
HAL Id: hal-03215824
https://hal.science/hal-03215824

Submitted on 3 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On How to Identify Cache Coherence: Case of the NXP
QorIQ T4240

Nathanaël Sensfelder, Julien Brunel, Claire Pagetti

To cite this version:
Nathanaël Sensfelder, Julien Brunel, Claire Pagetti. On How to Identify Cache Coherence: Case of
the NXP QorIQ T4240. 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), Jul 2020,
MODENE, Italy. �10.4230/LIPIcs.ECRTS.2020.13�. �hal-03215824�

https://hal.science/hal-03215824
https://hal.archives-ouvertes.fr

On How to Identify Cache Coherence: Case of
the NXP QorIQ T4240
Nathanaël Sensfelder
ONERA, Toulouse, France

Julien Brunel
ONERA, Toulouse, France

Claire Pagetti
ONERA, Toulouse, France

Abstract
Architectures used in safety critical systems have to pass certain certification standards, which require
sufficient proof that they will behave as expected. Multi-core processors make this challenging
by featuring complex interactions between the tasks they run. A lot of these interactions are
made without explicit instructions from the program designers. Furthermore, they can have strong
negative impacts on performance (and potentially affect correctness). One important such source
of interactions is cache coherence, which speeds up operations in most cases, but can also lead to
unexpected variations in execution time if not fully understood. Architecture documentations often
lack details on the implementation of cache coherence. We thus propose a strategy to ascertain that
the platform does indeed implement the cache coherence protocol its user believes it to. We also
apply this strategy to the NXP QorIQ T4240, resulting in the identification of a protocol (MESIF)
other than the one this architecture’s documentation led us to believe it was using (MESI).

2012 ACM Subject Classification Computer systems organization → Multicore architectures; Com-
puter systems organization → Real-time systems

Keywords and phrases Real-time systems, multi-core processor, cache coherence

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.13

1 Introduction

The ever increasing complexity of aircraft and the market’s depreciation of single-core
processors are motivating the introduction of multi-core processors in aeronautical systems.
While the performance gains offered by a switch to these more recent architectures are enticing,
this process is impeded by their seemingly unpredictable nature [34], which is inherently
incompatible with safety critical environments and aeronautical certification [9]. Still, a
number of works are focusing on determining the means required for aircraft manufacturers
to fulfill certification expectations despite the complex internal behaviors of multi-core
processors COTS (Commercial Off-The Shelves) [1, 5, 12,26,28].

1.1 Cache Coherence – Case of the NXP T4240
Part of this unpredictability can be imputed to the mechanisms that let caches coordinate
with one another in order to maintain data coherence without explicit program instructions.
There are multiple competing strategies that can be employed to achieve cache coherence,
and, while the general ideas behind them are known, the details of their implementation
tend to be absent from architecture documentations, leaving programmers with the task of
finding possibly problematic corner cases and unexpected behaviors.

In this paper, we focus on the NXP QorIQ T4240 [14], a PowerPC architecture featuring
twelve e6500 cores, each of which is capable of running two simultaneous threads. The cores
are equally distributed among three clusters, with one 2MB L2 cache per cluster. These

© Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2020.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Identifying Cache Coherence on the NXP QorIQ T4240

three L2 caches coordinate and access memory through a complex interconnect called the
CoreNet Coherency Fabric. According to their processor’s documentation, [13], these clusters
implement the MESI cache coherence protocol. More details can be seen in Figure 1, which
displays all the cores, caches, and memory controllers present on that architecture.

To be allowed to embed this architecture in an aeronautical system, the designer must be
in control of any transaction occurring on the platform, that is, any low level behaviors caused
by either explicit requests made by a program or by implicit mechanisms of the platform.
This also holds true for cache coherence: it is up to the designer to quantify and control the
effects on the application software of any transaction generated by this mechanism.

1.2 Formal Specification and its Validation

Having to keep implicit mechanisms under control is not an easy task for designers. This
is especially true in the case of cache coherence, whose impact is difficult to evaluate even
when its rules are made known to the designer.

In this paper, we present our analysis of the NXP QorIQ T4240 cache coherence trans-
actions. This first required us to determine the protocol implemented in the architecture.
According to its documentation, the protocol is supposed to be MESI [29] (Modified, Exclusive,
Shared, Invalid). To guarantee the proper coverage of all that is involved, we argue for a
formal definition of the cache coherence protocol to be made by the designer, based on their
current understanding. Such formal definitions do not leave room for any ambiguities. Thus,
we have looked for preexisting models of MESI protocol for split-based transaction buses. As
it happens, we found none, making our first contribution (Section 3) a formal definition for a
split-transaction bus MESI cache coherence protocol, which also corresponds to what we
believed the NXP QorIQ T4240 to be using.

This formal MESI protocol definition describes all the transactions it is supposed to be
performing. Thus, through the application of our proposed strategy (Section 4) we are able
to make use of appropriate stress testing to observe the platform’s behavior and compare
with what we expected, in effect validating that the architecture does indeed implement the
protocol we believe it to. While we developed this strategy around the T4240 and its limited
means of observation, we tried to keep our strategy generic enough that it could be soundly
used for other targets.

When we applied the strategy to validate the NXP QorIQ T4240, it became apparent the
protocol was not actually MESI. Indeed, thanks to the validation strategy, we observed that
there were five stable states instead of four and that one of them behaves in a way that led
us to recognize a MESIF protocol [17]. We thus had to formally define a split-transaction
bus MESIF protocol (Section 6), as we could not find any preexisting definition for it either.
We then applied the validation strategy with this new protocol as the starting point, and
this time we only found slight implementation choice differences between the supposed and
the observed behaviors (Section 7).

In the sequel, we start with a reminder of hardware components and their contribution
to the cache coherence. We then detail the contributions described above. We compare our
approach with the related works before concluding the paper.

2 Cache Coherence

This section provides a reminder of the terminology and of the components involved in the
description. Figure 2 provides a visual summary of how all these components interact.

N. Sensfelder, J. Brunel, and C. Pagetti 13:3

L2

C0

L1D L1I

C1

L1D L1I

C2

L1D L1I

C3

L1D L1I

L2

C0

L1D L1I

C1

L1D L1I

C2

L1D L1I

C3

L1D L1I

L2

C0

L1D L1I

C1

L1D L1I

C2

L1D L1I

C3

L1D L1I

CoreNet Coherency Fabric

CPC DDR Ctrl

CPC DDR Ctrl

CPC DDR Ctrl

Figure 1 Computation & memory parts of the
T4240.

Interconnect

Core

Cache
Controller

requests hit

data replies
FIFOs

queries
FIFOs

data replies
FIFOs

queries
FIFO

Coherency
Manager

Main
Memory

read,
write

Figure 2 Components involved in co-
herence.

2.1 The Programs
To keep things simple, we only consider the memory related instructions of programs. Thus,
programs are reduced to sequences of load, store, and evict instructions, each being
applied to a single given address. Programs do not take into consideration the possibility
of either instruction jumping or branching. Addresses are tantamount to memory elements
(aligned blocks of memory with the size of a cache line), preventing any possible aliasing.
Thus, all considered components, including programs, operate on the same memory unit.

2.2 The Caches
Cache controllers keep copies of memory elements to perform core requests. These copies
are acquired through queries on the interconnect. Read-only copies are queried using GetS,
read-and-write copies through GetM, and the eviction of a copy can be indicated through
PutM. A cache controller may reply to the query of another, providing them with data. They
are also able to send data to the coherence manager. Each copy of a memory element held
in a cache is attributed a state and, optionally, the identifier of a cache controller.

2.3 The Interconnect
The interconnect merely arbitrates the order in which queries are broadcasted. Cache
controllers do not directly access the interconnect. Instead, interactions between the cache
controllers and the interconnect are all done through FIFO queues. There are four in total
for each cache controller: incoming and outgoing queries; and incoming and outgoing data
messages. The interconnect follows its access policy when choosing which cache controller’s
outgoing query queue to poll from next, then enqueues that query to every cache controller’s
incoming query queue (including that of the one from which the query was taken). Thus, all
cache controllers and the coherence manager receive all queries and do so in the same order.

We consider interconnects that support split-transactions, meaning that queries and their
replies do not block each other, allowing new queries to be sent before the previous ones
receive their replies.

2.4 Coherence Manager and Main Memory
Cache controllers do not directly send messages to the system’s main memory. Instead,
messages meant for the main memory are directed to the coherence manager. The coherence
manager sees all passing queries. It keeps track of which memory elements are being held by
the cache controllers, and has a general idea of their current permissions. In particular, the

ECRTS 2020

13:4 Identifying Cache Coherence on the NXP QorIQ T4240

coherence manager may consider a cache controller to be the owner of a memory element,
meaning that this cache controller is tasked with the propagation of the memory element’s
current value. This lets the coherence manager determine when a query warrants a reply
from the main memory.

2.5 Terminology
The term request covers all types of communications between a core and its cache controller:
requests = {load, store, evict}. The term message covers both the demands made by cache
controllers, and the replies that fullfill them. In other words, messages are all communications
that pass through the interconnect: messages = queries∪data replies, where queries = {GetM,
GetS, PutM}, and data replies = {data, data-e, no-data}. Note that the actual elements
found in queries and data replies depend on the specified protocol. The values given here
being for the procotol described in the very next section.

3 Formal Description of the MESI Protocol

Our first contribution is the formal definition of a split-transaction MESI protocol that relies
on a coherence manager. While the general idea behind MESI is available in many existing
works, we did not find any that lists all the possible transient states that can be found in a
real implementation (i.e. states other than Modified, Exclusive, Shared, and Invalid). These
omissions tend to make the protocol much simpler to understand, but they leave ambiguities
in the behavior of the protocol. Our description is a conjecture based on [31], which presents
a complete definition of the MESI protocol, but that is limited to architectures featuring an
atomic bus. Atomic buses only allow a single transaction (query and reply) to occur at any
given time, which greatly narrows the number of transient states the system can find itself in.

3.1 Protocol Specification
MESI is based on the MSI protocol, so named because it features three stable states:
Modified, which indicates read-and-write permissions of a memory element; Shared, for
read-only permissions; and Invalid, the default one, indicating an absence of permissions.
Introduced in [29], the MESI protocol adds a fourth stable state, Exclusive, which indicates
that not only does the cache controller have read-only permissions, but also that no other
cache currently holds any permission to access the memory element. This allows the cache
controller to upgrade to read-and-write permissions without having to perform a costly
communication. Just as it is used to keep track of whether a cache holds a read-and-write
copy of a memory element in the MSI protocol, this definition of the MESI protocol uses the
coherence manager to detect when a cache can be said to be the sole owner of a memory
element.

This version of the MESI protocol uses three types of data replies: data, data-e, and
no-data. data indicates that the value associated with the memory element is sent. By
sending a no-data reply, cache controllers can indicate to the coherence manager that the
memory element has been discarded (its value is not part of the reply). The coherence
manager can send data-e replies, which are equivalent to data, with the added information
that the recipient is its sole owner.

Our description of the MESI protocol can be seen in Table 1. It is split in two tables,
one defining the cache controllers’ behavior, the other the coherence manager’s. In effect,
these tables indicate a sequence of actions to be performed when faced with an incoming
event (be it a request or a message).

N. Sensfelder, J. Brunel, and C. Pagetti 13:5

Table 1 Description of the MESI protocol.

Cache Controller

State Core Request Interconnect
Access Data Reply Received Queries

load store evict data data-e GetS GetM PutM
I GetS?, ISBD GetM?, IMBD hit - - -
ISBD stall stall stall IEoSD ISB IEB - - -
ISB stall stall stall S - -

ISD stall stall stall
r← ∅,

S

r!data,
m!no-data,

r← ∅, S
- ISDI

IEoSD stall stall stall S E r←s, ISD r←s, ISDI

ISDI stall stall stall
load hit,
r← ∅,

I

load hit,
r← ∅,

r!data,
m!no-data,

I

- -

IMBD stall stall stall IMD IMB - - -
IMB stall stall stall M - - -
IMD stall stall stall M r←s, IMDS r←s, IMDI

IMDI stall stall stall
store hit,
r!data,
r← ∅, I

- -

IMDS stall stall stall

store hit,
r!data,
m!data,
r← ∅, S

- IMDSI

IMDSI stall stall stall

store hit,
r!data,
m!data,
r← ∅, I

- -

S hit GetM?, SMBD hit, I - I
SMBD hit stall stall SMD SMB - IMBD

SMB hit stall stall M - IMB

SMD hit stall stall store hit, M r←s, SMDS r←s, SMDI

SMDI hit stall stall
store hit,
r!data,
r← ∅, I

- -

SMDS hit stall stall

store hit,
r!data,
m!data,
r← ∅, S

- SMDSI

SMDSI hit stall stall

store hit,
r!data,
m!data,
r← ∅, I

- -

M hit hit PutM?, MIB m!data,
s!data, S

s!data, I

MIB hit hit stall m!data, I
m!data,

s!data, IIB s!data, IIB

IIB stall stall stall I - - -

E hit hit, M PutM?, EIB m!no-data,
s!data, S

s!data, I

IEB stall stall stall E - - -

EIB hit stall stall m!no-data, I
m!no-data,
s!data, IIB s!data, IIB

Coherence Manager

State Received Queries Data Reply

GetS GetM
PutM

(Owner)
PutM

(Other) data no-data

I read, s!data-e, r←s, M s!data, r←s, M -
M r← ∅, SD r←s r← ∅, ID - write, IoSB IoSB

ID stall stall stall - write, resume, I resume, I
SD stall stall stall - write, resume, S resume, S
IoSB r← ∅, S r←s, M r← ∅, I -
S read, s!data s!data, r←s, M -

ECRTS 2020

13:6 Identifying Cache Coherence on the NXP QorIQ T4240

In the cache controller’s table, columns correspond to the following: state refers to the
state attributed to the local copy of the memory element by the cache controller. The three
Core request columns indicate the actions that are performed when receiving a request from
the core. Interconnect access specifies actions for when the cache controller reads one of its
own queries. The data reply columns are for when the cache controller receives one of the
types of data replies. Lastly, the received queries columns are for the reception of queries
originating from other cache controllers. The table defining the coherence manager follows
the same principles, but does not have columns for core requests, as it cannot receive them,
nor for access to the interconnect, as it does not emit queries.

Let us now expand on the semantics of the actions found in these tables. Cache controllers
may send queries on the bus (e.g. sending a GetS query is noted as GetS?). They can also
change the state they attribute to a memory element (e.g. moving to the I state, which is
noted I). If a request coming from their core can be fulfilled without further actions, the table
indicates it with hit. A similar notation is used to indicate that the oldest request of a given
type has just been completed (e.g. load hit). As a reaction to an incoming query, cache
controllers can mark their copies of memory elements as being associated with the cache
controller that sent the query (noted r←s). This can later be used to send a data message
to that cache controller (e.g. r!data). Data can also be sent as a reply to an incoming query
(e.g. s!data), or to the coherence manager (e.g. m!no-data). The stall action marks that
the cache controller is unable to handle the incoming request at the moment. This request
is put into a waiting queue until the memory element changes state, at which point it is
re-evaluated.

The coherence manager follows a similar syntax, with the exception of the stall action,
which now blocks any incoming query until the next resume action (data messages are not
blocked, however). The other additions are the write and read actions, which respectively
indicate that the memory controller either writes the received value or reads the current one.

3.2 Examples of Behaviors
Here are some examples of remarkable behaviors exhibited by this definition of the MESI
protocol.

I Example 1 (Reaching S). This example is meant to showcase how exchanges between
cache controllers are assumed to take place. To keep things simple, we only consider two
cores and a single memory element (whose address is 42). This example is illustrated as a
sequence in Figure 3.

I Example 2 (Reaching E). To hold a memory element in the E state, a cache must be
the only one to have a copy of that memory element. The caches rely on the coherence
manager to know when it is the case. The coherence manager uses its I state to mark
memory elements that are sure to not be in any caches. Thus, if no cache controllers hold
the memory element and the coherence manager is in I, whenever a core loads the data it
becomes E in its cache. The behavior is similar to Figure 3 except that the main memory
will provide the data.

It is important to notice that it is not easy for the coherence manager to detect whether
a cache controller is the sole owner. Indeed, the coherence manager is not always able to
know that all caches have evicted their copy of a memory element: in Table 1, the cache
controller’s table indicates that an eviction from S does not lead to any message. The only
way for the coherence manager to return to the I state is for a cache to evict its copy of a
memory element in either the E or M state without another cache asking for a copy.

N. Sensfelder, J. Brunel, and C. Pagetti 13:7

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB
@42: I @42: E

(a) In the initial phase, one cache controller, CA,
holds that memory element in the I state, while
the other, CB , holds it in the E state.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB
@42: ISBD @42: E

[GetS @42]

(b) Next, we consider that CA’s core issued a
load instruction on 42. This leads CA to move
to the ISBD state, and to issue a GetS query to its
outgoing query queue.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB
@42: ISBD @42: E

[GetS @42]

[GetS @42]
(c) The interconnect broadcasts outgoing queries
from caches to all the incoming query queues. As
CA is the only one with an outgoing query, the
GetS is added to both its own and CB ’s incoming
query queue.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB
@42: ISD @42: S

[data @42]

(d) Consuming the message in their incoming
query queues, both CA and CB change state, mov-
ing to ISD and S respectively. In addition, CB

adds its reply for the query to its outgoing data
queue.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB
@42: ISD @42: S

[data @42]
(e) Data messages are not broadcasted, but in-
stead only added to the incoming data queue of a
targeted cache controller (or the coherence man-
ager’s). Thus, the reply is moved from CB ’s out-
going reply queue to CA’s incoming one.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB
@42: S @42: S

(f) Finally, CA consumes the message in its in-
coming data queue, changing its state to S and
fulfilling its core’s request.

Figure 3 Illustrations for Reaching S.

I Example 3 (Sharing from E). From the coherence manager’s point of view, there is no
difference between a cache controller owning a memory element in the E state and one in
the M state. Thus, if there is a cache owning a copy of a memory element in the E state, the
coherence manager will assume that this cache may have modified the value and that the
main memory no longer holds the correct value. As a result, the cache holding the Exclusive
copy of the memory element will transfer it to any other cache that asks for it. If this is
caused by another cache demanding a read-only copy (GetS), the coherence manager will
expect an update on the value of the memory element. This update can come in two forms:
either the cache that exclusively held the memory element made a modification (in which
case it would have moved to the Modified state) and sends a data message, or it has not and
it sends a no-data message.

ECRTS 2020

13:8 Identifying Cache Coherence on the NXP QorIQ T4240

3.3 System Behavior
The cache coherence protocol is defined for a single address and a single cache controller.
However, what we are interested in is a multi-core architecture executing a program. Thus, we
need to model the behavior of the overall platform to identify and quantify the transactions
generated by the cache coherence. To do so, we use an automaton where each state corresponds
to the system state and transitions between states are events produced by one or several
components (core, cache controller, interconnect, coherence manager or memory). In this
section we formally define such automata.

I Definition 4 (Memory Element State). Let Ss (resp. Ts) denote the set of stable (resp.
transient) states. From the point of view of a cache controller or a coherence manager, a
memory element m can be in any valid stable or transient states, i.e., m ∈ Ss∪Ts. We denote
by Gs the set of states Gs = Ss ∪ Ts of a cache controller and GCM those of the coherence
manager.

I Example 5. In the MESI protocol defined in Table 1, the states of the cache controllers
are Ss = {M,E, S, I} and Ts = {ISBD, ISD, . . .}. The states of the coherence manager are
Ss = {M,S, I} and Ts = {ID, SD, IoSB}.

I Definition 6 (Cache Controller State). Let Addr denote the set of all memory element
addresses. We define the state of a cache controller CC (resp. of a coherence manager CM)
as the function sCC : Addr→ Gs (resp. sCM : Addr→ GCM).

I Definition 7 (System State). Let us consider an architecture 〈CC1, . . . , CCn, CM〉 com-
posed of n cache controllers CCi and a coherence manager CM . The global state of the
architecture consists of the states of all memory elements in all cache controllers and in the
coherence manager. Let Addr be the set of all memory element addresses, the global state
s : Addr → Gn

s × GCM is defined as ∀m ∈ Addr, s(m) = 〈sCC1(m), . . . , sCCn
(m), sCM (m)〉

where sCCi is the state of the cache controller CCi as defined in Definition 6. For the sake
of simplicity and without loss of the generality, in the sequel, we will only focus on a given
address m and define the state of a cache controller as an element in Gs and of the system
as a tuple in Gn

s × GCM .

I Definition 8 (Valid State). Not all combinations of states are valid, e.g. two cache
controllers cannot be in M for the same address at the same time. We note V ⊆ Gn

s × GCM

the set of valid system states.

I Definition 9 (Event). We distinguish between explicit (or controllable) events EE =
requests = {load, store, evict}, which are made by the user, and the implicit (or uncontrol-
lable) events EI = messages ∪ {bus} (where bus corresponds to the cache seeing one of its
own query being broadcasted on the interconnect), which are made by the architecture. Thus,
on a given cache controller, the possible events are EE ∪ EI ∪ {−} where − represents the
special event where nothing happens.

The set of events over the system is denoted by E ⊆ (EE∪EI∪{−})n (not all combinations
of events are possible).

The system event 〈−, . . . ,−, e,−, . . . ,−〉 consisting of one event e in the cache controller
of id i, and nothing in all the other cache controllers, is simply denoted by 〈e, i〉.

I Definition 10 (Automaton of the system). The behavior of the system is defined by the
automaton 〈V, E, sinit,Tr〉 where sinit = 〈I, . . . , I〉 is the initial state and Tr : V ×E → V is
the transition function.

N. Sensfelder, J. Brunel, and C. Pagetti 13:9

I Example 11. Using the MESI protocol and 2 cache controllers, we have for instance
Tr(〈I, I, I〉, 〈load,−〉) = 〈ISBD, I, I〉. As the event is a single component event, we could also
use the notation mentioned above 〈load, 1〉 = 〈load,−〉 meaning that the cache controller with
id 1 does a load, whereas all the other do nothing. If we detail all the implicit events leading
to the next stable states, we have: Tr(〈ISBD, I, I〉, 〈bus, GetS,GetS〉) = 〈IEoSD, I,M〉 (the
interconnect broadcasts the GetS); Tr(〈IEoSD, I,M〉, 〈data-e, 1〉) = 〈E, I,M〉 (the cache
coherence triggers the memory which provides the requested data).

I Example 12 (Simultaneous requests). Still using the MESI protocol and 2 cache controllers,
there may be several simultaneous requests, e.g. 〈load, store〉. In such situations, because
of the internal dynamics of the interconnect and memory (Round Robin access, delays . . .)
all combinations of interleaving are envisaged. For instance Tr(〈I, I, I〉, 〈load, store〉) =
〈ISBD, IMBD, I〉 (all local requests are handled). Then, among the possible next steps are
both Tr(〈ISBD, IMBD, I〉, 〈bus,GetS〉) = 〈IEoSD, IMBD,M〉 (the interconnect chooses the
first core first) or Tr(〈ISBD, IMBD, I〉, 〈GetM, bus〉) = 〈ISBD, IMD,M〉 (the interconnect
chooses the second core first). Thus, several paths leave from Tr(〈I, I, I〉, 〈load, store〉) and
they may ultimately lead to separate stable states: 〈I,M,M〉 if the data reply has reaches
core 1 first, or 〈S, S, S〉 if the data reply reaches core 2 first.

I Definition 13 (Path). A path in a system automaton corresponds to a succession of
transitions, from one state to another, that has been triggered by a controllable event and is
followed by a series of adequate implicit events. A path from s to s′ triggered by e is denoted
by p : s e s′.

I Example 14. The successive transitions that have been described in Example 11 define
the path 〈I, I, I〉 〈load,1〉 〈E, I,M〉.

I Definition 15. From the transition function Tr, we define the observable transition function
Tr?

i , in the case of single controllable events, as follows: ∀c ∈ V, e ∈ EE Tr?
i (c, 〈e, i〉) = c′

such that c 〈e,i〉 c′ and no implicit event may be induced by 〈e, i〉 upon reaching c′.
For simultaneous explicit events, the observable transition function is defined by composing

the observable transition function for each explicit event, taken as a single event. Notice
that it is an expected property of the protocol, which we do not study here, that all possible
orderings provide the same system state.

