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Abstract
Counterfactual reasoning aims at predicting how
the world would have been had a certain event oc-
curred, and as such has attracted attention from
the fields of explainability and robustness in ma-
chine learning. While Pearl’s causal inference pro-
vides appealing rules to calculate valid counter-
factuals, it relies on a model that is unknown and
hard to discover in practice. We formalize a mass
transportation viewpoint of counterfactual reason-
ing and use distributional matching methods as a
natural model-free surrogate approach. In particu-
lar, we show that optimal transport theory defines
relevant counterfactuals, as they are numerically
feasible, statistically-faithful, and can even coin-
cide with counterfactuals generated by linear addi-
tive causal models. We argue this has consequences
for interpretability and we illustrate the strength
of the mass transportation viewpoint by recasting
and generalizing the accepted counterfactual fair-
ness condition into clearer, more practicable crite-
ria.

1 Introduction
A counterfactual states how the world should be modified so
that a given outcome occurs. For instance, the statement had
you been a woman, you would have gotten half your salary
is a counterfactual relating the intervention “had you been a
woman” to the outcome “you would have gotten half your
salary”. Counterfactuals have been used to express causal
laws [Lewis, 1973] and hence have attracted the attention in
the fields of explainability and robustness in machine learn-
ing, as such statements can naturally represent the depen-
dence of a prediction on a perturbation of input data without
opening the black-box.

State-of-the-art models for computing true counterfactuals
have mostly focused on the nearest counterfactual instances
principle [Wachter et al., 2017], according to which one finds
minimal translations, minimal changes in the features of an
instance that lead to a desired outcome. However, this sim-
ple distance-based technique often fails to describe faithful
alternative worlds, due to the dependence between features.
Changing just the sex of a person in such a translation might

convert from a typical male into an untypical female render-
ing true counterfactuals like the following: if I were a woman
I would be 190cm tall and weigh 85 kg. According to intu-
ition, however, such counterfactuals are false and rightly so
because they are oblivious of the latent statistical distribu-
tion. As a practical consequence, such counterfactuals typi-
cally hide biases in machine learning decision rules [Besse et
al., 2020].

The intuitive link between counterfactual modality and
causality motivated the use of Pearl’s causal graphs and
structural equations [Pearl, 2009] to address the aforemen-
tioned shortcoming [Kusner et al., 2017; Joshi et al., 2019;
Karimi et al., 2020b; Mahajan et al., 2020]. Causal models
capture the structural relations between variables including
their dependencies and as such provide the basis for generat-
ing true structural counterfactuals. The cost of this approach
is specifying the causal model. The reliance on such a strong
prior makes the causal approach appealing in theory, but lim-
ited for systematic implementation. In addition, it’s not how
we humans evaluate counterfactuals. Typically, we don’t
know the causal graph for a given situation (and we’re bad
at constructing them); but we have strong intuitions on alter-
native states of things. Intuitively, the counterfactual female
counterpart of a 190cm man would not be a 190cm woman,
but more more likely a shorter woman, fairly tall compared
to her gender-group. Our contribution offers a mathematical
theory of this intuition based on optimal transport.

[Black et al., 2020] first suggested substituting causal rea-
soning with optimal transport but didn’t justify this theoreti-
cally. We do this here. Optimal transport answers the counter-
factual question had the man been a woman, how tall would
have she been? by minimizing in average a cost between all
the paired instances. Interestingly, optimal transport has been
used to generalize the notion of distribution function to higher
dimensions [?], and thus provide a statistically-faithful notion
of counterpart. In addition, it recovers the causal relations in
many scenarios: as our principal theoretical result, we prove
that the optimal transport map for the squared euclidean cost
generates the same alternative states as a large class of linear
causal models.

We will introduce the mass transportation viewpoint of
counterfactual models, with which we will connect causal-
based methods with optimal-transport-based methods. First,
we reformulate the structural counterfactual approach as a



problem of finding distributional correspondences, and pro-
vide a closed-form for this operation under the single-world
assumption. On the basis of this reformulation, we intro-
duce a general causality-free framework for the computation
of counterfactuals through mass transportation techniques—
e.g., optimal transport. This sheds new light on how to repre-
sent counterfactual operations, offers new perspectives to ex-
plain black-box decision rules, and recasts attractive causal-
based specifications for counterfactuals into more practicable
criteria.

Related research falls into two categories: work that repre-
sents counterfactual interventions as operators through causal
modeling [Plecko and Meinshausen, 2020; Karimi et al.,
2020b], and work that moves away from causal-based models
by proposing statistically-aware data-based methods [Poyi-
adzi et al., 2020; Black et al., 2020]. This paper gives a new
justification to the latter, by underlining a common structure
with the former, and showing that the two may even coincide.

2 Preliminaries
The aim of this section is to detail the mathematical nota-
tion and concepts used in the paper. As background for
two main topics here, optimal transport and causal reason-
ing, [Villani, 2003; Villani, 2008] provide supplementary
and precise treatments of the first topic; [Schölkopf, 2019;
Bongers et al., 2020] do the same for the second.

2.1 Optimal Transport
The mathematical theory of Optimal Transport provides a
framework for constructing a joint distribution, namely a cou-
pling, between two marginal probability measures. Suppose
that each marginal distribution is a sand pile in the ambient
space. A coupling is a mass transport plan transforming one
pile into the other, by specifying how to move each elemen-
tary sand mass from the first distribution so as to recover the
second distribution. Alternatively, we can see a coupling as
a random matching which pairs start points to end points be-
tween the respective supports with a certain weight. Optimal
transport defines optimal transport plans, obtaining a match-
ing by minimizing a cost function between paired instances.

Formally, let P,Q be both probabilities on Rd, whose re-
spective supports are denoted by supp(P ) and supp(Q), and
set a function c : Rd×Rd → R. The Kantorovich formulation
of the optimal transport problem with cost c is the optimiza-
tion problem

min
π∈Π(P,Q)

∫
Rd×Rd

c(x, y)dπ(x, y). (1)

Π(P,Q) ⊂ P(Rd ×Rd) denotes the set of joint distributions
π whose marginals coincide with P and Q respectively, i.e.
π(A×Rd) = P (A) and π(Rd×B) = Q(B), for all measur-
able sets A,B ∈ Rd. Solutions to (1) are optimal transport
plans between P and Q with respect to c. They exist under
very mild assumptions, like the non-negativeness of the cost.

