, using the exact same procedure for 

$(X_{S=s},S_{S=s})$ instead of $(X,S)$ we get $X_{S=s} = \F(S_{S=s},U_X) 

= \F(s,U_X)$. 

 

\end{proof} 

 

The second result is the consistency rule. 

 

\begin{lemma}\label{consistency} 

For any $s \in \S$, $\mu_{\langle s|s\rangle} = \mu_s$ 

\end{lemma} 

 

\begin{proof} 

 

From Lemma \ref{F}, $\P$-almost surely $X = \F(S,U_X)$ and $X_{S=s} = 

\F(s,U_X)$ for any $s \in \S$. Then, 

 

\begin{align*} 

    \mu_s &= \mathcal{L}(X|S=s)\\ 

    &= \mathcal{L}(\F(S,U_X)|S=s)\\ 

    &= \mathcal{L}(\F(s,U_X)|S=s), 

\end{align*} 

 

and 

 

\begin{align*} 

    \mu_{\langle s|s \rangle} &= \mathcal{L}(X_{S=s}|S=s)\\ 

    &= \mathcal{L}(\F(s,U_X)|S=s). 

\end{align*} 

 

Consequently, $\mu_s=\mu_{\langle s|s \rangle}$. 

 

\end{proof} 

 



\section{Proofs of Section \ref{structural}} 

 

\noindent Proof of Proposition \ref{support}. 

 

\begin{proof} 

According to Lemma \ref{F} we can write that $X=\F(S,U_X)$ $\P$-almost 

surely. This implies that $\{X=x,S=s\} \subset \{U_X \in f_s^{-

1}(\{x\})\}$. Besides, $X_{S=s'} = f_{s'}(U_X)$. Then, write for $B$ an 

arbitrary measurable set of $\mathcal{X}$ 

 

\begin{align*} 

    &\P(X_{S=s'} \in B|X=x,S=s)\\ 

    &= \P(f_{s'}(U_X) \in B|X=x,S=s)\\ 

    &= \P(f_{s'}(U_X) \in B, U_X \in f_s^{-1}(\{x\})|X=x,S=s)\\ 

    &= \P(f_{s'}(U_X) \in B, f_{s'}(U_X) \in f_{s'} \circ f_s^{-

1}(\{x\})|X=x,S=s) \\ 

    &= \P(X_{S=s'} \in \big[ B \cap f_{s'} \circ f_s^{-1}(\{x\})\big] 

|X=x,S=s). 

\end{align*} 

Consequently, $\mathcal{L}(X_{S=s'}|X=x,S=s)$ does not put mass outside 

$f_{s'} \circ f_s^{-1}(\{x\})$. 

\end{proof} 

 

\noindent Proof of Proposition \ref{oto}. 

 

\begin{proof} 

 

Let $s,s' \in \S$ and $x \in \X_s$. From Lemma \ref{F} we know that $X = 

f_S(U_X)$, and according to \ref{Invertibility} we additionally have $U_X 

= f^{-1}_S(X)$. We address each point separately. 

 

\paragraph{Proof of 1.} By definition of the structural counterfactuals, 

 

\begin{align*} 

    \mathcal{L}(X_{S=s'}|X=x,S=s) &= \mathcal{L}(f_{s'}(U_X)|X=x,S=s)\\ 

    &= \mathcal{L}(f_{s'}(f^{-1}_S(X))|X=x,S=s)\\ 

    &= \mathcal{L}(f_{s'}\circ f^{-1}_s(x)|X=x,S=s)\\ 

    &= \mathcal{L}(f_{s'} \circ f^{-1}_s(x))\\ 

    &= \delta_{f_{s'} \circ f^{-1}_s(x)}. 

\end{align*} 

This proves the first point of the proof. 