I Example 16. Considering a single event: Tr?
i (〈I, I, I〉, 〈load, 1〉) = 〈E, I,M〉.

Let us now consider multiple events: Tr?
i (〈I, I, I〉, 〈load, store〉) = {〈S, S, S〉, 〈I,M,M〉}.

I Definition 17 (Number of Events). We define the function NbEvent : Path× 1..n → N3

(with n the number of cores in the architecture) which associates to each path and core id,
the number of accesses to the bus, the number of received queries, and the number of received
data replies for the cache controller identified by this id.

I Example 18. Let us consider the path p : 〈I,I,I〉 〈load,1〉 〈E,I,M〉. Then NbEvents(p,1)=
〈1, 1, 1〉 because core 1 has accessed to the bus once, received its own GetS and the data
reply to its request. NbEvents(p, 2) = 〈0, 1, 0〉 because core 2 has simply received the GetS
generated by core 1.

4 Validation Strategy

This section presents our proposed strategy to assert that a given architecture does indeed
implement a given previously defined cache coherence protocol. We have fully defined the

ECRTS 2020

13:10 Identifying Cache Coherence on the NXP QorIQ T4240

system behavior in Section 3.3 and ideally we would recognize all the automata on the
architecture. Unfortunately, we cannot simply observe the states and events as we previously
defined them. Instead, we observe flags and performance counters, to which we need to link
the notion of states and events. Even worse, our observations are only partial, with some
information missing. Thus, in addition to linking the observations to the automaton, we
also have to infer the missing elements. We illustrate our ideas on the NXP QorIQ T4240
platform, however, the reasoning could be leveraged for other types of architecture.

Observable States
I Property 1 (T4240 Observable Flags). We can observe flags with CodeWarrior, the official
debugging suite for this architecture. While a lot of information is available, we consider the
relevant cache line flags to be: Dirty, Valid, Share, Exclusive and LastReader. Those flags
take Boolean value and only provide information on stable states. Indeed, no combination
of flags correspond to any transient state. Instead, their value changes upon entering the
next stable state following the execution of a request (load, store, or evict) or because of an
external query.

I Definition 19 (Observable Cache Controller State). Let us consider an architecture with
p Boolean flags, an observable state o for a cache controller is a combination of values of
the flags o = 〈f1, . . . , fp〉. Let R denote the set of cache controller states that can be really
observed on a given architecture.

I Issue 1 (Matching Observable Cache Controller States and Stable States). For validating
that an architecture indeed implements a cache protocol, we need to associate each observed
state with a protocol state. More precisely, we need to identify a function Decode : R → Gs

such that Decode is surjective: ∀f ∈ Gs, ∃r ∈ R, Decode(r) = f .

Indeed, while having multiple observed states corresponding to the same state is perfectly
acceptable at this point (the different states may end up being identical from the cache
coherence’s point of view), the reverse is not true: if an observed cache coherence state is
attributed to multiple formally defined state, the analysis considers that the protocols do
not match. This can be caused by missing information (unable to observe the information
that would split the observed state into multiple ones). This is the reason why Decode has
to be surjective.

I Example 20. For the T4240, the observable state 〈Dirty=false,Valid=false, Share=false,
Exclusive=false,LastReader=false〉 is the initial observable state and corresponds to the I
stable state.

The tools at our disposition do not expose anything related to the coherence manager.

I Property 2 (No Observation Available from the Coherence Manager). We do not have any
possibility of observing the coherence manager directly.

I Definition 21 (Observable System State). Let us consider an architecture 〈CC1, . . . , CCn,

CM〉 composed of n cache controllers CCi and a coherence manager CM . The observable
system states are the observable states of each CCi and the CM .

I Example 22. On the T4240, the observable system states are the observable states of each
cache controller only. Thus, to match the observable state and the real state we have to infer
the non observable elements.

N. Sensfelder, J. Brunel, and C. Pagetti 13:11

I Issue 2 (Matching Observable States and System States). To validate that an architecture
indeed implements a given cache protocol, we need to identify a function Decode : Rn → V
associating a tuple of observable states with a system state, which is directly defined from the
function Decode of Issue 1 and that is also surjective: ∀f ∈ V, ∃r ∈ Rn, Decode(r) = f .

Controllable Events and Reachable Observable States

I Property 3 (T4240 controllable events). On each core, we can execute programs. Thus, to
induce implicit cache coherence traffic, we can only trigger some request (load, store or evict)
and observe the reached observable states. We have defined a series of benchmarks that can
either run a single request on a core or multiple requests on several cores. Reach(C, 〈instr, k〉)
denotes the observable state after executing the single request instr on the core k from the
observable state C. In addition, Reachm(C, 〈instr1, . . . , instrn〉) denotes the observable states
after executing the simultaneous requests instri ∈ {load, store, evict, −} on each core from
the observable state C.

I Definition 23 (Reachable System States). From an architecture in an initial state in which
no memory elements are stored in the caches, we can explore the reachable system states by
executing benchmarks that trigger requests.

I Definition 24 (Step 1: Reachability Analysis). Starting from the initial situation where
all cache controllers consider the memory element to be invalid, we compute the reachable
observable system states by observing the effect of a single core instruction and the associated
transition relation Reach. The idea is to run a benchmark and observe the reached state.
If this state has not been visited, it is added to Rn, otherwise it is not. This is a basic
reachability algorithm.

Rn ← {init}
Candidates ← {〈init〉}
while (Candidates 6= ∅) :

C ∈ Candidates ;
Candidates ← Candidates /C;
foreach k ≤ n

foreach i n s t r ∈ {load, store, evict}
ObservedS ta t e ← benchmark (C, 〈 i n s t r , k〉)
Reach (C, 〈 i n s t r , k〉) ← ObservedS ta t e
i f ObservedS ta t e 6∈ Rn

Rn ← Rn ∪ {ObservedS ta t e}
Candidates ← Candidates ∪{ ObservedS ta t e}
Events [C, ObservedS ta t e] ← PerformanceCounters

I Issue 3. To be valid, the matching between observable states and system states must
be consistent with the transitions of both protocols. That is, the function Decode has to
be a simulation relation: ∀o ∈ Rn, ∀c ≤ n, ∀i ∈ requests, Decode(Reach(o, 〈i, c〉)) =
Tr?

i (Decode(o), 〈i, c〉).

I Example 25. For the T4240, the observable state f0 = 〈Dirty=false,Valid=false,Share=
false, Exclusive=false,LastReader=false〉 is the initial observable state and corresponds to the I
stable state; whereas f1 = 〈Dirty=false,Valid=true,Share=false, Exclusive=true,LastReader=
false〉 seems to be E. When running the benchmark 〈load, 1〉 on core 1 from f0, the reached
observable state is f1, which allows for the possibility of f1 being E.

ECRTS 2020

13:12 Identifying Cache Coherence on the NXP QorIQ T4240

Observable Events

The performance registers can count the number of occurrences of predefined events. While
the name and identification code for each performance event is indicated in the architecture’s
documentation, the meaning behind their name is not always obvious.

I Property 4 (T4240 Performance Counters). Below is a list of the events of interest, as well
as their meaning based on our understanding.

L2 Data Accesses Accesses made to the L2 cache.
L2 Snoop Hits External queries on a memory element held by this cache.
L2 Snoop Pushes Replies given to snooped queries.
External Snoop Requests External queries.
L2 Reloads From CoreNet Replies received.
L2 Snoops Causing MINT Replies to a snooped query when holding the memory
element in a dirty (modified) state.
L2 Snoops Causing SINT Replies to a snooped query when holding the memory
element in a clean (unmodified) state.
CPU Cycles

I Definition 26 (Observable Cache Controller Associated Events). Let us consider an archi-
tecture with p Integer counters, an observable event f for a cache controller is a combination
of values of the counters o = 〈f1, . . . , fp〉. The set of cache controller associated events that
can be really observed on a given architecture is denoted by N .

I Issue 4. To be valid, the matching between observable states and system states must be
consistent with the events associated with the transitions of both protocols. That is, for single
instructions, ∀o ∈ Rn, ∀c ≤ n, ∀i ∈ requests, ∀j ∈ 1..n,
Events[o, Reach(o, 〈i, c〉), j] = NbEvents(Decode(o) 〈i,c〉 Decode(Reach(o, 〈i, c〉)), j) where
Events stores the performance counters, seen from core j, in the benchmark going from o to
Reach(o, 〈i, c〉) (as done in the algorithm of step 1).

