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Let x → ∞ be a parameter. In 2016, Feng proved that Deshouillers-Dress-Tenenbaum's arcsine law on divisors of the integers less than x also holds in arithmetic progressions for non Siegel 'exceptional' modulus q exp{( 1 4 -ε)(log 2 x) 2 }, where ε is an arbitrarily small positive number. In this paper, we shall show that in the case of prime-power modulus (q := p with p a fixed odd prime and ∈ N) the arcsine law on divisors holds in arithmetic progressions for q x 15/52-ε .

Introduction.

For each positive integer n, denote by τ (n) the number of divisors of n and define the random variable D n to take the value (log d)/ log n, as d runs through the set of the divisors of n, with the uniform probability 1/τ (n). The distribution function F n of D n is given by (1.1) F n (t) := Prob(D n t) = 1 τ (n) d|n, d n t 1 (0 t 1).

Deshouillers, Dress and Tenenbaum ([4] or [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.6.7]) proved that the Cesàro means of F n converges uniformly to the arcsine law. More precisely, the asymptotic formula

(1.2) 1 x n x F n (t) = 2 π arcsin √ t + O 1 √ log x
holds uniformly for x 2 and 0 t 1 and the error term in (1.2) is optimal. Various variants of (1.2) have been investigated by different authors. In particular, Cui & Wu [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF] and Cui, Lü & Wu [START_REF] Cui | The Selberg-Delange method in short intervals with some applications[END_REF] considered generalisation of (1.2) to the short interval case; and Feng & Wu [START_REF] Feng | Beta law on divisors of integers representable as sum of two squares[END_REF] showed that the average distribution of divisors over integers representable as sum of two squares converges to the beta law. Based on Cui-Wu's method [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF], Feng [START_REF] Feng | On the arcsine law on divisors in arithmetic progressions[END_REF] studied analogue of (1.2) for arithmetic progressions. His result can be stated as follows: Let a and q be integer such that (a, q) = 1, and suppose that q is not a Siegel 'exceptional' modulus. Then for any ε ∈ (0, 1 4 ) we have

(1.3) 1 (x/q) n x n≡a(mod q) F n (t) = 2 π arcsin √ t + O ε e √ log q √ log x
uniformly for 0 t 1, x 2 and q exp{( 1 4 -ε)(log 2 x) 2 }, where log 2 := log log.

The aim of this paper is to improve the result above in the case of prime power modulus. Our result is as follows.

Theorem 1. Let q := p with p an odd prime and ∈ N. Then for any ε > 0, we have

(1.4) 1 (x/q) n x n≡a(mod q) F n (t) = 2 π arcsin √ t + O p,ε 1 √ log x
uniformly for 0 t 1, x 2, q x 15/52-ε and a ∈ Z * such that (a, q) = 1, where the implied constant depends on p and ε at most.

Our improvement is double. Firstly, with q = p any Siegel zero must occur for L(s, χ) where χ is a real character modulo p. Since the implied constant in Theorem 1 is allowed to depend on p, there is no Siegel zero for the modulus q = p . These considerations allow to remove the assumption of Siegel zero in Feng's result for q = p with an implied constant in the error term depending on p. Alternatively, this follows from Feng's result and Corollary 3.4 of the Banks and Shparlinski paper [START_REF] Banks | Boun ds on short character sums and L-functions for characters with a smooth modulus[END_REF] (cf. Lemma 2.3 below). Secondly the domain of q is extended significantly.

Preliminary

Our first lemma is an effective Perron formula (cf. [10, Corollary II.2.2.1]). Lemma 2.1. Let F (s) := ∞ n=1 a n n -s be a Dirichlet series with finite abscissa of absolute convergence σ a . Suppose that there exist some real number α > 0 and a non-decreasing function B(n) such that:

(a) ∞ n=1 |a n |n -ς (ς -σ a ) -α (ς > σ a ), (b) |a n | B(n) (n 1).
Then for x 2, T 2, σ σ a and κ := σ a -σ + 1/ log x, we have

n x a n n s = 1 2πi κ-iT κ+iT F (s + w)x w dw w + O x σa-σ (log x) α T + B(2x) x σ 1 + x log T T .
Lemma 2.2. Let q > 2 be an integer.