 

\paragraph{Proof of 2.} By definition of the counterfactual distribution, 

 

\begin{align*} 

    \mu_{\langle s'|s \rangle} &= \mathcal{L}(X_{S=s'}|S=s)\\ 

    &= \mathcal{L}(f_{s'}(U_X)|S=s)\\ 

    &= \mathcal{L}(f_{s'}\circ f^{-1}_S(X)|S=s)\\ 

    &= \mathcal{L}(f_{s'}\circ f^{-1}_s(X)|S=s)\\ 

    &= \big(f_{s'} \circ f^{-1}_s\big)_\sharp \mu_s.\\ 

\end{align*} 

This proves the second point of the proposition. 

 

\paragraph{Proof of 3.} By definition of the structural counterfactual 

coupling, 

 

\begin{align*} 

    \pi_{\langle s'|s \rangle} &= \mathcal{L}\big((X,X_{S=s'})|S=s\big)\\ 



    &= \mathcal{L}\big((X,f_{s'}(U_X))|S=s\big)\\ 

    &= \mathcal{L}\big((X,f_{s'}(f_s^{-1}(X)))|S=s\big)\\ 

    &= \mathcal{L}\big((X_s,f_{s'} \circ f_s^{-1}(X_s))\big), 

\end{align*} 

where $X_s \sim \mu_s$. This concludes the proof. 

 

\end{proof} 

 

\noindent Proof of Proposition \ref{conditioning}. 

 

\begin{proof} 

To show this, set $s \in \S$ and invoke Lemma \ref{F} once again to write 

$X = \F(S,U_X)$ and $X_{S=s} = \F(s,U_X)$. Recall that \ref{Exogeneity} 

implies that $S \independent U_X$. Then, 

 

\begin{align*} 

    \mathcal{L}(X|S=s) &= \mathcal{L}\big(\F(S,U_X)|S=s\big),\\   

&=\mathcal{L}\big(\F(s,U_X)|S=s\big),\\ 

    &=\mathcal{L}\big(\F(s,U_X)\big),\\ 

    &=\mathcal{L}(X_{S=s}). 

\end{align*} 

This means that $\mu_s = \mu_{S=s}$. Similarly, for $s,s' \in \S$ we have 

 

\begin{align*} 

    \mathcal{L}(X_{S=s'}|S=s) &= \mathcal{L}\big(\F(s',U_X)|S=s\big),\\   

&=\mathcal{L}\big(\F(s',U_X)\big),\\ 

    &=\mathcal{L}\big(\F(s',U_X)|S=s'\big),\\ 

    &=\mathcal{L}\big(\F(S,U_X)|S=s'\big),\\ 

    &=\mathcal{L}(X|S=s'). 

\end{align*} 

This means that $\mu_{\mathsmaller{ \langle s'|s \rangle}} = \mu_{s'}$, 

which concludes the proof. 

 

\end{proof} 

 

\noindent Proof of Proposition \ref{cff}. 

 

\begin{proof} 

 

We address each point separately. 

 

\paragraph{Proof of 1.} Set $s,s' \in \S$. By definition 

$T^*_{\mathsmaller{ \langle s'|s \rangle}} = f_{s'} \circ f^{-

1}_s\restr{\X_s}$, which induces a bijection from $\X_s$ to 

$\text{Im}(T^*_{\mathsmaller{ \langle s'|s \rangle}})$. Let us denote 

$\text{Im}(T^*_{\mathsmaller{ \langle s'|s \rangle}})$ by 

$\X_{\mathsmaller{ \langle s'|s \rangle}}$, so that ${T^*}^{-

1}_{\mathsmaller{ \langle s'|s \rangle}} = f_{s} \circ f^{-

1}_{s'}\restr{\X_{\mathsmaller{ \langle s'|s \rangle}}}$. 

 

Now, recall that $\P$-almost surely $X_{S=s} = f_s(U_X)$ and $X_{S=s'} = 

f_{s'}(U_X)$.  Besides, from \ref{Exogeneity} and Proposition 

\ref{conditioning}, it follows that $\mu_{s} = \mathcal{L}(X_{S=s})$ and 

$\mu_{s'} = \mathcal{L}(X_{S=s'})$. This implies that there exists a 

measurable set $\Omega_0 \subset \Omega$ such that for every $\omega \in 

\Omega_0$,  

 

\begin{align*} 



    X_{S=s}(\omega) &= f_s(U_X(\omega)) \subset \X_s,\\ 

    X_{S=s'}(\omega) &= f_{s'}(U_X(\omega)) \subset \X_{s'}. 