For multiple simultaneous instructions: ∀o ∈ Rn, ∀e1, . . . , en ∈ requests ∪ {−}, ∀j ∈
1..n, ∀s ∈ Reachm(o, 〈e1, . . . , en〉), Events[o, s, j] = NbEvents(Decode(o) 〈e1,...,en〉

Decode(s), j).

I Example 27. Continuing Example 25, when running the benchmark 〈load, 1〉 on core 1
from f0, we also collect the observable events and we observe that: on core 1, there are 2 L2
Data Accesses (1 for the data-e, all such messages are duplicated as explained in the next
section) and 1 L2 Reloads From CoreNet (1 for the GetS); on core 2, there is 1 External
Snoop Requests (1 for the GetS); which still allows f1 to be E.

I Definition 28 (Step 2: Reachability Analysis with Simultaneous Requests). In addition to
step 1 (see Definition 24), for the multiple simultaneous requests, we need to run additional
benchmarks. The idea is similar, except that instead of running benchmark(C, 〈instr, k〉), we
apply benchmark(C, 〈instr1, . . . , instrn〉) for the tuples 〈instr1, . . . , instrn〉 in a pre-computed
list.

I Example 29. Consider that we have run the benchmark 〈load, store,−〉 from the initial
state and we believe that this coincides with the path 〈I, I, I〉 〈load,store,−〉 〈I,M,M〉 then
we have to count on the core 1: 1 access to the interconnect, 2 queries and 2 data replies.

N. Sensfelder, J. Brunel, and C. Pagetti 13:13

5 Evaluating Cache Coherence on the T4240

In this section, we illustrate our proposed process by attempting to validate the MESI
protocol we defined on the NXP QorIQ T4240 architecture. Much to our surprise, the results
quickly conclude that this architecture does not implement MESI.

5.1 The NXP QorIQ T4240 Experimental Setup

L2

C0

L1I

L2

C0

L1I

L2

C0

L1I

CoreNet Coherency Fabric

DDR Ctrl

Figure 4 Configuration of the T4240.

0 0.4 0.8 1.2 1.6 2
·104

0

1

2

3 ·106

Number of Elements

C
PU

C
yc
le
s
on
〈L

oa
d,
−
,−
〉 Mb|Ib|Ib

Eb|Ib|Ib

Ib|Mb|Ib

Ib|Eb|Ib

Ib|Ib|Ib

Figure 5 Exposing Cache Eviction.

In order to limit the mechanisms observed to the L2 cache coherence, we chose to disable
the architecture’s L1 Data caches. Furthermore, we only consider a single core (and execution
thread) per cluster, and thus, per L2 cache. In an attempt at reducing the impact of
instruction fetching, we keep the L1 Instruction caches enabled. Lastly, our system only uses
a single memory controller. Thus, our configuration resembles the one shown in Figure 4,
the remaining hardware configuration being left to what it is by default.

The NXP QorIQ T4240 architecture does not feature the evict instruction. The closest
available instruction (dcbi, Data Cache Block Invalidate) results in the element being evicted
from all the caches, which is significantly different, unless that element has been marked as
ignored by cache coherence (which is then pointless for our purposes). Since our benchmarks
are very small programs dealing almost exclusively with the set of experimental memory
elements, we replaced the application of an evict on all of the memory elements with a
simple invalidation of the whole local cache, which does still involve cache coherence.

While related to caches and an important factor of their performance, the issue of
replacement policy is orthogonal to the cache coherence protocol. Thus, we do not want its
effects to be mixed in our benchmarks. Through testing (see Figure 5), we concluded that
caches started evicting cache lines when holding somewhere between 8000 and 9000 of them.
From the information given in [13], we speculate that this corresponds to the 8192 cache
lines held in a bank.

5.2 Partial Matching of States with Step 1
We listed and named every combination we have encountered in Table 2. We made an initial
matching that seems coherent with the flags name, but that still needs to be checked by
looking at the transitions. We denote by a b suffix the states observed on the platform.

We check the property required by Issue 3 that applying any request (load, store,
and evict) from a matched state leads to the correct matched state. Table 3 shows the
original and destination state for a memory element on each of the three clusters according

ECRTS 2020

13:14 Identifying Cache Coherence on the NXP QorIQ T4240

Table 2 Stable States of the T4240 L2 Caches Protocol.

State Dirty Valid Share Exclusive LastReader
Mb X X
Eb X X
Ib

ϕb X X
χb X X

Table 3 State Changes.

〈Load,-,-〉 〈Store,-,-〉 〈Evict,-,-〉

Origin Destination Destination Destination
Observ Match Observ Match Observ Match

〈Ib,Ib,Ib〉 〈Eb,Ib,Ib〉 〈E,I,I〉

〈Mb,Ib,Ib〉 〈M,I,I〉

〈Ib,Ib,Ib〉 〈I,I,I〉〈Eb,Ib,Ib〉 〈Eb,Ib,Ib〉 〈E,I,I〉
〈Mb,Ib,Ib〉 〈Mb,Ib,Ib〉 〈M,I,I〉
〈Ib,Ib,Mb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,Mb〉 〈I,I,M〉
〈Ib,Ib,Eb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,Eb〉 〈I,I,E〉
〈ϕb,Ib,Ib〉 〈ϕb,Ib,Ib〉 〈S,I,I〉 〈Ib,Ib,Ib〉 〈I,I,I〉
〈χb,ϕb,Ib〉 〈χb,ϕb,Ib〉 〈S,S,I〉 〈Ib,ϕb,Ib〉 〈I,S,I〉
〈χb,χb,ϕb〉 〈χb,χb,ϕb〉 〈S,S,S〉 〈Ib,χb,ϕb〉 〈I,S,S〉
〈ϕb,χb,χb〉 〈ϕb,χb,χb〉 〈S,S,S〉 〈Ib,χb,χb〉 〈I,S,S〉
〈ϕb,χb,Ib〉 〈ϕb,χb,Ib〉 〈S,S,I〉 〈Ib,χb,Ib〉 〈I,S,I〉
〈Ib,Ib,ϕb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,ϕb〉 〈I,I,S〉
〈χb,Ib,Ib〉 〈χb,Ib,Ib〉 〈S,I,I〉 〈Ib,Ib,Ib〉 〈I,I,I〉
〈Ib,Ib,χb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,χb〉 〈I,I,S〉
〈Ib,ϕb,χb〉 〈ϕb,χb,χb〉 〈S,S,S〉 〈Ib,ϕb,χb〉 〈I,S,S〉
〈Ib,χb,χb〉 〈ϕb,χb,χb〉 〈S,S,S〉 〈Ib,χb,χb〉 〈I,S,S〉
〈χb,χb,Ib〉 〈χb,χb,Ib〉 〈S,S,I〉 〈Ib,χb,Ib〉 〈I,S,I〉

to what instruction was applied to the first cluster. This figure covers all the possible sets of
stable states for the coherence of a single memory element on the system’s clusters, since
the permutation of two clusters does not impact the cache coherence’s mechanisms. The
transitions, however, are limited to those relevant when only a single operation is applied
across the whole system. Furthermore, this does not account for any state of the coherence
manager, since we are unable to observe them.

According to Table 3 we match each observed stable state with one of the formal ones.
The Mb, Eb, and Ib states we observed perfectly match their M, E, and I counterparts from the
MESI protocol. The S state, however, seems to match our observations of both the ϕb and
Ib states. Indeed, when starting from 〈Ib,Ib,Mb〉 and performing a load operation on the
first cluster, we end up with two different states, ϕb and χb, where we would have expected
to see two of the S state equivalent. The same occurs when starting from 〈Ib,Ib,Eb〉. By
itself, this observation is not sufficient to conclude that there is a discrepancy between the
protocol we defined and the one observed on the architecture.

