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Abstract

At the atomic level, many phenomena in materials science reduce to long periods of thermal

vibration interspersed by transitions between local free energy minima. The resultant rare event

dynamics are exponentially sensitive to the catalog of available transitions, meaning incomplete

models can make catastrophically erroneous predictions. This review summarises some recent

efforts towards quantifying this uncertainty. I show that Bayesian methods can rigorously mea-

sure sampling incompleteness, be propagated to yield a quantified prediction uncertainty and au-

tonomously manage massively parallel simulations. These methods allow uncertainty-controlled

investigation of complex atomistic processes with minimal end-user supervision, facilitating high-

throughput workflows. For individual transitions rates, I also show how the activation free energy

can be evaluated with full treatment of anharmonic thermal vibrations. The developed methods,

all freely available, are demonstrated on a wide range of challenging materials science problems.
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I. INTRODUCTION

The ability to directly simulate the dynamics of hundreds to millions of atoms has allowed

unprecedented insight into how materials transform and evolve. However, materials phe-

nomena as fundamental as diffusion, creep or corrosion require thermal activation, meaning

structural changes (such as defect migration or nanoparticle transformations) occur as a

series of rare events between long periods of thermal vibration. In this regime, brute force

generation of a single simulation trajectory by molecular dynamics is typically insufficient[1].

It has long been recognised that rare event dynamics can be mapped to a jump process

between discrete states[2], with an error decays exponentially with the expected time spent

in each state[3, 4]. States can be identified by performing an energy minimisation from

finite temperature, with the minimized structure processed to produce some state label or

index[5, 6]. The probability per unit time (transition rate) of a particular jump depends

only on the currently occupied state and the magnitude of the free energy barrier for the

jump[7] and can be calculated using well known transition state theory methods[8].

With a complete set of states and transition rates, often known as a kinetic transition

network (KTN), one can construct essentially exact state-to-state trajectories. A popular

method to generate trajectories is kinetic Monte Carlo[2, 5, 9], though a KTN can also be

treated as a Markov chain, allowing quantities such as diffusion constants or first passage

time distributions to be calculated using linear algebra techniques[10–13]. The topology of

the KTN also allows more general insight into system properties, particularly when visu-

alised using disconnectivity graphs[10, 14–16].

A recurrent issue[10, 11, 13, 17–19] when building rare event models is incompleteness-

atomic mechanisms are too complex to identify a priori, meaning states and transitions

must be discovered via simulation. As all models are incomplete their predictions are always

uncertain, but this source of potentially unbounded error is rarely quantified.

This review briefly summarises our efforts over the last three years to quantify and prop-

agate sampling uncertainty during model construction[10, 11, 13]. A key consequence is the

ability to use uncertainty measures to autonomously decide where sampling should be per-

formed to reduce prediction uncertainty[10, 20]. This has clear implications for the rapidly

growing discipline of high-throughput simulation[21, 22], where end-user supervision must
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be minimial[23, 24], to treat ever more ambitious simulation tasks. I describe initial appli-

cations to complex diffusion pathways[13] and nanoparticle transformations[11], providing

rare measures of convergence unavailable in traditional approaches. Future work will also

augment the training of machine learning interatomic potentials[25–29].

Whilst this review does not consider interatomic potential error, I highlight a method[7]

that allows transition rate calculations to go beyond the harmonic vibration approximation[30,

31]. Application to large-scale simulations of dislocation migration reveal that anharmonic

effects can be significant at surprisingly low temperatures.

II. STATE-WISE INCOMPLETENESS: THE UNKNOWN RATE

The most direct method to find transitions from a given state is to simply run dynamics,

typically at an elevated temperature TH where transitions are more frequent[17, 32]. There

are also a variety of methods[33–35] that follow curvatures on the potential energy surface

to discover transition pathways, which can be more efficient in some cases[36]. However,

dynamical sampling has the unique advantage that incompleteness will always decrease with

additional computational effort, which is essential for robust uncertainty quantification- the

probability of not observing a transition of rate k after a time τ in some basin is the decay

exp(−kτ)[3, 10, 17]. After some period of computational effort, a total time τi has been spent

in a state i, during which a set of first passage times τji to states j have been observed, for

which transition state theory (TST) can be used to calculate rates kji.

The TAMMBER code (available at github.com/tomswinburne/tammber) employs a variable-

temperature accelerated dynamics (TAD) method[32], accumulating sampling information

in parallel and producing (τi, {τji, kji}) over a range of possible TH down to the lowest

application temperature TL. The acceleration temperature Details on how sampling data

at variable TH is collated can be found in Ref. [10].

The current implementation calculates rates using harmonic TST, though future work will

relax this assumption using the PAFI method[7], detailed below. Sampling incompleteness

in a state i can then be formally quantified as the unknown rate kui , such that the total

escape rate from i writes kti = kui + koi , where koi =
∑

j kji is the total observed escape rate.

Using Poissonian statistics, one can derive the likelihood of observing our simulation

data for any postulated value of kti, yeildingyielding a Bayesian posterior distribution
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π(kti|τi, {τji, kji}) and an expected unknown rate

〈kui 〉 =

∫ ∞
koi

kπ(k|τi, {τji, kji})dk− koi , (1)

as illustrated in Figure 1[10]. Estimators for 〈kui 〉 have been proposed in pioneering earlier

work to address this issue[17–19]. However, the Bayesian approach described here has the

key property of monotonic decay with computational effort, even under the discovery of

new transitions. This is essential for autonomous convergence analysis in a high-throughput

setting; one can show unless this property is satisfied, inferred low temperature prediction

timescales can be exponentially volatile[10]. In addition, by specifying the computational

cost of elemenary sampling operations (thermalization and transition rate calculation), it

is possible to determine the derivative 〈dkui (TL)/dci(TH)〉, the expected change in the low

temperature unknown rate kui (TL) with respect to high temperature computational work

ci(TH). In this manner TH can be chosen such that kui (TL) decreases as fast as possible[10],

but most importantly allows for autonomous allocation of simulation tasks.

III. GLOBAL INCOMPLETENESS : THE RESIDENCE TIME

Whilst rare event models are typically built from a set of transition rates {kji}, the

presence of unknown rates {〈kui 〉} allows trajectories to leave the known state space, corre-

sponding to the discovery of some unknown event[37, 38]. This yeildsyields a global measure

of model quality, the expected residence time over which model predictions can be trusted,

reading

〈τres〉 = −1[Q]−1P0, [Q]ji = kji − δji (〈kui 〉+ koi ) , (2)

where P0 is some distribution over the known states and 1 is a row vector of ones. It

is simple to show that 〈τres〉 → ∞ as
∑

i〈kui 〉 → 0, whilst if P0 is concentrated on some

initial state 〈τres〉 is monotonic with sampling effort, a key consequence of our estimation

approach. To determine how much sampling effort should be allocated to each state, one

can then use results discussed above to evaluate d〈τres〉/dci, the change in the residence time

with additional computational work in i, giving an optimal work distribution[7] where states

that are of greater importance in a global sense are autonomously allocated more resources.

This is the essential workflow of TAMMBER, illustrated in Figure 1. An example application

to the interaction of a self-interstitial atom with a stable C15[15] defect is shown, with
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the discovered KTN displayed as a disconnectivity graph[14]. The tree structure shows the

minimum activation energy to reach one state from any other, allowing a succinct overview

of the energy landscape. I show two disconnectivity graphs, one where each found state has

a unique label and a much smaller graph which collates states invariant under exchange,

translation and space group symmetries. Sampling in this ‘compressed’ space yeildsyields

large sampling efficiencies, returning large prediction timescales and allowing a quantitative

assesment of the ability of the model to capture e.g. the breakup mechanism of these

defects[7, 11]. This compressed space is particular advantageous for the diffusion of isolated

defects, due to the high symmetry of their configurations.

IV. AUTONOMOUS CONVERGENCE OF DEFECT DIFFUSIVITIES

The diffusion of crystal defects is a key process in numerous areas of materials science.

The motion of surface islands or interstitial clusters is often highly correlated[39], with many

‘flickering’ transitions between states before a net translation is made[40].

In recent work, TAMMBER has been used to efficiently and autonomously evaluate a ‘gener-

ating function’ for defect migration, from which mean squared displacements over 〈τres〉 and

thus estimates of diffusion constants Dα, α = 1, 2, 3 can be extracted[11]. Using the esti-

mates of {〈kui 〉} and enforcing detailed balance, a convergence measure for Dα is derived from

the Kullback-Leibler divergence[41] across diffusion processes consistent with the sampling

uncertainty. It can be shown that the convergence decays as 1/〈τres〉, meaning the optimal

distribution of sampling tasks is unchanged. An example of this fully autonomous methodol-

ogy is shown in figure 2 for trimer diffusion on the (110) surface of tungsten, which exhibits

significant correlation effects. The ability to converge these highly nontrivial observables

with minimal end-user analysis is currently being applied to high-throughput simulations.

V. SENSITIVITY AND CONVERGENCE UNDER DOUBLE-ENDED PATH SEARCHES

Whilst TAMMBER constructs a KTN through so-called ‘open-ended’ searches from some

initial state, finding nearby connections, an alternative approach is to perform ‘double-ended’

searches for connections between possibly distant state pairs, using e.g. the doubly nudged

elastic band method (DNEB)[42]. A successful search then returns a pathway of multiple
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states, some or all of which were previously undiscovered. This is the main form of KTN

construction in discrete path sampling simulations[43], which are often used to determine

transition probabilities or mean first passage times between regions of state space.