\end{align*} 

 

In the rest of the proof, we implicitely work with an arbitraty $\omega 

\in \Omega_0$. Write $U_X = f^{-1}_s(X_{S=s})$ so that $X_{S=s'} = 

(f_{s'} \circ f^{-1}_s)(X_{S=s})$. Since $X_{S=s} \in \X_s$, this leads 

to $X_{S=s'} = (f_{s'} \circ f^{-1}_s\restr{\X_s})(X_{S=s}) = 

T^*_{\mathsmaller{ \langle s'|s \rangle}}(X_{S=s})$, and consequently 

$X_{S=s'} \in \X_{\mathsmaller{ \langle s'|s \rangle}}$. Then, we can 

apply ${T^*}^{-1}_{\mathsmaller{ \langle s'|s \rangle}}$ on $X_{S=s'}$ to 

obtain 

 

\begin{align*} 

    {T^*}^{-1}_{\mathsmaller{ \langle s'|s \rangle}}(X_{S=s'}) &= f_{s} 

\circ f^{-1}_{s'}\restr{\X_{\mathsmaller{ \langle s'|s 

\rangle}}}(X_{S=s'})\\ 

    &= f_{s} \circ f^{-1}_{s'}\restr{\X_{s'}}(X_{S=s'})\\ 

    &= {T^*}_{\mathsmaller{ \langle s|s' \rangle}}(X_{S=s'}). 

\end{align*} 

 

This means that the equality ${T^*}^{-1}_{\mathsmaller{ \langle s'|s 

\rangle}} = {T^*}_{\mathsmaller{ \langle s|s' \rangle}}$ holds on 

$X_{S=s'}(\Omega_0)$ where $\P(\Omega_0)=1$. Thus, it holds $\mu_{s'}$-

almost everywhere as 

$\mu_{s'}\big(X_{S=s'}(\Omega_0)\big)=\P(\Omega_0)=1$. This concludes the 

first part of the proof. 

 

\paragraph{Proof of 2.} Set $s,s',s'' \in \S$. Following the same 

principle as before, we implicitly work on a set $\Omega_0$ such that 

$\P(\Omega_0)=1$ and for every $\omega \in \Omega_0$, 

 

\begin{align*} 

    X_{S=s}(\omega) &= f_s(U_X(\omega)) \subset \X_s,\\ 

    X_{S=s'}(\omega) &= f_{s'}(U_X(\omega)) \subset \X_{s'}. 

\end{align*} 

 

Then, we write 

\begin{align*} 

    {T^*}_{\mathsmaller{ \langle s''|s \rangle}}(X_{S=s}) &= f_{s''} 

\circ f^{-1}_{s}\restr{\X_{s}}(X_{S=s})\\ 

    &= (f_{s''} \circ f^{-1}_{s'}) \circ (f_{s'} \circ f^{-

1}_{s}\restr{\X_{s}}) (X_{S=s}). 

\end{align*} 

 

Note that $(f_{s'} \circ f^{-1}_{s}\restr{\X_{s}})(X_{S=s}) = X_{S=s'} 

\in \X_{s'}$. Hence, 

 

\begin{align*} 

    {T^*}_{\mathsmaller{ \langle s''|s \rangle}}(X_{S=s}) &= (f_{s''} 

\circ f^{-1}_{s'}\restr{\X_{s'}}) \circ (f_{s'} \circ f^{-

1}_{s}\restr{\X_{s}}) (X_{S=s})\\ 

    &= {T^*}_{\mathsmaller{ \langle s''|s' \rangle}} \circ 

{T^*}_{\mathsmaller{ \langle s'|s \rangle}} (X_{S=s}). 

