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Denote by P the set of all primes and by P + (n) the largest prime factor of integer n 1 with the convention P + (1) = 1. For each η > 1, let c = c(η) > 1 be some constant depending on η and P a,c,η := {p ∈ P : p = P + (q -a) for some prime q with p η < q c(η)p η }.

In this paper, under the Elliott-Halberstam conjecture we prove, for y → ∞,

according to values of η. These complement for some results of Banks-Shparlinski [1], of Wu [12] and of Chen-Wu [2].

Introduction

Denote by P the set of all prime numbers and by P + (n) the largest prime factor of the positive integer n 1 with the convention P + (1) = 1. Banks & Shparlinski [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF] proposed to estimate the number of primes p that occur as the largest prime factor of a shifted prime q -a when q ∈ P lies in a certain interval determined by p. This question has applications in theoretical computer science and has been considered by Vishnoi [START_REF] Vishnoi | Theoretical aspects of randomization in computation[END_REF].

Let Z * be the set of non-zero integers. For a ∈ Z * , c > 1 and η > 0, we put P a,c,η := {r ∈ P : r = P + (q -a) for some prime q with r η < q cr η } and π a,c,η (y) := |{r y : r ∈ P a,c,η }|, π(y) := |{r y : r ∈ P}|.

Banks & Shparlinski [1, Theorem 1.1] proved that for each η ∈ ( 32 17 , 1 + 3 4 √ 2), there exists a constant c = c(η) > 1 such that the asymptotic formula (1.1) π a,c,η (y) = π(y) + O A,a,c,η y (log y) A (y → ∞)

holds for every fixed non-zero integer a ∈ Z * and any constant A > 1. Moreover for 2 η < 1 + 3 4 √ 2 ≈ 2.0606, this estimate holds for any constant c > 1. Very recently, Wu [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF] extended Banks-Shparlinski's interval ( 32 17 , 1 + 3 4 √ 2) to ( 32 17 , η 0 ), where η 0 ≈ 2.142 is the unique solution of the equation η -1 -4η log(η -1) = 0 in (1, ∞). Banks & Shparlinski [1, page 144] also remarked that the asymptotic formula (1.1) holds for η ∈ (1, 32 17 ] if we assume the Elliott-Halberstam conjecture (see EH prime [ε] below). Subsequently, Chen & Wu [START_REF] Chen | On values taken by the largest prime factor of shifted primes (II)[END_REF] further extended the domain of η at the price proportion positive instead of density 1. More precisely, they proved that

(1.2) π a,c,η (y) log 4 √ 2 η -1 η 1 -4 log(η -1) -δ log(η -1) 8 c -1 π(y),
where δ = δ(c, η) is sufficiently small positive number. Clearly, (1.2) implies π a,c,η (y) π(y)

provided η < 1 + 4 √ e.
This is complement for the results of Banks-Shparlinski and of Wu mentioned above. It seems rather natural to pose the following question.

Question 1. Is the asymptotic formula (1.1) true for all η > 1 ?

In this paper, we shall try to answer this question under the well-known Elliott-Halberstam conjecture. Firstly we state two versions of this conjecture for prime numbers.

Conjecture 1 (Elliott-Halberstam). Let a ∈ Z * and ε ∈ (0, 1) be fixed constants.

(i) For any A > 0, the inequality

q x 1-ε (a,q)=1 p x p≡a(mod q) 1 - π(x) ϕ(q) A,a,ε x (log x) A (EH prime [ε])
holds uniformly for all x 3, where the letter p always denotes prime numbers, ϕ(q) is the Euler function and the implied constant depends on A, a and ε.

(ii) Let κ 1 (m) and κ 2 (m) be the characteristic functions of the odd integers and of even integers, respectively. Then for any A > 0, we have

q x 1-ε (a,q)=1 mp x mp≡a(mod q) κ i (m) - 1 ϕ(q) mp x (mp,q)=1 κ i (m) A,a,ε x (log x) A (EH * prime [ε])
uniformly for all x 3, where the letter p always denotes prime numbers and the implied constant depends on A and a.

Remark 1. According to the classical Bombieri-Vinogradov theorem and Proposition 2.2 of Wu [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF], the Elliott-Halberstam conjectures EH prime [ε] and EH * prime [ε] hold for all ε ∈ ( 1 2 , 1). Secondly we also need a version of this conjecture for friable numbers.