For T : Rd → Rd a measurable map, we say that T pushes
forward P to Q if Q(B) := P (T−1(B)), for any measurable
set B ⊂ Rd. This property, denoted by T]P = Q, means
that if the law of a random variable Z is P , then the law

of T (Z) is Q. This push-forward operator T characterizes
a deterministic coupling between P and Q as every instance
x ∈ supp(P ) is matched to T (x) ∈ supp(Q) with probabil-
ity 1. Suppose now that the cost c is the squared euclidean
distance ‖·‖2 in Rd, that P is absolutely continuous with re-
spect to the Lebesgue measure in Rd, and that both P and Q
have finite second order moments. Theorem 2.12 in [Villani,
2003] states that there exists an unique solution to (1), whose
form is (I×T )]P

1 where I is the identity function on Rd and
T : Rd → Rd is a certain function called the Brenier map.
Besides, the Brenier map coincides P -almost surely with the
gradient of a convex function. Recall that P -almost surely, or
equivalently P -almost everywhere, means that it happens for
all x ∈ Rd except maybe in a set N such that P (N) = 0.
Then, in this quadratic case, (1) is equivalent to the following
Monge’s formulation

min
T : T]P=Q

∫
Rd

‖x− T (x)‖2dP (x). (2)

Thanks to a famous theorem from [McCann, 1995], under the
sole assumption that P is absolutely continuous with respect
to the Lebesgue measure, there exists only one gradient of
a convex function ∇ψ satisfying the push-forward condition
∇ψ]P = Q. This simplifies the search for the Brenier map
solving (2), as it suffices to find a gradient of a convex func-
tion satisfying the push-forward condition.

2.2 Causal reasoning
Causal reasoning relies on a structural causal model (SCM)
[Pearl, 2009], which represents the causal relationships be-
tween variables. More precisely, an acyclic structural causal
modelM is a triple 〈U, V,G〉 where:

1. U and V are two indexed sets of random variables.
Abusing notation, we interchangeably consider U and
V as sets of random variables and as random vectors;

2. G = {Gi}Vi∈V is a collection of measurable R-
valued functions where for every Vi ∈ V , Vi

a.s.
=

Gi
(
VEndo(i), UExo(i)

)
. The subsets VEndo(i) ⊂ V \ {Vi}

and UExo(i) ⊂ U are respectively called the endogenous
and exogenous parents of Vi, and denote the variables
that directly determine Vi through Gi.

3. The graph whose nodes are the variables in U ∪ V , such
that an arrow is drawn from some node Z to Vi if and
only if Z ∈ UExo(i) ∪ VEndo(i) is a directed acyclic graph
(DAG);

The equations in 2., the structural equations, specify the
causal dependencies between the variables. By identifying
G with a measurable vector function, we compactly write:
V

a.s.
= G(V,U). A structural causal model can be seen as a

generative model. The variables in U are said to be exoge-
nous, as their values are imposed on the model by an input
probability distribution L(U). In contrast, the variables in
V are said to be endogenous, as their values are outputs of
the model determined through the structural equations and

1This denotes the law of
(
Z, T (Z)

)
where Z ∼ P .



the values of U . In practice, the endogenous variables repre-
sent observed events, while the exogenous ones model latent
background phenomena. Note that we don’t assume that the
endogenous variables are mutually independent.

Crucially, acyclic SCMs are uniquely solvable2, and so
the solution V to the structural equations is well-defined.
This solution also admits interventional variants under do-
interventions. A do-intervention consists in substituting a
subset of endogenous variables VI ⊂ V by fixed values vI ,
while keeping all the rest of the causal mechanism equal. This
action, denoted by do(VI = vI), defines the modified model
Mdo(VI=vI) = 〈U, VVI=vI , G̃〉 where G̃ is given by

G̃i :=

{
vi if i ∈ I,
Gi if i /∈ I.

As acyclicity is preserved, it follows that the interventional
solution VVI=vI is well-defined. The exogeneity of the ex-
ogenous variables is respected since U is invariant under do-
interventions.

2.3 Counterfactual questions
Let (Ω,A,P) be a probability space, and set d ≥ 1. Define
the random vector V := (X,S) ∈ Rd+1, where the vari-
ables X : Ω → X ⊂ Rd represent some observed features,
while the variable S : Ω → S ⊂ R can be subjected to in-
terventions. For simplicity, we assume that S is finite such
that for every s ∈ S, P(S = s) > 0. For every s ∈ S , set
µs := L(X|S = s) the factual or observational probability
distribution of s-instances, and denote by Xs its support. We
consider the problem of computing the potential outcomes of
X when intervening on S. Suppose for instance that the event
{X = x, S = s} is observed, and set s′ 6= s. We aim at an-
swering the counterfactual question: had S been equal to s′
instead of s, what would have been the value of X? Because
of structural and statistical correlations between the variables,
computing the alternative state does not amount to change the
value of S while keeping the features X equal.

3 Structural counterfactuals revisited
Causal reasoning provides a natural framework to address
counterfactual questions. We assume that V = (X,S) is the
unique solution of an acyclic SCM, which can be defined as a
4-upletM := 〈U,X, S,G〉, and set for each s ∈ S the inter-
vened modelMS=s = 〈U,XS=s, SS=s,GS=s〉. For clarity,
we denote by UX and US the exogenous parents of respec-
tively X and S. In this section, we recall and translate Pearl’s
causal modeling computation of counterfactuals into a prob-
lem of mass transportation. We describe possible instances as
probability measures, and interventions as couplings.

3.1 Definitions
As introduced, a counterfactual statement is a cross-world
statement between a factual outcome and a counterfactual

2Rigorously, the solution is unique up to sets of probability zero
w.r.t. the latent probability space.

outcome. Let us formalize the contrast between interven-
tional, counterfactual and factual outcomes in terms of prob-
abilistic distributions. For any s ∈ S the distribution of the
interventional s-instances is defined as µS=s := L(XS=s),
and for any s′ 6= s the distribution of the counterfactual s′-
instances given s is defined as µ〈s′|s〉 := L(XS=s′ |S = s).
According to the consistency rule [Pearl et al., 2016], for
any s ∈ S , the factual distribution can be written as µs =
L(XS=s|S = s), which is sometimes denoted by µ〈s|s〉 for
the sake of coherence. The counterfactual distribution µ〈s′|s〉
describes what would have been the observational instances
of µs had S been equal to s′ instead of s; but it does not
yield specific cross-world statements on its own, as it does
not specify how instances from each distribution are related.
The stronger notion of a counterfactual model characterizes
all the counterfactual statements w.r.t. S.