\end{align*} 

 

Similarly to the previous point, this means that the equality 

${T^*}_{\mathsmaller{ \langle s''|s \rangle}} = {T^*}_{\mathsmaller{ 



\langle s''|s' \rangle}} \circ {T^*}_{\mathsmaller{ \langle s'|s 

\rangle}}$ holds on $X_{S=s}(\Omega_0)$ where $\P(\Omega_0)=1$. Thus, it 

holds $\mu_{s}$-almost everywhere as 

$\mu_{s}\big(X_{S=s}(\Omega_0)\big)=\P(\Omega_0)=1$. This concludes the 

proof. 

 

\end{proof} 

 

\section{Proofs of Section \ref{surrogate}} 

 

Proof of Theorem \ref{linear}. 

 

\begin{proof} 

 

We address the structural equations 

 

$$ 

X = MX +wS+ b + U_X, 

$$ 

where $w,b \in \R^d$ and $M \in \R^{d \times d}$ are deterministic 

parameters. Acyclicity imposes that $I-M$ is invertible, which enables to 

write 

 

$$ 

    X = (I-M)^{-1}(wS+b+U_X) =: \F(S,U_X). 

$$ 

 

Using our previous notations, we have that for any $s \in \S$, $f_s(u) = 

(I-M)^{-1}(ws+b+u)$. Remark that \ref{Invertibility} holds such that 

$f^{-1}_s(x) = (I-M)x - ws - b $. Now, set $s,s' \in \S$, and use the 

definition of $T^*_{\mathsmaller{ \langle s'|s \rangle}}$ to obtain 

 

\begin{align*} 

    T^*_{\mathsmaller{ \langle s'|s \rangle}}(x) &= (I-M)^{-1}\big(w(s'-

s) + (I-M)x\big)\\ &= x + (I-M)^{-1}w(s'-s). 

\end{align*} 

 

According to Section \ref{OT}, it suffices to show that 

$T^*_{\mathsmaller{ \langle s'|s \rangle}}$ coincides $\mu_s$-almost 

everywhere with the gradient of a convex function to conclude that it is 

the Brenier map between $\mu_s$ and $\mu_{s'}$. This is clearly the case, 

as $T^*_{\mathsmaller{ \langle s'|s \rangle}}$ is the gradient of the 

convex function $x \mapsto \frac{1}{2}\norm{x}^2 + \big[(I-M)^{-1}w(s'-

s)\big]^T x$. 

 

\end{proof} 

 

\section{Proofs of Section \ref{applications}} 

 

\noindent Proof of Proposition \ref{rcf}. 

 

\begin{proof} 

 

We address each point separately. 

 

\paragraph{Proof of 1.} We aim at showing that counterfactual fairness is 

equivalent to: 

 



\begin{description} 

    \item[(Goal)\namedlabel{Goal}{\textbf{(Goal)}}] {\it For every $s,s' 

\in \S$, there exists a measurable set $C := C(s,s') \subset \X \times 

\X$ satisfying $\pi^*_{\langle s'|s \rangle}(C) = 1$ such that for every 

$(x,x') \in C$ 

$$ 

    h(x,s) = h(x',s'). 

$$} 

\end{description} 

 

A direct reformulation of the counterfactual fairness condition is: 

 

\begin{description} 

    \item[(CF)\namedlabel{CF}{\textbf{(CF)}}] {\it For every $s,s' \in 

\S$, there exists a measurable set $A := A(s)$ satisfying $\mu_s(A)=1$, 

such that for every $x \in A$ and every measurable set $M \subset \R$ 

\begin{equation}\label{cf_eq} 

\begin{split} 

    \P(\hat{Y}_{S=s} \in M|&X=x,S=s)\\ &=\P(\hat{Y}_{S=s'} \in 

M|X=x,S=s). 