Figure 3 shows a disconnectivity graph for the 38-atom Lennard-Jones cluster LJ38. A

‘double-funnel‘ landscape can be seen, with two low energy basins of cuboctahedral or icosa-

hedral structure. The chosen observable is the ‘committor’ probability CAB , which gives the

probability of a trajectory reaching A before returning to B, a key quantity when calculating

reaction rates[8].

For large networks at low temperature, observables such as CAB can be so small that typical

linear algebra routines fail due to floating point error. This has motivated the development of

specialized renormalization methods[44], specifically designed to allow the exact evaluation

of branching probabilities and mean first passage times. The underlying algorithms have

recently been implemented, along with a variety of related methods in a Python package

(PyGT module, pygt.readthedocs.io).

These techniques allow the production of a smaller network involving only the particular

states of a given pathway, with renormalized transition rates such that branching proba-

bilities are exact. One can then analytically evaluate the sensitivity to discovery of new

pairwise connections[11] between any state pair.

As non-dynamic search methods have no rigourous uncertainty measures, consider a range

of possible sensitivities, allowing an assesment of error based on their consensus. This is

similar in approach to some machine learning measures of uncertainty[29].

A key observation is that real networks are typically sparse, meaning sensitivities can be

tightened via an estimate of the sparsity ξ. Figure 3 shows three error measures, all of which

converge at different rates: the bounds ξσtot± sum all perturbations that increase or decrease

CAB , multiplied by ξ. This typically produces a large uncertainty that decays slowly with

sampling effort. The bounds σ1
± take the largest single sensitivity, whilst σξ± multiplies the

average sensitivity by the estimated number of remaining connections.

I note that all bounds are highly asymmetric due to the possibility of a direct connection

with a low barrier. In the Bayesian analysis of dynamical trajectories discussed above this

quickly has a vanishing probability. Furthermore, the lack of any rigorous error means the

sensitivity bounds are non-monotonic, leaving large ‘spikes’ in the convergence plots that

are quickly annuled once sampling is performed there. However, the use of double-ended
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methods is extremely advantageous for the study of complex transition processes; this has

motivated ongoing work to combine these consensus approaches with the rigourous state-wise

uncertainty quantification employed by TAMMBER.

VI. VIBRATIONAL ANHARMONICITY IN REACTION RATES

The final section of this review focusses on a single thermally activated process, the fun-

damental ingredient of the rare event models discussed above. The transition rate between

two states is given by the famous transition state theory expression[8]

k = ωji exp(−β∆F) ' ωji exp(−β∆Fharm), (3)

where β = 1/kBT, ωji is the attempt frequency, ∆F is the maximum change in free en-

ergy during the transition and ∆Fharm = ∆U − T∆Sharm is the widely used harmonic

approximation of this change. ∆U is the maximum energy change over the minimum energy

pathway (MEP), which can be found using methods such as the nudged elastic band (NEB)

method[45]. ∆Sharm can be found by diagonalizing the Hessian matrix of second derivatives

at the minimum and maximum of the MEP to find real vibrational frequencies {ν0} and

{ν†}, then using the harmonic oscilator result S = S0− kB ln |ν|. In addition to making the

uncontrolled assumption that thermal vibrations are harmonic oscilations, unlikely to hold

at elevated temperature, the diagonalization scales cubically with the number of atoms in

the system. This complicates application to the large systems routinely found when investi-

gating linear or areal defects in materials[46], motivating the development of linear-scaling

methods[47, 48] to evaluate harmonic TST prefactors by approximation of Hessian spectral

densities.

The PAFI code is a linear-scaling method to evaluate ∆F with no assumption on the

nature of thermal vibrations. Starting from a converged NEB calculation, constrained sam-

pling is performed on hyperplanes perpendicular to the MEP[10], as shown in figure 4. This

constraint is available as part of the open-source LAMMPS package[49], designed to be used

with the PAFI code (available at github.com/tomswinburne/pafi). One central innovation

is to evaluate the inner product of the MFEP and MEP tangents, even though the MFEP

is not known, allowing the MEP tangent force to be related to the MFEP tangent force.

Providing these two paths are not orthogonal the true free energy gradient can then be ex-
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tracted then integrated to produce ∆F . The computational cost of a single PAFI calculation

is around 105 − 106 force calls, depending on the degree of convergence and system under

study. This is comparable to linear-scaling methods, which require around 106 force calls

for well converged results[47]. Both methods have excellent parallel scalability, meaning this

effort can be distributed across hundreds or thousands of processors.

