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ORIGINAL ARTICLE Open Access

Identification of novel major and minor
QTLs associated with Xanthomonas oryzae
pv. oryzae (African strains) resistance in rice
(Oryza sativa L.)
Gustave Djedatin1*, Marie-Noelle Ndjiondjop2, Ambaliou Sanni5, Mathias Lorieux4, Valérie Verdier3†

and Alain Ghesquiere4†

Abstract

Background: Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of Bacterial Leaf Blight (BB), an emerging
disease in rice in West-Africa which can induce up to 50 % of yield losses. So far, no specific resistance gene or QTL
to African Xoo were mapped. The objectives of this study were to identify and map novels and specific resistance
QTLs to African Xoo strains.

Results: The reference recombinant inbred lines (RIL) mapping population derived from the cross between IR64
and Azucena was used to investigate Xoo resistance. Resistance to African and Philippine Xoo strains representing
different races was assessed on the RIL population under greenhouse conditions. Five major quantitative trait loci
(QTL) for resistance against African Xoo were located on different chromosomes. Loci on chromosomes 1, 7, 9, 10
and 11 explained as much as 13 %, 37 %, 13 %, 11 % and 15 % of resistance variation, respectively. A major novel
QTL located on chromosome 7 explained 37 % of the phenotypic variance to the African Xoo corresponding to
race A3 whereas that on chromosome 11 is effective to all African races tested. Together with genes and QTLs for
resistance to bacterial blight previously described, the QTLs described here were mapped onto the reference O.
sativa subs japonica (var. Nipponbare) physical map.

Conclusion: We characterized new resistance QTLs. While some co-localize with known resistance genes/QTLs to
Asian strains, others are specific to African strains. We result with new information on genes and QTLs for resistance
to bacterial blight that will be useful for controlling the disease.

Keywords: Molecular mapping, QTL, disease resistance, Xanthomonas oryzae pv. oryzae, Oryza sativa

Background
Rice is a staple food for much of the world’s population,
including that of sub-Saharan Africa. Population growth
and migration have recently lead to a rapid growth in
rice consumption in dozens of African countries. With
the recent expansion and intensification of rice cul-
tivation in Africa, rice diseases have concomitantly in-
creased in most African rice growing areas (Sere et al.
2005; Traoré et al. 2009). Bacterial Blight (BB), caused

by Xanthomonas oryzae pv. oryzae (hereafter, Xoo), is
one of the most serious rice bacterial disease in Africa.
The disease is prevalent in irrigated and rain-fed lowland
rice growing areas. BB was first reported in Mali in 1979
and later in Senegal, Niger, Nigeria, Gabon, Mauritania,
Benin, Burkina and Cameroon. Over the last decade a
significant recurrence of this disease was observed in
several regions in Africa (Reckhaus et al. 1983; Gonzalez
et al. 2007; Basso et al. 2011; Verdier et al. 2011).
Resistance (R) genes are largely used in rice breeding

programs in Asia to control BB disease. More than 30 R
genes, which are given the prefix Xa for Xanthomonas,
have been identified so far (for a review see Verdier et al.
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2011) among which a few are deployed in breeding
programs. Important prerequisites to the deployment of
R genes are as follows: 1) to have an intensive knowledge
of Xoo population structure, race distribution and fre-
quency 2) to determine the durability of resistance of R
genes to be deployed.
Most of the BB R genes provide complete race-specific

resistance to Xoo strains. Different combinations of Xa4,
xa5, Xa7, xa13 and Xa21 have been incorporated in
popular rice commercial varieties in different countries
in Asia (Century et al. 1999; Singh et al. 2006; Swamy et
al. 2006; Perez et al. 2008; Sundaram et al. 2009, Shanti
2010; Suh et al. 2013; Ruengphayak et al. 2015). Few ex-
amples indicate that some R genes used for controlling
BB disease are overcome by virulent strains as shown in
Korea with the resistant gene Xa21 (Lee et al. 1999;
Zhang et al. 2006). Xa4 is a gene used for more than
30 years and has introgressed in high yielding varieties
in Asia but has lost efficacy in many cultivated areas
(Mew et al. 1992). Although durability of BB R genes is,
in part, because mutation of Xoo to overcome R genes
(Vera Cruz et al. 2000), recent field and laboratory stud-
ies have also shown the influence of temperature on the
interactions of rice R gene with Xoo. High temperatures
are conducive to BB disease, and most BB R genes, in-
cluding Xa4, are less effective at controlling BB disease
at high temperatures (Vera Cruz et al. 2000; Webb et al.
2010).
Xanthomonas oryzae (Xo) is a diverse species, with

distinct phylogenetic lineages comprising US Xo, Asian
Xoo, African Xoo, and Xanthomonas oryzae pv. oryzicola
(Xoc) (Triplett et al. 2011; Hajri et al. 2012). Another
lineage improperly named Xanthomonas campestris pv.
leersiae (Xcl) comprises strains isolated on weeds
(Wonni et al. 2014). Previous work highlighted differ-
ences in the race structure between Asian and African
Xoo strains (Gonzalez et al. 2007). Virulence assays
revealed three races (A1, A2 and A3) present in Mali,
Burkina-Faso, Niger and Cameroon that do not repre-
sent any of the known Xoo races characterized in Asia
so far (Gonzalez et al. 2007; Triplett et al. 2011).
According to experiments conducted on BB isogenic
lines (IRBB), BB resistance genes Xa4, xa5 and Xa7 pro-
vide resistance to some African Xoo strains (Gonzalez et
al. 2007). Although in absence of a complete overview of
Xoo race prevalence in Africa, we anticipated that Xa4,
xa5 and Xa7 could provide resistance against strains of
Xoo in Burkina-Faso, Cameroun and Niger. Despite the
increasing importance of BB in Africa, little is known on
the genetic determinism of resistance. O. glaberrima and
O. sativa accessions were screened for resistance to African
Xoo strains. The tropical japonica landrace Azucena is sus-
ceptible to all African Xoo strains. Few accessions, among
them the indica cultivar IR64, are highly resistant to African

Xoo strains. None of these accessions had the xa5 or Xa21
resistance alleles (Djedatin et al. 2011) suggesting that these
accessions carry new resistance genes that could be good
targets for R gene discovery and further deployment.
With the completion of genome sequences for japon-

ica and indica rice (Kawahara et al. 2013) and for O.
glaberrima (Wang et al. 2014a, b), it is essential to have
a better picture of the different Xa resistance genes and
QTLs characterized so far and their positions in the rice
genome.
The objectives of this study are to:

1. Identify and analyse the genetic basis of rice
resistance to African Xanthomonas oryzae pv. oryzae
strains by developing a QTL approach using the
reference mapping population made of recombinant
inbred lines (RIL) derived from the cross between
IR64 and Azucena.

2. Map novel and known bacterial blight resistance
genes and QTLs to Xoo strains and analyze their
colocalization on the reference Nipponbare
physical map.

For the first time in history, we report on specific
resistance QTLs to African Xoo strains. These QTLs will
be used in breeding program to enhance rice genetic
resistance to BB in Africa.

Results
Study of inheritance of BB resistance
The average lesion length induced by Xoo African strains
on IR64 and Azucena are respectively: 0.25 ± 0.1 and
16.1 ± 2 cm with Xoo MAI1; 0.76 ± 0.2 and 22.36 ±
2.7 cm with Xoo BAI4; 4.07 ± 1 and 22.29 ± 3 cm
with Xoo BAI3; 2.07 ± 0.5 and 26.29 ± 3.3 cm with Xoo
NAI8. IR64 is observed to be highly resistant and Azucena
highly susceptible to all virulent strains of African Xoo
tested so far. The disease scores of the RILs range widely,
from as low as 0.12 cm to as high as 30.05 cm, 0.14 to
32.2 cm, 0.2 to 32.6 cm and 0.44 to 37.9 cm with Xoo
strains MAI1, BAI4, BAI3 and NAI8, respectively (Table 1).

Table 1 Lesion length induced by African and Asian Xoo on
recombinant inbred lines and their parents

Xoo strains Lesion length (cm) induced on

IR64 Azucena RIL

MAI1 O.25 ± 0.1 16.1 ± 2 0.12 to 30.05

BAI4 0.76 ± 0.2 22.36 ± 2.7 0.14 to 32.2

BAI3 4.07 ± 1 22.29 ± 3 0.2 to 32.6

NAI8 2.07 ± 0.5 26.29 ± 3.3 0.44 to 37.9

PXO86 16.46 ± 1.5 26.0 ± 3 6.95 to 34.5

PXO61 1.92 ± 0.4 28.32 ± 3.1 0.5 to 30.8

Xoo Xanthomonas oryzae pv. oryzae, RIL Recombinant Inbred Lines
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This continuous variation of lesion lengths indicates
the existence of QTLs underlying the segregation of
resistance. Both parents, IR64 and Azucena, are suscep-
tible to Asian Xoo strain PXO86 with an average lesion
length of 16.46 ± 1.5 and 26 ± 3 cm, respectively. Con-
versely, IR64 is resistant to PXO61; the Philippines
race 1, with an average lesion length of 1.92 ± 0.4 cm,
whereas Azucena is susceptible with an average lesion
length of 28.32 ± 3.1 cm. The lesion length of the 178
RILs lines shows a continuous variation with an aver-
age lesion length of 6.95 to 34.5 cm and 0.5 to
30.8 cm with PXO86 and PXO6, respectively (Table 1),
indicating the resistance to Asian strains is controlled
by QTLs.

Mapping QTLs using SSR markers
The IR64 x Azucena genetic map used in this study
were comprised of 226 SSR markers and covered
1652.06 cM of the genome with an average inter-
marker interval of 7.31 cM. QTL mapping, based on
ANOVA, evidences twelve putative QTLs induced by
African Xoo strains (MAI1, BAI4, BAI3 and NAI8).
Two of them (qABB-7 and qABB-11) have a large
effect on chromosomes 7 and 11, respectively. The
others induce small effect on chromosomes 1, 3, 4, 8,
9, 10. The composite interval mapping using WinQTL-
Cartographer 2.5 reveals five specific QTLs under-
lying resistance to African Xoo strains including
those detected by ANOVA on chromosomes 1, 7, 9,
10 and 11. The estimated additive effect indicates
that these loci derive from the resistant parent
IR64. qABB-1, specific to MAI1, is linked to SSR
markers RM129 and RM493, with a LOD score of

4.72 and a percentage of variance explained (R2) of
8 %. qABB-7 is linked to RM125 and RM214 with a
LOD score of 16.20 and R2 of 30 % for MAI1, and
a LOD score of 13.98 and R2 of 30 % for BAI4.
qABB-11 is close to RM224 and RM144 with a
LOD score of 5.32, 5.87 and 4.18 with Xoo MAI1,
BAI3 and BAI4, respectively. qABB-11 controls 7, 9,
and 14 % of the phenotypic variation explained by
Xoo BAI4, MAI1, and BAI3, respectively. The Inclu-
sive Composite Interval Mapping using Qgene-4.3.0,
the more accurate QTL analysis method, confirms
five specific QTLs mapped on chromosomes 1, 7, 9,
10 and 11 underlying resistance to African Xoo
strains. The estimated additive effects confirm that
these loci derive from the resistant parent IR64.
Additive effect, linked markers, LOD score value
and PVE are summarized in Table 2. qABB-11 on
chromosome 11 was involved in the resistance to
all African Xoo strains tested so far. QTLs on chro-
mosomes 9 (qABB-9) and 10 (qABB-10) are specific
to Xoo strain NAI8 (race A1). Asian Xoo strains
induce five resistance QTLs different from those
induced by African’s strains except that on chromo-
some 11. This is also induced by Xoo strain PXO61
(Philippines race 1). Three resistance QTLs to Xoo
strain PXO86 (Phil race 2) are mapped on chromo-
somes 5 (qBB-5), 8 (qBB-8) and 12 (qBB-12)
(Table 2). As indicated by the estimated additive
effects, the QTLs on chromosomes 5 and 8 are
controlled by Azucena allele while that on chromo-
some 12 is underlined by IR64 allele. A resistance
QTL (qBB-4) is detected on chromosome 4 for the
Asian Xoo strain PXO61.

Table 2 Novel QTLs mapped in IR64 x Azucena population using African and Asian Xanthomonas oryzae pv.oryzae

Xooa strains Country
of origin

QTL localization:
chromosome

QTL name LODb score Closely Linked
marker

Marker position (cM) Additive effect Donor Allele PVEc (%)

MAI1 Mali 1 qABB-1 5.068 RM129 58.45 1.7 IR64 13.4

7 qABB-7 16.006 RM125 5.75 3.2 IR64 36.6

11 qABB-11 4.666 RM144 100.21 1.5 IR64 12.4

BAI4 Burkina Faso 7 qABB-7 13.943 RM125 5.75 3.5 IR64 33.4

11 qABB-11 4.68 RM144 100.21 1.8 IR64 12.8

BAI3 Burkina Faso 11 qABB11 5.728 RM144 100.21 2.5 IR64 15.3

NAI8 Niger 9 qABB-9 4.359 RM242 69.28 2.3 IR64 12.9

10 qABB-10 3.606 RM294A 74.36 -2.23 Azucena 10.8

11 qABB-11 6.03 RM144 100.21 2.7 IR64 17.4

PXO86 Philippines 5 qBB-5 4.209 RM440 70.61 -1.68 Azucena 11.5

8 qBB-8-2 4.957 RM281 129.96 -2.16 Azucena 13.4

12 qBB-12 4.869 RM512 38.32 1.9 IR64 13.2

PXO61 Philippines 4 qBB-4 3.403 RM252 84.70 -1.7 Azucena 10

11 qABB-11 36.78 RM144 100.21 7.3 IR64 67.9

Xoo Xanthomonas oryzae pv. oryzae, LOD logarithm of odds, PVE Percentage of variance explained
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Heredity studies
The screening of the recombinant inbred lines using
Asian Xoo strain PXO61 evidenced the same QTL
previously induced on chromosome 11 (qABB-11) by
all African Xoo strains (with LOD score = 36.78 and
R2 = 67) (Table 2).
The segregation ratio obtained by screening F2: IR24

x IRBB4 population with the Asian Xoo strain PXO61 is
3 resistant for 1susceptible. This is the segregation ratio
of a dominant gene in a F2 population. It was the Xa4
dominant gene which was specific to PXO61. On the
contrary, the segregation studies in the same population
using the African Xoo strain BAI3 revealed a ratio of 3
susceptible for 1 resistant, that is the segregation ratio
of a recessive gene in a F2 population. Then, the
African Xoo strain BAI3 induces a recessive gene at the
locus of qABB-11.
The study of bacterial growth and of the xylem

colonization speed by the bacteria shows that both strains
PXO61 and BAI3 grown in the same way in IR24 rice var-
iety which is susceptible to bacterial blight. This fact is
expressed by a more or less equal number of PXO61 and
BAI3 colonies detected at each time. It’s the case on the
twelfth day after inoculation when the number of PXO61
and BAI3 colonies is about Log10 (8) in the fraction A
and Log10 (9) in the fraction B. This number increases to
Log10 (10) and Log10 (10.5), respectively, in the fractions
C and D (Fig. 1). On the other hand, in the resistant
IRBB4 isogenic line, the colonies number of these two
strains is far inferior to those got in IR24 variety (Fig. 2).
In this case, both strains grown unequally. On the 12th
day after inoculation, we count Log10 (8) of BAI3 and
Log10 (6) of PXO61 in the fraction A, Log10 (8) of BAI3

against Log10 (4) of PXO61 in the fraction B. The Asian
Xoo strain PXO61 is then stopped at the level of fraction
B, which is expressed by the absence of colonies in the
fractions C and D. On the other hand, Log10 (6) colonies
of the African Xoo strains BAI3 have been shown in the
fraction C and D (Fig. 2).
The results of the quantification and of bacterial kinetic

show clearly that the African Xoo strain BAI3 is quite
different from the one of the Asian Xoo strain PXO61 that
lights a dominant gene which was the Xa4 gene. In fact, in
the IRBB4 isogenic line, resistant to both strains, the
lesion caused by BAI3 was three times bigger than the one
caused by PXO61. Xa4 prevent the multiplication and the
progression of PXO61 in the vascular tissues which is
expressed on the one hand by the reduced number of
PXO61 in these tissues and, on the other hand by the total
absence of this bacteria 10 cm to the inoculation point.
This is in accordance with the functioning of dominant re-
sistance gene. On the other hand, BAI3 colonies have
been observed even at 20 cm to the inoculation point.
This strain managed to multiply and to colonize the
vascular tissues thus leading to a less resistant pheno-
type (Fig. 2 ). The African Xoo strain BAI3 would thus
induced a recessive gene.

Discussion
In this study, novel resistance QTLs to BB are identified
and mapped. Moreover, the information on known
bacterial blight genes/QTLs characterized so far was
updated (Additional file 1) and their genetic and physical
localization positioned on the reference rice physical
map (var Nipponbare).
IR64 has been confirmed as highly resistant to African

Xoo strains. The IR64 x Azucena derived mapping popu-
lations segregated for BB resistance. Novel QTLs were

Fig. 1 Bacteria growth during twelve days after inoculation of IR24
rice variety. A = 1st fragment of 5 cm (from the inoculation point) of
infected leaves. B = 2nd fragment of 5 cm (from 5 to 10 cm to the
inoculation point) of infected leaves. C = 3rd fragment of 5 cm (from
10 to 15 cm to the inoculation point) of infected leaves. D = 4th

fragment of 5 cm (from 15 to 20 cm to the inoculation point) of
infected leaves

Fig. 2 Bacteria growth during twelve days after inoculation of rice
isogenic line IRBB4. A = 1st fragment of 5 cm (from the inoculation
point) of infected leaves. B = 2nd fragment of 5 cm (from 5 to 10 cm
to the inoculation point) of infected leaves. C = 3rd fragment of 5 cm
(from 10 to 15 cm to the inoculation point) of infected leaves.
D = 4th fragment of 5 cm (from 15 to 20 cm to the inoculation
point) of infected leaves

Djedatin et al. Rice  (2016) 9:18 Page 4 of 10



discovered, mapped to chromosomes 1, 4, 5, 7, 8, 9, 10,
11, 12. Most were of relatively small effect except on
chromosomes 7 and 11. qBB-4, qBB-5, qABB-9 and
qBB-12 mapped to genomic regions where BB resistance
QTL and or Xa genes were previously characterized in
other crosses, indicating that BB-resistance genes to
Asian and African Xoo strains may be shared by several
rice accessions. Out of five, four QTLs induced by
African Xoo strains are different from those induced by
the Philippines Xoo strain PXO61 indicating these
strains induced different resistant genes. QTLs induced
by African Xoo strains are underlined by the allele of the
indica rice IR64 while Azucena (japonica) is the donor
parent of resistance against Asian Xoo strains except
with strain PXO61.
The genetic characterization of Xoo strains together

with the recent advances in X. oryzae genomic studies
indicate that African X. oryzae pv. oryzae strains form a
separate group within the X. oryzae (Gonzalez et al.
2007; Triplett et al. 2011; Hajri et al. 2012; Wonni et al.
2014). Also their repertoire of transcription activator-
like (TAL) effectors is reduced compared to the Asian
Xoo one (Gonzalez et al. 2007).
Two resistance QTLs with main effects were identi-

fied. The first, qABB-7, induced by the African Xoo
strains MAI1 and BAI4 on chromosome 7 and the
second, qABB-11, induced on chromosome 11 by all
African strains tested so far are particularly interesting.
The first one, qABB-7, controls 37 % of the phenotypic
variance with a high LOD score of 16 (Table 2) com-
pared to 2.5 to 3 fixed LOD score in other QTL studies
(Wang et al. 2006a, b; Sakraborty and Zeng 2011). Our
preliminary data indicate that the single resistance genes
Xa4, xa5 and Xa7 provide strong levels of resistance to
African Xoo strains collected in the 1980’s and in 2003
(Gonzalez et al. 2007). Xa4 is located in the qABB-11 re-
gion. The fine mapping of qABB-7 and qABB-11 is in
progress. Our study also reveals the difference between
African and Asian Xoo strains in terms of virulence. The
resistant and susceptible phenotypes of the parents
(IR64 and Azucena) induced by African Xoo strains
greatly contrast with those induced by Asian Xoo strains
(Table 1). According to the previous results, resistance
to BB depends on the rice genetic background. O. sativa
subspecies indica appeared to be the best source of
resistance to bacterial blight in rice conversely to the
African cultivated rice O. glaberrima that showed a rela-
tive narrow resistance basis to BB (Djedatin et al. 2011).
Preliminary segregation and bacteria growth studies

revealed that the two most important QTLs induced by
African Xoo on rice chromosomes 11 are recessive while
most of the resistance genes characterized so far are
dominant with the exception of xa5, xa8, xa13, xa19,
xa20, xa24, xa33(t), xa34(t) and xa35(t) (Verdier et al.

2011). These results are compatible with the hypothesis
that African and Asian strains have different effector
genes that induced different resistance genes (Yu et al.
2011a, b; Hajri et al. 2011).
So far, 40 R genes and 17 QTLs conferring host resist-

ance against various strains of Xoo have been identified
(Li et al. 1999; Chen at al. 2002; Gu et al. 2004; Blair et
al. 2003; Ramalingam et al. 2003; Wu et al. 2008a, b;
Cheema et al. 2008; Ruan et al. 2008; Korinsak et al.
2009; Wang et al. 2009; Sundaram et al. 2009; Chen et
al. 2011; Bhasin et al. 2012; Han et al. 2014; Kim et al.
2015). Approximately one third of naturally occurring R
genes against Xoo (xa5, xa8, xa13, xa15, xa19, xa20,
xa24, xa26, xa28, xa31(t), xa33(t) and xa34) are reces-
sive (Sanchez et al. 1999; Wu et al. 2008a, b; Ruan et al.
2008; Korinsak et al. 2009). More than 20 R genes were
mapped onto rice chromosomes, and some of them have
been well characterized. Nine resistance genes have been
molecularly cloned including six dominant genes, Xa21
(Song et al., b), Xa1 (Yoshimura et al. 1998), Xa3/Xa26
(Sun et al. 2004; Xiang et al. 2006), Xa27 (Gu et al. 2004;
Bimolata et al. 2013), Xa10 (Tian et al. 2014), Xa23
(Wang et al. 2014a, b) and three recessive xa5 (Iyer and
McCouch 2004) and xa13 (Chu et al. 2006a, b), xa25
(Liu et al. 2011) have been cloned. All known resistance
genes/QTLs and their flanking markers mapped on the
reference Nipponbare physical map show that they are
unequally distributed on rice chromosomes. Chromo-
somes 4 and 11 appeared to carry most of the known BB
resistance genes. Indeed, these chromosomes are known
to carry clusters of resistance genes analogs (RGA)
(Mago et al. 1999; Ghazi et al. 2009). Resistance QTLs
to rice sheath blight resistance (Zou et al. 2000) and re-
sistance genes to blast (Wang et al. 1994) also clustered
on chromosome 11. Many QTLs mapped closely to sin-
gle dominant or recessive Xa genes. It is the case of Xa1
and Xa2 which bracketed AQBT008 on chromosome 4.
Some of them are considered as a single gene like
AQBT023 designated as Xa4 on the Lemont x Teqing
map (Li et al. 1999). After interpolation on the Nippon-
bare physical map, AQBT023 was shown to be distinct
to Xa4 located on chromosome 11.
This interpolation on the reference Nipponbare phys-

ical map highlights common, specific and novel QTL/
genes for resistance to African and Asian Xoo strains.
Indeed, xa34(t) resistance gene to Chinese Xoo races V
co-localize with qABB-1, the resistance QTL induced by
the African Xoo strain MAI1 on rice chromosome 1. In
the same way, AQBT021 effective on Asian Xoo strains,
co-localize with qABB-10, a resistance QTL induce by
the African Xoo strain NAI8 on chromosome 10. xa8
(Ogawa and Yamamoto 1987), qBB7 (QTL identified on
chromosome 7, Ramalingam et al. 2003) and qABB-7 over-
lap on chromosome 7 as well as xa24 (Wu et al. 2008a, b)
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and AQBT001 on chromosome 2. Lemont and Azucena,
the donors’ parents of AQBT021 and qABB-10 respectively,
belong to the japonica subspecies. These resistance QTLs
may be the same. On chromosome 8, xa13, qBB8 and qBB-
8-2 co-localize perfectly. qBB8 and qBB-8-2 may be under-
lined by the recessive xa13 gene, but the heredity of qBB8
and qBB-8-2 has not been studied yet. On chromosome 11,
the QTL induced by African Xoo strains co-localized with
Xa4, Xa3, Xa32 and xa35(t), the known single resistance
genes to Asian Xoo strains. These Xa genes indicated that
some major R genes also contribute to quantitative re-
sistance as reported in common bean in which RGAs
co-localized with anthracnose-specific QTL (Geffroy
et al. 2000). This was also the case of QTL associated
with resistance to stripe rust and Barley yellow dwarf
virus in barley (Toojinda et al. 2001), and partial re-
sistance to Cucumber mosaic virus in pepper (Pflieger
et al. 1999). Specifics and novels QTLs inducing re-
sistance to African and/or Asian Xoo strains are iden-
tified as qABB-9 induced by the African Xoo strain
NAI8 on chromosome 9, qBB-4 and qBB-5 induced
on chromosomes 4 and 5 by Asian Xoo strains
PXO61 and PXO86 respectively, (Fig. 3).
In addition to specific resistance QTLs to African Xoo

trains, the known resistance genes/QTLs to Asian Xoo
strains which co-localized with QTL induced by African
Xoo will be used in rice breeding programs to develop
bacterial blight resistant cultivars for Africa.

Conclusion
We mapped several resistance QTLs to bacterial blight
in rice using a reference recombinant inbred lines
derived from the cross between Azucena and IR64 rice
varieties. Some of them are specific and novel to African
or Asian strain of Xanthomonas oryzae pv. oryzae such
as qABB-9 induced by the African Xoo strain NAI8 on
chromosome 9, qBB-4 and qBB-5 induced on chromo-
somes 4 and 5 by Asian Xoo strains PXO61 and PXO86,
respectively. The others co-localize with known Xoo
resistance genes/QTLs. It is the case of qABB-1, the
resistance QTL induced by the African Xoo strain MAI1
on rice chromosome 1 which co-localize with xa34(t)
resistance gene to Chinese Xoo races V. In the same way,
AQBT021 effective on Asian Xoo strains, co-localize with
qABB-10, a resistance QTL induced by the African Xoo
strain NAI8 on chromosome 10.
So far, and for the first time, specific resistance

QTLs to African Xoo are identified and mapped. The
fine mapping of the QTL induced by African Xoo
MAI1 and BAI4 on chromosome 7 which controlled
37 % of phenotypic variance as well as the one
induced on chromosome 11 by all African Xoo tested
is ongoing and will provide news markers for breed-
ing program.

Methods
Plant materials
The reference mapping population consisted in 172
recombinant inbred lines (RIL) obtained by single seed
descent (SSD) from the cross between the tropical
japonica landrace Azucena (susceptible parent) and the
indica cultivar IR64 (resistant parent) was used to iden-
tify and map the bacterial blight (BB) resistance QTLs.
IR64 is an elite improved indica rice grown in tropical
Asia. It carries the BB resistance gene Xa4 and has a
large spectrum of resistance to Xoo. The Azucena land-
race is susceptible to BB disease, and tolerant to drought
and other abiotic stresses. The IR64 x Azucena mapping
population was used to develop genetic map for charac-
terizing gene/QTLs associated to drought, iron toxicity
tolerance and resistance to the Rice yellow Mottle Virus
(Boisnard A et al. 2007).

Bacterial strains and plant inoculations
Six Xanthomonas oryzae pv. oryzae (Xoo) strains were
used to evaluate resistance to BB in the mapping popula-
tion. These strains included four African Xoo strains:
BAI3 and NAI8 (race A1) from Burkina-Faso and Niger
respectively, BAI4 (race A2) from Burkina-Faso, MAI1
(race A3) from Mali and two Asian strains PXO61
(Philippines race 1) and PXO86 (Philippines race 2). The
bacterial strains were cultured on PSA medium (per liter
of H2O, 10 g of peptone, 10 g of sucrose, 1 g of glutamic
acid, and 16 g of bacto agar at pH 7.0) overnight.
Inoculum was prepared by re-suspending bacterial
culture in sterile, distilled water at an optical density of
0.2 (DO600), bearing approximately 108 cfu per ml. The
progenies and their parents were grown under con-
trolled conditions (28 °C; 80 % humidity and 12 h day
length) in greenhouse at IRD Montpellier/France. They
were inoculated at the booting stage (6 weeks after
germination) using the leaf-clipping method (Kauffman
et al. 1973) in which the fully-opened leaves were cut
with scissors dipped in the bacterial suspension. Ten
plants per genotype and two uppermost fully expanded
and randomly chosen leaves were inoculated with each
strain. Phenotypic evaluations, consisting of the disease
scoring, were done 3 weeks after inoculation by measur-
ing the leaf lesion length. Disease reactions were clas-
sified according to the mean lesion length (LL) as
following: resistant (R) if the lesion length was < 5 cm,
moderately resistant (MR) with LL of 5 to 10 cm;
moderately susceptible (MS) with LL of 10 to 15 cm,
susceptible (S) with LL > 15 cm.

Molecular mapping analysis using SSR markers
Leaves of rice plants were harvested and ground in liquid
nitrogen. Genomic DNA was extracted as previously
described (Edwards et al. 1991). PCR were performed in
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Fig. 3 a, b and c: Integrative map showing all known resistance QTLs/genes to African and Asian Xoo. The vertical graduated blue thick lines represent
the physical map of each chromosome and is linked to the genetic map on the left showing the microsatellites markers (RM). On the right size of each
physical map the genes and QTLs are indicated in red, black and green. In black are the R genes that were previously identified with Asian Xoo strains. R
genes that were cloned are indicated by a horizontal line to a specific location on the physical map. The genes that are not cloned yet are represented by
a vertical line indicating the confidence interval. In red we indicated QTLs that were detected in others rice breeding populations. Novel QTLs identified
using the African Xoo strains are represented in blue those induced by the Philippines strains PXO61 and PXO86 are shown in green
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15 μL reactions in an automated thermal cycler and the
program consisted of the following cycles: initial denatur-
ation at 94 °C for 5 min; 30 cycles of denaturation at 94 °C
for 30 s, annealing temperature for 30 s and extension at
72 °C for 45 s; and a final extension step at 72 °C for
5 min. Amplified products were analyzed by electrophor-
esis on 6.5 % polyacrylamide gels, using electrophoresis
system LICOR; or by electrophoresis in a 2 % agarose gel.

Statistical analysis and Xoo resistance QTLs mapping
A linkage map comprising 226 SSR markers and con-
structed from the RIL population was used for mapping
resistance QTL to Xoo. An analysis of variance, using
marker genotypes as the groups, was carried out using
MapDisto (Lorieux 2007). Data files were prepared using
the Export map and data function of MapDisto. Analyses
of distribution of the phenotypic traits as well as QTL
detection were mainly performed using the Qgene v. 4.3.0
program (Nelson 2005, http://www.qgene.org) and Win-
dows QTL cartographer 2.5 (Wang et al. 2006b). Different
methods were compared such as Single-marker regression
(SMR), Simple interval mapping (SIM), and Composite
interval mapping (CIM). The Forward cofactor selection
option was used in CIM. The LOD score statistic was used
for all methods in order to make the results comparable.
Empirical thresholds to declare presence of a QTL were
obtained using the resampling by permutation method,
performing 1,000 iterations for each trait/chromosome
combination (log-likelihood of odds (LOD) score of 3).

Heredity studies
QTL mapping using Asian Xoo strain PXO61
At the locus of qABB-11, the QTL on chromosome 11
that was involved in the resistance on all African Xoo
tested, were localized a cluster of Xa genes including
Xa3, Xa4 and Xa21. Xa3 was not effective against Xoo
race 1 (Gonzalez et al. 2007). Xa21 was identified in
Oryza longistaminata, a wild rice race. Therefore, Xa4
would be the only one Xa candidate gene at the above
locus. In order to validate the presence of Xa4 gene at
this locus, the Asian Xoo strain PXO61 belonging to
Philippines race 2 was used to screen the RIL population
according to Kauffman et al. (1973). The resistance of
rice to PXO61 strain was specifically under Xa4 control.

Development and screening of F2: IR24 x IRBB4 population
The Asian rice variety IR24 belonging to indica sub-
species was crossed with isogenic line IRBB4 carrying
Xa4 gene. IRBB4 was used as donor while IR24 repre-
sent a recurrent parent. The Hybrid F1 obtained was
used to generate a F2 population. Two sets of 100 F2
individuals were screened with the African Xoo strain
BAI3 and the Asian one PXO61, respectively.

In planta growth experiments
Rice variety IR24 with its isogenic line IRBB4 were
screened using African Xoo strain BAI3 and Asian Xoo
strain PXO61. Two, three and four pieces of 5 cm from
the apex to the base of infected leaf were harvested 4, 8
and 12 days after inoculation, respectively. On each day,
infected leaves fragments were harvested on three differ-
ent plants. Infected leaves collected were briefly rinsed in
70 % of ethanol for 10 s followed by submersion in steril-
ized water. Leaves were put into 2 ml eppendorf tubes
containing 2 metallic beads (ϕ = 3 mm), frozen by sub-
mersion into liquid nitrogen and ground into fine powder
using the Qiagen Tissue Lyser system (30 rounds/s for
2 min). Ground material was resuspended in 1 ml of
sterilized water and 10 μl drops of a dilution series were
spotted onto PSA medium plate in triplicates. The plates
were incubated at 28 °C until colonies could be counted.
This experiment was performed three times.

Mapping of known resistance gene/QTLs on the reference
Nipponbare physical map
In a first step, information on all known BB resistance
genes and QTLs was reviewed. This review included gra-
mene accessions, number of genes/QTLs, their names,
synonyms and symbols, the genetic populations in which
they were mapped. Their donor’s parents as well as their
genetic position and their co-localized markers in various
mapping populations were also reported here. In the same
way, physical positions were recorded if available (Supple-
mentary data). The different genetic maps used were SSR
Cornell 2000, RIL IR64 x Azucena, DH IR4 x Azucena,
RIL Lemont x Tequin, RIL Zhenshan 97 x Minghui 63,
JRGP RFLP 2000 Nipponbare x Kasalath, Cornell RFLP
2001 O. sativa x O. longistaminata, and the reference
MSU7. Physical positions of the cloned genes such as
Xa1, Xa7, Xa10, Xa23, Xa26, Xa27, xa5, xa13 and xa25
were directly reported on the integrative map. For the non
cloned genes and QTLs, we chose the closest ones with
known genetic positions among the co-localized maker
and interpolated them on the reference Nipponbare
MSU7 physical map. Other genes and QTLs with conflict-
ing positions, as well as those that have been not mapped
such as Xa11, Xa12, Xa15, xa32(t), AQBT026 and
AQBT030, were not positioned on the integrative map.
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