As we go through the different transitions from one stable state to another, we observe
that performing an evict on either ϕb or χb does not affect the other caches’ state, which
means that reaching either 〈χb,Ib,Ib〉 or 〈ϕb,Ib,Ib〉 (or any permutation of these clusters)

N. Sensfelder, J. Brunel, and C. Pagetti 13:15

is possible. In addition, the previous step showed that there is no way to have a system in
which two clusters hold the same memory element in the ϕb state: the first cluster to reach
the ϕb moves to the χb state upon seeing the other’s query. Neither is it possible to have all
three clusters in the χb state: the last cluster to load from Ib always enters ϕb, and there is
no way to reach ϕb other than doing exactly that.

5.3 Consolidated Matching of States with Observable Events

Table 4 Unexpected Behaviors.

〈load, -, -〉

Origin Behavior
Expected Observed

〈Ib,Ib,Ib〉
8000 L2D Accesses,
8000 Reloads From CoreNet

16000 L2D Accesses,
8000 Reloads From CoreNet,
1166700 CPU Cycles

〈Ib,Ib,ϕb〉
8000 L2D Accesses,
8000 Reloads From CoreNet

16000 L2D Accesses,
8000 Reloads From CoreNet,
850600 CPU Cycles

〈Ib,Ib,χb〉
8000 L2D Accesses,
8000 Reloads From CoreNet

16000 L2D Accesses,
8000 Reloads From CoreNet,
1172600 CPU Cycles

〈-, -, load〉

Origin Behavior
Expected Observed

〈Ib,Ib,Ib〉 8000 External Snoop Requests 8000 External Snoop Requests

〈ϕb,Ib,Ib〉
8000 L2 Snoop Hits,
8000 External Snoop Requests

8000 L2 Snoop Hits,
8000 L2 Snoop Pushes,
8000 External Snoop Requests,
8000 SINTs

〈χb,Ib,Ib〉
8000 L2 Snoop Hits,
8000 External Snoop Requests

8000 L2 Snoop Hits,
8000 External Snoop Requests

While observing the existence of the χb and ϕb states may not have been sufficient to
contradict a MESI protocol, they definitely did put it into question and so we prioritized
furthering their analysis.

Table 4 shows our observations when loading a dataset of 8000 unique memory elements
from the Ib state. The upper table indicates what is recorded on the cluster performing the
load operations and the bottom table corresponds to what is recorded on the farthest cluster,
hence the symmetry of origin state and of operation between the two tables. The 〈Ib,Ib,Ib〉
is given as a reference point. Indeed, the other lines involve either χb or ϕb, which we have
so far assumed to be equivalent to an S state, meaning that the results ought to have been
the same in all the lines of this first table.

The first surprising result is that we consistently observed twice the amount of expected
L2D accesses. While it is odd, we do not consider it to be a sufficient contradiction of our
proposed definition, as it holds true for every single one of our benchmarks.

Much more interesting is the hint of a truly unexpected behavior found in the upper
table, where the 〈Ib,Ib,ϕb〉 benchmarks is performed using less CPU cycles than the others.
Looking at what happens on the bottom table for the symmetrical line, we can see that the

ECRTS 2020

13:16 Identifying Cache Coherence on the NXP QorIQ T4240

cache holding the memory elements in the ϕb is actually providing them to the demanding
cluster. This is in clear contradiction with our understanding of the architecture’s protocol.
Furthermore, this is not simply a case of having a different behavior for what should be the S
state: the 〈χb,Ib,Ib〉 line of the bottom table indicates that no such thing is happening for
memory elements in the χb state. This allows us conclude that ϕb and χb are, in fact, two
completely separate stable states. This confirms that the NXP QorIQ T4240 architecture
does not use MESI as its coherence protocol.

6 Formal MESIF Description

From the observations we made, we believe the implemented protocol to be MESIF. Table 5
shows our formal definition of the MESIF protocol.

The MESIF protocol [17] adds a Forward stable state. This state is equivalent to a Shared
state with the added constraint of being responsible for the propagation of the memory
element’s current value. Thus making it possible to avoid reading from the system’s main
memory even when multiple caches hold the same memory element. Unlike the Exclusive
state, it does not allow the cache to upgrade to a Modified state by itself, since the other
caches still have to be informed that their copies are out-of-date.

As with any stable state that gives a cache the responsibility of propagating the memory
element’s current value, the challenge lies in determining when a cache can enter that state,
and making sure that the responsibility is properly transferred when the cache leaves it.

The coherence manager keeps track of which cache holds memory elements in the Forward
state. As this cache cannot actually make modifications while in this state, informing the
coherence manager that it was left does not require sending any kind of data message: a
simple PutM query broadcast is sufficient.

A cache moving from Forward to Modified still has to broadcast a GetM query and process
all the queries that preceded before proceeding. We assume that if the cache still is responsible
for the propagation of the memory element when it sees its own GetM query (meaning that
it stayed in the FMB state), then it should be able to simply move to the Modified state
without receiving any data reply. However, if the responsibility was lost (because of either
an external GetS or GetM query), then it will need to re-acquire the current value of the
memory element as a data reply before entering the Modified state.

7 Validating MESIF on the T4240

We apply again our validation strategy, this time with the MESIF protocol. First, we match
the observable states with the stables: we now identify ϕb as corresponding to the F state,
making the name Fb more appropriate. Likewise, the χb state is now named Sb, as it does
appear to correspond to the S state.

Overall, our results confirm a MESIF protocol, albeit differing in some of the imple-
mentation choices. For the sake of brevity, we omitted all the results that were exactly as
expected.

No store Optimization on F

Our MESIF protocol formalization considers that performing a store on F does not require
a data reply if no other query occurs simultaneously, since that particular cache is the one
in charge of distributing the value. However, the performance monitors on the T4240 show
that the memory elements were actually received again (CoreNet Reloads) and that the F

N. Sensfelder, J. Brunel, and C. Pagetti 13:17

Table 5 Description of the MESIF protocol.

Cache Controller

State Core Request Interconnect
Access Data Reply Received Queries

load store evict data data-e GetS GetM PutM
I GetS?, IFBD GetM?, IMBD hit - - -
IFBD stall stall stall IEoFD IFB IEB - - -
IFB stall stall stall F - -
IEoFD stall stall stall F E r←s, ISD r←s, ISDI

ISD stall stall stall
r!data,
r← ∅,

S

r!data,
m!no-data,

r← ∅, S
- ISDI

ISDI stall stall stall

load hit,
r!data,
r← ∅,

I

load hit,
r!data,
r← ∅,

m!no-data,
I

- -

IMBD stall stall stall IMD IMB - - -
IMB stall stall stall M - - -
IMD stall stall stall M r←s, IMDS r←s, IMDI

IMDI stall stall stall
store hit,
r!data,
r← ∅, I

- -

IMDS stall stall stall

store hit,
r!data,
m!data,
r← ∅, S

- IMDSI

IMDSI stall stall stall

store hit,
r!data,
m!data,
r← ∅, I

- -

S hit GetM?, SMBD hit, I - I
F hit GetM?, FMB PutM?, FIB s!data, S s!data, I
SMBD hit stall stall SMD SMB - IMBD

FMB hit stall stall M
s!data,

SMBD
s!data,

IMB

SMB hit stall stall M - IMB

SMD hit stall stall store hit, M r←s, SMDS r←s, SMDI

SMDI hit stall stall
store hit,
r!data,
r← ∅, I

- -

SMDS hit stall stall

store hit,
r!data,
m!data,
r← ∅, S

- SMDSI

SMDSI hit stall stall

store hit,
r!data,
m!data,
r← ∅, I

- -

M hit hit PutM?, MIB m!data,
s!data, S

s!data, I

MIB hit hit stall m!data, I
m!data,

s!data, IIB s!data, IIB

IIB stall stall stall I - - -

E hit hit, M PutM?, EIB m!no-data,
s!data, S

s!data, I

IEB stall stall stall E - - -

EIB hit stall stall m!no-data, I
m!no-data,
s!data, IIB s!data, IIB

FIB hit stall stall I s!data, IIB s!data, IIB

Coherence Manager

State Received Queries Data Reply

GetS GetM
PutM

(Owner)
PutM

(Other) data no-data

I read, s!data-e, r←s, M s!data, r←s, M -
M r←s, FD r←s r← ∅, ID - write, IoFB IoFB

ID stall stall stall - write, resume, I resume, I
FD stall stall stall - write, resume, F resume, F
IoFB r←s, F r←s, M r← ∅, I - write -
S read, s!data, F s!data, r←s, M -
F r←s r←s, M r← ∅, S - write, IoFB IoFB

ECRTS 2020

13:18 Identifying Cache Coherence on the NXP QorIQ T4240

cache is not sending them to itself (Snoop Pushes). This may be a standard implementation
choice for MESIF, and exactly the kind we believe important for the architecture’s user to
know about.

〈store,-,-〉

Origin Behavior
Expected Observed

〈Eb,Ib,Ib〉 8000 L2D Accesses 16000 L2D Accesses,
248532 CPU Cycles

〈Fb,Ib,Ib〉 8000 L2D Accesses
16000 L2D Accesses,
8000 CoreNet Reloads,
252900 CPU Cycles

Odd Results with evict on M

Eviction from M yielded surprising results. Indeed, if not for the absence of any External
Snoop Requests, these values are what one would expect to see when a cache in the M state
sees another cache’s GetM query. The number of L2D Accesses are not significant in this
benchmark since, as previously indicated, we do not perform separate evict operations on
each memory element but rather a general eviction of that particular cache.

〈evict, -, -〉

Origin Behavior
Expected Observed

〈Eb,Ib,Ib〉 8000 L2D Accesses 42 L2D Accesses,
22400 CPU Cycles

〈Mb, Ib, Ib〉
8000 L2D Accesses,
8000 Snoop Pushes

42 L2D Accesses,
8000 Snoop Hits,
8000 Snoop Pushes,
8000 MINTs,
65700 CPU Cycles

Better Coherence Manager

While we are unable to see the coherence manager, we still tried to expose the issue we
mentioned in Example 2, where the coherence manager is unable to grant the Exclusive state
when all caches evicted from S. As it happens, our benchmark showed that the Exclusive
was indeed reached, pointing to either a better coherence manager being used, or some other
co-ordination strategy.

Simultaneous Events Behaviors

Considering the limited control and observation points available to us on the platform,
performing benchmark to validate the simultaneous events behaviors is particularly difficult.
We have observed multiple observable states for a same combination of multiple events as
expected but we are unable to detect whether the transactions that fulfilled the request of
each core interlaced or if they were simply resolved in a sequence. In the latter case, all
the behaviors correspond to single event ones instead. Furthermore, the possibility of an
optimization being present on the architecture for certain scenarios is hardly detectable.

N. Sensfelder, J. Brunel, and C. Pagetti 13:19

8 Related Works

Cache Coherence Error Detection

[11] proposes the detection of design issues in the architecture by automatically generating
and performing tests on a simulation of that architecture. Indeed, while the protocol itself
may be correct, its implementation and interaction with other components can still be a
source of issues. In effect, this also performs a validation of the protocol on the architecture
through tests, but it requires a valid model of the architecture to already be available. [20]
also proposes a framework for automated test generation, this time focused on validating
memory controllers according to models of the behaviors they are supposed to follow.

A number of papers propose the inclusion of hardware to implement redundant coherency
mechanisms which are continuously compared with the primary ones. [6] is such a paper:
it runs a simplified (stable states only) coherence protocol alongside the real one, reacting
to every query and instruction. It detects local errors by comparing the cache line states
according to the simplified protocol with their states according to the real protocol. It also
detects errors related to the system entering an invalid coherence state by having each cache
broadcast its state according to the simplified protocol so that the others can react if it is
incompatible with theirs (e.g. a cache in the M state seeing the broadcast of another cache
signaling they entered M as well). [33]’s solution is similar, with the exception that the states
are not broadcasted. Instead, a centralized checking unit simply accesses them to check
whether the system entered an invalid coherence state. In terms of detected mismatches, this
is the equivalent of continuously performing the flags matching step of our strategy.

[22] proposes keeping a short backlog of relevant coherence mechanisms information
(state of outgoing/incoming messages, state of cache lines) at each cycle. The information
captured at each cycle is first studied in isolation, using invariants to check that the protocol
would indeed allow the system to reach such a state. Then, the protocol is applied to the
system state that was logged at each cycle to check that the result is compatible with the
system state that was logged in the next cycle. [10] presents CoSMa, another solution making
use of a backlog, but this time it is stored within the caches themselves instead of a separate
component. The system periodically stops its activities to go perform a coherence check and
detect if any error have occurred. The authors point out that this is not meant to be ran in
production, but instead as a post-silicon validation process, which should be done prior to
the product’s release. Compared to the approaches from the previous paragraph, these two
go further, by including the validation of behaviors.

Cache Coherence Profiling & Modeling

By successfully validating that the formally defined protocol indeed matches what is im-
plemented on the architecture, a model of part of the platform can be created so as to
verify properties relevant to the user. An important such property being the WCET, and its
computation for multi-core systems is difficult and the subject of many publications. [25]
provides a general survey for WCET in multi-core systems, and [24] provides another survey,
this time focused on caches.

Much like our own approach, [4] and [16] make use of benchmarks and monitors to learn
the characteristics of a given architecture. Their focus is on exposing unexpectedly shared
resources by overwhelming them through stress testing.

We ourselves have used timed automata for the modeling of platform and program in [30],
with a focus on the identification of interferences (negative impact caused by external queries).
Timed automata were also used in models aimed at WCET computation [8, 19].

ECRTS 2020

13:20 Identifying Cache Coherence on the NXP QorIQ T4240

WCET is also strongly impacted by cache eviction policies, which we did not address
in this paper. Solutions to analyze the impact of cache eviction are plenty [15, 18, 23, 32],
especially since this problematic predates multicore processors.

To ease WCET computation, some cache coherence protocols are designed to be predict-
able in their impact on runtime, such as [21]. This does not, however, remove the need for
the coherence protocol implementation to be properly identified and validated. Another way
to make WCET computation easier is to limit what is being affected by cache coherence. For
example, [7] leverages sensible scheduling so that parts of the program that require access
to the bus are less likely to be happening simultaneously; [27] also makes use of careful
scheduling, this time so that tasks can simply leave their results in cache so that it will be
used by the next task without needing to be fetched; [2] suggests making use of the platform
capabilities to better control what is kept in what cache, and what should be affected by
coherence mechanisms.

Even if not interested in an easy to predict WCET, good understanding of the impact of
cache coherence can be used to improve performance and/or reduce wasteful operations. [3]
adds hardware that will consider each cache line as being write-through or write-back
depending on what is preferable.

9 Conclusion

In this paper we presented a strategy to validate the user’s understanding of the cache
coherence mechanisms implemented on an architecture. To illustrate our process, we applied
it to the NXP QorIQ T4240 architecture, which we understood to be running MESI. We
thus proposed a formal definition for a split-transaction bus MESI protocol, which we tried
to validate using the aforementioned process. To our surprise, where we expected to only see
differences in implementation choices, we learned that the architecture is in fact implementing
MESIF. We validated this by proposing a formal definition for that protocol and re-applying
the process a second time. This time, the results indicated a match, with the exception of a
few implementation choices.

In the future, we will make measure on more temporal behavior from the NXP QorIQ
T4240 architecture relative to the cache coherence to quantify the impact induced by cache
coherence on software running on the cores. We will also extend our Uppaal model from [30]
to integrate several cache protocol, including MESIF, and to use real delay values so as to be
able to offer the formal model of a validated system.

References
1 Jyotika Athavale, Riccardo Mariani, and Michael Paulitsch. Flight safety certification implica-

tions for complex multi-core processor based avionics systems. In 25th IEEE International
Symposium on On-Line Testing and Robust System Design, IOLTS 2019, Rhodes, Greece, July
1-3, 2019, pages 38–39, 2019.

2 Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and Marco
Caccamo. Cache where you want! reconciling predictability and coherent caching, 2019.
arXiv:1909.05349.

3 Pedro Benedicte, Carles Hernandez, Jaume Abella, and Francisco J. Cazorla. HWP: Hardware
Support to Reconcile Cache Energy, Complexity, Performance and WCET Estimates in
Multicore Real-Time Systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS
2018), volume 106 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–
3:22, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ECRTS.2018.3.

http://arxiv.org/abs/1909.05349
https://doi.org/10.4230/LIPIcs.ECRTS.2018.3
https://doi.org/10.4230/LIPIcs.ECRTS.2018.3

N. Sensfelder, J. Brunel, and C. Pagetti 13:21

4 Jingyi Bin, Sylvain Girbal, Daniel Gracia Perez, Arnaud Grasset, and Alain Merigot. Studying
co-running avionic real-time applications on multi-core cots architectures. In Embedded Real
Time Software and System Conference (ERTS2), February 2014.

5 Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Thomas Loquen, Alfonso
Mascarenas Gonzalez, Claire Pagetti, Thomas Polacsek, and Nathanaël Sensfelder. PHYLOG
certification methodology: a sane way to embed multi-core processors. In 10th European
Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France,
January 2020. URL: https://hal.archives-ouvertes.fr/hal-02441323.

6 Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Dynamic Verification of Cache
Coherence Protocols, pages 25–42. Springer New York, New York, NY, 2004. doi:10.1007/
978-1-4419-8987-1_3.

7 Thomas Carle and Hugues Cassé. Reducing Timing Interferences in Real-Time Applications
Running on Multicore Architectures. In 18th International Workshop on Worst-Case Execution
Time Analysis (WCET 2018), volume 63 of OpenAccess Series in Informatics (OASIcs),
pages 3:1–3:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/OASIcs.WCET.2018.3.

8 Franck Cassez and Jean-Luc Béchennec. Timing analysis of binary programs with UPPAAL.
In 13th International Conference on Application of Concurrency to System Design, ACSD
2013, pages 41–50. IEEE Computer Society, July 2013. doi:10.1109/ACSD.2013.7.

9 Certification Authorities Software Team. Multi-core Processors - Position Paper. Technical
Report CAST 32-A, Federal Aviation Administration, November 2016.

10 A. DeOrio, A. Bauserman, and V. Bertacco. Post-silicon verification for cache coherence.
In 2008 IEEE International Conference on Computer Design, pages 348–355, October 2008.
doi:10.1109/ICCD.2008.4751884.

11 M. Elver and V. Nagarajan. Mcversi: A test generation framework for fast memory consistency
verification in simulation. In 2016 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 618–630, March 2016. doi:10.1109/HPCA.2016.7446099.

12 Hakan Forsberg and Andreas Schwierz. Emerging cots-based computing platforms in avionics
need a new assurance concept. In the 38th Digital Avionics Systems Conference (DASC’19).
IEEE Press, 2019.

13 Freescale. e6500 core reference manual, rev 0, 2014.
14 Freescale. T4240 QorIQ: Integrated multicore communications processor family reference

manual, 2014.
15 Michele Garetto, Emilio Leonardi, and Valentina Martina. A unified approach to the perform-

ance analysis of caching systems. ACM Trans. Model. Perform. Eval. Comput. Syst., 1(3),
May 2016. doi:10.1145/2896380.

16 Sylvain Girbal, Jimmy le Rhun, and Hadi Saoud. METrICS: a measurement environment for
multi-core time critical systems. In 9th European Congress on Embedded Real Time Software
and Systems (ERTS’18), 2018.

17 James Goodman and Hhj Hum. Mesif: A two-hop cache coherency protocol for point-to-point
interconnects (2004), 2004.

18 Daniel Grund and Jan Reineke. Toward Precise PLRU Cache Analysis. In 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess
Series in Informatics (OASIcs), pages 23–35, Dagstuhl, Germany, 2010. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. The printed version of the WCET’10 proceedings are
published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7. doi:10.4230/OASIcs.WCET.2010.
23.

19 Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards WCET
analysis of multicore architectures using UPPAAL. In 10th International Workshop on Worst-
Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, pages 101–112,
2010. doi:10.4230/OASIcs.WCET.2010.101.

ECRTS 2020

https://hal.archives-ouvertes.fr/hal-02441323
https://doi.org/10.1007/978-1-4419-8987-1_3
https://doi.org/10.1007/978-1-4419-8987-1_3
https://doi.org/10.4230/OASIcs.WCET.2018.3
https://doi.org/10.1109/ACSD.2013.7
https://doi.org/10.1109/ICCD.2008.4751884
https://doi.org/10.1109/HPCA.2016.7446099
https://doi.org/10.1145/2896380
https://doi.org/10.4230/OASIcs.WCET.2010.23
https://doi.org/10.4230/OASIcs.WCET.2010.23
https://doi.org/10.4230/OASIcs.WCET.2010.101

13:22 Identifying Cache Coherence on the NXP QorIQ T4240

20 M. Hassan and H. Patel. Mcxplore: Automating the validation process of dram memory
controller designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(5):1050–1063, May 2018. doi:10.1109/TCAD.2017.2705123.

21 Mohamed Hassan, Anirudh M. Kaushik, and Hiren D. Patel. Predictable cache coherence
for multi-core real-time systems. In 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2017, Pittsburg, PA, USA, April 18-21, 2017, pages 235–246,
2017. doi:10.1109/RTAS.2017.13.

22 B. Kumar, A. K. Bhosale, M. Fujita, and V. Singh. Validating multi-processor cache coherence
mechanisms under diminished observability. In 2019 IEEE 28th Asian Test Symposium (ATS),
pages 99–995, 2019.

23 Benjamin Lesage, David Griffin, Sebastian Altmeyer, Liliana Cucu-Grosjean, and Robert I.
Davis. On the analysis of random replacement caches using static probabilistic timing
methods for multi-path programs. Real-Time Syst., 54(2):307–388, April 2018. doi:10.1007/
s11241-017-9295-2.

24 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05–1–
05:48, 2016. doi:10.4230/LITES-v003-i001-a005.

25 Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I.
Davis. A survey of timing verification techniques for multi-core real-time systems. ACM
Comput. Surv., 52(3), June 2019. doi:10.1145/3323212.

26 Laurence Mutuel, Xavier Jean, Vincent Brindejonc, Anthony Roger, Thomas Megel, and
E. Alepins. Assurance of Multicore Processors in Airborne Systems, 2017.

27 Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut. Cache-conscious Off-Line Real-Time
Scheduling for Multi-Core Platforms: Algorithms and Implementation. Real-Time Systems,
pages 1–37, 2019. doi:10.4230/LIPIcs.ECRTS.2017.14.

28 Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architectures in
avionics. In Proceedings of the 2012 Ninth European Dependable Computing Conference,
EDCC ’12, pages 132–143, Washington, DC, USA, 2012. IEEE Computer Society.

29 Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for multiprocessors
with private cache memories. SIGARCH Comput. Archit. News, 12(3):348–354, January 1984.
doi:10.1145/773453.808204.

30 Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling Cache Coherence to Expose
Interference. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume
133 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:22, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ECRTS.2019.18.

31 Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

32 Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. Fast and exact analysis
for lru caches. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290367.

33 Hui Wang, Sandeep Baldawa, and Rama Sangireddy. Dynamic error detection for dependable
cache coherency in multicore architectures. 21st International Conference on VLSI Design
(VLSID 2008), pages 279–285, 2008.

34 Reinhard Wilhelm and Jan Reineke. Embedded systems: Many cores - many problems. In 7th
IEEE International Symposium on Industrial Embedded Systems (SIES’12), pages 176–180,
2012.

https://doi.org/10.1109/TCAD.2017.2705123
https://doi.org/10.1109/RTAS.2017.13
https://doi.org/10.1007/s11241-017-9295-2
https://doi.org/10.1007/s11241-017-9295-2
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.1145/3323212
https://doi.org/10.4230/LIPIcs.ECRTS.2017.14
https://doi.org/10.1145/773453.808204
https://doi.org/10.4230/LIPIcs.ECRTS.2019.18
https://doi.org/10.4230/LIPIcs.ECRTS.2019.18
https://doi.org/10.1145/3290367

	Introduction
	Cache Coherence – Case of the NXP T4240
	Formal Specification and its Validation

	Cache Coherence
	The Programs
	The Caches
	The Interconnect
	Coherence Manager and Main Memory
	Terminology

	Formal Description of the MESI Protocol
	Protocol Specification
	Examples of Behaviors
	System Behavior

	Validation Strategy
	Evaluating Cache Coherence on the T4240
	The NXP QorIQ T4240 Experimental Setup
	Partial Matching of States with Step 1
	Consolidated Matching of States with Observable Events

	Formal MESIF Description
	Validating MESIF on the T4240
	Related Works
	Conclusion