Conjecture 2 (Elliott-Halberstam). Let a ∈ Z * and ε ∈ (0, 1) be fixed constants. For any A > 0, we have

q x 1-ε (a,q)=1 n x n≡a(mod q), P + (n) y 1 - 1 ϕ(q) n x (n,q)=1, P + (n) y 1 A,a,ε x (log x) A (EH friable [ε]) uniformly in x y 2.
Remark 2. According to Wolke's work [START_REF] Wolke | Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen[END_REF] (see also [START_REF] Fouvry | Entiers sans grand facteur premier en progressions arithmétiques[END_REF]Theorem 6]), EH friable [ε] holds unconditionally for all ε ∈ ( 1 2 , 1).

Our results are as follows.

Theorem 1. Let a ∈ Z * and c > 1 be fixed constants.

(i) Let η ∈ (1, 32 17 ] and assume the Elliott-Halberstam conjecture EH prime [ε] with ε = 1 -1/η > 0. Then for any A > 1 we have

(1.3) π a,c,η (y) = π(y) + O A,a,c,η y (log y) A , as y → ∞.
(ii) Let η 1 ≈ 2.3303 be the unique positive zero of the equation η -1 -2η log(η -1) = 0 in (1, ∞). For each η ∈ [η 0 , η 1 ), there is a sufficiently small positive number ε = ε(η) such that assuming the Elliott-Halberstam conjecture EH prime [ε], for any A > 1 we have

(1.4) π a,c,η (y) = π(y) + O A,a,c,η y (log y) A , as y → ∞.
Theorem 2. Let a ∈ Z * and c > 1 be fixed constants. For every η ∈ [2, ∞), there is a sufficiently small positive number ε = ε(η) such that under the Elliott-Halberstam conjecture EH friable [ε], we have

(1.5) π a,c,η (y) log 4 √ 2 η -1 η π(y) 1 + O a,c,η 1 3 √ log y + ε , as y → ∞.
Remark 3. (a) For comparaison, we have

1 + 3 4 √ 2 ≈ 2.060, η 0 ≈ 2.142, η 1 ≈ 2.330, 1 + 4 √ e ≈ 2.284, 1 + √ e ≈ 2.648.
(b) The first assertion of Theorem 1 is due to Banks & Shparlinski [1, page 144]. Here we give a proof for convenience of the reader. By combining Theorem 1 with results of [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF], we see that the asymptotic formula (1.1) holds for 1 < η < η 1 under the Elliott-Halberstam conjecture.

(c) Theorem 2 improves signaficantively Chen-Wu's result (1.2) in two aspects : result and method. Firstly the proportion in (1.5) increases from log 2 8 to log 2 4 when η runs over [2, ∞), and that in (1.2) tends toward 0 as η → 1 + 4 √ e. Secondly our proof of (1.5) needs information of prime numbers in "arithmetical progressions" {a + mq} m friable with friable indice. For (a, q) = 1 and x y 2, define the counting function (1.6) π(x, y; q, a) := p x p≡a(mod q) P + ((p-a)/q) y 1.

A systematic study on the asymptotical behaviour has been done by Liu, Wu & Xi [START_REF] Liu | Primes in arithmetic progressions with friable indices[END_REF], recently. We need a theorem of Bombieri-Vinogradov type and an inequality of Brun-Titichmarsh for this new counting function (see Lemmas 2.2-2.3 below).

Some preliminary lemmas

In this section, we present three lemmas, which will be useful later.

The Rosser-Iwaniec linear sieve.

The first lemma is due to Iwaniec [START_REF] Iwaniec | Rosser's sieve[END_REF][START_REF] Iwaniec | A new form of the error term in the linear sieve[END_REF]. and

d|P P (z) λ + d w(d) d p z p∈P 1 - w(p) p F (s) + O e √ L-s 3 √ log D (2.2) d|P P (z) λ - d w(d) d p z p∈P 1 - w(p) p f (s) + O e √ L-s 3 √ log D (2.3)
for any z ∈ [2, D], s = (log D)/ log z, set of prime numbers P and multiplicative function w satisfying

0 < w(p) < p (p ∈ P), (2.4) u<p v, p∈P 1 - w(p) p -1 log v log u 1 + L log u (2 u v), (2.5) 
where P P (z) := p z, p∈P p and the implied O-constants are absolute. Here F, f are defined by the continuous solutions to the system

         sF (s) = 2e γ (1 s 2) sf (s) = 0 (0 < s 2) (sF (s)) = f (s -1) (s > 2) (sf (s)) = F (s -1) (s > 2)
where γ is the Euler constant.

2.2.

Bombieri-Vinogradov theorem of for π(x, y; q, a).

The second lemma is a theorem of Bombieri-Vinogradov type for the counting function π(x, y; q, a) defined as in (1.6) (see [START_REF] Liu | Primes in arithmetic progressions with friable indices[END_REF]Theorem 2]). Lemma 2.2. Let a ∈ Z * , A > 0 and κ a non-negative arithmetic function. Assuming the Elliott-Halberstam conjecture EH prime [ε], the following estimate q Q (q,a)=1 κ(q) π(x, y; q, a) -π(x) ϕ(q) ρ log(x/q) log y

a,A x (log x) A q x κ(q) 2 q + π(x)εu q Q κ(q) ϕ(q)
holds uniformly in x 2, exp (log x) 2/5+ε y x and Q min{y, √ x}, where ρ(u) is the Dickman function.

2.3.

Brun-Titichmarsh inequality for π(x, y; q, a).

The lemma below is a variant of [8, Theorem 1].

Lemma 2.3. Let a ∈ Z * and c > 1 be fixed constants. For any ε > 0, we have

(2.6)
π(cx, y; q, a) -π(x, y; q, a) 4(c -1)x ϕ(q) log(x/q) ρ log(x/q) log y 1 + O a,c,ε

1 3 √ log x + O A,a,c x q(log x) A
uniformly in exp{log log x) 5/3+ε } y x and 1 q min{y, √ x} with (a, q) = 1.

Proof. Denote by S the quantity on the left-hand side of (2.6). Without loss of generality, we can assume q is even and a is odd. Put P 2a (z) := p z,p 2a p. By the Möbius inversion, we can write 

S = x<a+mq cx (mq,a)=(a+mq,P 2a ( √ cx))=1 P + (m) y 1 + O(x ε ) = x<a+mq cx (a,mq)=1, P + (m) y d|(a+mq,P 2a ( √ cx)) µ(d) + O(x ε ),
λ + d + O(x ε ) = d D d|P 2aq ( √ cx) λ + d (x-a)/q<m (cx-a)/q m≡-aq (mod d) (a,m)=1, P + (m) y 1 + O(x ε ),
where {λ + d } d 1 is an upper bound sieve of level D as in Lemma 2.1 and q is the inverse of q modulo d (i.e. qq ≡ 1 (mod d)). To apply the Elliott-Halberstam conjecture EH friable [ε], we would like to remove the restriction (a, m) = 1 by Möbius inversion, so that

S |a µ( ) d D d|P 2aq ( √ cx) λ + d (x-a)/q<m (cx-a)/q m≡-aq (mod d) |m, P + (m) y 1 + O(x ε ) = |a P + ( ) y µ( ) d D d|P 2aq ( √ cx) λ + d (x-a)/ q<m (cx-a)/ q m≡-a q (mod d) P + (m) y 1 + O(x ε ).
We are now in a good position to employ the Elliott-Halberstam conjecture EH friable [ε] with D = (x/q) 1-ε , getting

S S + + O x q(log x) A , (2.7)
where

S + := |a µ( ) d D d|P 2aq ( √ cx) λ + d ϕ(d)
x/ q<m cx/ q (d,m)=1, P + (m) y 1.

and we have used the trivial bound

|a d D d|P 2aq ( √ cx) |λ + d | ϕ(d) cx/ q<m (cx-a)/ q (d,m)=1, P + (m) y 1 a log x.
Here we removed the restriction that P + ( ) y since we henceforth assume y > |a|.

