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HOMOTOPY THEORY OF MOORE FLOWS (II)

PHILIPPE GAUCHER

Abstract. This paper proves that the q-model structures of Moore flows and of mul-

tipointed d-spaces are Quillen equivalent. The main step is the proof that the counit

and unit maps of the Quillen adjunction are isomorphisms on the q-cofibrant objects

(all objects are q-fibrant). As an application, we provide a new proof of the fact that

the categorization functor from multipointed d-spaces to flows has a total left derived

functor which induces a category equivalence between the homotopy categories. The

new proof sheds light on the internal structure of the categorization functor which is

neither a left adjoint nor a right adjoint. It is even possible to write an inverse up to

homotopy of this functor using Moore flows.
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1. Introduction

Presentation. This paper is the companion paper of [14]. The purpose of these two

papers is to exhibit, by means of the q-model category of Moore flows (cf. Definition 4.6),

a zig-zag of Quillen equivalences between the q-model structure of multipointed d-spaces

introduced in [11] and the q-model structure of flows introduced in [7]. The only known

functor which was a good candidate for a Quillen equivalence from multipointed d-spaces

to flows (Definition 8.7) has indeed a total left derived functor in the sense of [4] which

induces an equivalence of categories between the homotopy categories ( [11, Theorem 7.5]).

However, this functor is neither a left adjoint nor a right adjoint by Theorem 8.8.
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Multipointed d-spaces and flows can be used to model concurrent processes. For ex-

ample, the paper [10] shows how to model all process algebras for any synchronization

algebra using flows. There are many geometric models of concurrency available in the

literature [17–20,28] (the list does not pretend to be exhaustive). Most of them are used

to study the fundamental category of a concurrent process or any derived concept. It is

something which can be also carried out with the formalisms of flows and multipointed

d-spaces. The fundamental category functor is easily calculable indeed, at least for flows

since it is a left adjoint, and for cellular multipointed d-spaces by using Corollary 8.12,

and it interacts very well with the underlying simplicial structures.

The Quillen equivalence between flows and Moore flows is proved in [14, Theorem 10.9].

The Quillen equivalence between multipointed d-spaces and Moore flows is proved in

Theorem 8.1. The latter theorem is a consequence of the structural properties of the

adjunction between multipointed d-spaces and Moore flows which can be summarized as

follows:

1.1. Theorem. (Theorem 7.6, Corollary 7.9 and Theorem 8.1) The adjunction

MG
! ⊣MG : GFlow ⇆ GdTop

between Moore flows and multipointed d-spaces is a Quillen equivalence. The counit map

and the unit map of this Quillen adjunction are isomorphisms on q-cofibrant objects (recall

that all objects are q-fibrant).

Another standard example of the situation of Theorem 1.1 is the Quillen equivalence

between the q-model structures of ∆-generated spaces and of k-spaces (cf. Appendix C).

This paper is the first use in a real practical situation of the closed semimonoidal

category of G-spaces (Definition 4.1 and Theorem 4.3). It illustrates the interest of

this structure already for calculating spaces of execution paths of cellular multipointed d-

spaces. The interest of this structure is beyond directed homotopy theory, as remarked in

the introduction of [14] where possible connections with type theory are briefly discussed.

The potential of this semimonoidal structure is visible in the proofs of Proposition 6.3,

Theorem 7.2, Theorem 7.3 and Corollary 7.4.

The Moore flows enable us to write explicitly an “inverse up to homotopy” of the cate-

gorization functor of Definition 8.7 in Definition 8.13. Two applications of the existence

of this inverse up to homotopy are given. The first one is a new proof of [11, Theo-

rem 7.5] provided in Theorem 8.14 which is totally independent from [8,11]. The second

one is a concise and very natural definition of the underlying homotopy type of a flow in

Proposition 8.16.

As a curiosity, it is also proved in passing a kind of second Dini theorem for spaces of

execution paths of finite cellular multipointed d-spaces without loops in Corollary 6.12.

This paper is written in the setting of ∆-Hausdorff or not ∆-generated spaces. The

setting of weakly Hausdorff or not k-spaces is of very little interest for the study of

multipointed d-spaces and flows not only because all concrete examples coming from

computer science are cellular objects of the q-model structures, and also because it is not

known how to left Bousfield localize because of the cofibration identifying two states. The

locally presentable setting has many other advantages like the existence of adjoints [15,

Theorem 5.10], the smallness conditions of [25, Definition 2.1.3] always satisfied and
2



the existence of left-determined model categories in the tractable cases [22]. It might be

interesting anyway to make some comments about k-spaces to emphasize some topological

arguments of this paper. These comments are postponed to Appendix C.

Outline of the paper.

• Section 2 is a reminder about multipointed d-spaces and about their q-model structure.

It also contains new results about the topology of the space of execution paths. The

section starts with a short reminder about ∆-generated spaces. The notion of ∆-

inclusion is introduced to clarify some topological arguments: they are for ∆-generated

spaces what k-inclusions are for k-spaces.

• The functor Ω which forgets the set of execution paths of a multipointed d-space is

topological. Section 3 gives an explicit description of the Ω-final structure in term

of Moore composition. It culminates with Theorem 3.9. The calculations are a bit

laborious but some of them are used further in the paper.

• Section 4, after a reminder about Moore flows and their q-model structure, describes

the adjunctions between multipointed d-spaces and Moore flows. The right adjoint

from multipointed d-spaces to Moore flows is quite easy to define. The existence of the

left adjoint is straightforward. Appendix B provides an explicit construction of this

left adjoint MG
! : GFlow → GdTop. It uses results dating back to [7] obtained for

flows, i.e. small semicategories enriched over topological spaces, and adapted to Moore

flows, i.e. small semicategories enriched over G-spaces. This explicit construction is

not necessary to establish the results of the main part of the paper. It is the reason

why it is postponed to an appendix.

• Section 5 gathers some geometric properties of cellular multipointed d-spaces concern-

ing their underlying topologies, the topologies of their spaces of execution paths and

some of their structural properties like Theorem 5.18 which has important consequences.

The main tools are the notion of carrier of an execution path (Definition 5.10) and the

notion of achronal slice of a globular cell (Definition 5.15) studied in Proposition 5.16

and Proposition 5.17. It also contains Theorem 5.20 which provides a kind of normal

form for the execution paths of a cellular multipointed d-space obtained as a pushout

along a generating q-cofibration.

• Section 6 studies chains of globes. It is an important geometric object for the proofs of

this paper. It enables us to understand what happens locally in the space of execution

paths of a cellular multipointed d-space. The main theorem is Theorem 6.11 which

can be viewed as a workaround of the fact that the space G(1, 1) of nondecreasing

homeomorphisms from [0, 1] to itself equipped with the compact-open topology is not

sequentially compact. As a byproduct, it is also proved in Corollary 6.12 a second Dini

theorem for finite cellular multipointed d-spaces without loops.

• Section 7 is the core of the paper. It proves that the unit and the counit of the adjunc-

tion are isomorphisms on q-cofibrant objects in Theorem 7.6 and in Corollary 7.9. The

main tool of this part is Corollary 7.4 which proves that the right adjoint constructed

in Section 4 preserves pushouts of cellular multipointed d-spaces along q-cofibrations.

It relies on Theorem 7.2 whose proof performs an analysis of the execution paths in

a pushout along a q-cofibration and on Theorem 7.3 whose proof carries out a careful

analysis of the underlying topology of the spaces of execution paths involved.
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• Section 8 is the concluding section. It establishes that the adjunction between mul-

tipointed d-spaces and Moore flows yields a Quillen equivalence between the q-model

structures. It provides, as an application, a more conceptual proof of the fact that the

categorization functor cat from multipointed d-spaces to flows has a total left derived

functor which induces a category equivalence between the homotopy categories of the

q-model structures of multipointed d-spaces and flows. And finally, it is shown how to

recover the underlying homotopy type of a flow in a very intuitive way.

Prerequisites. We refer to [1] for locally presentable categories, to [33] for combinatorial

model categories. We refer to [24,25] for more general model categories. We refer to [27]

and to [2, Chapter 6] for enriched categories. All enriched categories are topologically

enriched categories: the word topologically is therefore omitted. What follows is some

notations and conventions.

• A := B means that B is the definition of A.

• ∼= denotes an isomorphism, ≃ denotes a weak equivalence.

• f ↾A denotes the restriction of f to A.

• Set is the category of sets.

• TOP is the category of general topological spaces together with the continuous maps.

• Kop denotes the opposite category of K.

• Obj(K) is the class of objects of K.

• Mor(K) is the category of morphisms of K with the commutative squares for the mor-

phisms.

• KI is the category of functors and natural transformations from a small category I to

K.

• ∆I(Z) is the constant diagram over the small category I with unique value Z.

• ∅ is the initial object, 1 is the final object, IdX is the identity of X .

• K(X, Y ) is the set of maps in a set-enriched, i.e. locally small, category K.

• K(X, Y ) is the space of maps in an enriched category K. The underlying set of maps

may be denoted by K0(X, Y ) if it is necessary to specify that we are considering the

underlying set.

• The composition of two maps f : A → B and g : B → C is denoted by gf or, if it is

helpful for the reader, by g.f ; the composition of two functors is denoted in the same

way.

• The notations ℓ, ℓ′, ℓi, L, . . . mean a strictly positive real number unless specified some-

thing else.

• [ℓ, ℓ′] denotes a segment. Unless specified, it is always understood that ℓ < ℓ′.

• A cellular object of a combinatorial model category is an object X such that the canon-

ical map ∅→ X is a transfinite composition of pushouts of generating cofibrations.

• The notation (−)cof denotes a cofibrant replacement functor of a combinatorial model

structure; note that all model categories of this paper contain only fibrant objects.

• A compact space is a quasicompact Hausdorff space.

• A sequentially compact space is a space such that each sequence has a limit point.

• The set of rational numbers is denoted by Q, the set of real numbers by R.

• The complement of A ⊂ B is denoted by Ac if there is no ambiguity.
4



• Let n > 1. Denote by Dn = {b ∈ Rn, |b| 6 1} the n-dimensional disk, and by

Sn−1 = {b ∈ Rn, |b| = 1} the (n− 1)-dimensional sphere. By convention, let D0 = {0}

and S−1 = ∅.

Acknowledgment. I am indebted to Tyrone Cutler for drawing my attention to the

paper [3]. I thank the anonymous referee for reading this very technical paper.

2. Multipointed d-spaces

Throughout the paper, we work with the category, denoted by Top, either of ∆-

generated spaces or of ∆-Hausdorff ∆-generated spaces (cf. [15, Section 2 and Appen-

dix B]) equipped with its q-model structure (we use the terminology of [30]). We sum-

marize some basic properties of Top for the convenience of the reader:

• Top is locally presentable.

• All objects of Top are sequential topological spaces.

• A closed subset of a ∆-generated space equipped with the relative topology is not

necessarily ∆-generated (e.g. the Cantor set), but it is always sequential.

• All locally path-connected first-countable topological spaces are ∆-generated by [3,

Proposition 3.11], in particular all locally path-connected metrizable topological spaces

are ∆-generated.

• The inclusion functor from the full subcategory of ∆-generated spaces to the category

of general topological spaces together with the continuous maps has a right adjoint

called the ∆-kelleyfication functor. The latter functor does not change the underlying

set.

• Let A ⊂ B be a subset of a space B of Top. Then A equipped with the ∆-kelleyfication

of the relative topology belongs to Top.

• The colimit in Top is given by the final topology in the following situations:

– A transfinite compositions of one-to-one maps.

– A pushout along a closed inclusion.

– A quotient by a closed subset or by an equivalence relation having a closed graph.

In these cases, the underlying set of the colimit is therefore the colimit of the underly-

ing sets. In particular, the CW-complexes, and more generally all cellular spaces are

equipped with the final topology.

• Cellular spaces are weakly Hausdorff. It implies that the image by any continuous

application of any compact is closed and compact, i.e. closed, quasicompact and Haus-

dorff. Cellular spaces are also ∆-Hausdorff and therefore has unique sequential limits

by [15, Proposition B.17].

• Top is cartesian closed. The internal hom TOP(X, Y ) is given by taking the ∆-

kelleyfication of the compact-open topology on the set TOP(X, Y ) of all continuous

maps from X to Y .

2.1. Definition. A one-to-one map of ∆-generated spaces i : A → B is a ∆-inclusion

if for all ∆-generated spaces Z, the set map Z → A is continuous if and only if the

composite set map Z → A→ B is continuous.

2.2. Proposition. Let i : A→ B be a one-to-one continuous map. The following asser-

tions are equivalent:
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(1) i is a ∆-inclusion.

(2) A is homeomorphic to i(A) equipped with the ∆-kelleyfication of the relative topol-

ogy.

(3) A set map [0, 1] → A is continuous if and only if the composite set map [0, 1] →

A→ B is continuous.

Proof. The proof is similar to the same statement for k-inclusions of k-spaces. �

2.3. Corollary. A continuous bijection f : U → V of Top is a homeomorphism if and

only if it is a ∆-inclusion.

2.4. Notation. The notation [0, ℓ1] ∼=
+ [0, ℓ2] for two real numbers ℓ1, ℓ2 > 0 means a

nondecreasing homeomorphism from [0, ℓ1] to [0, ℓ2]. It takes 0 to 0 and ℓ1 to ℓ2.

The enriched small category G is defined as follows:

• The set of objects is the open interval ]0,∞[.

• The space G(ℓ1, ℓ2) is the set {[0, ℓ1] ∼=
+ [0, ℓ2]} for all ℓ1, ℓ2 > 0 equipped with

the ∆-kelleyfication of the relative topology induced by the set inclusion G(ℓ1, ℓ2) ⊂

TOP([0, ℓ1], [0, ℓ2]). In other terms, a set map [0, 1] → G(ℓ1, ℓ2) is continuous if and

only if the composite set map [0, 1]→ G(ℓ1, ℓ2) ⊂ TOP([0, ℓ1], [0, ℓ2]) is continuous.

• For every ℓ1, ℓ2, ℓ3 > 0, the composition map

G(ℓ1, ℓ2)× G(ℓ2, ℓ3)→ G(ℓ1, ℓ3)

is induced by the composition of continuous maps. It induces a continuous map since

the composite set map

G(ℓ1, ℓ2)× G(ℓ2, ℓ3)→ G(ℓ1, ℓ3) ⊂ TOP([0, ℓ1], [0, ℓ3])

corresponds by the adjunction to the continuous map

[0, ℓ1]× G(ℓ1, ℓ2)× G(ℓ2, ℓ3)→ [0, ℓ3]

which takes (t, x, y) to y(x(t)).

The enriched category G is an example of a reparametrization category in the sense

of [14, Definition 4.3] which is different from the terminal category. It is introduced

in [14, Proposition 4.9]. Another example is given in [14, Proposition 4.11].

2.5. Proposition. The topology of G(ℓ1, ℓ2) is the compact-open topology. In particular,

it is metrizable. A sequence (φn)n>0 of G(ℓ1, ℓ2) converges to φ ∈ G(ℓ1, ℓ2) if and only if

it converges pointwise.

It means that the topology of the pointwise convergence of G(ℓ1, ℓ2) is ∆-generated.

Proposition 2.5 has an interesting generalization in Corollary 6.12.

Proof. The compact-open topology on G(ℓ1, ℓ2) is metrizable by [21, Proposition A.13].

The metric is given by the distance of the uniform convergence. Consider a ball B(φ,ǫ)

for this metric. Let ψ ∈ B(φ,ǫ). Then for all h ∈ [0, 1],

|
(
hψ(t) + (1− h)φ(t)

)
− φ(t)| = |h(ψ(t)− φ(t))| < hǫ 6 ǫ.

Thus, the compact-open topology is locally path-connected. The compact-open topology

is therefore equal to its ∆-kelleyfication. The last assertion is then a consequence of the

second Dini theorem. �
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A multipointed space is a pair (|X|, X0) where

• |X| is a topological space called the underlying space of X .

• X0 is a subset of |X| called the set of states of X .

A morphism of multipointed spaces f : X = (|X|, X0)→ Y = (|Y |, Y 0) is a commutative

square

X0
f0

//

��

Y 0

��

|X|
|f |

// |Y |.

The corresponding category is denoted by MTop.

2.6. Notation. The maps f 0 and |f | will be often denoted by f if there is no possible

confusion.

We have the well-known proposition:

2.7. Proposition. (The Moore composition) Let U be a topological space. Let

γi : [0, ℓi]→ U

n continuous maps with 1 6 i 6 n with n > 1. Suppose that γi(ℓi) = γi+1(0) for 1 6 i < n.

Then there exists a unique continuous map

γ1 ∗ · · · ∗ γn : [0,
∑

i

ℓi]→ U

such that

(γ1 ∗ · · · ∗ γn)(t) = γi
(
t−

∑

j<i

ℓi
)
for

∑

j<i

ℓi 6 t 6
∑

j6i

ℓi.

In particular, there is the equality (γ1 ∗ γ2) ∗ γ3 = γ1 ∗ (γ2 ∗ γ3).

2.8. Notation. Let ℓ > 0. Let µℓ : [0, ℓ] → [0, 1] be the homeomorphism defined by

µℓ(t) = t/ℓ.

2.9. Definition. The map γ1 ∗ γ2 is called the Moore composition of γ1 and γ2. The

composite

γ1 ∗N γ2 : [0, 1]
(µ2)−1

// [0, 2]
γ1∗γ2

// U

is called the normalized composition. One has

(γ1 ∗N γ2)(t) =

{
γ1(2t) if 0 6 t 6 1

2
,

γ2(2t− 1) if 1
2
6 t 6 1.

The normalized composition being not associative, a notation like γ1∗N · · ·∗N γn will mean,

by convention, that ∗N is applied from the left to the right.

A multipointed d-space X is a triple (|X|, X0,PGX) where

• The pair (|X|, X0) is a multipointed space. The space |X| is called the underlying space

of X and the set X0 the set of states of X .

• The set PGX is a set of continous maps from [0, 1] to |X| called the execution paths,

satisfying the following axioms:
7



– For any execution path γ, one has γ(0), γ(1) ∈ X0.

– Let γ be an execution path of X . Then any composite γφ with φ ∈ G(1, 1) is an

execution path of X .

– Let γ1 and γ2 be two composable execution paths of X ; then the normalized

composition γ1 ∗N γ2 is an execution path of X .

A map f : X → Y of multipointed d-spaces is a map of multipointed spaces from (|X|, X0)

to (|Y |, Y 0) such that for any execution path γ of X , the map

PGf : γ 7→ f.γ

is an execution path of Y .

2.10. Notation. The mapping PGf will be often denoted by f if there is no ambiguity.

The following examples play an important role in the sequel.

(1) Any set E will be identified with the multipointed d-space (E,E,∅).

(2) The topological globe of Z of length ℓ > 0, which is denoted by GlobGℓ (Z), is the

multipointed d-space defined as follows

• the underlying topological space is the quotient space 1

{0, 1} ⊔ (Z × [0, ℓ])

(z, 0) = (z′, 0) = 0, (z, 1) = (z′, 1) = 1

• the set of states is {0, 1}

• the set of execution paths is the set of continuous maps

{δzφ | φ ∈ G(1, ℓ), z ∈ Z}

with δz(t) = (z, t). It is equal to the underlying set of G(1, ℓ)× Z.

In particular, GlobG
ℓ (∅) is the multipointed d-space {0, 1} = ({0, 1}, {0, 1},∅). For

ℓ = 1, we set

GlobG(Z) = GlobG
1 (Z).

(3) The directed segment is the multipointed d-space
−→
I G = GlobG({0}).

The category of multipointed d-spaces is denoted by GdTop. The subset of execution

paths from α to β is the set of γ ∈ PGX such that γ(0) = α and γ(1) = β; it is

denoted by PG
α,βX : α is called the initial state and β the final state of such a γ. An

execution path having the same initial and final state is called a loop. The set PG
α,βX

is equipped with the ∆-kelleyfication of the relative topology induced by the inclusion

PG
α,βX ⊂ TOP([0, 1], |X|). In other terms, a set map U → PG

α,βX is continuous if and

only if the composite set map U → PG
α,βX ⊂ TOP([0, 1], |X|) is continuous. The category

GdTop is locally presentable by [11, Theorem 3.5].

2.11. Proposition. ( [16, Proposition 6.5]) The mapping Ω : X 7→ (|X|, X0) induces a

functor from GdTop to MTop which is topological and fibre-small.

The Ω-final structure is generated by the finite normalized composition of execution

paths. We will come back on this point in Theorem 3.9. Note that Proposition 2.11 holds

both by working with ∆-generated spaces and with ∆-Hausdorff ∆-generated spaces.

1It is the suspension of Z.
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The following proposition is implicitly assumed (for ℓ = 1) in all the previous papers

about multipointed d-spaces:

2.12. Proposition. Let Z be a topological space. Then there is the homeomorphism

PG
0,1GlobG

ℓ (Z)
∼= G(1, ℓ)× Z.

Proof. The set map {
Ψ : G(1, ℓ)× Z −→ PG

0,1GlobGℓ (Z)

(φ, z) 7→ δzφ

is continuous because the mapping (t, φ, z) 7→ (z, φ(t)) from [0, 1] × G(1, ℓ) × Z to

|GlobGℓ (Z)| is continuous. It is a bijection since, by definition of GlobG
ℓ (Z), the underlying

set of PG
0,1GlobGℓ (Z) is equal to the underlying set of G(1, ℓ)×Z. The composite set map

{
PG
0,1GlobG

ℓ (Z) −→ (PG
0,1GlobGℓ (Z))co −→ Z×]0, 1[

pr1−→ Z

γ 7→ pr1(γ(
1
2
))

where (PG
0,1GlobGℓ (Z))co is the set P

G
0,1GlobG

ℓ (Z) equipped with the compact-open topology

is continuous. The continuous map Z → {0} induces a continuous map
{

PG
0,1GlobG

ℓ (Z) −→ PG
0,1GlobG

ℓ ({0})
∼= G(1, ℓ)

γ 7→ p.γ,

where p : |GlobGℓ (Z)| → [0, 1] is the projection map. Therefore the set map
{

Ψ−1 : PG
0,1GlobG

ℓ (Z) −→ G(1, ℓ)× Z

γ 7→ (p.γ, pr1(γ(
1
2
)))

is continuous and Ψ is a homeomorphism. �

2.13. Definition. Let X be a multipointed d-space X. Denote again by PGX the topolog-

ical space

PGX =
⊔

(α,β)∈X0×X0

PG
α,βX.

A straightforward consequence of the definition of the topology of PGX is:

2.14.Proposition. Let X be a multipointed d-space. Let f : [0, 1]→ PGX be a continuous

map. Then f factors as composite of continuous maps f : [0, 1] → PG
α,βX → PGX for

some (α, β) ∈ X0 ×X0.

Proof. It is due to the fact that [0, 1] is connected. �

2.15. Proposition. Let X be a multipointed d-space such that X0 is a totally disconnected

subset of |X|. Then the topology of PGX is the ∆-kelleyfication of the relative topology

induced by the inclusion PGX ⊂ TOP([0, 1], |X|).

Proof. Call for this proof (PGX)+ the set PGX equipped with the ∆-kelleyfication of

the relative topology induced by the inclusion PGXλ ⊂ TOP([0, 1], |X|). There is a

continuous bijection PGX → (PGX)+. Using Corollary 2.3, the proof is complete since

X0 a totally disconnected subset of |X| and since [0, 1] is connected. �
9



2.16. Theorem. The functor PG : MdTop→ Top is a right adjoint. In particular, it is

limit preserving and accessible.

Proof. The left adjoint is constructed in [11, Proposition 4.9] in the case of ∆-generated

spaces. The proof still holds for ∆-Hausdorff ∆-generated spaces. It relies on the fact

that Top is cartesian closed and that every ∆-generated space is homeomorphic to the

disjoint sum of its path-connected components which are also its connected components.

The construction is similar to the construction of the left adjoint of the path P-space

functor for P-flows [14, Theorem 6.13] and to the construction of the left adjoint of the

path functor for flows [15, Theorem 5.9]. �

The q-model structure of multipointed d-spaces is the unique combinatorial model

structure such that

{GlobG(Sn−1) ⊂ GlobG(Dn) | n > 0} ∪ {C : ∅→ {0}, R : {0, 1} → {0}}

is the set of generating cofibrations, the maps between globes being induced by the closed

inclusion Sn−1 ⊂ Dn, and such that

{GlobG(Dn × {0}) ⊂ GlobG(Dn+1) | n > 0}

is the set of generating trivial cofibrations, the maps between globes being induced by

the closed inclusion (x1, . . . , xn) 7→ (x1, . . . , xn, 0) (e.g. [16, Theorem 6.16]). The weak

equivalences are the maps of multipointed d-spaces f : X → Y inducing a bijection

f 0 : X0 ∼= Y 0 and a weak homotopy equivalence PGf : PGX → PGY and the fibrations are

the maps of multipointed d-spaces f : X → Y inducing a q-fibration PGf : PGX → PGY

of topological spaces.

3. Moore composition and Ω-final structure

3.1. Notation. Let φi : [0, ℓi] ∼=
+ [0, ℓ′i] for n > 1 and 1 6 i 6 n. Then the map

φ1 ⊗ . . .⊗ φn : [0,
∑

i

ℓi] ∼=
+ [0,

∑

i

ℓ′i]

denotes the homeomorphism defined by

(φ1 ⊗ . . .⊗ φn)(t) =





φ1(t) if 0 6 t 6 ℓ1

φ2(t− ℓ1) + ℓ′1 if ℓ1 6 t 6 ℓ1 + ℓ2

. . .

φi(t−
∑

j<i ℓj) +
∑

j<i ℓ
′
j if

∑
j<i ℓj 6 t 6

∑
j6i ℓj

. . .

φn(t−
∑

j<n ℓj) +
∑

j<n ℓ
′
j if

∑
j<n ℓj 6 t 6

∑
j6n ℓj.

3.2. Proposition. Let φ : [0, ℓ] ∼=+ [0, ℓ′]. Let n > 1. Consider ℓ1, . . . , ℓn > 0 with n > 1

such that
∑i=n

i=1 ℓi = ℓ. Then there exists a unique decomposition of φ of the form

φ = φ1 ⊗ . . .⊗ φn

such that φi : [0, ℓi] ∼=
+ [0, ℓ′i] for 1 6 i 6 n.

10



Proof. By definition of φ1 ⊗ . . .⊗ φn, we necessarily have

φ
(∑

j6i

ℓj
)
= φi(

∑

j6i

ℓj −
∑

j<i

ℓj) +
∑

j<i

ℓ′j = φi(ℓi) +
∑

j<i

ℓ′j =
∑

j6i

ℓ′j

The real numbers ℓ′i are therefore defined by induction on i > 1 by the formula

φ
(∑

j6i

ℓj
)
−
∑

j<i

ℓ′j = ℓ′i.

In other terms, we have

∀1 6 i 6 n, φ
(∑

j6i

ℓj
)
=

∑

j6i

ℓ′j .

Let

φi(t) = φ(t+
∑

j<i

ℓj)−
∑

j<i

ℓ′j

for all t ∈ [0, ℓi]. Then, by definition of φ1 ⊗ . . .⊗ φn, we obtain

(φ1 ⊗ . . .⊗ φn)(t) = φi
(
t−

∑

j<i

ℓj
)
+
∑

j<i

ℓ′j if
∑

j<i

ℓj 6 t 6
∑

j6i

ℓj

= φ
(
t−

∑

j<i

ℓj +
∑

j<i

ℓj
)
−

∑

j<i

ℓ′j +
∑

j<i

ℓ′j if
∑

j<i

ℓj 6 t 6
∑

j6i

ℓj

= φ(t) if
∑

j<i

ℓj 6 t 6
∑

j6i

ℓj ,

the first equality by definition of φ1⊗ . . .⊗φn, the second equality by definition of φi and

the third equality by algebraic simplification. Consider a second decomposition

φ = φ′
1 ⊗ . . .⊗ φ

′
n

such that φ′
i : [0, ℓi]

∼=+ [0, ℓ′i] for 1 6 i 6 n. Then for
∑

j<i ℓj 6 t 6
∑

j6i ℓj , we have

φi(t−
∑

j<i

ℓj) +
∑

j<i

ℓ′j = φ(t) = φ′
i(t−

∑

j<i

ℓj) +
∑

j<i

ℓ′j

by definition of φ1 ⊗ . . . ⊗ φn and of φ′
1 ⊗ . . . ⊗ φ′

n. We deduce that φi = φ′
i for all

1 6 i 6 n. �

3.3. Corollary. Let φ ∈ G(1, 1). Let n > 1. Assume that

i=n∑

i=1

ℓi =

i=n∑

i=1

ℓ′i = 1

and that

∀1 6 i 6 n, φ
(∑

j6i

ℓj
)
=

∑

j6i

ℓ′j .

Then there exist (unique) φi : [0, ℓi] ∼=
+ [0, ℓ′i] for 1 6 i 6 n such that φ = φ1 ⊗ . . .⊗ φn.

3.4. Proposition. Let U be a topological space. Let γi : [0, 1]→ U be n continuous maps

with 1 6 i 6 n and n > 1. Let φi : [0, ℓi] ∼=
+ [0, ℓ′i] for 1 6 i 6 n. Then we have

(
(γ1µℓ′1) ∗ · · · ∗ (γnµℓ′n)

)
(φ1 ⊗ . . .⊗ φn) = (γ1µℓ′1φ1) ∗ · · · ∗ (γnµℓ′nφn).
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Proof. For
∑

j<i ℓj 6 t 6
∑

j6i ℓj , we have
(
(γ1µℓ′

1
) ∗ · · · ∗ (γnµℓ′n)

)
(φ1 ⊗ . . . φn)(t) = (γiµℓ′i)

(
(φ1 ⊗ . . .⊗ φn)(t)−

∑

j<i

ℓ′j
)

= (γiµℓ′
i
)
((
φi
(
t−

∑

j<i

ℓj
)
+
∑

j<i

ℓ′j
)
−

∑

j<i

ℓ′j
)

= (γiµℓ′
i
)
(
φi
(
t−

∑

j<i

ℓj
))

=
(
(γ1µℓ′1φ1) ∗ · · · ∗ (γnµℓ′nφn)

)
(t),

the first and the fourth equality by definition of the Moore composition, the second

equality by definition of φ1⊗ . . . φn, and the third equality by algebraic simplification. �

3.5. Proposition. Let U be a topological space. Let γi : [0, 1]→ U be n continuous maps

with 1 6 i 6 n and n > 1. Let ℓi > 0 with 1 6 i 6 n nonzero real numbers with
∑

i ℓi = 1.

Then for all ℓ > 0, we have
(
(γ1µℓ1) ∗ · · · ∗ (γnµℓn)

)
µℓ = (γ1µℓ1ℓ) ∗ · · · ∗ (γnµℓnℓ).

Proof. For all 1 6 j 6 n, we have by definition of the Moore composition

(
(γ1µℓ1) ∗ · · · ∗ (γnµℓn)

)
µℓ(t) = γj

(
1

ℓj

(
t

ℓ
−

∑

i<j

ℓi

))

if
∑

i<j ℓi 6 t/ℓ 6
∑

i6j ℓi and still by definition of the Moore composition, we have

(
(γ1µℓ1ℓ) ∗ · · · ∗ (γnµℓnℓ)

)
(t) = γj

(
t−

∑
i<j ℓiℓ

ℓjℓ

)

if
∑

i<j ℓiℓ 6 t 6
∑

i6j ℓiℓ. �

3.6. Proposition. Let U be a topological space. Let γi : [0, 1]→ U be n continuous maps

with n > 2 and 1 6 i 6 n such that γ1 ∗N · · · ∗N γn exists. Then there is the equality

γ1 ∗N · · · ∗N γn =
(
γ1µ 1

2n−1

)
∗
(
γ2µ 1

2n−1

)
∗
(
γ3µ 1

2n−2

)
∗ · · · ∗

(
γnµ 1

2

)
.

In particular, for n = 2, we have γ1 ∗N γ2 = (γ1µ 1
2
) ∗ (γ2µ 1

2
).

Proof. The proof is by induction on n > 2. The map µ 1
2
: [0, 1

2
] ∼=+ [0, 1] which takes

t to 2t gives rise to a homeomorphism µ 1
2
⊗ µ 1

2
: [0, 1] ∼=+ [0, 2] which is equal to µ−1

2 :

[0, 1] ∼=+ [0, 2]. We then write

γ1 ∗N γ2 = (γ1 ∗ γ2)µ
−1
2 by definition of ∗N

= (γ1 ∗ γ2)(µ 1
2
⊗ µ 1

2
) because µ−1

2 = µ 1
2
⊗ µ 1

2

= (γ1µ 1
2
) ∗ (γ2µ 1

2
) by Proposition 3.4.
12



The statement is therefore proved for n = 2. Assume that the statement is proved for

some n > 2 and for n = 2. Then we obtain

γ1 ∗N · · · ∗N γn+1

=
((
γ1µ 1

2n−1

)
∗
(
γ2µ 1

2n−1

)
∗
(
γ3µ 1

2n−2

)
∗ · · · ∗

(
γnµ 1

2

))
∗N γn+1

=
(((

γ1µ 1

2n−1

)
∗
(
γ2µ 1

2n−1

)
∗
(
γ3µ 1

2n−2

)
∗ · · · ∗

(
γnµ 1

2

))
µ 1

2

)
∗
(
γn+1µ 1

2

)

=
((
γ1µ 1

2n

)
∗
(
γ2µ 1

2n

)
∗
(
γ3µ 1

2n−1

)
∗ · · · ∗

(
γnµ 1

22

))
∗
(
γn+1µ 1

2

)

=
(
γ1µ 1

2n

)
∗
(
γ2µ 1

2n

)
∗
(
γ3µ 1

2n−1

)
∗ · · · ∗

(
γnµ 1

22

)
∗
(
γn+1µ 1

2

)
,

the first equality by induction hypothesis, the second equality by the case n = 2, the

third equality by Proposition 3.5, and the last equality by associativity of the Moore

composition. We have proved the statement for n + 1. �

3.7. Proposition. Let U be a topological space. Let γi : [0, 1]→ U be n continuous maps

with n > 1 and 1 6 i 6 n such that γ1 ∗N · · · ∗N γn exists. Let φ ∈ G(1, 1). Then there

exist φ1 : [0, ℓ1] ∼=
+ [0, 1

2n−1 ], φ2 : [0, ℓ2] ∼=
+ [0, 1

2n−1 ], φ3 : [0, ℓ3] ∼=
+ [0, 1

2n−2 ], etc... until

φn : [0, ℓn] ∼=
+ [0, 1

2
] such that φ = φ1 ⊗ . . . ⊗ φn (which implies

∑
i ℓi = 1) and there is

the equality
(
γ1 ∗N · · · ∗N γn

)
φ =

(
γ1µ 1

2n−1
φ1

)
∗
(
γ2µ 1

2n−1
φ2

)
∗
(
γ3µ 1

2n−2
φ3

)
∗ · · · ∗

(
γnµ 1

2
φn

)
.

Proof. Let ℓ1, . . . , ℓn > 0 such that
∑

i ℓi = 1 and such that




φ(ℓ1) =
1

2n−1

φ(ℓ1 + ℓ2) =
1

2n−1 +
1

2n−1

φ(ℓ1 + ℓ2 + ℓ3) =
1

2n−1 +
1

2n−1 +
1

2n−2

. . .

φ(ℓ1 + ℓ2 + ℓ3 + · · ·+ ℓn) =
1

2n−1 +
1

2n−1 +
1

2n−2 + · · ·+
1
2
= 1.

By Proposition 3.2, there exist φ1 : [0, ℓ1] ∼=
+ [0, 1

2n−1 ], φ2 : [0, ℓ2] ∼=
+ [0, 1

2n−1 ], φ3 :

[0, ℓ3] ∼=
+ [0, 1

2n−2 ], etc... until φn : [0, ℓn] ∼=
+ [0, 1

2
] such that φ = φ1⊗ . . .⊗φn. We obtain

(
γ1 ∗N · · · ∗N γn+1

)
φ

=
((
γ1µ 1

2n

)
∗
(
γ2µ 1

2n

)
∗
(
γ3µ 1

2n−1

)
∗ · · · ∗

(
γnµ 1

22

)
∗
(
γn+1µ 1

2

))
φ

=
(
γ1µ 1

2n−1
φ1

)
∗
(
γ2µ 1

2n−1
φ2

)
∗
(
γ3µ 1

2n−2
φ3

)
∗ · · · ∗

(
γnµ 1

2
φn

)
,

the first equality by Proposition 3.6 and the second equality by Proposition 3.4. �

3.8. Proposition. Let U be a topological space. Let γi : [0, 1]→ U be n continuous maps

with n > 2 and 1 6 i 6 n such that γ1 ∗N · · · ∗N γn exists. Let ℓ1, . . . , ℓn > 0 be nonzero

real numbers such that
∑

i ℓi = 1. Let φ1 : [0, 1
2n−1 ] ∼=

+ [0, ℓ1], φ2 : [0, 1
2n−1 ] ∼=

+ [0, ℓ2],

φ3 : [0, 1
2n−2 ] ∼=

+ [0, ℓ3], etc... until φn : [0, 1
2
] ∼=+ [0, ℓn] and let φ = φ1 ⊗ . . .⊗ φn. Then

φ ∈ G(1, 1) and there is the equality

((
γ1µℓ1

)
∗
(
γ2µℓ2

)
∗
(
γ3µℓ3

)
∗ · · · ∗

(
γnµℓn

))
φ =

(
γ1µℓ1φ1µ

−1
1

2n−1

)
∗N

(
γ2µℓ2φ2µ

−1
1

2n−1

)
∗N

(
γ3µℓ3φ3µ

−1
1

2n−2

)
∗N · · · ∗N

(
γnµℓnφnµ

−1
1
2

)
.
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Proof. We have
((
γ1µℓ1

)
∗
(
γ2µℓ2

)
∗
(
γ3µℓ3

)
∗ · · · ∗

(
γnµℓn

))
φ

=
(
γ1µℓ1φ1

)
∗
(
γ2µℓ2φ2

)
∗
(
γ3µℓ3φ3

)
∗ · · · ∗

(
γnµℓnφn

)

=
(
γ1µℓ1φ1µ

−1
1

2n−1

µ 1

2n−1

)
∗
(
γ2µℓ2φ2µ

−1
1

2n−1

µ 1

2n−1

)

∗
(
γ3µℓ3φ3µ

−1
1

2n−2

µ 1

2n−2

)
∗ · · · ∗

(
γnµℓnφnµ

−1
1

2

µ 1
2

)

=
(
γ1µℓ1φ1µ

−1
1

2n−1

)
∗N

(
γ2µℓ2φ2µ

−1
1

2n−1

)
∗N

(
γ3µℓ3φ3µ

−1
1

2n−2

)
∗N · · · ∗N

(
γnµℓnφnµ

−1
1

2

)
,

where the first equality is due to Proposition 3.4, the second equality is due to the fact

that µ−1
ℓ µℓ is the identity of [0, ℓ] for all nonzero real numbers ℓ > 0, and the last equality

is a consequence of Proposition 3.6. �

3.9. Theorem. Consider a cocone (Ω(Xi))
•
→ (|X|, X0) of MTop. Let X be the Ω-final

lift. Let fi : Xi → X be the canonical maps. Then the set of execution paths of X is the

set of finite Moore compositions of the form (f1γ1µℓ1) ∗ · · · ∗ (fnγnµℓn) such that γi is an

execution path of Xi for all 1 6 i 6 n with
∑

i ℓi = 1.

Proof. Let P(X) be the set of execution paths of X of the form (f1γ1µℓ1) ∗ · · · ∗ (fnγnµℓn)

such that γi is an execution path of Xi for all 1 6 i 6 n with
∑

i ℓi = 1. The final

structure is generated by the finite normalized composition of execution paths (f1γ1) ∗N
· · · ∗N (fnγn) (with the convention that the ∗N are calculated from the left to the right)

and all reparametrizations by φ running over G(1, 1). By Proposition 3.7, there exist

φ1 : [0, ℓ1] ∼=
+ [0, 1

2n−1 ], φ2 : [0, ℓ2] ∼=
+ [0, 1

2n−1 ], φ3 : [0, ℓ3] ∼=
+ [0, 1

2n−2 ], etc... until

φn : [0, ℓn] ∼=
+ [0, 1

2
] such that φ = φ1 ⊗ . . .⊗ φn and we have

(
(f1γ1) ∗N · · · ∗N (fnγn)

)
φ

=
(
f1γ1µ 1

2n−1
φ1

)
∗
(
f2γ2µ 1

2n−1
φ2

)
∗
(
f3γ3µ 1

2n−2
φ3

)
∗ · · · ∗

(
fnγnµ 1

2
φn

)

=
(
f1γ1µ 1

2n−1
φ1µ

−1
ℓ1
µℓ1

)
∗
(
f2γ2µ 1

2n−1
φ2µ

−1
ℓ2
µℓ2

)

∗
(
f3γ3µ 1

2n−2
φ3µ

−1
ℓ3
µℓ3

)
∗ · · · ∗

(
fnγnµ 1

2
φnµ

−1
ℓn
µℓn

)

=
(
f1γ

′
1µℓ1

)
∗
(
f2γ

′
2µℓ2

)
∗
(
f3γ

′
3µℓ3

)
∗ · · · ∗

(
fnγ

′
nµℓn

)
,

the first equality by Proposition 3.7, the second equality because µ−1
ℓ µℓ is the identity of

[0, ℓ] for all ℓ > 0 and the third equality because of the following notations:




γ′1 = γ1
(
µ 1

2n−1
φ1µ

−1
ℓ1

)

γ′2 = γ2
(
µ 1

2n−1
φ1µ

−1
ℓ2

)

γ′3 = γ3
(
µ 1

2n−2
φ3µ

−1
ℓ3

)

. . .

γ′n = γn
(
µ 1

2
φnµ

−1
ℓn

)
.

It implies that the set P(X) contains the final structure. Conversely, let (f1γ1µℓ1) ∗ · · · ∗

(fnγnµℓn) be an element of P(X). Choose φ1 : [0,
1

2n−1 ] ∼=
+ [0, ℓ1], φ2 : [0,

1
2n−1 ] ∼=

+ [0, ℓ2],

φ3 : [0,
1

2n−2 ] ∼=
+ [0, ℓ3], etc... until φn : [0, 1

2
] ∼=+ [0, ℓn] and let φ = φ1 ⊗ . . .⊗ φn. Using
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Proposition 3.8, we obtain

((
f1γ1µℓ1

)
∗
(
f2γ2µℓ2

)
∗
(
f3γ3µℓ3

)
∗ · · · ∗

(
fnγnµℓn

))
φ =

(
f1γ1µℓ1φ1µ

−1
1

2n−1

)
∗N

(
f2γ2µℓ2φ2µ

−1
1

2n−1

)
∗N

(
f3γ3µℓ3φ3µ

−1
1

2n−2

)

∗N · · · ∗N
(
fnγnµℓnφnµ

−1
1

2

)
.

The continuous maps µℓ1φ1µ
−1

1

2n−1

, µℓ2φ2µ
−1

1

2n−1

, µℓ3φ3µ
−1

1

2n−2

, . . . , µℓnφnµ
−1
1
2

from [0, 1] to itself

belong to G(1, 1). Thus γ′1, . . . , γ
′
n defined by the equalities




γ′1 = γ1
(
µℓ1φ1µ

−1
1

2n−1

)

γ′2 = γ2
(
µℓ2φ1µ

−1
1

2n−1

)

γ′3 = γ3
(
µℓ3φ3µ

−1
1

2n−2

)

. . .

γ′n = γn
(
µℓnφnµ

−1
1
2

)

are execution paths of X1, . . . , Xn respectively. We obtain

((
f1γ1µℓ1

)
∗
(
f2γ2µℓ2

)
∗
(
f3γ3µℓ3

)
∗ · · · ∗

(
fnγnµℓn

))
φ =

(
f1γ

′
1

)
∗N

(
f2γ

′
2

)
∗N

(
f3γ

′
3

)
∗N · · · ∗N

(
fnγ

′
n

)
.

We deduce that the set of paths P(X) is included in the Ω-final structure. �

4. From multipointed d-spaces to Moore flows

4.1. Definition and notation. The enriched category of enriched presheaves from G to

Top is denoted by [Gop,Top]. The underlying set-enriched category of enriched maps of

enriched presheaves is denoted by [Gop,Top]0. The objects of [Gop,Top]0 are called the

G-spaces. Let

FGop

ℓ U = G(−, ℓ)× U ∈ [Gop,Top]0

where U is a topological space and where ℓ > 0.

4.2. Proposition. [12, Proposition 5.3 and Proposition 5.5] The category [Gop,Top]0 is

a full reflective and coreflective subcategory of TopGop
0 . For every G-space F : Gop → Top,

every ℓ > 0 and every topological space X, we have the natural bijection of sets

[Gop,Top]0(F
Gop

ℓ X,F ) ∼= Top(X,F (ℓ)).

4.3. Theorem. ( [14, Theorem 5.14]) Let D and E be two G-spaces. Let

D ⊗ E :=

∫ (ℓ1,ℓ2)

G(−, ℓ1 + ℓ2)×D(ℓ1)× E(ℓ2).

The pair ([Gop,Top]0,⊗) has the structure of a closed symmetric semimonoidal category,

i.e. a closed symmetric nonunital monoidal category.

4.4. Notation. Let D be a G-space. Let φ : ℓ → ℓ′ be a map of G. Let x ∈ D(ℓ′). We

will use the notation

x.φ := D(φ)(x).
15



Intuitively, x is a path of length ℓ′ and x.φ is a path of length ℓ which is the reparametriza-

tion by φ of x.

Proposition 4.5 sheds light on the meaning of the tensor product of G-spaces. It is used

in the proof of Theorem 7.2. It is not in [14]. The proof is given in this section and not

in Section 7 to recall [14, Corollary 5.13] which also helps to understand the geometric

contents of the tensor product of G-spaces.

4.5. Proposition. Let D1, . . . , Dn be n G-spaces with n > 1. Then the mapping

(x1, . . . , xn) 7→ (Id, x1, . . . , xn)

yields a surjective continuous map

ΦD1,...,Dn
:

⊔

(ℓ1,...,ℓn)
ℓ1+···+ℓn=L

D1(ℓ1)× . . .×Dn(ℓn) −→ (D1 ⊗ . . .⊗Dn)(L).

Proof. By [14, Corollary 5.13], the space (D1 ⊗ . . .⊗Dn)(L) is the quotient of the space
⊔

(ℓ1,...,ℓn)

G(L, ℓ1 + · · ·+ ℓn)×D1(ℓ1)× . . .Dn(ℓn).

by the identifications

(ψ, x1φ1, . . . , xnφn) = ((φ1 ⊗ . . .⊗ φn)ψ, x1, . . . , xn)

for all ℓ1, ℓ
′
1, . . . , ℓn, ℓ

′
n > 0, all ψ ∈ G(L, ℓ1+ · · ·+ ℓn), all xi ∈ Di(ℓ

′
i) and all φi ∈ G(ℓi, ℓ

′
i).

Let ℓ′′1, . . . , ℓ
′′
n > 0 defined by induction on i by the equation

∀1 6 i 6 n, ℓ′′i = ψ−1

( ∑

16j6i

ℓj

)
−

∑

16j<i

ℓ′′j .

Note that L = ℓ′′1 + · · ·+ ℓ′′n. We obtain

∀1 6 i 6 n, ψ

( ∑

16j6i

ℓ′′j

)
=

∑

16j6i

ℓj.

By Proposition 3.2, there is a (unique) decomposition ψ = ψ1⊗. . .⊗ψn with ψi ∈ G(ℓ
′′
i , ℓi)

for 1 6 i 6 n. Then

(ψ, x1.φ1, . . . , xn.φn) = (Id, x1.φ1.ψ1, . . . , xn.φn.ψn)

in (D1 ⊗ . . .⊗Dn)(L). Therefore the continuous map
⊔

(ℓ1,...,ℓn)
ℓ1+···+ℓn=L

D1(ℓ1)× . . .×Dn(ℓn) −→ (D1 ⊗ . . .⊗Dn)(L).

induced by the mapping (x1, . . . , xn) 7→ (Id, x1, . . . , xn) is surjective. �

A semicategory, also called nonunital category in the literature, is a category without

identity maps in the structure. It is enriched over a closed symmetric semimonoidal

category (V,⊗) if it satisfied all axioms of enriched category except the one involving the

identity maps, i.e. the enriched composition is associative and not necessarily unital.

4.6. Definition. [14, Definition 6.2] A Moore flow is a small semicategory enriched over

the closed semimonoidal category ([Gop,Top]0,⊗) of Theorem 4.3.
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A Moore flow X has therefore a set of objects denoted by X0, and called states in this

context, and for each (α, β) ