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WEIGHTED ERDŐS-KAC THEOREM IN SHORT INTERVALS

KUI LIU & JIE WU

Abstract. In this paper, we generalize Elliott’s weighted Erdős-Kac theorem to the case
of short intervals.

1. Introduction

Recently Elliott [3, 4] established a weighted central limit theorem for the Fourier coef-
ficients of cusp form. For comparison, he also gave a weighted Erdős-Kac theorem on the
value distribution of the function ω(n) that counts the number of distinct prime divisors of
the positive integer n. As usual, denote by d(n) the classic divisor function. For α ∈ R,
define

(1.1) Dα(x) :=
∑
n6x

d(n)α.

Elliott’s weighted Erdős-Kac theorem can be stated as follows (see [4, Theorem]): for each
λ, we have

(1.2)
1

Dα(x)

∑
n6x

ω(n)−2α log2 x6λ(2
α log2 x)

1/2

d(n)α → Φ(λ)

as x → ∞, where logk denotes the k-fold iterated logarithm and Φ(λ) is the Gaussian law
defined by

(1.3) Φ(λ) :=
1√
2π

∫ λ

−∞
e−τ

2/2 dτ.

The case of α = 0 of (1.2) firstly was established by Erdős & Kac [5] in 1939. This problem
has a long and rich history. The best actual result is due to Delange [2].

The aim of this paper is to generalize Elliott’s result (1.2) to the case of short intervals.
Similar to (1.1), write

(1.4) Dα(x, y) :=
∑

x<n6x+y

d(n)α.

Our result is as follows.

Theorem 1.1. (i) Let α ∈ R and ε > 0. Then for each real number λ, we have

(1.5)
1

Dα(x, y)

∑
x<n6x+y

ω(n)−2α log2 x6λ(2
α log2 x)

1/2

d(n)α = Φ(λ) +Oα,ε

(
1√

log2 x

)
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uniformly for x → ∞ and x7/12+ε 6 y 6 x, where the implied constant depends on α and ε
only. The error term in (1.5) is optimal.

(ii) The same result also holds if the summation condition on ω(n) may be replaced by
log d(n)/ log 2− 2α log2 x 6 λ(2α log2 x)1/2.

Remark 1. The exponent 7
12

in Theorem 1.1 comes from Huxley’s zero-density bound for the

Riemann ζ-function [6]. This constant can be reduced to 1
2

if we assume the zero-density
hypothesis.

In order to prove that the error term in (1.5) is optimal, we need to establish a weighted
Laudan prime number theorem in short intervals. For α ∈ R and k ∈ N, define

(1.6) πk,α(x, y) :=
∑

x<n6x+y
ω(n)=k

d(n)α.

We have the following result.

Theorem 1.2. Let α ∈ R, B > 0 and ε > 0. Then we have

(1.7) πk,α(x, y) =
y

log x

(2α log2 x)k−1

(k − 1)!

{
λα

(
k − 1

2α log2 x

)
+O

(
log2 x

k log x
+

k − 1

(log2 x)2

)}
.

uniformly for x > 3, x7/12+ε 6 y 6 x and 1 6 k 6 B2α log2 x, where

(1.8) λα(z) =
2α

Γ(2αz + 1)

∏
p

(
1 +

∑
ν>1

(ν + 1)αz

pν

)(
1− 1

p

)2αz

and the implied constant depend on α, B and ε only.

A principal tool for the proof of Theorems 1.1 and 1.2 is a rather general result of Cui,
Lü and Wu [1] on the Selberg-Delange method in short intervals (see Lemma 2.1 below). A
more result can be found in [8].

2. Some preliminary lemmas

Let f(n) be an arithmetic function and let its Dirichlet series be defined by

(2.1) F(s) :=
∞∑
n=1

f(n)n−s.

Let z ∈ C, w ∈ C, α > 0, δ > 0, A > 0, B > 0, C > 0, M > 0 be some constants. We say
that the Dirichlet series F(s) is of type P(z, w, α, δ, A,B,C,M) if the following conditions
are verified:

(a) for any ε > 0 we have

(2.2) |f(n)| �ε Mnε (n > 1),

where the implied constant depends only on ε;
(b) we have

∞∑
n=1

|f(n)|n−σ 6M(σ − 1)−α (σ > 1);
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(c) the Dirichlet series

(2.3) G(s; z, w) := F(s)ζ(s)−zζ(2s)−w

can be analytically continued to a holomorphic function in (some open set containing) σ > 1
2

and, in this region, G(s; z, w) satisfies the bound

(2.4) |G(s; z, w)| 6M(|τ |+ 1)max{δ(1−σ),0} logA(|τ |+ 1)

uniformly for |z| 6 B and |w| 6 C, where and in the sequel we implicitly define the real
numbers σ and τ by the relation s = σ + iτ and choose the principal value of the complex
logarithm.

The following result is Corollary 1.2 of [1], which constitutes the key tool for the proof of
Theorem 1.1.

Lemma 2.1. If the Dirichlet series F(s) is of type P(z, w, α, δ, A,B,C,M), then for any
ε > 0, we have

(2.5)
∑

x<n6x+y

f(n) = y(log x)z−1
{
λ(z, w) +O

(
M

log x

)}
uniformly for x > 2, x(7+5δ)/(12+5δ)+ε 6 y 6 x, |z| 6 B and |w| 6 C, where

λ(z, w) :=
G(1; z, w)ζ(2)w

Γ(z)

and the implied constant in the O-term depends only on A,B, α, δ and ε.

Lemma 2.2. Let B > 0 and ε > 0. Then we have

(2.6)
∑

x<n6x+y

d(n)αzω(n) = y(log x)2
αz−1

{
zλα(z) +OB,ε

(
1

log x

)}
uniformly for x > 2, x7/12+ε 6 y 6 x and |z| 6 B, where

(2.7) λα(z) =
2α

Γ(2αz + 1)

∏
p

(
1 +

∑
ν>1

(ν + 1)αz

pν

)(
1− 1

p

)2αz

.

In particular, we have

(2.8) Dα(x, y) = y(log x)2
α−1
{
λα +Oε

(
1

log x

)}
uniformly for x > 2 and x7/12+ε 6 y 6 x, where

(2.9) λα := λα(1) =
1

Γ(2α)

∏
p

(
1 +

∑
ν>1

(ν + 1)α

pν

)(
1− 1

p

)2α

.

Proof. Since the function n 7→ d(n)αzω(n) is multiplicative, for <e s > 1 we can write

Fα,z(s) :=
∑
n>1

d(n)αzω(n)

ns

=
∏
p

(
1 +

∑
ν>1

(ν + 1)αz

pνs

)
= ζ(s)zαζ(2s)wαG(s; zα, wα),
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where zα := 2αz, wα := −22α−1z2 − (2α−1 − 3α)z and the Euler product

(2.10) G(s; zα, wα) :=
∏
p

(
1 +

∑
ν>1

(ν + 1)αz

pνs

)(
1− 1

ps

)zα(
1− 1

p2s

)wα
.

This Euler product is expandable as a Dirichlet series

G(s; zα, wα) =
∑
n>1

b(n)n−s,

where n 7→ b(n) is the multiplicative function whose values on prime powers are given by
the identity

1 +
∑
ν>1

b(pν)ξν =
(

1 +
∑
ν>1

(ν + 1)αzξν
)(

1− ξ
)zα(

1− ξ2
)wα

(|ξ| < 1).

In particular, we have

(2.11) b(p) = b(p2) = 0 for all primes p

and

(2.12) |b(pν)| 6M1(B)2ν/6 (ν > 3, |z| 6 B)

with

M1(B) := max
|z|6B

max
|ξ|62−1/6

∣∣∣(1 +
∑
ν>1

(ν + 1)αzξν
)(

1− ξ
)zα(

1− ξ2
)wα∣∣∣.

With the help of (2.11) and (2.12), for σ > 1
3

and |z| 6 B we easily deduce that∑
p

∑
ν>1

|b(pν)|p−νσ 6M1(B)
∑
p

∑
ν>3

(
2−1/6pσ

)−ν
= M1(B)

∑
p

(2−1/6pσ)−3

1− (2−1/6pσ)−1

6
21/2M1(B)

1− 2−1/6

∑
p

1

p3σ
·

This shows that the Euler product G(s; zα, wα) converges absolutely for σ > 1
3

and

(2.13) |G(s; zα, wα)| 6M(B) (σ > 1
2
, |z| 6 B)

with

M(B) := exp

(
21/2M1(B)

1− 2−1/6

∑
p

1

p3/2

)
.

Consequently, Fα,z(s) is a Dirichlet series of type

P(zα, wα, |zα|, 0, 0, 2αB, 22α−1B2 + (3α − 2α−1)B,M(B)).

Applying Lemma 2.1, we get the required asymptotic formula (2.8). �

The third lemma is the Berry-Esseen inequality (see [7, Theorem II.7.14]).
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Lemma 2.3. Let F , G be two distribution functions with respective characteristic functions
f and g. Suppose that G is differentiable and that G′ is bounded on R. Then we have

‖F −G‖∞ 6 16
‖G′‖∞
T

+ 6

∫ T

−T

∣∣∣∣f(τ)− g(τ)

τ

∣∣∣∣ dτ
for all T > 0, where ‖H‖∞ := sup

λ∈R
|H(λ)| for any real-valued function H defined on the real

numbers.

3. Proof of Theorem 1.2

Recall πk,α(x, y) defined as in (1.6). Noticing that∑
x<n6x+y

d(n)αzω(n) =
∑
k

πk,α(x, y)zk,

we can apply the the Cauchy formula to write, with r := k/(2α log2 x),

πk,α(x, y) =
1

2πi

∮
|z|=r

( ∑
x<n6x+y

d(n)αzω(n)
) dz

zk+1
·

By Lemma 2.2, it follows that

(3.1) πk,α(x, y) =
y

log x
· Ik,α(x; r) +Oα,B,ε

(
y

(log x)2
· (2α log2 x)k

k!

)
,

uniformly for x > 2, x7/12+ε 6 y 6 x and k 6 2αB log2 x, where

Ik,α(x; r) :=
1

2πi

∮
|z|=r

(log x)2
αzλα(z)

zk
dz

and we have used the following estimations

�
∮
|z|=r

(log x)2
α<e z

|z|k+1
| dz|

�
(2α log2 x

k

)k ∫ 2π

0

ek cos θ dθ

�
(2α log2 x

k

)k(∫ π/2

0

ek cos θ dθ + 1

)
(t = k(1− cos θ))

�
(2α log2 x

k

)k( ek√
k

∫ k

0

e−tt−1/2 dt+ 1

)
� (2α log2 x)k

k!
,

thanks to the Stirling formula.
It remains to evaluate Ik,α(x; r). We shall discuss two cases: k = 1 or k > 2. Since

z 7→ λα(z) is analytic for |z| 6 B, we have

I1,α(x; r) =
1

2πi

∮
|z|=r

ez2
α log2 xλα(z)

z
dz = λα(0) = 2α.
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Inserting it into (3.1), we obtain that

π1,α(x, y) =
2αy

log x

{
1 +Oα,ε

(
log2 x

log x

)}
.

This proves (1.7) for k = 1.
Next we suppose that k > 2. Since z 7→ λα(z) is analytic for |z| 6 B, we have Ik,α(x; r) =

Ik,α(x; r0) with r0 := (k − 1)/(2α log2 x). Writing the Taylor expansion of λα(z) at z = r0:

(3.2) λα(z) = λα(r0) + λ′α(r0)(z − r0) + (z − r0)2
∫ 1

0

(1− t)λ′′α(r0 + t(z − r0)) dt,

we shall estimate the contributions of three terms on the right-hand side of (3.2) to Ik,α(x; r0).
Firstly those of the first two terms are, respectively,

(3.3)
λα(r0)

2πi

∮
|z|=r

ez2
α log2 x

zk
dz =

(2α log2 x)k−1

(k − 1)!
λα

(
k − 1

2α log2 x

)
and

(3.4)
λ′α(r0)

2πi

∮
|z|=r

ez2
α log2 x(z − r0)

zk
dz = λ′α(r0)

(
(2α log2 x)k−2

(k − 2)!
− r0

(2α log2 x)k−1

(k − 1)!

)
= 0.

For 0 6 t 6 1 and |z| = r0, we have

|r0 + t(z − r0)| = |r0(1− t) + tz| 6 r0(1− t) + t|z| = r0.

Since z 7→ λα(z) is analytic for |z| 6 B, there is a positive constant Cα such that |λ′′α(z)| 6 Cα
for |z| 6 B. Thus the contribution of the third term on the right-hand side of (3.2) to
Ik,α(x; r0) is

(3.5)

�α

∫ 2π

0

e(k−1) cos θr
−(k−3)
0 |eiθ − 1|2 dθ

�α r
−(k−3)
0

(∫ π/2

0

e(k−1) cos θ(1− cos θ) dθ + π

)
�α r

−(k−3)
0 ek−1(k − 1)−3/2

(∫ k−1

0

e−tt1/2 dt+ π

)
�α

(2α log2 x)k−1

(k − 1)!
· k − 1

(2α log2 x)2
·

Inserting (3.3), (3.4) and (3.5) into (3.1), we find that

πk,α(x, y) =
y

log x
· (2α log2 x)k−1

(k − 1)!
λα

(
k − 1

2α log2 x

)
+Oα,B,ε

(
y

(log x)2
· (log2 x)k

k!
+

y

log x
· (2α log2 x)k−1

(k − 1)!
· k − 1

(log2 x)2

)
,

which is equivalent to (1.7).
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4. Proof of Theorem 1.1

Denote by Fx,y(λ) the left-hand side of (1.5) and by ϕx,y(τ) its characteristic function, i.e.,

(4.1)

ϕx,y(τ) :=

∫ +∞

−∞
eiτλ dFx,y(λ)

=
1

Dα(x, y)

∑
x<n6x+y

d(n)α exp

{
iτ
ω(n)− 2α log2 x√

2α log2 x

}
=

e−iτT

Dα(x, y)

∑
x<n6x+y

d(n)αei(τ/T )ω(n),

where T =
√

2α log2 x. By using Lemma 2.3 with (F,G) = (Fx,y,Φ), it follows that

‖Fx,y − Φ‖∞ 6
16√
2πT

+ 6

∫ T

−T

∣∣∣∣ϕx,y(τ)− e−τ
2/2

τ

∣∣∣∣ dτ.
Thus it suffices to show that

(4.2)

∫ T

−T

∣∣∣∣ϕx,y(τ)− e−τ
2/2

τ

∣∣∣∣ dτ � 1

T

uniformly for x > 2 and x7/12+ε 6 y 6 x.
Applying Lemma 2.2 with z = eit, we have

1

Dα(x, y)

∑
x<n6x+y

d(n)αeitω(n) = (log x)2
α(eit−1)A(eit) +Oε

(
1

log x

)
uniformly for t ∈ R, x > 2 and x7/12+ε 6 y 6 x, where λα(z) and λα are defined as in (2.7)
and (2.9) respectively, and A(z) := zλα(z)/λα is an entire function of z such that A(1) = 1.
Taking t = τ/T , the preceding asymptotic formula implies that

(4.3) ϕx,y(τ) = (log x)2
α(ei(τ/T )−1)A(ei(τ/T ))e−iτT +Oε

(
(log x)−1

)
uniformly for x > 2, x7/12+ε 6 y 6 x and |τ | 6 T .

In view of the inequality cos t− 1 6 −2(t/π)2 (|t| 6 1), we have∣∣(log x)2
α(ei(τ/T )−1)∣∣ = e(cos(τ/T )−1)T

2

6 e−2(τ/π)
2

,

from which we deduce that ϕx,y(τ) �ε e−2(τ/π)
2

uniformly for x > 2, x7/12+ε 6 y 6 x and
|τ | 6 T . Thus

(4.4)

∫ ±T
±T 1/3

∣∣∣∣ϕx,y(τ)− e−τ
2/2

τ

∣∣∣∣ dτ � ∫ T

T 1/3

e−2(τ/π)
2

dτ � 1

T
·

With the help of the Taylor developments

A(ei(τ/T )) = 1 +O(τ/T ), ei(τ/T ) − 1 = i(τ/T )− 1
2
(τ/T )2 +O((τ/T )3),

we deduce that

(log x)2
α(ei(τ/T )−1)A(ei(τ/T ))e−iτT = e−τ

2/2+O(τ3/T )

{
1 +O

(
|τ |
T

)}
= e−τ

2/2

{
1 +O

(
|τ |+ |τ |3

T

)}
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for |τ | 6 T 1/3. Inserting into (4.3), it follows that

ϕx,y(τ) = e−τ
2/2

{
1 +O

(
|τ |+ |τ |3

T

)}
+Oε

(
1

log x

)
uniformly for x > 2, x7/12+ε 6 y 6 x and |τ | 6 T 1/3. With the help of this evaluation, we
can deduce that

(4.5)

∫ ±T 1/3

±1/ log x

∣∣∣∣ϕx,y(τ)− e−τ
2/2

τ

∣∣∣∣ dτ � ∫ T 1/3

1/ log x

(
e−τ

2/21 + τ 2

T
+

1

τ log x

)
dτ

� 1

T
+

log2 x

log x

� 1

T
·

For |τ | 6 (log x)−1, we have trivially

|τ(ω(n)− 2α log2 x)/
√

2α log2 x| � (|τ | log x)/T.

Thus we can write

exp

{
iτ
ω(n)− 2α log2 x√

2α log2 x

}
= 1 +O

(
|τ | log x

T

)
.

Inserting into (4.1), it follows that

ϕx,y(τ) = 1 +O

(
|τ | log x

T

)
.

From this and the relation e−τ
2/2 = 1 +O(τ 2), we derive that

(4.6)

∫ 1/ log x

−1/ log x

∣∣∣∣ϕx,y(τ)− e−τ
2/2

τ

∣∣∣∣ dτ � ∫ 1/ log x

−1/ log x

(
log x

T
+ |τ |

)
dτ � 1

T
·

Now (4.2) follows from (4.4), (4.5) and (4.6) immediately.
Finally we prove that the error term in (1.5) is optimal. Define

Rλ(x, y) :=
1

Dα(x, y)

∑
x<n6x+y

ω(n)−2α log2 x6λ(2
α log2 x)

1/2

d(n)α − Φ(λ), R(x, y) := sup
λ∈R
|Rλ(x, y)|.

Let k := [2α log2 x] and θ := k − 2α log2 x. Then we have

(4.7)

πk,α(x, y)

Dα(x, y)
= Fx,y

(
θ√

2α log2 x

)
− Fx,y

(
θ − 1

2
√
2π√

2α log2 x

)
6 Φ

(
θ√

2α log2 x

)
− Φ

(
θ − 1

2
√
2π√

2α log2 x

)
+ 2R(x, y)

=

∫ θ/
√

2α log2 x

(θ− 1
2
√
2π

)/
√

2α log2 x

e−τ
2/2 dτ + 2R(x, y)

6
1

2
√
π2α+1 log2 x

+ 2R(x, y).
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On the other hand, Theorem 1.2 and (2.8) imply that

(4.8)
πk,α(x, y)

Dα(x, y)
∼ (2α log2 x)k−1

(log x)2α(k − 1)!
∼ 1√

π2α+1 log2 x

thanks to the Stirling formula. From (4.7) and (4.8), we derive that

R(x, y) >
1 + o(1)

2
√
π2α+1 log2 x

− 1

4
√
π2α+1 log2 x

=
1 + o(1)

4
√
π2α+1 log2 x

uniformly for x > 2 and x7/12+ε 6 y 6 x.
This completes the proof of Theorem 1.1.
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