The literature proposed various approaches to character-
ize causality-based counterfactual models. They all concur
with the principle that the counterfactual model can be iden-
tified with the joint probability distributions between observ-
able instances and intervened counterparts, as generated by
the structural equations [Imbens and Rubin, 2015; Pearl et
al., 2016; Bongers et al., 2020]. We follow [Pearl et al., 2016;
Kusner et al., 2017] and propose a formalization of this defi-
nition that takes into account the observed value of S before
intervening on it.
Definition 1. For every s, s′ ∈ S, the structural counterfac-
tual coupling between µs and µ〈s′|s〉 is given by

π∗〈s′|s〉 := L
(
(X,XS=s′)|S = s

)
.

We call the collection of couplings Π∗ := {π∗〈s′|s〉}s,s′∈S the
structural counterfactual model.

It is worth noting that, in general, the structural counter-
factual couplings are random, because X and XS=s are en-
tangled through U following a certain probability distribu-
tion. This means that, according to Pearl’s causal reasoning,
there is not necessarily a one-to-one deterministic correspon-
dence between factual instances and counterfactual counter-
parts, but a collection of weighted correspondences described
by the structural couplings. To understand how the latent
SCM generates such couplings, one must address the con-
struction of the counterfactual distributions at the individual
level. A counterfactual instance represents a possible alterna-
tive state ofX , with respect to an action on S and an observed
evidence of (X,S). The following definition defines a coun-
terfactual as a distribution rather than a random variable as in
[Pearl et al., 2016].
Definition 2. For an observed evidence {X = x, S = s}
and an intervention do(S = s′), the structural counterfac-
tuals of X are characterized by the probability distribution
µ〈s′|s〉(·|x) defined as

µ〈s′|s〉(·|x) := L(XS=s′ |X = x, S = s).

The possible outcomes µ〈s′|s〉(·|x) are commonly gener-
ated with the so-called three-step procedure [Pearl et al.,
2016], which amounts to: (1) setting a prior L(U) for the
modelM, (2) computing the posterior distribution L(U |X =



x, S = s), and (3) solving the structural equations ofMS=s′

with L(U |X = x, S = s). As anticipated, the counter-
factuals of an instance are not necessarily deterministic, i.e.
characterized by a degenerate distribution, but belong to a set
of possible outcomes. This is due to the fact that, in gen-
eral, there are several values of U consistent with an evi-
dence {X = x, S = s}. Note that, equivalently to Defini-
tion 1, Definition 2 characterizes the counterfactual seman-
tics. In particular, the disintegrated formulation µ〈s′|s〉 =∫
µ〈s′|s〉(·|x)dµs(x) shows how µs relates to the counterfac-

tual distribution through µ〈s′|s〉(·|x).
To sum-up, we have shown how to see a counterfactual

coupling π∗〈s′|s〉 as a transport plan between an observed
world and an alternative world, where all the elementary
correspondences are given by the structural counterfactuals
{µ〈s′|s〉(·|x)}x∈Xs

. In what follows, we study, from the mass
transportation perspective, two specific scenarios mitigating
the involvement of SCMs when computing counterfactuals:
first, when the correspondences are deterministic— then the
computation can be written as an explicit push-forward op-
eration; second, when S can be considered exogenous—then
the alternative world is observable.

3.2 The deterministic case
Interestingly, when the SCM entails that the structural coun-
terfactuals for each antecedent (or instance) determine a
unique counterfactual possibility, then the counterfactual cou-
pling is deterministic, and can be identified with a push-
forward operator. To reformulate structural counterfactuals
in deterministic transport terms, we first highlight the relation
between an individual and its intervened counterparts.

From the acyclicity of the causal model, we can recursively
substitute for theXi their functional form to obtain a measur-
able function F such that P-almost surely X = F(S,UX)
and XS=s = F(s, UX) for any s ∈ S . Now, let us define
for every s ∈ S the function fs : u 7→ F(s, u). The next
proposition specifies the range of the possible outcomes.
Proposition 1. For any s, s′ ∈ S, x ∈ Xs,

supp
(
µ〈s′|s〉(·|x)

)
⊂ fs′ ◦ f−1

s ({x}).

For any x ∈ Rd, we denote by δx the distribution assign-
ing a probability 1 to this single instance, which is called the
Dirac at x. Proposition 1 entails that the structural counter-
factuals determine a unique counterpart, and thus the set of
weighted counterfactual possibilities becomes a Dirac, if the
following single-world assumption holds:3

Assumption (SW) The functions {fs}s∈S are injective.
While the unique solvability of acyclic models ensures that

(X,S) is completely determined by U , (SW) states that, con-
versely, UX is determined by {X = x, S = s}. This implies
that the coupling between the factual and counterfactual dis-
tributions is deterministic.
Proposition 2. Let (SW) hold, and define for any s, s′ ∈ S,
T ∗〈s′|s〉 := fs′ ◦ f−1

s |Xs
4. The following properties hold:

3This assumption corresponds to the logical constraint of condi-
tional excluded middle [Stalnaker, 1980].

4f−1
s |Xs denotes the restriction of f−1

s to Xs.

1. µ〈s′|s〉(·|x) = δT∗
〈s′|s〉

(x) for every x ∈ Xs;

2. µ〈s′|s〉 = T ∗〈s′|s〉]µs;

3. π∗〈s′|s〉 = (I × T ∗〈s′|s〉)]µs.

We say that T ∗〈s′|s〉 is a structural counterfactual operator,
and identify T ∗ := {T ∗〈s′|s〉}s,s′∈S to the structural counter-
factual model Π∗.

The operators in T ∗ describe the effect of causal interven-
tions on factual distributions, without assuming any knowl-
edge of L(U).

3.3 The exogenous case
Let ⊥⊥ denote the independence between random variables.
The variable S is said to be exogenous relative to X [Galles
and Pearl, 1998] if the following holds:

Assumption (RE) US ⊥⊥ UX and XEndo(S) = ∅.

S X

UXUS

Figure 1: DAG satisfying (RE)

This represents a scenario where: (1) there is no hidden
confounder between X and S, (2) no variable in X is a direct
cause of S. Note that (RE) entails that S ⊥⊥ UX . Then, it
is easy to see that at the distributional level, intervening on S
amounts to conditioning X by a value of S.

Proposition 3. If (RE) holds, then for every s, s′ ∈ S we
have µS=s′ = µs′ = µ〈s′|s〉.

Relative exogeneity is a critical assumption. Recall that
the structural counterfactual coupling π∗〈s′|s〉 represents an
intervention transforming an observable distribution µs into
an a priori non-observable counterfactual distribution µ〈s′|s〉.
According to Proposition 3, (RE) renders the causal model
otiose for the purpose of generating the counterfactual dis-
tributions, as the latter coincides with the observable factual
distribution µs′ . However, the coupling is still required to de-
termine how each instance is matched at the individual level.
Remarkably, (RE) provides elegant transitivity properties to
our counterfactual operators.

Proposition 4. Suppose that (RE) and (SW) hold. Then, for
any s, s′, s′′ ∈ S:

1. The operator T ∗〈s′|s〉 is invertible, such that µs′ -almost
everywhere T ∗−1

〈s′|s〉 = T ∗〈s|s′〉;

2. µs-almost everywhere, T ∗〈s′′|s′〉 ◦ T ∗〈s′|s〉 = T ∗〈s′′|s〉.

In terms of real-world modeling, (RE) is intuitively satis-
fied in many scenarios. Let X represent the socio-economics



features of individuals, and suppose for example that S =
{0, 1}, where S = 0 stands for female while S = 1 stands
for male. In this presumably exogenous model, any factual
woman described by x is the counterfactual counterpart of
her counterfactual male counterpart described by T ∗〈1|0〉(x),
and changing all the factual women into their counterfactual
male counterparts recovers the factual male population.

We conclude Section 3 by illustrating how our notation
and assumptions apply to the case of linear additive struc-
tural models, which account for most of the state-of-the-art
models.

Example 1. Under (RE), a linear additive SCM is charac-
terized by the structural equations

X = MX + wS + b+ UX ,

where w, b ∈ Rd and M ∈ Rd×d are deterministic param-
eters. Acyclicity implies that I − M is invertible, so that
X = (I−M)−1(wS+b+UX) =: F(S,UX). Note that (SW)
holds such that for any s ∈ S, f−1

s (x) = (I−M)x−ws−b.
Then, for any s, s′ ∈ S, T ∗〈s′|s〉 = x+ (I −M)−1w(s′ − s).

The transport viewpoint of structural counterfactual rea-
soning suggests that transport-based method can be natural
substitutes for causal modeling, a topic we explore next.

4 Transport-based counterfactuals
[Black et al., 2020] mimicked the structural account of coun-
terfactuals by computing alternative individuals using a de-
terministic optimal transport map, but they did not provide a
mathematical or conceptual foundation for their idea. (SW)
and (RE) imply that approximating an unknown structural
counterfactual model with deterministic couplings between
observed data is a reasonable method. Generalizing their
idea, we propose a general framework for transport-based
counterfactual models that leads us to practicable SCM-free
frameworks.

Definition 3. 1. A counterfactual model is a collection
Π := {π〈s′|s〉}s,s′∈S of couplings on X × X such that
for any s, s′ ∈ S , the first marginal of π〈s′|s〉 is µs, the
second marginal is µs′ , and π〈s|s〉 = (I × I)]µs. An
element of Π is called a counterfactual coupling. We say
that Π is a random counterfactual model if at least one
coupling for s 6= s′ is not deterministic.

2. A deterministic counterfactual model is a collection
T := {T〈s′|s〉}s,s′∈S of mappings from X to X satis-
fying for any s, s′ ∈ S, T〈s′|s〉]µs = µs′ and T〈s|s〉 = I.
An element of T is called a counterfactual operator.

One challenge for this approach is to choose the model ap-
propriately in order to define a relevant notion of counterpart.
Even though the family of trivial couplings is a well-defined
counterfactual model, it is not intuitively justifiable. Better
suited counterfactual models can be constructed through op-
timal transport theory. Optimal transport with the squared
euclidean cost is known to preserve quantiles in dimension
one, and has been used to generalize the notion of distribu-
tion function to higher dimensions [?]. In this sense, it satis-
fies our statistical intuitions on counterfactual reasoning. In

addition, if the factual distributions are absolutely continu-
ous w.r.t. the Lebesgue measure, then for any s, s′ ∈ S, the
Brenier map between µs and µs′ is the unique counterfactual
operator that can be written as the gradient of a convex func-
tion. As the structural counterfactual operator from Example
1 is the gradient of a convex quadratic function, we obtain the
following result.
Theorem 1. LetM be a linear additive SCM satisfying (RE)
(see Example 1). If the factual distributions are absolutely
continuous w.r.t. Lebesgue measure, then for any s, s′ ∈ S,
the structural counterfactual operator T ∗〈s′|s〉 is the Brenier
map between µs and µs′ .

Whether or not elements of the structural counterfactual
model Π∗ are solutions to a Kantorovich or Monge problem
for a certain cost function is presumably difficult to prove for
more complex SCMs. Theorem 1 supports the intuition that
substituting Π∗ with a surrogate Π from optimal transport
provides a decent approximation of the do-calculus. Using
a model close to Π∗ would be ideal in terms of interpretabil-
ity of a decision-making process, but an expert can always
propose and defend a different notion of similarity Π.

The computational complexity of building an optimal
transport plan between a n-sample to a m-sample is in
O
(
(n + m)nm log(n + m)

)
, but we can substantially im-

prove on this to reach O
(
nm
)

with entropy-regularized ver-
sions [Cuturi, 2013]. As the computation is distribution-wise,
not point-wise, it yields all the cross-world or counterfac-
tual statements corresponding to a given change s → s′ for
the considered data-points. In contrast, computing a struc-
tural counterfactual coupling is less convenient and more
challenging. First, inferring the causal graph from observa-
tional data is NP-hard, with an exponential worst-case com-
plexity with respect to the number of nodes [Cooper, 1990;
Chickering et al., 2004; Scutari et al., 2019]. Second, this is
not enough to compute counterfactuals, as we must still spec-
ify the structural equations. Third, even though the three-step
procedure generates samples from the structural counterfac-
tuals of a given instance through a specified SCM [Perov et
al., 2020], it needs to be applied at each point in order to infer
the whole coupling.

5 Applications
In this section we look at two applications of transport based
counterfactuals—explicability or interpretability and fairness
of a black-box algorithm. Counterfactuals have been used al-
ready in both areas [Wachter et al., 2017; Kusner et al., 2017;
Karimi et al., 2020a]. [Karimi et al., 2020a] exploit auto-
mated reasoning based methods to find counterfactuals that
can explain program behavior, and these methods have com-
putational complexity problems given that they must test for
satisfiability or unsatisfiability that is at least NP hard (de-
pending on the logic fragment used). On the other hand
a transport based method by aligning two entire probability
distributions can provide a set of explanatory counterfactu-
als that mimic the causal approach in polynomial time, which
means that the transport based approach can apply to the in-
terpretability of programs for which a SAT based approach
is not practically possible. In addition, the transport based



method capturing as it does in some cases the causal structure
of the phenomenon has a firmer conceptual basis as an ex-
planatory tool than standard heuristically guided approaches
relying either on local approximation by simpler linear mod-
els as LIME [Ribeiro et al., 2016] or relying on the compu-
tation of indices measuring the contribution of each variable
and its importance as in SHAP [Lundberg and Lee, 2017] or
in [Bachoc et al., 2020].

We now turn to the fairness application. Suppose that the
random variable S encodes the observed sensitive or pro-
tected attribute (e.g., race, gender) which divides the popu-
lation into different classes in a machine learning prediction
task. The counterfactual framework, by capturing the struc-
tural or statistical links between the features and the protected
attribute, proposes sharper notions of fairness than statisti-
cal parity, which only gives a notion of group fairness, and
does not control discrimination at a subgroup or an individual
level: a conflict illustrated by [Dwork et al., 2012]. We first
use the mass transportation formalism introduced in Section
3 to reformulate the counterfactual fairness [Kusner et al.,
2017] condition, which is achieved when individuals and their
structural counterfactual counterparts are treated equally.

Definition 4. A predictor Ŷ = h(X,S) is counterfactually
fair if for every s, s′ ∈ S and µs-almost every x,

L(ŶS=s|X = x, S = s) = L(ŶS=s′ |X = x, S = s),

where ŶS=s := h(XS=s, s).

For each individual, this condition guarantees the truth of
the counterfactual statement had the protected attribute been
changed, the outcome would have been the same. The struc-
tural counterfactual transport plans allow for simpler charac-
terizations of counterfactual fairness.

Proposition 5. 1. A predictor h(X,S) is counterfactually
fair if and only if for every s, s′ ∈ S and π∗〈s′|s〉-almost
every (x, x′),

h(x, s) = h(x′, s′).

2. If (SW) holds, then a predictor h(X,S) is counterfactu-
ally fair if and only if for every s, s′ ∈ S and µs-almost
every x,

h(x, s) = h(T ∗〈s′|s〉(x), s′).

3. If (SW) and (RE) hold, then a predictor h(X,S) is coun-
terfactually fair if and only if for every s, s′ ∈ S such
that s < s′ and µs-almost every x,

h(x, s) = h(T ∗〈s′|s〉(x), s′).

The condition (SW) has two main advantages in terms of
clarity and practicability of the formulation. First, it high-
lights the clear relationship between factual and counterfac-
tual quantities. Second, testing counterfactual fairness re-
quires only the knowledge of the structural equations, but not
the one ofL(U). Note that, if (RE) holds, then counterfactual
fairness is a stronger criterion than the statistical parity across
groups.

Proposition 6. Suppose that (RE) holds. If the predictor
h(X,S) satisfies counterfactual fairness, then it satisfies sta-
tistical parity, namely h(X,S) ⊥⊥ S. The converse does not
hold in general.

One can think of being counterfactually fair as being in-
variant by counterfactual operations w.r.t. the protected at-
tribute. In order to define SCM-free criteria, we generalize
this idea to the models introduced in Section 4.

Definition 5. 1. Let Π = {π〈s′|s〉}s,s′∈S be a random
counterfactual model. A predictor h(X,S) is Π-
counterfactually fair if for every s, s′ ∈ S and π〈s′|s〉-
almost every (x, x′),

h(x, s) = h(x′, s′).

2. Let T = {T〈s′|s〉}s,s′∈S be a deterministic counterfac-
tual model. A predictor h(X,S) is T -counterfactually
fair if for every s, s′ ∈ S and µs-almost every x,

h(x, s) = h(T〈s′|s〉(x), s′).

Because the proof of Proposition 6 only relies on the as-
sumption that the couplings are transport plans between the
factual distributions, the following proposition holds.

Proposition 7. Let Π be a counterfactual model (determinis-
tic or not). If a predictor h(X,S) satisfies Π-counterfactual
fairness, then it satisfies statistical parity, namely h(X,S) ⊥⊥
S. The converse does not hold in general.

Using Definition 5 as an individual-level fairness criterion
has several practical advantages. In contrast to Definitions 4
and Proposition 5, it relies on a well-defined counterfactual
model that obviates any assumptions about the causal model.
This alternative approach to counterfactual fairness alleviates
the impracticability of causal reasoning, trading the detection
of structural links between variables for the discovery of sta-
tistical correlations. Besides, as Definition 4 amounts to Π∗-
counterfactual fairness when (RE) holds, one can think of
Definition 5 as an approximation of counterfactual fairness.

6 Conclusion
We focused on the challenge of designing sound counterfac-
tuals when the causal model is unknown. We framed the com-
putation of counterfactuals through causal models as a prob-
lem of mass transportation, and studied two key scenarios of
counterfactual reasoning through this viewpoint. On the basis
of this reformulation, we introduced a general formalism for
the computation of counterfactual counterparts based on any
distributional matching technique. In particular, we showed
that optimal transport defines relevant counterfactual models,
as it is tailored for numerical implementation, satisfies statis-
tical intuitions, and can even recover the structural dependen-
cies of linear additive SCMs. On the strength of this alter-
native counterfactual modeling, we proposed original coun-
terfactual fairness conditions, free of prior assumptions on
the data-generation process. This offered new conceptual and
practical perspectives for counterfactual reasoning.
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This supplementary material addresses the mathematical
proofs of the paper.

A Lemmas
We start by proving two key results we mentioned in Section
3. The first one specifies formulas forX and its interventional
variants.

Lemma 1. There exists a measurable function F such that
P-almost surely X = F(S,UX) and XS=s = F(s, UX) for
any s ∈ S.

Proof. Recall that, rigorously, the structural equations hold
almost surely. Throughout this proof, we implicitly work with
a fixed input ω for the random variables, where ω belongs to
some measurable set Ω0 ⊂ Ω such that P(Ω0) = 1 and

Xi = GXi

(
XEndo(Xi), SEndo(Xi), UXi

)
,

S = GS
(
XEndo(S), US

)
.

Because the graph of M is a DAG, it has a topological
ordering on the variables in X . Then, we can recursively
substitute the Xi according to this ordering to obtain

X = F̃
(
SEndo(X), UX

)
,

where F̃ is a measurable function. Remark that either
SEndo(X) = {S} or SEndo(X) = ∅, depending on whether
S is a parent of X in the graph. Then, without loss
of generality, we can define F such that F(S,UX) :=

F̃
(
SEndo(X), UX

)
. Consequently, X = F(S,UX). Now, re-

call that do(S = s) preserves the structural equations of X ,
and does not impact U . Then, using the exact same proce-
dure for (XS=s, SS=s) instead of (X,S) we get XS=s =
F(SS=s, UX) = F(s, UX).

The second result is the consistency rule.

Lemma 2. For any s ∈ S, µ〈s|s〉 = µs

Proof. From Lemma 1, P-almost surely X = F(S,UX) and
XS=s = F(s, UX) for any s ∈ S. Then,

µs = L(X|S = s)

= L(F(S,UX)|S = s)

= L(F(s, UX)|S = s),

and

µ〈s|s〉 = L(XS=s|S = s)

= L(F(s, UX)|S = s).

Consequently, µs = µ〈s|s〉.

B Proofs of Section 3
Proof of Proposition 1.

Proof. According to Lemma 1 we can write that X =
F(S,UX) P-almost surely. This implies that {X = x, S =
s} ⊂ {UX ∈ f−1

s ({x})}. Besides, XS=s′ = fs′(UX). Then,
write for B an arbitrary measurable set of X

P(XS=s′ ∈ B|X = x, S = s)

= P(fs′(UX) ∈ B|X = x, S = s)

= P(fs′(UX) ∈ B,UX ∈ f−1
s ({x})|X = x, S = s)

= P(fs′(UX) ∈ B, fs′(UX) ∈ fs′ ◦ f−1
s ({x})|X = x, S = s)

= P(XS=s′ ∈
[
B ∩ fs′ ◦ f−1

s ({x})
]
|X = x, S = s).

Consequently, L(XS=s′ |X = x, S = s) does not put mass
outside fs′ ◦ f−1

s ({x}).

Proof of Proposition 2.

Proof. Let s, s′ ∈ S and x ∈ Xs. From Lemma 1 we know
that X = fS(UX), and according to (SW) we additionally
have UX = f−1

S (X). We address each point separately.
Proof of 1. By definition of the structural counterfactuals,

L(XS=s′ |X = x, S = s) = L(fs′(UX)|X = x, S = s)

= L(fs′(f
−1
S (X))|X = x, S = s)

= L(fs′ ◦ f−1
s (x)|X = x, S = s)

= L(fs′ ◦ f−1
s (x))

= δfs′◦f
−1
s (x).

This proves the first point of the proof.
Proof of 2. By definition of the counterfactual distribution,

µ〈s′|s〉 = L(XS=s′ |S = s)

= L(fs′(UX)|S = s)

= L(fs′ ◦ f−1
S (X)|S = s)

= L(fs′ ◦ f−1
s (X)|S = s)

=
(
fs′ ◦ f−1

s

)
]
µs.

This proves the second point of the proposition.
Proof of 3. By definition of the structural counterfactual
coupling,

π〈s′|s〉 = L
(
(X,XS=s′)|S = s

)
= L

(
(X, fs′(UX))|S = s

)
= L

(
(X, fs′(f

−1
s (X)))|S = s

)
= L

(
(Xs, fs′ ◦ f−1

s (Xs))
)
,

where Xs ∼ µs. This concludes the proof.



Proof of Proposition 3.

Proof. To show this, set s ∈ S and invoke Lemma 1 once
again to writeX = F(S,UX) andXS=s = F(s, UX). Recall
that (RE) implies that S ⊥⊥ UX . Then,

L(X|S = s) = L
(
F(S,UX)|S = s

)
,

= L
(
F(s, UX)|S = s

)
,

= L
(
F(s, UX)

)
,

= L(XS=s).

This means that µs = µS=s. Similarly, for s, s′ ∈ S we have

L(XS=s′ |S = s) = L
(
F(s′, UX)|S = s

)
,

= L
(
F(s′, UX)

)
,

= L
(
F(s′, UX)|S = s′

)
,

= L
(
F(S,UX)|S = s′

)
,

= L(X|S = s′).

This means that µ〈s′|s〉 = µs′ , which concludes the proof.

Proof of Proposition 4.

Proof. We address each point separately.
Proof of 1. Set s, s′ ∈ S . By definition T ∗〈s′|s〉 = fs′ ◦
f−1
s |Xs

, which induces a bijection from Xs to Im(T ∗〈s′|s〉).
Let us denote Im(T ∗〈s′|s〉) by X〈s′|s〉, so that T ∗−1

〈s′|s〉 = fs ◦
f−1
s′ |X〈s′|s〉 .

Now, recall that P-almost surely XS=s = fs(UX) and
XS=s′ = fs′(UX). Besides, from (RE) and Proposition 3,
it follows that µs = L(XS=s) and µs′ = L(XS=s′). This
implies that there exists a measurable set Ω0 ⊂ Ω such that
for every ω ∈ Ω0,

XS=s(ω) = fs(UX(ω)) ⊂ Xs,
XS=s′(ω) = fs′(UX(ω)) ⊂ Xs′ .

In the rest of the proof, we implicitely work with an ar-
bitraty ω ∈ Ω0. Write UX = f−1

s (XS=s) so that XS=s′ =
(fs′ ◦f−1

s )(XS=s). SinceXS=s ∈ Xs, this leads toXS=s′ =
(fs′ ◦ f−1

s |Xs
)(XS=s) = T ∗〈s′|s〉(XS=s), and consequently

XS=s′ ∈ X〈s′|s〉. Then, we can apply T ∗−1
〈s′|s〉 on XS=s′ to

obtain

T ∗−1
〈s′|s〉(XS=s′) = fs ◦ f−1

s′ |X〈s′|s〉(XS=s′)

= fs ◦ f−1
s′ |Xs′ (XS=s′)

= T ∗〈s|s′〉(XS=s′).