\end{split}  

\end{equation} 

} 

\end{description} 

 

To show that \ref{CF} is equivalent to \ref{Goal}, we first rewrite 

\ref{CF} into the following intermediary formulation: 

 

\begin{description} 

    \item[(IF)\namedlabel{IF}{\textbf{(IF)}}] {\it For every $s,s' \in 

\S$, there exists a measurable set $A := A(s)$ satisfying $\mu_s(A)=1$, 

such that for every $x \in A$ and every measurable $M \subset \R$ there 

exists a measurable set $B := B(s,s',x,M)$ satisfying $\mu_{\langle s'|s 

\rangle}(B|x) = 1$ and such that for every $x' \in B$, 

$$ 

    \mathbf{1}_{\{h(x,s)\in M\}} = \mathbf{1}_{\{h(x',s')\in M\}}. 

$$} 

\end{description} 

 

\paragraph{Proof that \ref{CF} $\iff$ \ref{IF}.} Suppose that $s,s',x \in 

A$ and $M \subset \R$ are fixed. According to Lemma \ref{consistency}, 

$\mathcal{L}(X|S=s) = \mathcal{L}(X_{S=s}|S=s)$, so that we can rewrite 

the left-term of \eqref{cf_eq} as 

 

\begin{align*} 

    \P(\hat{Y}_{S=s} \in M&|X=x,S=s)\\ &=\P(h(X_{S=s},s) \in M|X=x,S=s)\\ 

    &= \P(h(X,s),s) \in M|X=x,S=s)\\ 

    &= \P(h(x,s) \in M)\\ 

    &= \mathbf{1}_{\{h(x,s) \in M\}}. 

\end{align*} 

 

Then, using the distributions of the structural counterfactuals, express 

the right-term of \eqref{cf_eq} as 

 

\begin{align*} 

    \P(\hat{Y}_{S=s'} \in M&|X=x,S=s)\\ 

    &= \P(h(X_{S=s'},s') \in M|X=x,S=s)\\ &= \int \mathbf{1}_{\{h(x',s') 

\in M\}}d\mu_{\langle s'|s \rangle}(x'|x). 



\end{align*} 

     

Because the indicator functions equal either 0 or 1, the condition 

$\mathbf{1}_{\{h(x,s) \in M\}} = \int \mathbf{1}_{\{h(x',s')\in M\}} 

d\mu_{\langle s'|s \rangle}(x'|x)$ is equivalent to 

$\mathbf{1}_{\{h(x,s)\in M\}} = \mathbf{1}_{\{h(x',s')\in M\}}$ for 

$\mu_{\langle s'|s \rangle}(\cdot|x)$-almost every $x'$. This means that 

there exists a measurable set $B := B(s,s',x,M)$ such that $\mu_{\langle 

s'|s \rangle}(B|x) = 1$ and for every $x' \in B$, 

 

$$ 

    \mathbf{1}_{\{h(x,s)\in M\}} = \mathbf{1}_{\{h(x',s')\in M\}} 

$$ 

This proves that \ref{CF} is equivalent to \ref{IF}. 

 

\paragraph{Proof that \ref{IF} $\implies$ \ref{Goal}.} As \ref{IF} is 

true for any arbitrary measurable set $M \subset \R$, we can apply this 

result with $M = \{h(x,s)\}$ to obtain a measurable set $B := B(s,s',x)$ 

such that $\mu_{\langle s'|s \rangle}(B|x) = 1$ and for every $x' \in B$, 

$h(x',s') = h(x,s)$. To sum-up, for every $s,s' \in \S$, there exists a 

measurable set $A := A(s)$ satisfying $\mu_s(A)=1$ such that for every $x 

\in A$, there exists a measurable set $B := B(s,s',x)$ satisfying 

$\mu_{\langle s'|s \rangle}(B|x) = 1$, such that for every $x' \in B$, 

$h(x',s') = h(x,s)$. Now, we must show that the latter equality holds for 

$\pi^*_{\langle s'|s \rangle}$-almost every $(x,x')$. 

 

To this end, set $C := C(s,s') = \{(x,x') \in \mathcal{X} \times 

\mathcal{X} | x \in A(s), x' \in B(s,s',x)\}$. Remark that by definition 

of $A$ and $B$, for every $(x,x') \in C$, $h(x,s) = h(x',s')$. To 

conclude, let us prove that $\pi^*_{\langle s'|s \rangle}(C) = 1$.  

