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ELLIOTT-HALBERSTAM CONJECTURE AND VALUES TAKEN BY
THE LARGEST PRIME FACTOR OF SHIFTED PRIMES

JIE WU

Abstract. Denote by P the set of all primes and by P+(n) the largest prime factor of
integer n > 1 with the convention P+(1) = 1. For each η > 1, let c = c(η) > 1 be some
constant depending on η and

Pa,c,η := {p ∈ P : p = P+(q − a) for some prime q with pη < q 6 c(η)pη}.
In this paper, under the Elliott-Halberstam conjecture we prove, for y →∞,

πa,c,η(x) := |(1, x] ∩ Pa,c,η| ∼ π(x) or πa,c,η(x)�a,η π(x)

according to values of η. These complement for some results of Banks-Shparlinski [1], of
Wu [12] and of Chen-Wu [2].

1. Introduction

Denote by P the set of all prime numbers and by P+(n) the largest prime factor of the
positive integer n > 1 with the convention P+(1) = 1. Banks & Shparlinski [1] proposed to
estimate the number of primes p that occur as the largest prime factor of a shifted prime
q − a when q ∈ P lies in a certain interval determined by p. This question has applications
in theoretical computer science and has been considered by Vishnoi [10].

Let Z∗ be the set of non-zero integers. For a ∈ Z∗, c > 1 and η > 0, we put

Pa,c,η := {r ∈ P : r = P+(q − a) for some prime q with rη < q 6 crη}

and

πa,c,η(y) := |{r 6 y : r ∈ Pa,c,η}|, π(y) := |{r 6 y : r ∈ P}|.
Banks & Shparlinski [1, Theorem 1.1] proved that for each η ∈ (32

17
, 1 + 3

4

√
2), there exists a

constant c = c(η) > 1 such that the asymptotic formula

(1.1) πa,c,η(y) = π(y) +OA,a,c,η

(
y

(log y)A

)
(y →∞)

holds for every fixed non-zero integer a ∈ Z∗ and any constant A > 1. Moreover for
2 6 η < 1 + 3

4

√
2 ≈ 2.0606, this estimate holds for any constant c > 1. Very recently, Wu

[12] extended Banks-Shparlinski’s interval (32
17
, 1 + 3

4

√
2) to (32

17
, η0), where η0 ≈ 2.142 is the

unique solution of the equation η − 1 − 4η log(η − 1) = 0 in (1,∞). Banks & Shparlinski
[1, page 144] also remarked that the asymptotic formula (1.1) holds for η ∈ (1, 32

17
] if we

assume the Elliott-Halberstam conjecture (see EHprime[ε] below). Subsequently, Chen & Wu
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2 JIE WU

[2] further extended the domain of η at the price proportion positive instead of density 1.
More precisely, they proved that

(1.2) πa,c,η(y) >
(

log
4
√

2
)η − 1

η

(
1− 4 log(η − 1)− δ log(η − 1)8

c− 1

)
π(y),

where δ = δ(c, η) is sufficiently small positive number. Clearly, (1.2) implies

πa,c,η(y)� π(y)

provided η < 1 + 4
√

e. This is complement for the results of Banks-Shparlinski and of Wu
mentioned above. It seems rather natural to pose the following question.

Question 1. Is the asymptotic formula (1.1) true for all η > 1 ?

In this paper, we shall try to answer this question under the well-known Elliott-Halberstam
conjecture. Firstly we state two versions of this conjecture for prime numbers.

Conjecture 1 (Elliott–Halberstam). Let a ∈ Z∗ and ε ∈ (0, 1) be fixed constants.
(i) For any A > 0, the inequality∑

q6x1−ε

(a,q)=1

∣∣∣∣ ∑
p6x

p≡a(mod q)

1− π(x)

ϕ(q)

∣∣∣∣�A,a,ε
x

(log x)A
(EHprime[ε])

holds uniformly for all x > 3, where the letter p always denotes prime numbers, ϕ(q) is the
Euler function and the implied constant depends on A, a and ε.

(ii) Let κ1(m) and κ2(m) be the characteristic functions of the odd integers and of even
integers, respectively. Then for any A > 0, we have∑

q6x1−ε

(a,q)=1

∣∣∣∣ ∑
mp6x

mp≡a(mod q)

κi(m)− 1

ϕ(q)

∑
mp6x

(mp,q)=1

κi(m)

∣∣∣∣�A,a,ε
x

(log x)A
(EH∗prime[ε])

uniformly for all x > 3, where the letter p always denotes prime numbers and the implied
constant depends on A and a.

Remark 1. According to the classical Bombieri-Vinogradov theorem and Proposition 2.2 of
Wu [12], the Elliott-Halberstam conjectures EHprime[ε] and EH∗prime[ε] hold for all ε ∈ (1

2
, 1).

Secondly we also need a version of this conjecture for friable numbers.

Conjecture 2 (Elliott–Halberstam). Let a ∈ Z∗ and ε ∈ (0, 1) be fixed constants. For any
A > 0, we have ∑

q6x1−ε

(a,q)=1

∣∣∣∣ ∑
n6x

n≡a(mod q), P+(n)6y

1− 1

ϕ(q)

∑
n6x

(n,q)=1, P+(n)6y

1

∣∣∣∣�A,a,ε
x

(log x)A
(EHfriable[ε])

uniformly in x > y > 2.

Remark 2. According to Wolke’s work [11] (see also [4, Theorem 6]), EHfriable[ε] holds un-
conditionally for all ε ∈ (1

2
, 1).
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Our results are as follows.

Theorem 1. Let a ∈ Z∗ and c > 1 be fixed constants.
(i) Let η ∈ (1, 32

17
] and assume the Elliott-Halberstam conjecture EHprime[ε] with ε = 1 −

1/η > 0. Then for any A > 1 we have

(1.3) πa,c,η(y) = π(y) +OA,a,c,η

(
y

(log y)A

)
,

as y →∞.
(ii) Let η1 ≈ 2.3303 be the unique positive zero of the equation η − 1 − 2η log(η − 1) = 0

in (1,∞). For each η ∈ [η0, η1), there is a sufficiently small positive number ε = ε(η) such
that assuming the Elliott-Halberstam conjecture EHprime[ε], for any A > 1 we have

(1.4) πa,c,η(y) = π(y) +OA,a,c,η

(
y

(log y)A

)
,

as y →∞.

Theorem 2. Let a ∈ Z∗ and c > 1 be fixed constants. For every η ∈ [2,∞), there is a
sufficiently small positive number ε = ε(η) such that under the Elliott-Halberstam conjecture
EHfriable[ε], we have

(1.5) πa,c,η(y) >
(

log
4
√

2
)η − 1

η
π(y)

{
1 +Oa,c,η

(
1

3
√

log y
+ ε

)}
,

as y →∞.

Remark 3. (a) For comparaison, we have

1 + 3
4

√
2 ≈ 2.060, η0 ≈ 2.142, η1 ≈ 2.330, 1 + 4

√
e ≈ 2.284, 1 +

√
e ≈ 2.648.

(b) The first assertion of Theorem 1 is due to Banks & Shparlinski [1, page 144]. Here
we give a proof for convenience of the reader. By combining Theorem 1 with results of [12],
we see that the asymptotic formula (1.1) holds for 1 < η < η1 under the Elliott-Halberstam
conjecture.

(c) Theorem 2 improves signaficantively Chen-Wu’s result (1.2) in two aspects : result
and method. Firstly the proportion in (1.5) increases from log 2

8
to log 2

4
when η runs over

[2,∞), and that in (1.2) tends toward 0 as η → 1 + 4
√

e. Secondly our proof of (1.5) needs
information of prime numbers in “arithmetical progressions” {a + mq}m friable with friable
indice. For (a, q) = 1 and x > y > 2, define the counting function

(1.6) π(x, y; q, a) :=
∑
p6x

p≡a(mod q)
P+((p−a)/q)6y

1.

A systematic study on the asymptotical behaviour has been done by Liu, Wu & Xi [8],
recently. We need a theorem of Bombieri-Vinogradov type and an inequality of Brun-
Titichmarsh for this new counting function (see Lemmas 2.2–2.3 below).
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2. Some preliminary lemmas

In this section, we present three lemmas, which will be useful later.

2.1. The Rosser-Iwaniec linear sieve.

The first lemma is due to Iwaniec [6, 7].

Lemma 2.1. Let D > 2 and let µ(n) be the Möbius function. Then there are two sequences
{λ±d }d>1, vanishing for d > D or µ(d) = 0, satisfying |λ±d | 6 1, such that

(2.1)
∑
d|n

λ−d 6
∑
d|n

µ(d) 6
∑
d|n

λ+d (n > 1)

and ∑
d|PP(z)

λ+d
w(d)

d
6
∏
p6z
p∈P

(
1− w(p)

p

){
F (s) +O

(
e
√
L−s

3
√

logD

)}
(2.2)

∑
d|PP(z)

λ−d
w(d)

d
>
∏
p6z
p∈P

(
1− w(p)

p

){
f(s) +O

(
e
√
L−s

3
√

logD

)}
(2.3)

for any z ∈ [2, D], s = (logD)/ log z, set of prime numbers P and multiplicative function w
satisfying

0 < w(p) < p (p ∈ P),(2.4) ∏
u<p6v, p∈P

(
1− w(p)

p

)−1
6

log v

log u

(
1 +

L

log u

)
(2 6 u 6 v),(2.5)

where PP(z) :=
∏

p6z, p∈P p and the implied O-constants are absolute. Here F, f are defined
by the continuous solutions to the system

sF (s) = 2eγ (1 6 s 6 2)

sf(s) = 0 (0 < s 6 2)

(sF (s))′ = f(s− 1) (s > 2)

(sf(s))′ = F (s− 1) (s > 2)

where γ is the Euler constant.

2.2. Bombieri-Vinogradov theorem of for π(x, y; q, a).

The second lemma is a theorem of Bombieri-Vinogradov type for the counting function
π(x, y; q, a) defined as in (1.6) (see [8, Theorem 2]).

Lemma 2.2. Let a ∈ Z∗, A > 0 and κ a non-negative arithmetic function. Assuming the
Elliott-Halberstam conjecture EHprime[ε], the following estimate∑

q6Q
(q,a)=1

κ(q)

∣∣∣∣π(x, y; q, a)− π(x)

ϕ(q)
ρ

(
log(x/q)

log y

)∣∣∣∣�a,A
x

(log x)A

√∑
q6x

κ(q)2

q
+ π(x)εu

∑
q6Q

κ(q)

ϕ(q)

holds uniformly in x > 2, exp
{

(log x)2/5+ε
}
6 y 6 x and Q 6 min{y,

√
x}, where ρ(u) is

the Dickman function.
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2.3. Brun-Titichmarsh inequality for π(x, y; q, a).

The lemma below is a variant of [8, Theorem 1].

Lemma 2.3. Let a ∈ Z∗ and c > 1 be fixed constants. For any ε > 0, we have

(2.6)

π(cx, y; q, a)− π(x, y; q, a) 6
4(c− 1)x

ϕ(q) log(x/q)
ρ

(
log(x/q)

log y

){
1 +Oa,c,ε

(
1

3
√

log x

)}
+OA,a,c

(
x

q(log x)A

)
uniformly in exp{log log x)5/3+ε} 6 y 6 x and 1 6 q 6 min{y,

√
x} with (a, q) = 1.

Proof. Denote by S the quantity on the left-hand side of (2.6). Without loss of generality,
we can assume q is even and a is odd. Put P2a(z) :=

∏
p6z,p-2a p. By the Möbius inversion,

we can write

S =
∑

x<a+mq6cx
(mq,a)=(a+mq,P2a(

√
cx))=1

P+(m)6y

1 +O(xε)

=
∑

x<a+mq6cx
(a,mq)=1, P+(m)6y

∑
d|(a+mq,P2a(

√
cx))

µ(d) +O(xε),

Using Lemma 2.1 and switching summations, it follows that

S 6
∑

x<a+mq6cx
(a,mq)=1, P+(m)6y

∑
d|(a+mq,P2a(

√
cx))

λ+d +O(xε)

=
∑
d6D

d|P2aq(
√
cx)

λ+d
∑

(x−a)/q<m6(cx−a)/q
m≡−aq (mod d)

(a,m)=1, P+(m)6y

1 +O(xε),

where {λ+d }d>1 is an upper bound sieve of level D as in Lemma 2.1 and q is the inverse of q
modulo d (i.e. qq ≡ 1 (mod d)). To apply the Elliott-Halberstam conjecture EHfriable[ε], we
would like to remove the restriction (a,m) = 1 by Möbius inversion, so that

S 6
∑
`|a

µ(`)
∑
d6D

d|P2aq(
√
cx)

λ+d
∑

(x−a)/q<m6(cx−a)/q
m≡−aq (mod d)
`|m,P+(m)6y

1 +O(xε)

=
∑
`|a

P+(`)6y

µ(`)
∑
d6D

d|P2aq(
√
cx)

λ+d
∑

(x−a)/`q<m6(cx−a)/`q
m≡−a`q (mod d)

P+(m)6y

1 +O(xε).