(i) If χ is a Dirichlet character modulo q, then we have

L(σ + iτ, χ) q 1-σ (|τ | + 1) 1/6 log(|τ | + 1). (ii) If χ is a non principal Dirichlet character modulo q, then for 0 < ε < 1 2 , ε σ 1, |τ | + 2 T , we have L(σ + iτ, χ) ε (q 1/2 T ) 1-σ+ε .
Proof. See [9, p.485, Theorem 1] and [START_REF] Tenenbaum | Théorie analytique et probabiliste des nombres: 307 exercices corrigés[END_REF]Exercise 241].

The next lemma is due to Banks-Shparlinski [1, Corollary 3.4.], which will play a key role in the proof of Theorem 1.

Lemma 2.3. Let q = p with p an odd prime and ∈ N. For each constant A > 0, there is a constant c 0 = c 0 (A, p) > 0 depending only on A and p such that for any character χ modulo q, the Dirichlet L-function has no zero in the region

(2.1) σ > 1 - c 0 (log q) 2/3 (log 2 q) 1/3 and |τ | q A .
The following lemma is a key for the proof of Theorem 1.

Lemma 2.4. Let q := p with p a prime and ∈ N and let χ 0 be the principal character to the modulus q. Then we have

(2.2) n x χ 0 (n) τ (nd) = hx √ π log x g(d) + O (3/4) ω(d) log x
uniformly for x 2, 1 d x and 1, where the implied constant is absolute, ω(d) is the number of all distinct prime factors of d,

(2.3) h := 1 -p -1 (p,p)=1 1 -p -1 log(1 -p -1 ) -p -1
and

(2.4) g(d) := p α d ∞ j=0 (χ 0 (p)p -1 ) j j + α + 1 -χ 0 (p)p -1 log(1 -χ 0 (p)p -1 ) • Proof.
As usual, denote by v p (n) the p-adic valuation of n. By using the formula

(2.5) τ (dn) = p (v p (n) + v p (d) + 1),
we write for e s > 1

f d (s, χ 0 ) := ∞ n=1 χ 0 (n) τ (dn) n -s = p ∞ j=0 (χ 0 (p)p -s ) j j + v p (d) + 1 = (p,d)=1 ∞ j=0 (χ 0 (p)p -s ) j j + 1 × p α d ∞ j=0 (χ 0 (p)p -s ) j j + α + 1 = p ∞ j=0 (χ 0 (p)p -s ) j j + 1 × p α d ∞ j=0 (χ 0 (p)p -s ) j j + α + 1 ∞ j=0 (χ 0 (p)p -s ) j j + 1 -1 = L(s, χ 0 ) 1/2 G d (s, χ 0 ), (2.6) 
where

G d (s, χ 0 ) := p ∞ j=0 (χ 0 (p)p -s ) j j + 1 1 -χ 0 (p)/p s p α d ∞ j=0 (χ 0 (p)p -s ) j j + α + 1 ∞ j=0 (χ 0 (p)p -s ) j j + 1 -1
is a Dirichlet series that converges absolutely for e s > 1 2 .

We easily see that

p α d ∞ j=0 (χ 0 (p)p -s ) j j + α + 1 ∞ j=0 (χ 0 (p)p -s ) j j + 1 -1 = 1 α + 1 + O 1 √ p .
for e s 1 2 , where the implied constant is absolute. This implies that for any ε > 0,

(2.7) G d (s, χ 0 ) p α d 1 α + 1 + O 1 √ p C ε 3 4 ω(d)
for e s 1 2 + ε, where C ε > 0 is a constant depending on ε only. We can apply Lemma 2.1 with the choice of parameters

σ a = 1, B(n) = 1, α = 1 2 and σ = 0 to write n x χ 0 (n) τ (nd) = 1 2πi b+iT b-iT f d (s, χ 0 ) x s s ds + O ε x log x T ,
where b = 1 + 2/ log x and 100 T x such that ζ(σ + iT ) = 0 for 0 < σ < 1. Let M T be the boundary of the modified rectangle with vertices ( 1 2 + ε) ± iT and b ± iT as follows:

• ε > 0 is a small constant chosen such that ζ( 1 2 + ε + iγ) = 0 for |γ| < T ; • the zeros of ζ(s) of the form ρ = β + iγ with β > 1
2 + ε and |γ| < T are avoided by the horizontal cut drawn from the critical line inside this rectangle to ρ = β + iγ;

• the pole of ζ(s) at the points s = 1 is avoided by the truncated Hanke contour Γ (its upper part is made up of an arc surrounding the point s = 1 with radius r := 1/ log x and a line segment joining 1 -r to ( 1 2 + ε).

Γρ Γ L 1 L 2 L 4 L 3 b = 1 + 2 log x τ O 1 2 + ε 1 Figure 1 -Contour M T
Clearly the function f d (s, χ 0 ) is analytic inside M T . By the residue theorem, we can write (2.8)

n x χ 0 (n) τ (nd) = I + 1 2πi I 1 + • • • + I 4 + β> 1 2 +ε, |γ|<T I ρ + O ε x log x T ,
where

I := 1 2πi Γ f d (s, χ 0 ) x s s ds, I ρ := Γρ f d (s, χ 0 ) x s s ds, I j := L j f d (s, χ 0 ) x s s ds. A. Evaluation of I. Let 0 < c < 1 10 be a small constant. Since G d (s, χ 0 )((s -1)ζ(s)) 1/2 (1 -p -s ) 1/2 is holomorphic and O((3/4) ω(d)
) in the disc |s -1| c thanks to (2.7), the Cauchy formula allows us to write

G d (s, χ 0 )((s -1)ζ(s)) 1/2 (1 -p -s ) 1/2 = G d (1, χ 0 )(1 -p -1 ) 1/2 + O((3/4) ω(d) |s -1|) for |s -1| 1 2 c. In view of L(s, χ 0 ) = ζ(s)(1 -p -s ) and G d (1, χ 0 )(1 -p -1 ) 1/2 = hg(d), it follows that f d (s, χ 0 ) = hg(d)(s -1) -1/2 + O((3/4) ω(d) |s -1| 1/2 ) for |s -1| 1 2 c. So we have (2.9) I = hg(d)M (x) + O((3/4) ω(d) E 0 (x)),
where

M (x) := 1 2πi Γ (s -1) -1/2 x s ds, E 0 (x) := Γ |(s -1) 1/2 x s ||ds|.
Firstly we evaluate M (x). By using [10, Corollary II.5.2.1], we have

(2.10) M (x) := x √ log x 1 Γ( 1 2 ) + O x -c/2 .
Next we deduce that

E 0 (x) 1-1/ log x 1/2+ε (1 -σ) 1/2 x σ dσ + x (log x) 3/2 x (log x) 3/2 ∞ 1 t 1/2 e -t dt + 1 x (log x) 3/2 • (2.11)
Inserting (2.10) and (2.11) into (2.9) and noticing that Γ( 12 ) = √ π, we find that (2.12)

I = x √ π log x hg(d) + O ε (3/4) ω(d) log x .
B. Estimations of I 1 and I 2 .

It is well known that (cf. [10, Corollary II.3.5.2])

(2.13) |ζ(σ + iτ )| |τ | (1-σ)/3 log |τ | ( 1 2 σ 1 + log -1 |τ |, |τ | 3).
Noticing that q := p , it follows that 

(2.14) L(s, χ 0 ) = ζ(s)(1 -p -s ) |τ | (1-σ)/3 log |τ | for 1 2 σ 1 + log -1 (|τ | + 3)
|I 1 | + |I 2 | ε (3/4) ω(d) 1+2/ log x 1/2+ε T (1-σ)/6 (log T ) x σ T dσ ε (3/4) ω(d) x T log T.
C. Estimations of I 3 and I 4 .

As before, (2.6) and (2.14) allow us to deduce

|I 3 | + |I 4 | ε (3/4) ω(d) T 1 (|τ | + 1) 1/12 log(|τ | + 1) x 1/2+ε |( 1 2 + ε) + iτ )| dτ ε (3/4) ω(d) x 1/2+ε T 1 (τ + 1) -1+1/12 dτ ε (3/4) ω(d) x 1/2+ε T 1/12 .
(2.16)

D. Estimation of I ρ .
With the help of (2.14) and (2.7), we can derive that for s = σ + iγ with (2.17)

I ρ ε (3/4) ω(d) β 1/2+ε |γ| (1-σ)/6 (log |γ|) 1/2 x σ |σ + iγ| dσ.
Denote (|τ | + 3) (c > 0 absolute constant). Summing (2.17) over |γ| < T and interchanging the summations and noticing that β < 1 -σ(T 1 ) (the Korobov-Vinogradov zero free region), we have

β> 1 2 +ε, |γ|<T |I ρ | (3/4) ω(d) (log T ) max T 1 T β> 1 2 +ε, T 1 /2<|γ|<T 1 |I ρ | ε (3/4) ω(d) (log T ) max T 1 T 1-σ(T 1 ) 1/2+ε T (1-σ)/6 1 • x σ T 1 • N (σ, T 1 ) dσ.
According to [START_REF] Huxley | The difference between consecutive primes[END_REF], it is well known that

(2.18) N (σ, T ) T (12/5)(1-σ) (log T ) 44
for 1 2 + ε σ 1, and T 2. Thus

β> 1 2 +ε, |γ|<T |I ρ | (3/4) ω(d) (log T ) 45 max T 1 T 1-σ(T 1 ) 1/2+ε T (1-σ)/6 1 x σ T 1 T (12/5)(1-σ) 1 dσ x(log T ) 45 max T 1 T 1-σ(T 1 ) 1/2+ε T 17/30 1 x 1-σ dσ x(log T ) 45 max T 1 T T 17/30 1 x σ(T 1 )
x(log T ) 45 T 17/30 x σ(T ) .

( 

χ 0 (n) τ (nd) = x √ π log x hg(d) + O ε (3/4) ω(d) log x + O ε (R d,T (x)),
where

R d,T (x) := 3 4 ω(d) x T log T + x 1/2+ε T 1/12 + x(log T ) 45 T 17/30 x σ(T ) + x log x T •
Taking T = x and ε = 10 -3 and noticing that ω(d) (log x)/ log 2 x for d x, it is easy to verify that R d,T (x)

(3/4) ω(d) x/(log x) 3/2 for d x. This completes the proof.

Lemma 2.5. Under the notation in Lemma 2.4, we have

(2.20) h d x χ 0 (d)g(d) = (ϕ(q)/q)x √ π log x 1 + O 1 log x ,
where the implied constant is absolute.

Proof. According to (2.4), it is easy to see that g(d) is a multiplicative function and

(2.21)

g(p ν ) = j 0 (χ 0 (p)p -1 ) j j + ν + 1 k 0 (χ 0 (p)p -1 ) k k + 1 -1 = -χ 0 (p)p -1 log(1 -χ 0 (p)p -1 ) j 0 (χ 0 (p)p -1 ) j j + ν + 1 • For σ > 1, we can write n 1 χ 0 (n)g(n)n -s = L(s, χ 0 ) 1/2 n 1 β(n)n -s = ζ(s) 1/2 (1 -p -s ) 1/2 n 1 β(n)n -s ,
where β(n) is a multiplicative function determined by

(2.22) ν 1 β(p ν )ξ ν = (1 -χ 0 (p)ξ) 1/2 ν 0 χ 0 (p)g(p ν )ξ ν (|ξ| < 1).
Since |g(p ν )| 1, the right-hand side is holomorphic for |ξ| < 1 and we have β(p ν )

3 2 ν (ν = 1, 2, . . .). In addition, β(p) = χ 0 (p)(g(p) -1/2) = O(1/p). These imply the absolute convergence of β(n)n -s for σ > 1 2 and β(n)n -s ε 1 for σ 1 2 + ε. Applying Theorem II. 5.3 of [10], we have n x χ 0 (n)g(n) = x √ log x λ 0 ( 1 2 ) + O 1 log x ,
where we have

λ 0 ( 1 2 ) := (1 -p -1 ) 1/2 Γ( 1 2 ) p (1 -χ 0 (p)p -1 ) 1/2 ν 0 χ 0 (p) ν g(p ν ) p ν ,
thanks to (2.21) and (2.22). In view of (2.21), it follows, with the notation ξ = χ 0 (p)p -1 ,

ν 0 χ 0 (p) ν g(p ν ) p ν (1 -χ 0 (p)p -1 ) = j 0 ξ j j + 1 -1 (1 -ξ) ν 0 j 0 ξ j+ν j + ν + 1 = j 0 ξ j j + 1 -1 (1 -ξ) k 0 ξ k = -χ 0 (p)p -1 log(1 -χ 0 (p)p -1 ) • Thus λ 0 ( 1 2 ) = (1 -p -1 ) 1/2 √ π p (1 -χ 0 (p)p -1 ) -1/2 -χ 0 (p)p -1 log(1 -χ 0 (p)p -1 )
and hλ 0 ( 1 2 ) = (1 -p -1 )/ √ π = (ϕ(q)/q)/ √ π, which concludes the proof of (2.20).

Lemma 2.6. Let q = p with p an odd prime and ∈ N. For any ε > 0, there is a positive constant c 1 (ε) > 0 depending on ε such that we have

(2.23) χ =χ 0 χ(a)χ(d) n x χ(n) τ (nd) xe -c 1 (ε)(log x) 1/3 (log 2 x) -1/3
uniformly for d 1, x 2, q x 15/52-ε and a ∈ Z * such that (a, q) = 1.

Proof. Since the proof is rather close to that of Lemma 2.4, we only mentionne the principal points. As before, by (2.5), we can write for σ := e s > 1

(2.24)

f d (s, χ) := ∞ n=1 χ(n)τ (dn) -1 n -s = L(s, χ) 1/2 G d (s, χ),
where

G d (s, χ) := p ∞ j=0 (χ(p)p -s ) j j + 1 (1 -χ(p)p -s ) 1/2 p α d ∞ j=0 (χ(p)p -s ) j j + α + 1 ∞ j=0 (χ(p)p -s ) j j + 1 -1
is a Dirichlet series that converges absolutely for σ > 1 2 and verifies

|G d (s, χ)| C ε ( 3 4 ) ω(d) for σ 1 2 + ε and d 1,
where ε is an arbitrarily small positive constant and C ε > 0 is a constant depending only on ε.

We apply Lemma 2.1 with

σ a = 1, B(n) = 1, α = 1 2 and σ = 0 to write n x χ(n) τ (nd) = 1 2πi b+iT b-iT f d (s, χ) x s s ds + O x log x T ,
where b = 1 + 2/ log x and 100 T x such that L(σ + iT, χ) = 0 for 0 < σ < 1. Let M T be the boundary of the modified rectangle with vertices ( 1 2 + ε) ± iT and b ± iT as follows:

• ε > 0 is a small constant chosen such that L( 1 2 + ε + iγ, χ) = 0 for |γ| < T ; • the zeros of L(s, χ) of the form ρ = β + iγ with β > 1 2 and |γ| < T are avoided by the horizontal cut drawn from the critical line inside this rectangle to ρ = β + iγ.

Clearly the function f d (s, χ) is analytic inside M T . By the Cauchy residue theorem, we can write (2.25)

n x χ(n) τ (nd) = I 1 + • • • + I 4 + β> 1 2 +ε, |γ|<T I ρ + O x log x T ,
where

I j := 1 2πi L j f d (s, χ) x s s ds, I ρ := 1 2πi Γρ f d (s, χ)
x s s ds and L j and Γ ρ are as in Figure 1.

A. Estimations of I 1 and I 2 .

In view of (2.24) and Lemma 2.2, we have (2.26) 

|I 1 | + |I 2 | 1+2/ log x 1/2+ε (q 1/2 T ) 1 2 (1-σ)+ε • x σ T dσ x T 1+2/ log x 1/2+ε q 1/4 T 1/2 x 1-σ dσ x T • B.
|I ρ | (log T ) max T 1 T 1-σ(T 1 ;q) 1/2+ε q 1 2 (1-σ) T 1/12+ε 1 x σ T 1 N (σ, T 1 , χ) dσ.
where σ(τ ; q) := C log -2/3 (q|τ | + 3q) log

-1/3 2 (q|τ | + 3q) (C = C(p)
is a positive constant depending on p) and we have used Lemma 2.3.