Figure 4 shows the free energy barrier for the thermally activated migration of a a/2〈111〉

screw dislocation in tungsten, the prototypical process in bcc plasticity[46, 50]. To converge

long-ranged elastic fields a large simulation size of over 105 atoms is required, where evalu-

ation of ∆Fharm is only possible with advanced shared memory linear algebra routines[46].

As can be seen, the harmonic and anharmonic predictions diverge at only 200K, around

10% of the melting temperature. The harmonic prediction of the resultant glide velocity

(approximately given by the transition rate) is therefore many orders of magnitude too slow

at realistic application temperatures. Due to the system size, this application used an em-

pirical interatomic potential; current work is using advanced sampling schemes to implement

more accurate force models.

VII. OUTLOOK

Quantification of sampling uncertainty in atomistic simulation is in many ways a nascent

field, whose growth is strongly aligned with the recent explosion in machine learning methods

applied to materials problems. There are many interesting directions in which unsupervised

methods can be guided by uncertainty assesment algorithms, with many exciting opportu-

nities for theoretical research.

This review summarised an approach that exploits the proof-of-work inherent in dy-

namical sampling to derive rigorous and robust uncertainty measures. I also summarized

an approach that uses multiple less robust measures to build a consensus on convergence

in double-ended search methods that are able to treat problems inaccessible to dynamic

sampling. Current work is combining these two flavours of uncertainty quantification.

An important open question is how to quantify exploration of the vast atomic configura-

tion space beyond measures of discovered novelty[23, 24, 28, 29]. This will certainly require

a deeper understanding of the energy landscape of real materials, which may lead the way

to new methods for computational discovery.
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VIII. HIGHLIGHTED REFERENCES

[24] ** Uses active learning to build interatomic potentials on-the-fly for the accurate

modeling of rare events.

[20] ** Uses speculation to asses optimal strategies for parallel trajectory generation.

[28] ** A powerful technique to gauge novelty in high dimensional materials data, with

many implications for unsupervised simulation.

There are few published developments in this nacscent field, hence two self-

highlights:

[7] ** Rigorous uncertainty quantification and propagation which is uses to build rare event

models for materials.

[13] ** Autonomous scheme to evaluate of transport properties of defects with a rigorous

convergence measure.
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FIG. 1. Outline of the TAMMBER code. a) Sampling data is used to estimate unknown rates

{kui } and barrier calculations determine known rates {kji}. An absorbing Markov chain is built,

yeildingyielding a residence time in the known state space and an updated work distribution. b)

Tests show efficient management of 102 − 105 simultaneous sampling tasks. c) Application to

the interaction of interstitial clusters in Fe[7, 15] reveals a complex energy landscape[14] (main

text). d) This sampling can be accelerated by collating states symmetric under exchange and

space symmetries, yeildingyielding large prediction timescales for the complex break-up process of

these clusters. Adapted from [10] and [13].
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FIG. 2. Convergence of diffusion constants in a simple one dimension example (a-c) and with

TAMMBER applied to trimer diffusion on W(110) (d-h). a) The one dimensional toy model has a direct

and indirect transition. b) The estimated diffusivity with sampling time with Monte Carlo bounds.

c) The Kullback-Lieber convergence measure, which is monotonically decreasing. d) Cartoon of the

full akMC state space and those irreducible under space and translation symmetries. Isomorphic

states have the same color. e) One primitive unit cell with self transitions (closed loops) is sufficient

to build a Markov model for transport, whilst f) the set of states irreducible under all space group

symmetries is optimal for discovery. g) The lowest energy irreducible states and found transition

mechanisms. Atoms colored by centrosymmetry[51]. h) Diffusion tensor eigenvalues D1, D2 over

a range of temperatures with bounds DMC
1± , DMC

2± . Effective Arrhenius slopes at low temperature

are given. Adapted from [13].
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FIG. 3. Convergence of nanoparticle transformation paths under pairwise doubly nudged elastic

band (DNEB) searches. Above: Disconnectivity graph[14] for LJ38, truncated to 900 states. The

cuboctahedral (A) and icosahedral (B) states are coloured orange and green, respectively. Minimal

free-energy configurations from each basin are shown. Below: Convergence of the B → A committor

probability CAB under a variety of measures detailed in the main text. Whilst no one measure is as

robust as the dynamical method of TAMMBER, their consensus gives a useful measure of convergence.

Adapted from [11].
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FIG. 4. Activation free energy profile for 1/2〈111〉 screw dislocation migration in an empirical

model of tungsten, as evaluated by PAFI. a) Cartoon of the constrained sampling methodology. b)

The free energy difference ∆F(r) = F(r)−F(0) for a range of temperatures. Inset: the double kink

profile at T = 0, 600K, showing how the pathway changes with temperature. c) The free energy

barrier shows significant anharmonic effects at only 200K, with d) considerable influence on the

dislocation velocity. Adapted from [7].
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