Switching summations, it follows that

S + = |a µ( ) x/ q<m cx/ q P + (m) y d D d|P 2amq ( √ cx) λ + d ϕ(d) = x/q<m cx/q (a,m)=1, P + (m) y d D d|P 2amq ( √ cx) λ + d ϕ(d) •
From Lemma 2.1, we deduce (2.8)

S + log √ x log(x/q) 2e γ + O 1 3 √ log x x/q<m cx/q (a,m)=1, P + (m) y p< √ x p 2amq 1 - 1 p -1 log √ x log(x/q) 2e γ + O 1 3 √ log x p< √ x p 2aq 1 - 1 p -1 x/q<m cx/q (a,m)=1, P + (m) y H(m),
where H(m) is the multiplicative function, defined by

H(p ν ) = 1 if p | 2q or p > x 1/2 p-1 p-2
if p 2q and p x 1/2 for all ν 1. According to [8, (3.5)], we have

m∈S(x/q,y) (a,m)=1 H(m) = Ψ x q , y ϕ(a) a p< √ x p 2aq 1 + 1 p(p -2) 1 + O (log log x) 2 log y ,
where S(x, y) := {n x : P + (n) y} and Ψ(x, y) := |S(x, y)|. Combining this with (2.8), we find that (2.9)

S + log x log(x/q) 2e γ + O 1 3 √ log x ϕ(a) a Ψ cx q , y -Ψ x q , y p √ x p aq 1 - 1 p .
By the Mertens formula, it follows that

p x 1/2 p aq 1 - 1 p = aq ϕ(a)ϕ(q) • 2e -γ log x 1 + O 1 log x .
On the other hand, according to [5, Theorem 1], we have Ψ(x, y) = xρ log x log y 1 + O log((log x)/ log y + 1) log y uniformly for x 3 and exp{(log log x) 5/3+ε } y x. Combining these with (2.9) and (2.7), we can get the required inequality (2.6).

Proof of Theorem 2

For each prime r ∈ ( 1 2 y, y], consider (3.1)

Q r (y) :=

x<q cx P + (q-a)=r 1.
Noticing that P + (q -a) = r ⇔ q ≡ a (mod r) and P + (q -a) r, we can write 

y<r 2y Q r (y) (log 2)(c -1)ρ(η -1) π(x) log y 1 + O a,c,η 1 log y + ε .
On the other hand, the Brun-Titchmarsh inequality (2.6) give us 1 log

Q r (y) 4(c -1)x ϕ(r) log(x/r) ρ(η -1) 1 + O a,η 1 3 √ log x 4(c -1) ρ(η -1) η -1 • x y log y 1 + O a,η 1 3 
4 √ 2 η -1 η π(y) 1 + O a,c,η 1 3 √ log x + ε .
This completes the proof of Theorem 2.

Proof of Theorem 1

As in [START_REF] Wu | On values taken by the largest prime factor of shifted primes[END_REF], the letters p, q, r and are always used to denote prime numbers, and d, m, and n always denote positive integers. In what follows, let a ∈ Z * and η ∈ (1, 32 17 ] ∪ [η 0 , η 1 ). Let δ be a sufficiently small positive constant and let c > 1 be a parameter to be chosen later. Let x 0 (A, a, c, η, δ) be a large constant depending on A, a, c, η, δ at most. For x x 0 (A, a, c, η, δ) and r ∈ ( Let r ∈ R g (y) and let Q r (y) be defined as in (3.1). When η ∈ (1, 32 17 ], we have r > y = x 1/η x 17/32 > (cx) 1/2 . Thus the definition of R g (y) allows us to write

(4.4) Q r (y) = π(cx; r, a) -π(x; r, a) (c -1 -3δ) π(x) ϕ(r) > 0,
where we have used the inequality π(cx) (c -δ)π(x) for x x 0 (a, c, δ). By the definition of P a,c,η and (4.4), it is easy to see that R g (y) ⊂ P a,c,η ∩ [y, 2y]. In view of (4.3), we find that π a,c,η (2y) -π a,c,η (y) = π(2y) -π(y) + O A,a,c,η y (log y) A . This implies the first assertion of Theorem 1, thanks to standard dyadic split. 4.2. The case of η ∈ [η 0 , η 1 ).

In this case, for every prime r ∈ R g (y), we can write It is easy to see that G(η) is decreasing on [2, ∞) and G(2) = 1. Therefore there is a unique real number η 1 ∈ (2, ∞) such that G(η 1 ) = 0 and for η ∈ [2, η 1 ) we have the inequality (4.9) Q r (y) A,a,δ,η π(y) ϕ(r)

for y y 0 (A, a, δ, η). As before, (4.9) allows us to deduce that R g (y) ⊆ P a,c,η ∩ (y, 2y]. Combining this with (4.3) leads to π a,c,η (2y) -π a,c,η (y) = π(2y) -π(y) + O A,a,c,δ,η y (log y) A . This implies the required asymptotic formula (1.4).

