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In this paper, we generalize Elliott's weighted Erdős-Kac theorem to the case of short intervals.

Introduction

Recently Elliott [START_REF] Elliott | Central limit theorem for classical cusp forms[END_REF][START_REF] Elliott | Corrigendum: central limit theorem for classical cusp forms[END_REF] established a weighted central limit theorem for the Fourier coefficients of cusp form. For comparison, he also gave a weighted Erdős-Kac theorem on the value distribution of the function ω(n) that counts the number of distinct prime divisors of the positive integer n. As usual, denote by d(n) the classic divisor function. For α ∈ R, define

(1.1) D α (x) := n x d(n) α .
Elliott's weighted Erdős-Kac theorem can be stated as follows (see [START_REF] Elliott | Corrigendum: central limit theorem for classical cusp forms[END_REF]Theorem]): for each λ, we have

(1.2) 1 D α (x) n x ω(n)-2 α log 2 x λ(2 α log 2 x) 1/2 d(n) α → Φ(λ)
as x → ∞, where log k denotes the k-fold iterated logarithm and Φ(λ) is the Gaussian law defined by

(1.3) Φ(λ) := 1 √ 2π λ -∞
e -τ 2 /2 dτ.

The case of α = 0 of (1.2) firstly was established by Erdős & Kac [START_REF] Erdős | Gaussian law of errors in the theory of additive functions[END_REF] in 1939. This problem has a long and rich history. The best actual result is due to Delange [START_REF] Delange | Sur des formules dues à Atle Selberg[END_REF]. The aim of this paper is to generalize Elliott's result (1.2) to the case of short intervals. Similar to (1.1), write

(1.4) D α (x, y) := x<n x+y d(n) α .
Our result is as follows.

Theorem 1.1. (i) Let α ∈ R and ε > 0. Then for each real number λ, we have

(1.5) 1 D α (x, y) x<n x+y ω(n)-2 α log 2 x λ(2 α log 2 x) 1/2 d(n) α = Φ(λ) + O α,ε 1 log 2 x
uniformly for x → ∞ and x 7/12+ε y x, where the implied constant depends on α and ε only. The error term in (1.5) is optimal.

(ii) The same result also holds if the summation condition on ω(n) may be replaced by

log d(n)/ log 2 -2 α log 2 x λ(2 α log 2 x) 1/2 .
Remark 1. The exponent 7 12 in Theorem 1.1 comes from Huxley's zero-density bound for the Riemann ζ-function [START_REF] Huxley | The difference between consecutive primes[END_REF]. This constant can be reduced to 1 2 if we assume the zero-density hypothesis.

In order to prove that the error term in (1.5) is optimal, we need to establish a weighted Laudan prime number theorem in short intervals. For α ∈ R and k ∈ N, define

(1.6) π k,α (x, y) := x<n x+y ω(n)=k d(n) α .
We have the following result.

Theorem 1.2. Let α ∈ R, B > 0 and ε > 0. Then we have 2 .

(1.7) π k,α (x, y) = y log x (2 α log 2 x) k-1 (k -1)! λ α k -1 2 α log 2 x + O log 2 x k log x + k -1 (log 2 x)
uniformly for x 3, x 7/12+ε y x and 1 k B2 α log 2 x, where

(1.8) λ α (z) = 2 α Γ(2 α z + 1) p 1 + ν 1 (ν + 1) α z p ν 1 - 1 p 2 α z
and the implied constant depend on α, B and ε only.

A principal tool for the proof of Theorems 1.1 and 1.2 is a rather general result of Cui, Lü and Wu [START_REF] Cui | The Selberg-Delange method in short intervals with some applications[END_REF] on the Selberg-Delange method in short intervals (see Lemma 2.1 below). A more result can be found in [8].

Some preliminary lemmas

Let f (n) be an arithmetic function and let its Dirichlet series be defined by (2.1)

F(s) := ∞ n=1 f (n)n -s .
Let z ∈ C, w ∈ C, α > 0, δ 0, A 0, B > 0, C > 0, M > 0 be some constants. We say that the Dirichlet series F(s) is of type P(z, w, α, δ, A, B, C, M ) if the following conditions are verified: (a) for any ε > 0 we have

(2.2) |f (n)| ε M n ε (n 1),
where the implied constant depends only on ε;

(b) we have

∞ n=1 |f (n)|n -σ M (σ -1) -α (σ > 1); (c) the Dirichlet series (2.3) G(s; z, w) := F(s)ζ(s) -z ζ(2s) -w
can be analytically continued to a holomorphic function in (some open set containing) σ 1 2 and, in this region, G(s; z, w) satisfies the bound

(2.4) |G(s; z, w)| M (|τ | + 1) max{δ(1-σ),0} log A (|τ | + 1)
uniformly for |z| B and |w| C, where and in the sequel we implicitly define the real numbers σ and τ by the relation s = σ + iτ and choose the principal value of the complex logarithm.

The following result is Corollary 1.2 of [START_REF] Cui | The Selberg-Delange method in short intervals with some applications[END_REF], which constitutes the key tool for the proof of Theorem 1.1.

Lemma 2.1. If the Dirichlet series F(s) is of type P(z, w, α, δ, A, B, C, M ), then for any ε > 0, we have

(2.5) x<n x+y f (n) = y(log x) z-1 λ(z, w) + O M log x uniformly for x 2, x (7+5δ)/(12+5δ)+ε y x, |z| B and |w| C, where λ(z, w) := G(1; z, w)ζ(2) w Γ(z)
and the implied constant in the O-term depends only on A, B, α, δ and ε. Lemma 2.2. Let B > 0 and ε > 0. Then we have

(2.6) x<n x+y d(n) α z ω(n) = y(log x) 2 α z-1 zλ α (z) + O B,ε 1 log x
uniformly for x 2, x 7/12+ε y x and |z| B, where

(2.7) λ α (z) = 2 α Γ(2 α z + 1) p 1 + ν 1 (ν + 1) α z p ν 1 - 1 p 2 α z
.

In particular, we have

(2.8) D α (x, y) = y(log x) 2 α -1 λ α + O ε 1 log x
uniformly for x 2 and x 7/12+ε y x, where (2.9)

λ α := λ α (1) = 1 Γ(2 α ) p 1 + ν 1 (ν + 1) α p ν 1 - 1 p 2 α . Proof. Since the function n → d(n) α z ω(n) is multiplicative, for e s > 1 we can write F α,z (s) := n 1 d(n) α z ω(n) n s = p 1 + ν 1 (ν + 1) α z p νs = ζ(s) zα ζ(2s) wα G(s; z α , w α ),
where

z α := 2 α z, w α := -2 2α-1 z 2 -(2 α-1 -3 α )z and the Euler product (2.10) G(s; z α , w α ) := p 1 + ν 1 (ν + 1) α z p νs 1 - 1 p s zα 1 - 1 p 2s wα .
This Euler product is expandable as a Dirichlet series

G(s; z α , w α ) = n 1 b(n)n -s ,
where n → b(n) is the multiplicative function whose values on prime powers are given by the identity

1 + ν 1 b(p ν )ξ ν = 1 + ν 1 (ν + 1) α zξ ν 1 -ξ zα 1 -ξ 2 wα (|ξ| < 1).
In particular, we have (2.12)

|b(p ν )| M 1 (B)2 ν/6 (ν 3, |z| B)
with

M 1 (B) := max |z| B max |ξ| 2 -1/6 1 + ν 1 (ν + 1) α zξ ν 1 -ξ zα 1 -ξ 2 wα .
With the help of (2.11) and (2.12), for σ > 1 3 and |z| B we easily deduce that

p ν 1 |b(p ν )|p -νσ M 1 (B) p ν 3 2 -1/6 p σ -ν = M 1 (B) p (2 -1/6 p σ ) -3 1 -(2 -1/6 p σ ) -1 2 1/2 M 1 (B) 1 -2 -1/6 p 1 p 3σ •
This shows that the Euler product G(s; z α , w α ) converges absolutely for σ > 1 3 and (2.13)

|G(s; z α , w α )| M (B) (σ 1 2 , |z| B) with M (B) := exp 2 1/2 M 1 (B) 1 -2 -1/6 p 1 p 3/2 .
Consequently, F α,z (s) is a Dirichlet series of type

P(z α , w α , |z α |, 0, 0, 2 α B, 2 2α-1 B 2 + (3 α -2 α-1 )B, M (B)).
Applying Lemma 2.1, we get the required asymptotic formula (2.8).

The third lemma is the Berry-Esseen inequality (see [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.7.14]).

Lemma 2.3. Let F , G be two distribution functions with respective characteristic functions f and g. Suppose that G is differentiable and that G is bounded on R. Then we have

F -G ∞ 16 G ∞ T + 6 T -T f (τ ) -g(τ )
τ dτ for all T > 0, where H ∞ := sup λ∈R |H(λ)| for any real-valued function H defined on the real numbers.

Proof of Theorem 1.2

Recall π k,α (x, y) defined as in (1.6). Noticing that

x<n x+y d(n) α z ω(n) = k π k,α (x, y)z k ,
we can apply the the Cauchy formula to write, with r := k/(2 α log 2 x),

π k,α (x, y) = 1 2πi |z|=r x<n x+y d(n) α z ω(n) dz z k+1 • By Lemma 2.2, it follows that (3.1) π k,α (x, y) = y log x • I k,α (x; r) + O α,B,ε y (log x) 2 • (2 α log 2 x) k k! ,
uniformly for x 2, x 7/12+ε y x and k 2 α B log 2 x, where

I k,α (x; r) := 1 2πi |z|=r (log x) 2 α z λ α (z) z k dz
and we have used the following estimations

|z|=r (log x) 2 α e z |z| k+1 | dz| 2 α log 2 x k k 2π 0 e k cos θ dθ 2 α log 2 x k k π/2 0 e k cos θ dθ + 1 (t = k(1 -cos θ)) 2 α log 2 x k k e k √ k k 0 e -t t -1/2 dt + 1 (2 α log 2 x) k k! ,
thanks to the Stirling formula. It remains to evaluate I k,α (x; r). We shall discuss two cases: k = 1 or k 2. Since z → λ α (z) is analytic for |z| B, we have

I 1,α (x; r) = 1 2πi |z|=r e z2 α log 2 x λ α (z) z dz = λ α (0) = 2 α .
Inserting it into (3.1), we obtain that

π 1,α (x, y) = 2 α y log x 1 + O α,ε log 2 x log x .
This proves (1.7) for k = 1.

Next we suppose that k 2. Since z → λ α (z) is analytic for |z| B, we have I k,α (x; r) = I k,α (x; r 0 ) with r 0 := (k -1)/(2 α log 2 x). Writing the Taylor expansion of λ α (z) at z = r 0 :

(3.2) λ α (z) = λ α (r 0 ) + λ α (r 0 )(z -r 0 ) + (z -r 0 ) 2 1 0 (1 -t)λ α (r 0 + t(z -r 0 )) dt,
we shall estimate the contributions of three terms on the right-hand side of (3.2) to I k,α (x; r 0 ). Firstly those of the first two terms are, respectively,

(3.3) λ α (r 0 ) 2πi |z|=r e z2 α log 2 x z k dz = (2 α log 2 x) k-1 (k -1)! λ α k -1 2 α log 2 x and (3.4) λ α (r 0 ) 2πi |z|=r e z2 α log 2 x (z -r 0 ) z k dz = λ α (r 0 ) (2 α log 2 x) k-2 (k -2)! -r 0 (2 α log 2 x) k-1 (k -1)! = 0.
For 0 t 1 and |z| = r 0 , we have

|r 0 + t(z -r 0 )| = |r 0 (1 -t) + tz| r 0 (1 -t) + t|z| = r 0 . Since z → λ α (z) is analytic for |z| B, there is a positive constant C α such that |λ α (z)| C α for |z| B.
Thus the contribution of the third term on the right-hand side of (3.2) to I k,α (x; r 0 ) is (3.4) and (3.5) into (3.1), we find that

(3.5) α 2π 0 e (k-1) cos θ r -(k-3) 0 |e iθ -1| 2 dθ α r -(k-3) 0 π/2 0 e (k-1) cos θ (1 -cos θ) dθ + π α r -(k-3) 0 e k-1 (k -1) -3/2 k-1 0 e -t t 1/2 dt + π α (2 α log 2 x) k-1 (k -1)! • k -1 (2 α log 2 x) 2 • Inserting (3.3),
π k,α (x, y) = y log x • (2 α log 2 x) k-1 (k -1)! λ α k -1 2 α log 2 x + O α,B,ε y (log x) 2 • (log 2 x) k k! + y log x • (2 α log 2 x) k-1 (k -1)! • k -1 (log 2 x) 2 ,
which is equivalent to (1.7).

Proof of Theorem 1.1

Denote by F x,y (λ) the left-hand side of (1.5) and by ϕ x,y (τ ) its characteristic function, i.e., (4.1)

ϕ x,y (τ ) := +∞ -∞ e iτ λ dF x,y (λ) = 1 D α (x, y) x<n x+y d(n) α exp iτ ω(n) -2 α log 2 x 2 α log 2 x = e -iτ T D α (x, y) x<n x+y d(n) α e i(τ /T )ω(n) ,
where T = 2 α log 2 x. By using Lemma 2.3 with (F, G) = (F x,y , Φ), it follows that

F x,y -Φ ∞ 16 √ 2πT + 6 T -T ϕ x,y (τ ) -e -τ 2 /2 τ dτ.
Thus it suffices to show that

(4.2) T -T ϕ x,y (τ ) -e -τ 2 /2 τ dτ 1 T
uniformly for x 2 and x 7/12+ε y x. Applying Lemma 2.2 with z = e it , we have 1) A(e it ) + O ε 1 log x uniformly for t ∈ R, x 2 and x 7/12+ε y x, where λ α (z) and λ α are defined as in (2.7) and (2.9) respectively, and A(z) := zλ α (z)/λ α is an entire function of z such that A(1) = 1. Taking t = τ /T , the preceding asymptotic formula implies that (4.3) ϕ x,y (τ ) = (log x) 2 α (e i(τ /T ) -1) A(e i(τ /T ) )e -iτ T + O ε (log x) -1 uniformly for x 2, x 7/12+ε y x and |τ | T . In view of the inequality cos t -1 -2(t/π) 2 (|t| 1), we have (log x) 2 α (e i(τ /T ) -1) = e (cos(τ /T )-1)T 2 e -2(τ /π) 2 , from which we deduce that ϕ x,y (τ ) ε e -2(τ /π) 2 uniformly for x 2, x 7/12+ε y x and |τ | T . Thus (4.4)

1 D α (x, y) x<n x+y d(n) α e itω(n) = (log x) 2 α (e it -
±T ±T 1/3 ϕ x,y (τ ) -e -τ 2 /2 τ dτ T T 1/3 e -2(τ /π) 2 dτ 1 T •
With the help of the Taylor developments

A(e i(τ /T ) ) = 1 + O(τ /T ), e i(τ /T ) -1 = i(τ /T ) -1 2 (τ /T ) 2 + O((τ /T ) 3 ), we deduce that (log x) 2 α (e i(τ /T ) -1) A(e i(τ /T ) )e -iτ T = e -τ 2 /2+O(τ 3 /T ) 1 + O |τ | T = e -τ 2 /2 1 + O |τ | + |τ | 3 T for |τ | T 1/3 . Inserting into (4.3), it follows that ϕ x,y (τ ) = e -τ 2 /2 1 + O |τ | + |τ | 3 T + O ε 1 log x
uniformly for x 2, x 7/12+ε y x and |τ | T 1/3 . With the help of this evaluation, we can deduce that (4.5)

±T 1/3 ±1/ log x ϕ x,y (τ ) -e -τ 2 /2
τ dτ 

T 1/3 1/ log x e -τ 2 /2 1 + τ 2 T + 1 τ log x dτ 1 T + log 2 x log x 1 T • For |τ | (log x) -1 ,

( 2 .

 2 11) b(p) = b(p 2 ) = 0 for all primes p and

Now ( 4 . 2 )√ 2 α

 422 we have trivially|τ (ω(n) -2 α log 2 x)/ 2 α log 2 x| (|τ | log x)/T.Thus we can writeexp iτ ω(n) -2 α log 2 x 2 α log 2 x = 1 + O |τ | log x T .Inserting into (4.1), it follows thatϕ x,y (τ ) = 1 + O |τ | log x T .From this and the relation e -τ 2 /2 = 1 + O(τ 2 ), we derive that (4.6)1/ log x -1/ log x ϕ x,y (τ ) -e -τ 2 follows from (4.4), (4.5) and (4.6) immediately. Finally we prove that the error term in (1.5) is optimal. DefineR λ (x, y) := 1 D α (x, y) x<n x+y ω(n)-2 α log 2 x λ(2 α log 2 x) 1/2 d(n) α -Φ(λ), R(x, y) := sup λ∈R |R λ (x, y)|. Let k := [2 α log 2 x] and θ := k -2 α log 2 x. Then we have (4.7) π k,α (x, y) D α (x, y) = F x,y θ 2 α log 2 x -F x,y log 2 xe -τ 2 /2 dτ + 2R(x, y) 1 2 π2 α+1 log 2 x + 2R(x, y).

Acknowledgements. This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 12071238, 11771121, 11971370 and 12071375) and by the NSF of Chongqing (Grant No. cstc2019jcyj-msxm1651).

On the other hand, Theorem 1.2 and (2.8) imply that

thanks to the Stirling formula. From (4.7) and (4.8), we derive that R(x, y)

uniformly for x 2 and x 7/12+ε y x.

This completes the proof of Theorem 1.1.