We are now in a good position to employ the Elliott-Halberstam conjecture EHfriable[ε] with
D = (x/q)1−ε, getting

S 6 S+ +O
( x

q(log x)A

)
,(2.7)
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where

S+ :=
∑
`|a

µ(`)
∑
d6D

d|P2aq(
√
cx)

λ+d
ϕ(d)

∑
x/`q<m6cx/`q

(d,m)=1, P+(m)6y

1.

and we have used the trivial bound∑
`|a

∑
d6D

d|P2aq(
√
cx)

|λ+d |
ϕ(d)

∑
cx/`q<m6(cx−a)/`q
(d,m)=1, P+(m)6y

1�a log x.

Here we removed the restriction that P+(`) 6 y since we henceforth assume y > |a|.
Switching summations, it follows that

S+ =
∑
`|a

µ(`)
∑

x/`q<m6cx/`q
P+(m)6y

∑
d6D

d|P2amq(
√
cx)

λ+d
ϕ(d)

=
∑

x/q<m6cx/q
(a,m)=1, P+(m)6y

∑
d6D

d|P2amq(
√
cx)

λ+d
ϕ(d)

·

From Lemma 2.1, we deduce

(2.8)

S+ 6
log
√
x

log(x/q)

{
2eγ +O

(
1

3
√

log x

)} ∑
x/q<m6cx/q

(a,m)=1, P+(m)6y

∏
p<
√
x

p-2amq

(
1− 1

p− 1

)

6
log
√
x

log(x/q)

{
2eγ +O

(
1

3
√

log x

)} ∏
p<
√
x

p-2aq

(
1− 1

p− 1

) ∑
x/q<m6cx/q

(a,m)=1, P+(m)6y

H(m),

where H(m) is the multiplicative function, defined by

H(pν) =

{
1 if p | 2q or p > x1/2

p−1
p−2 if p - 2q and p 6 x1/2

for all ν > 1. According to [8, (3.5)], we have∑
m∈S(x/q,y)
(a,m)=1

H(m) = Ψ

(
x

q
, y

)
ϕ(a)

a

∏
p<
√
x

p-2aq

(
1 +

1

p(p− 2)

){
1 +O

(
(log log x)2

log y

)}
,

where S(x, y) := {n 6 x : P+(n) 6 y} and Ψ(x, y) := |S(x, y)|. Combining this with (2.8),
we find that

(2.9) S+ 6
log x

log(x/q)

{
2eγ +O

(
1

3
√

log x

)}
ϕ(a)

a

{
Ψ

(
cx

q
, y

)
−Ψ

(
x

q
, y

)} ∏
p6
√
x

p-aq

(
1− 1

p

)
.
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By the Mertens formula, it follows that∏
p6x1/2

p-aq

(
1− 1

p

)
=

aq

ϕ(a)ϕ(q)
· 2e−γ

log x

{
1 +O

(
1

log x

)}
.

On the other hand, according to [5, Theorem 1], we have

Ψ(x, y) = xρ

(
log x

log y

){
1 +O

(
log((log x)/ log y + 1)

log y

)}
uniformly for x > 3 and exp{(log log x)5/3+ε} 6 y 6 x. Combining these with (2.9) and
(2.7), we can get the required inequality (2.6). �

3. Proof of Theorem 2

For each prime r ∈ (1
2
y, y], consider

(3.1) Qr(y) :=
∑

x<q6cx
P+(q−a)=r

1.

Noticing that
P+(q − a) = r ⇔ q ≡ a (mod r) and P+(q − a) 6 r,

we can write

(3.2)

∑
y<r62y

Qr(y) >
∑

y<r62y

∑
x<q6cx

q≡a (mod r), P+(q−a)6y

1

=
∑

y<r62y

(
π(cx, y; r, a)− π(x, y; r, a)

)
= M + E,

where

M :=
∑

y<r62y

(
π(cx)

ϕ(r)
ρ

(
log(cx/r)

log y

)
− π(x)

ϕ(r)
ρ

(
log(x/r)

log y

))
,

E :=
∑

y<r62y

(
E(cx, y; r, a)− E(x, y; r, a)

)
,

and

E(x, y; r, a) := π(x, y; r, a)− π(x)

ϕ(r)
ρ

(
log(x/r)

log y

)
.

Since η > 2, we have y = x1/η 6 x1/2 and Q = min(y,
√
x) = y. Using Lemma 2.2 with the

characteristic function of prime numbers in (y, 2y] in place of κ(q), we easily derive, under
the conjecture of Elliott-Halberstam EHprime[ε], that

(3.3)

|E| 6
∑

y<r62y

(
|E(cx, y; r, a)|+ |E(x, y; r, a)|

)
�a

x

(log x)3
+ εη

π(x)

log y
�a,η ε

π(x)

log y
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for all x > x0(ε), where we have used the following bound

(3.4)
∑

y<r62y

1

ϕ(r)
=
∑

y<r62y

1

r

{
1 +O

(
1

y

)}
=

log 2

log y

{
1 +O

(
1

log y

)}
and the implied constant depends on a, η at most.

According to [9, Corollary III.5.8.3], we have |ρ′(u)| � ρ(u) log u (u > 1). Thus for all
r ∈ (y, 2y], we have

ρ

(
log(x/r)

log y

)
= ρ(η − 1)

{
1 +Oη

(
1

log y

)}
.

From this and (3.4), we derive

(3.5) M = (log 2)(c− 1)ρ(η − 1)
π(x)

log y

{
1 +Oη

(
1

log y

)}
.

Inserting (3.5) and (3.3) into (3.2), it follows that

(3.6)
∑

y<r62y

Qr(y) > (log 2)(c− 1)ρ(η − 1)
π(x)

log y

{
1 +Oa,c,η

(
1

log y
+ ε

)}
.

On the other hand, the Brun-Titchmarsh inequality (2.6) give us

Qr(y) 6
4(c− 1)x

ϕ(r) log(x/r)
ρ(η − 1)

{
1 +Oa,η

(
1

3
√

log x

)}
6 4(c− 1)

ρ(η − 1)

η − 1
· x

y log y

{
1 +Oa,η

(
1

3
√

log x

)}
for all primes r ∈ (y, 2y]. This implies that

(3.7)
∑

y<r62y

Qr(y) 6 ρ(η − 1)
4(c− 1)

(η − 1)
· x

y log y

{
1 +Oa,η

(
1

3
√

log x

)} ∑
y<r62y
Qr(y)6=0

1.

Combining (3.6) and (3.7), it follows that∑
y<r62y
Qr(y)6=0

1 >
(

log
4
√

2
)η − 1

η
π(y)

{
1 +Oa,c,η

(
1

3
√

log x
+ ε

)}
.

This completes the proof of Theorem 2.

4. Proof of Theorem 1

As in [12], the letters p, q, r and ` are always used to denote prime numbers, and d,m, and
n always denote positive integers. In what follows, let a ∈ Z∗ and η ∈ (1, 32

17
]∪ [η0, η1). Let δ

be a sufficiently small positive constant and let c > 1 be a parameter to be chosen later. Let
x0(A, a, c, η, δ) be a large constant depending on A, a, c, η, δ at most. For x > x0(A, a, c, η, δ)
and r ∈ (1

2
y, y], put x := rη. As usual, for (a, d) = 1 define

π(x; d, a) :=
∑
p6x

p≡a(mod d)

1.
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4.1. The case of η ∈ (1, 32
17

].

For η > 1, c > 1, y > 3 and x = yη, put

R′b(y) :=

{
y < r 6 2y :

∣∣∣∣π(x; r, a)− π(x)

ϕ(r)

∣∣∣∣ > δ
π(x)

ϕ(r)

}
,

R′′b(y) :=

{
y < r 6 2y :

∣∣∣∣π(cx; r, a)− π(cx)

ϕ(r)

∣∣∣∣ > δ
π(cx)

ϕ(r)

}
.

Noticing that y = x1/η = x1−(1−1/η), the Elliott-Halberstam conjecture EHprime[ε] with ε =
1− 1/η allows us to deduce tthat

δ
π(x)

y
|R′b(y)| 6

∑
y<r62y

∣∣∣∣π(x; r, a)− π(x)

ϕ(r)

∣∣∣∣
�A,a,δ,η

x

(log x)A+1
,

which gives immediately

(4.1) |R′b(y)| �A,a,δ,η
y

(log y)A
·

Similarly

(4.2) |R′′b(y)| �A,a,c,δ,η
y

(log y)A
·

Define

R′g(y) :=

{
y < r 6 2y : π(x; r, a) 6 (1 + δ)

π(x)

ϕ(r)

}
,

R′′g(y) :=

{
y < r 6 2y : π(cx; r, a) > (1− δ)π(cx)

ϕ(r)

}
,

and
Rg(y) := R′g(y) ∩ R′′g(y).

Clearly
Rg(y) ⊂ P ∩ (y, 2y] ⊂ R′b(x) ∪ R′′b(x) ∪ Rg(y).

Thus the estimations (4.1) and (4.2) imply that

(4.3) |Rg(y)| = π(2y)− π(y) +OA,a,c,δ,η

( y

(log y)A

)
(y > 2).

Let r ∈ Rg(y) and let Qr(y) be defined as in (3.1). When η ∈ (1, 32
17

], we have r > y =

x1/η > x17/32 > (cx)1/2. Thus the definition of Rg(y) allows us to write

(4.4) Qr(y) = π(cx; r, a)− π(x; r, a) > (c− 1− 3δ)
π(x)

ϕ(r)
> 0,

where we have used the inequality π(cx) > (c− δ)π(x) for x > x0(a, c, δ). By the definition
of Pa,c,η and (4.4), it is easy to see that Rg(y) ⊂ Pa,c,η ∩ [y, 2y]. In view of (4.3), we find that

πa,c,η(2y)− πa,c,η(y) = π(2y)− π(y) +OA,a,c,η

(
y

(log y)A

)
.

This implies the first assertion of Theorem 1, thanks to standard dyadic split.



10 JIE WU

4.2. The case of η ∈ [η0, η1).

In this case, for every prime r ∈ Rg(y), we can write

(4.5)

Qr(y) = π(cx; r, a)− π(x; r, a)−Qr(y)

> (c− 1− 3δ)
π(x)

ϕ(r)
−Qr(y).

for x > x0(a, c, δ), where

(4.6) Qr(y) :=
∑

x<q6cx
q≡a(mod r), P (q−a)>r

1.

Similar to [12, Proposition 2.1] ∗, we can prove

(4.7) Qr(y) 6 (c− 1 + 2δ)
2η log(η − 1)

η − 1
· π(y)

ϕ(r)

{
1 +Oa,c,δ,η,ε

(
1

3
√

log r

)}
for y > 3, r ∈ (y, 2y] and η > 2.

Inserting (4.7) into (4.4) and taking c = 1 + 2
√
δ, we can find that

Qr(y) > 2

√
δ − δ
η − 1

(
η − 1− 2η log(η − 1) · 1 +

√
δ

1−
√
δ

)
π(y)

ϕ(r)

=
{
G(η) +O

(√
δ
)}

2
√
δ

1−
√
δ

η − 1
· π(y)

ϕ(r)
,

where

(4.8) G(η) := η − 1− 2η log(η − 1).

It is easy to see that G(η) is decreasing on [2,∞) and G(2) = 1. Therefore there is a unique
real number η1 ∈ (2,∞) such that G(η1) = 0 and for η ∈ [2, η1) we have the inequality

(4.9) Qr(y)�A,a,δ,η
π(y)

ϕ(r)

for y > y0(A, a, δ, η). As before, (4.9) allows us to deduce that Rg(y) ⊆ Pa,c,η ∩ (y, 2y].
Combining this with (4.3) leads to

πa,c,η(2y)− πa,c,η(y) = π(2y)− π(y) +OA,a,c,δ,η

( y

(log y)A

)
.

This implies the required asymptotic formula (1.4).
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∗The proof is identical and the only difference is that we can take z = (y/q)(1−ε)/2 and D = z2 thanks to
the Elliott-Halberstam conjecture EH∗

prime[ε], instead of z = (y/q)1/4/(log y)B and D = z2
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