 

\begin{align*} 

    \pi^*_{\langle s'|s \rangle}(C) &= \int_A \P(X_{S=s'} \in B | 

X=x,S=s) d\mu_s(x)\\ 

    &= \int_A \mu_{\langle s'|s \rangle}(B|x) d\mu_s(x)\\ 

    &= \int_A 1 d\mu_s(x)\\ 

    &= \mu_s(A)\\ 

    &= 1. 

\end{align*} 

 

This proves that \ref{IF} implies \ref{Goal}. 

 

\paragraph{Proof that \ref{Goal} $\implies$ \ref{IF}.} Using \ref{Goal}, 

consider a measurable set $C := C(s,s')$ satisfying $\pi^*_{\langle s'|s 

\rangle}(C) = 1$ and such that for every $(x,x') \in C$, $h(x,s) = 

h(x',s')$. Then, define for any $x \in \mathcal{X}$, the measurable set 

$B(s,s',x) := \{x' \in \mathcal{X}|(x,x') \in C\}$. According to the 

disintegrated formula of $\pi^*_{\langle s'|s \rangle}$, 

 

$$ 

    1 = \int \mu_{\langle s'|s \rangle}(B|x) d\mu_s(x). 

$$ 

 

Since $0 \leq \mu_{\langle s'|s \rangle}(B|x) \leq 1$, this implies that 

for $\mu_s$-almost every $x$, $\mu_{\langle s'|s \rangle}(B|x)=1$. Said 

differently, there exists a measurable set $A := A(s)$ satisfying 

$\mu_s(A) = 1$ such that for every $x \in A$, the measurable set 

$B(s,s',x)$ satisfies $\mu_{\langle s'|s \rangle}(B|x)=1$. By 



construction of $B$ and by definition of $C$, for every $x \in A$ and 

every $x' \in B$, $h(x,s) = h(x',s')$. To obtain \ref{IF}, it suffices to 

take any measurable $M \in \R$ and to note that the latter equality 

implies that $\mathbf{1}_{\{h(x,s)\in M\}} = \mathbf{1}_{\{h(x',s')\in 

M\}}$. 

 

\paragraph{Proof of 2.} Consider \ref{CF}, and recall that for every 

$s,s' \in S$, $\mu_s$-almost every $x$ and every measurable $M \subset 

\R$ the left term of \eqref{cf_eq} is $\mathbf{1}_{\{h(x,s) \in M\}}$. 

Let us now reframe the right-term of \eqref{cf_eq}. If 

\ref{Invertibility} holds, using that $U_X = f_S^{-1}(X)$ we obtain 

 

\begin{align*} 

    \P(\hat{Y}_{S=s'} \in M&|X=x,S=s)\\ 

    &= \P(h(X_{S=s'},s') \in M|X=x,S=s)\\ 

    &= \P(h(\F(s',U_X),s'),s') \in M|X=x,S=s)\\ 

    &= \P(h(f_{s'}(f_S^{-1}(X)),s') \in M|X=x,S=s)\\ 

    &= \P(h(f_{s'} \circ f_s^{-1}(x),s') \in M)\\ 

    &= \P(h(T^*_{\mathsmaller{ \langle s'|s \rangle}}(x),s') \in M)\\ 

    &= \mathbf{1}_{\{h(T^*_{\mathsmaller{ \langle s'|s \rangle}}(x),s') 

\in M\}}. 

\end{align*} 

 

Consequently, \ref{CF} holds if and only if, for every measurable $M \in 

\R$ 

 

$$ 

\mathbf{1}_{\{h(x,s)\in M\}} = \mathbf{1}_{\{h(T^*_{\mathsmaller{ \langle 

s'|s \rangle}}(x),s') \in M\}}. 

$$ 

 

Using the same reasoning as before, we take $M = \{h(x,s)\}$ to prove 

that this condition is equivalent to $h(x,s) = h(T^*_{\mathsmaller{ 

\langle s'|s \rangle}}(x),s')$. This concludes the second part of the 

proof. 

 

\paragraph{Proof of 3.} From 2. and Proposition \ref{conditioning}, it 

follows that counterfactual fairness can be written as: for every $s,s' 

\in \S$ such that $s' < s$, for $\mu_s$-almost every $x$ 

 

$$ 

h(x,s) = h(T^*_{\mathsmaller{ \langle s'|s \rangle}}(x),s'), 

$$ 

and for $\mu_{s'}$-almost every $x$ 

$$ 

h(x,s') = h({T^*}_{\mathsmaller{ \langle s|s' \rangle}}(x),s'). 

$$ 

 

Set $s,s' \in \S$ such that $s' < s$. To prove 3. we must show that these 

two conditions are equivalent. Set $A$ a measurable subset of $\X_s$ such 

that $\mu_s(A) = 1$, and $h(x,s) = h(T^*_{\mathsmaller{ \langle s'|s 

\rangle}}(x),s')$ for any $x \in A$. Then, make the change of variable 

$x' = T^*_{\mathsmaller{ \langle s'|s \rangle}}(x)$ so that $h({T^*}^{-

1}_{\mathsmaller{ \langle s'|s \rangle}}(x'),s') = h(x',s')$ for every 

$x' \in T^*_{\mathsmaller{ \langle s'|s \rangle}}(A)$. By Propositions 

\ref{oto} and \ref{conditioning}, ${T^*_{\mathsmaller{ \langle s'|s 

\rangle}}}_\sharp \mu_s = \mu_{s'}$, which implies that 

$\mu_{s'}(T^*_{\mathsmaller{ \langle s'|s \rangle}}(A))=1$. Therefore, 



the equality $h({T^*}^{-1}_{\mathsmaller{ \langle s'|s \rangle}}(x'),s) = 

h(x',s')$ holds for $\mu_{s'}$-almost every $x'$. Finally, recall that 

according to Proposition \ref{cff},  ${T^*}^{-1}_{\mathsmaller{ \langle 

s'|s \rangle}} = {T^*}_{\mathsmaller{ \langle s|s' \rangle}}$ $\mu_{s'}$-

almost everywhere. As the intersection of two sets of probability one is 

a set of probability one, $h({T^*}_{\mathsmaller{ \langle s|s' 

\rangle}}(x'),s) = h(x',s')$ holds for $\mu_{s'}$-almost every $x'$. 

 

To prove the converse, proceed similarly by switching $s$ to $s'$. 

 

\end{proof} 

 

\noindent Proof of Proposition \ref{stronger}. 

 

\begin{proof} 

 

According to Proposition \ref{rcf}, $h$ is counterfactually fair if and 

only if for any $s,s' \in \S$ and for $\pi^*_{\langle s'|s \rangle}$-

almost every $(x,x')$, $h(x,s) = h(x',s')$ or equivalently 

$\mathbf{1}_{\{h(x,s)\in M\}} = \mathbf{1}_{\{h(x',s')\in M\}}$ for every 

measurable $M \in \R$. Set $s,s' \in \S$. Recall that from 

\ref{Exogeneity}, $\pi^*_{\langle s'|s \rangle}$ admits $\mu_s$ for first 

marginal, and $\mu_{s'}$ for second marginal. Let us integrate this 

equality w.r.t. $\pi^*_{\langle s'|s \rangle}$ to obtain, for every 

measurable $M \subset \R$ 

 

$$ 

    \int \mathbf{1}_{\{h(x,s)\in M\}} d\mu_s(x) = \int 

\mathbf{1}_{\{h(x',s')\in M\}} d\mu_{s'}(x). 

$$ 

This can be written as, for every measurable $M \in \R$ 

 

$$ 

    \P(h(X,s) \in M|S=s) = \P(h(X,s') \in M|S=s'), 

$$ 

which means that 

$$ 

    \mathcal{L}(h(X,S)|S=s) = \mathcal{L}(h(X,S)|S=s'). 

$$ 

As this holds for any $s,s' \in \S$, we have that $h(X,S) \independent 

S$. 