This means that the equality T ∗−1
〈s′|s〉 = T ∗〈s|s′〉 holds on

XS=s′(Ω0) where P(Ω0) = 1. Thus, it holds µs′ -almost ev-
erywhere as µs′

(
XS=s′(Ω0)

)
= P(Ω0) = 1. This concludes

the first part of the proof.

Proof of 2. Set s, s′, s′′ ∈ S. Following the same principle
as before, we implicitly work on a set Ω0 such that P(Ω0) = 1
and for every ω ∈ Ω0,

XS=s(ω) = fs(UX(ω)) ⊂ Xs,
XS=s′(ω) = fs′(UX(ω)) ⊂ Xs′ .

Then, we write

T ∗〈s′′|s〉(XS=s) = fs′′ ◦ f−1
s |Xs

(XS=s)

= (fs′′ ◦ f−1
s′ ) ◦ (fs′ ◦ f−1

s |Xs
)(XS=s).

Note that (fs′ ◦ f−1
s |Xs

)(XS=s) = XS=s′ ∈ Xs′ . Hence,

T ∗〈s′′|s〉(XS=s) = (fs′′ ◦ f−1
s′ |Xs′ ) ◦ (fs′ ◦ f−1

s |Xs
)(XS=s)

= T ∗〈s′′|s′〉 ◦ T ∗〈s′|s〉(XS=s).

Similarly to the previous point, this means that the equal-
ity T ∗〈s′′|s〉 = T ∗〈s′′|s′〉 ◦ T ∗〈s′|s〉 holds on XS=s(Ω0)
where P(Ω0) = 1. Thus, it holds µs-almost everywhere as
µs
(
XS=s(Ω0)

)
= P(Ω0) = 1. This concludes the proof.

C Proofs of Section 4
Proof of Theorem 1.

Proof. We address the structural equations

X = MX + wS + b+ UX ,

where w, b ∈ Rd and M ∈ Rd×d are deterministic param-
eters. Acyclicity imposes that I − M is invertible, which
enables to write

X = (I −M)−1(wS + b+ UX) =: F(S,UX).

Using our previous notations, we have that for any s ∈ S ,
fs(u) = (I −M)−1(ws + b + u). Remark that (SW) holds
such that f−1

s (x) = (I −M)x−ws− b. Now, set s, s′ ∈ S,
and use the definition of T ∗〈s′|s〉 to obtain

T ∗〈s′|s〉(x) = (I −M)−1
(
w(s′ − s) + (I −M)x

)
= x+ (I −M)−1w(s′ − s).

According to Section 2.1, it suffices to show that T ∗〈s′|s〉
coincides µs-almost everywhere with the gradient of a convex
function to conclude that it is the Brenier map between µs and
µs′ . This is clearly the case, as T ∗〈s′|s〉 is the gradient of the

convex function x 7→ 1
2‖x‖

2
+
[
(I −M)−1w(s′ − s)

]T
x.

D Proofs of Section 5
Proof of Proposition 5.

Proof. We address each point separately.



Proof of 1. We aim at showing that counterfactual fairness
is equivalent to:

(Goal) For every s, s′ ∈ S , there exists a measurable set
C := C(s, s′) ⊂ X × X satisfying π∗〈s′|s〉(C) = 1 such
that for every (x, x′) ∈ C

h(x, s) = h(x′, s′).

A direct reformulation of the counterfactual fairness con-
dition is:

(CF) For every s, s′ ∈ S, there exists a measurable set A :=
A(s) satisfying µs(A) = 1, such that for every x ∈ A
and every measurable set M ⊂ R

P(ŶS=s ∈M |X = x, S = s)

= P(ŶS=s′ ∈M |X = x, S = s).
(3)

To show that (CF) is equivalent to (Goal), we first rewrite
(CF) into the following intermediary formulation:

(IF) For every s, s′ ∈ S, there exists a measurable set A :=
A(s) satisfying µs(A) = 1, such that for every x ∈ A
and every measurable M ⊂ R there exists a measurable
set B := B(s, s′, x,M) satisfying µ〈s′|s〉(B|x) = 1 and
such that for every x′ ∈ B,

1{h(x,s)∈M} = 1{h(x′,s′)∈M}.

Proof that (CF) ⇐⇒ (IF). Suppose that s, s′, x ∈ A and
M ⊂ R are fixed. According to Lemma 2, L(X|S = s) =
L(XS=s|S = s), so that we can rewrite the left-term of (3)
as

P(ŶS=s ∈M |X = x, S = s)

= P(h(XS=s, s) ∈M |X = x, S = s)

= P(h(X, s), s) ∈M |X = x, S = s)

= P(h(x, s) ∈M)

= 1{h(x,s)∈M}.

Then, using the distributions of the structural counterfactu-
als, express the right-term of (3) as

P(ŶS=s′ ∈M |X = x, S = s)

= P(h(XS=s′ , s
′) ∈M |X = x, S = s)

=

∫
1{h(x′,s′)∈M}dµ〈s′|s〉(x

′|x).

Because the indicator functions equal either 0 or 1, the
condition 1{h(x,s)∈M} =

∫
1{h(x′,s′)∈M}dµ〈s′|s〉(x

′|x) is
equivalent to 1{h(x,s)∈M} = 1{h(x′,s′)∈M} for µ〈s′|s〉(·|x)-
almost every x′. This means that there exists a measurable
set B := B(s, s′, x,M) such that µ〈s′|s〉(B|x) = 1 and for
every x′ ∈ B,

1{h(x,s)∈M} = 1{h(x′,s′)∈M}

This proves that (CF) is equivalent to (IF).

Proof that (IF) =⇒ (Goal). As (IF) is true for any arbi-
trary measurable set M ⊂ R, we can apply this result with
M = {h(x, s)} to obtain a measurable set B := B(s, s′, x)
such that µ〈s′|s〉(B|x) = 1 and for every x′ ∈ B, h(x′, s′) =
h(x, s). To sum-up, for every s, s′ ∈ S, there exists a mea-
surable set A := A(s) satisfying µs(A) = 1 such that for
every x ∈ A, there exists a measurable set B := B(s, s′, x)
satisfying µ〈s′|s〉(B|x) = 1, such that for every x′ ∈ B,
h(x′, s′) = h(x, s). Now, we must show that the latter equal-
ity holds for π∗〈s′|s〉-almost every (x, x′).

To this end, set C := C(s, s′) = {(x, x′) ∈ X × X|x ∈
A(s), x′ ∈ B(s, s′, x)}. Remark that by definition of A and
B, for every (x, x′) ∈ C, h(x, s) = h(x′, s′). To conclude,
let us prove that π∗〈s′|s〉(C) = 1.

π∗〈s′|s〉(C) =

∫
A

P(XS=s′ ∈ B|X = x, S = s)dµs(x)

=

∫
A

µ〈s′|s〉(B|x)dµs(x)

=

∫
A

1dµs(x)

= µs(A)

= 1.

This proves that (IF) implies (Goal).

Proof that (Goal) =⇒ (IF). Using (Goal), consider a
measurable set C := C(s, s′) satisfying π∗〈s′|s〉(C) = 1 and
such that for every (x, x′) ∈ C, h(x, s) = h(x′, s′). Then,
define for any x ∈ X , the measurable setB(s, s′, x) := {x′ ∈
X |(x, x′) ∈ C}. According to the disintegrated formula of
π∗〈s′|s〉,

1 =

∫
µ〈s′|s〉(B|x)dµs(x).

Since 0 ≤ µ〈s′|s〉(B|x) ≤ 1, this implies that for µs-
almost every x, µ〈s′|s〉(B|x) = 1. Said differently, there ex-
ists a measurable set A := A(s) satisfying µs(A) = 1 such
that for every x ∈ A, the measurable set B(s, s′, x) satisfies
µ〈s′|s〉(B|x) = 1. By construction of B and by definition of
C, for every x ∈ A and every x′ ∈ B, h(x, s) = h(x′, s′).
To obtain (IF), it suffices to take any measurable M ∈ R and
to note that the latter equality implies that 1{h(x,s)∈M} =
1{h(x′,s′)∈M}.

Proof of 2. Consider (CF), and recall that for every s, s′ ∈
S, µs-almost every x and every measurable M ⊂ R the left
term of (3) is 1{h(x,s)∈M}. Let us now reframe the right-term
of (3). If (SW) holds, using that UX = f−1

S (X) we obtain



P(ŶS=s′ ∈M |X = x, S = s)

= P(h(XS=s′ , s
′) ∈M |X = x, S = s)

= P(h(F(s′, UX), s′), s′) ∈M |X = x, S = s)

= P(h(fs′(f
−1
S (X)), s′) ∈M |X = x, S = s)

= P(h(fs′ ◦ f−1
s (x), s′) ∈M)

= P(h(T ∗〈s′|s〉(x), s′) ∈M)

= 1{h(T∗
〈s′|s〉

(x),s′)∈M}.

Consequently, (CF) holds if and only if, for every measur-
able M ∈ R

1{h(x,s)∈M} = 1{h(T∗
〈s′|s〉

(x),s′)∈M}.

Using the same reasoning as before, we take M =
{h(x, s)} to prove that this condition is equivalent to
h(x, s) = h(T ∗〈s′|s〉(x), s′). This concludes the second part
of the proof.
Proof of 3. From 2. and Proposition 3, it follows that coun-
terfactual fairness can be written as: for every s, s′ ∈ S such
that s′ < s, for µs-almost every x

h(x, s) = h(T ∗〈s′|s〉(x), s′),

and for µs′ -almost every x

h(x, s′) = h(T ∗〈s|s′〉(x), s′).

Set s, s′ ∈ S such that s′ < s. To prove 3. we must
show that these two conditions are equivalent. Set A a mea-
surable subset of Xs such that µs(A) = 1, and h(x, s) =
h(T ∗〈s′|s〉(x), s′) for any x ∈ A. Then, make the change
of variable x′ = T ∗〈s′|s〉(x) so that h(T ∗−1

〈s′|s〉(x
′), s′) =

h(x′, s′) for every x′ ∈ T ∗〈s′|s〉(A). By Propositions 2 and
3, T ∗〈s′|s〉]µs = µs′ , which implies that µs′(T ∗〈s′|s〉(A)) = 1.

Therefore, the equality h(T ∗−1
〈s′|s〉(x

′), s) = h(x′, s′) holds
for µs′ -almost every x′. Finally, recall that according to
Proposition 4, T ∗−1

〈s′|s〉 = T ∗〈s|s′〉 µs′ -almost everywhere. As
the intersection of two sets of probability one is a set of proba-
bility one, h(T ∗〈s|s′〉(x

′), s) = h(x′, s′) holds for µs′-almost
every x′.

To prove the converse, proceed similarly by switching s to
s′.

Proof of Proposition 6.

Proof. According to Proposition 5, h is counterfactually fair
if and only if for any s, s′ ∈ S and for π∗〈s′|s〉-almost every
(x, x′), h(x, s) = h(x′, s′) or equivalently 1{h(x,s)∈M} =
1{h(x′,s′)∈M} for every measurable M ∈ R. Set s, s′ ∈ S.
Recall that from (RE), π∗〈s′|s〉 admits µs for first marginal,
and µs′ for second marginal. Let us integrate this equality
w.r.t. π∗〈s′|s〉 to obtain, for every measurable M ⊂ R∫

1{h(x,s)∈M}dµs(x) =

∫
1{h(x′,s′)∈M}dµs′(x).

This can be written as, for every measurable M ∈ R

P(h(X, s) ∈M |S = s) = P(h(X, s′) ∈M |S = s′),

which means that

L(h(X,S)|S = s) = L(h(X,S)|S = s′).

As this holds for any s, s′ ∈ S, we have that h(X,S) ⊥⊥ S.
One can easily convince herself that the converse is not

true. As a counterexample, consider the following causal
model,

X = S × UX + (1− S)× (1− UX).

Where S follows an arbitrary law and does not depend on
UX . Observe that (RE) is satisfied so that

L(XS=0) = L(X|S = 0),

L(XS=1) = L(X|S = 1),

L(X|S = 0) = L(X|S = 1).

In particular, whatever the chosen predictor, statistical par-
ity will hold since the observational distributions are the
same. By definition of the structural counterfactual operator,
we have T ∗〈1|0〉(x) = 1 − x. Now, set the unaware predictor
(i.e., which does not take the protected attribute as an input),
h(X) := sign(X − 1/2). Clearly,

h(T ∗〈1|0〉(x)) = −h(x) 6= h(x).
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