It is well-known that (cf. [START_REF] Montgomery | Topics in multiplicative number theory[END_REF]Theorem 12.1] and [START_REF] Huxley | The difference between consecutive primes[END_REF])

N (σ, T, q) := χ (mod q) N (σ, T, χ) (qT ) 

Thus

(2.29)

χ =χ 0 β> 1 2 +ε, |γ|<T |I ρ | log 10 (qT ) max T 1 T 1-σ(T 1 ;q) 1/2+ε q 1-σ 2 T 1/12+ε 1 x σ T 1 (qT 1 ) 12 5 (1-σ) dσ
x log 10 (qT ) max

T 1 T 1-σ(T 1 ;q) 1/2+ε
q 87/30 T 17/30 1

x 1-σ dσ x log 10 (qT ) max

T 1 T
q 87/30 T 17/30 1

x σ(T 1 ;q)

x log 10 (qT ) q 87/30 T 17/30 x σ(T ;q)

. provided q 87/30 T 17/30 x. Inserting (2.26), (2.27) and (2.29) into (2.25), we find that

χ =χ 0 χ(a)χ(d) n x χ(n) τ (nd)
qx log x T + x 1/2 q 5/4 T 1/12+ε + x log 10 (qT ) q 87/30 T 17/30 x σ(T ;q) (x -13 q 104 ) 1/17+ε + (x 33 q 42 ) 1/51+ε + x(log x) 10 x -εσ(T ;q)/195 thanks to the choice of T = (x 30(1-ε) q -87 ) 1/17 . This implies the required result.

Proof of Theorem 1

Firstly we write (3.1) S(x, t; q, a) := 1 (x/q) n x n≡a(mod q)

F n (t).

In view of the symmetry of the divisors of n about √ n, it follows that

F n (t) = Prob(D n 1 -t) = 1 -Prob(D n < 1 -t) = 1 -F n (1 -t) + O(τ (n) -1 ).
Summing over n x with n ≡ a (mod q), we have S(x, t; q, a) + S(x, 1 -t; q, a) = 1 (x/q) n x n≡a(mod q)

{1 + O(τ (n) -1 )} = 1 + O 1 √ log x
uniformly for x 3, q x 15/52-ε and a ∈ Z * such that (a, q) = 1, where we have used the orthogonality and Lemmas 2.4 and 2.6 with d = 1 to deduce that S(x, t; q, a) = q xϕ(q) n x χ(mod q) χ(a)χ(n) τ (n)

1 (x/q) n x n≡a(mod q) 1 τ (n) = q xϕ(q) χ(mod q) χ(a) n x χ(n) τ (n) (q/ϕ(q)) e c 1 (ε)(log x) 1/3 (log 2 x) -1/3
d|n, d n t 1 (n = dm) = q xϕ(q) d x t χ(mod q) χ(a)χ(d) uniformly for x 3, q x 15/52-ε and a ∈ Z * such that (a, q) = 1. Inserting (3.3)-(3.6) into (3.2), we find that S(x, t; q, a) = 2 π arcsin √ t + O p,ε 1 √ log x uniformly for 0 t 1 2 , x 3, q x 15/52-ε and a ∈ Z * such that (a, q) = 1.

  by N (α, T ) the number of zeros of ζ(s) in the region e s α and | m s| T and define σ(τ ) := c log -2/3 (|τ | + 3) log -1/3 2

1 - 3 d x t χ =χ 0 χ

 130 S 2 + S 3 -S 4 ,whereS 1 := d x t χ 0 (a)χ 0 (d) m x/d χ 0 (m) τ (md) , S 2 := d x t χ 0 (a)χ 0 (d)

  and |τ | 3. From (2.6), (2.7) and (2.14), we derive that

	(2.15)

  Estimations of I 3 and I 4 .

	By (2.24) and Lemma 2.2, we have		
	(2.27)	|I 3 | + |I 4 |	1	T	q 1/4 (|τ | + 1) 1/12	x 1/2+ε 2 + ε) + iτ )| |( 1	dτ
			x 1/2+ε q 1/4 T 1/12 .
	C. Estimation of I ρ .					
	With the help of (2.24) and Lemma 2.5, we have
	(2.28)	I ρ	β 1/2+ε	q	1-σ 2 |γ| 1/12+ε	x σ |σ + iγ|	dσ.
	Denote by N (σ, T, χ) the number of zeros of L(s, χ) in the region e s σ and | m s| T .
	Summing (2.28) over |γ| < T and interchanging the summations, we have
	β> 1 2 +ε, |γ|<T						

(1-σ) log 9 (qT ).
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