 

One can easily convince herself that the converse is not true. As a 

counterexample, consider the following causal model, 

$$ 

    X = S \times U_X + (1-S) \times (1-U_X). 

$$ 

Where $S$ follows an arbitrary law and does not depend on $U_X$. Observe 

that \ref{Exogeneity} is satisfied so that 

 

\begin{align*} 

    \mathcal{L}(X_{S=0}) &= \mathcal{L}(X|S=0),\\ 

    \mathcal{L}(X_{S=1}) &= \mathcal{L}(X|S=1),\\ 

    \mathcal{L}(X|S=0) &= \mathcal{L}(X|S=1). 

\end{align*} 

 

In particular, whatever the chosen predictor, statistical parity will 

hold since the observational distributions are the same. By definition of 



the structural counterfactual operator, we have $T^*_{\mathsmaller{ 

\langle 1|0 \rangle}}(x) = 1-x$. 

Now, set the \textit{unaware} predictor (i.e., which does not take the 

protected attribute as an input), $h(X) := \text{sign}(X-1/2)$. Clearly, 

 

$$ 

    h(T^*_{\mathsmaller{ \langle 1|0 \rangle}}(x)) = - h(x) \neq h(x). 

$$ 

 

\end{proof} 

 

\end{document} 

 

 

\subsection{Individual fairness with counterfactuals} 

 

\emph{Individual fairness} states that feature-wise similar individuals 

should receive similar outcomes. However, counterfactual reasoning states 

that distance and group-wise similarities are not necessarily related. 

Consider for instance two persons applying for the same job, with similar 

features, but belonging to different protected groups. A \emph{fair} 

comparison of the two individuals should take into account the struggle 

the disadvantaged one had to face in order to reach the same 

achievements. Using counterfactual modeling, we propose a discrepancy 

satisfying this principle. For this, consider a deterministic 

counterfactual model $\T = \{T_{\langle s'|s' \rangle}\}_{s,s' \in \S}$, 

and set the following mappings 

 

$$ 

    T_{s'}(x,s) := T_{\langle s'|s \rangle}(x) \mathbf{1}_{s \neq s'} + x 

\mathbf{1}_{s=s'}, 

$$ 

which give a deterministic representation of any individual in any group. 

Then, define 

 

$$ 

    d_{\T}\big((x,s),(x',s')\big) := \frac{1}{|\S|} \sum_{s'' \in \S} 

\norm{T_{s''}(x,s)-T_{s''}(x',s')}. 

$$ 

This notion of similarity $d_{\T}$ never compares directly individuals 

from different classes: if necessary, it transports beforehand a point to 

its counterpart in another group. This enables to combine individual 

fairness and statistical fairness in a way consistent with counterfactual 

fairness. Set $\gamma$ the joint distribution of $(X,S)$. 

 

\begin{defn}\label{alberto} Let $\T$ be a deterministic counterfactual 

model, $f : \X \times \S \to \R$ be a regression function, and $L>0$ be a 

constant. The predictor $f$ is \emph{$\T$-individually fair across 

groups} if there exists $L>0$ such that for $\gamma$-almost every $(x,s)$ 

and $(x',s')$, 

 

$$ 

    |f(x,s)-f(x,s')| \leq L \times d_{\T}((x,s),(x',s')). 

$$ 

\end{defn} 

 

%%JM  



When dealing with the Adult Dataset, the machine learning model  trained 

on the whole dataset is denoted by $f(X,S)$. As pointed out in 

\cite{besse2020survey}, the correlations between the sensitive variable 

{\it sex} $S$,  and the decision on the acceptation of the loan by the 

bank is learnt by the model and transformed into a causal decision. The 

bias of the algorithm is the same whether we use the model $f(X,S)$ or a 

model who would choose the best decision for all possible sex of the 

individual ${\rm max}(f(X,1),f(X,0))$. This highlights that changing only 

the value of the sensitive variable $S=0$ changed into $S=1$ is not 

enough to properly define a counterfactual. Rather the whole distribution 

must be transformed ... 
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