Lemma 2 . 1 .

 21 Let D 2 and let µ(n) be the Möbius function. Then there are two sequences {λ ± d } d 1 , vanishing for d > D or µ(d) = 0, satisfying |λ ± d | 1, such that (2.1)

1 =Since η 2 , 3

 123 (mod r), P + (q-a) y y<r 2y π(cx, y; r, a) -π(x, y; r, a) = M + E, , y; r, a) -E(x, y; r, a) , and E(x, y; r, a) := π(x, y; r, a)we have y = x 1/η x 1/2 and Q = min(y, √ x) = y. Using Lemma 2.2 with the characteristic function of prime numbers in (y, 2y] in place of κ(q), we easily derive, under the conjecture of Elliott-Halberstam EH prime [ε], that (3.3) |E| y<r 2y |E(cx, y; r, a)| + |E(x, y; r, a)| a x (log x) 3 + εη π(x) log y a,η ε π(x) log y for all x x 0 (ε), where we have used the following bound (constant depends on a, η at most. According to [9, Corollary III.5.8.3], we have |ρ (u)| ρ(u) log u (u > 1). Thus for all r ∈ (y, 2y], we have ρ log(x/r) log y = ρ(η -1) 1 + O η 5) and (3.3) into (3.2), it follows that (3.6)

√

  log x for all primes r ∈ (y, 2y]. This implies that (3.7) y<r 2y Q r (y) ρ(η -

1 2 y 4 . 1 .R

 241 , y], put x := r η . As usual, for (a, d) = 1 define π(x; d, a) := p x p≡a(mod d) 1. The case of η ∈ (1, 32 17 ]. For η > 1, c > 1, y 3 and x = y η , put R b (y) := y < r 2y : π(x; r, a)b (y) := y < r 2y : π(cx; r, a) -Noticing that y = x 1/η = x 1-(1-1/η) , the Elliott-Halberstam conjecture EH prime [ε] with ε = 1 -1/η allows us to deduce tthat δ π(x) y |R b (y)| y<r 2y π(x; r, a) -π(x) ϕ(r)A,a,δ,ηx (log x) A+1 , which gives immediately (4.1) |R b (y)| A,a,δ,η y (log y) A • Similarly (4.2) |R b (y)| A,a,c,δ,η y (log y) A • Define R g (y) := y < r 2y : π(x; r, a) (1 + δ) π(x) ϕ(r) , R g (y) := y < r 2y : π(cx; r, a) (1 -δ) π(cx) ϕ(r) , and R g (y) := R g (y) ∩ R g (y). Clearly R g (y) ⊂ P ∩ (y, 2y] ⊂ R b (x) ∪ R b (x) ∪ R g (y). Thus the estimations (4.1) and (4.2) imply that (4.3) |R g (y)| = π(2y) -π(y) + O A,a,c,δ,η y (log y) A (y 2).

(4. 5 ) 3 √ 2 √ δ -δ η - 1 η - 1 -

 53211 Q r (y) = π(cx; r, a) -π(x; r, a) -Q r (y)(c -1 -3δ) π(x) ϕ(r) -Q r (y).for x x 0 (a, c, δ), where(4.6) Q r (y) := x<q cx q≡a(mod r), P (q-a)>r 1.Similar to [12, Proposition 2.1] * , we can prove(4.7) Q r (y) (c -1 + 2δ) 2η log(η -1) η -1 • π(y) ϕ(r) 1 + O a,c,δ,η,ε1log r for y 3, r ∈ (y, 2y] and η 2. Inserting (4.7) into (4.4) and taking c = 1 + 2 √ δ, we can find that Q r (y) 2η log(η -1) ) := η -1 -2η log(η -1).

* The proof is identical and the only difference is that we can take z = (y/q) (1-ε)/2 and D = z 2 thanks to the Elliott-Halberstam conjecture EH * prime [ε], instead of z = (y/q) 1/4 /(log y) B and D = z 2
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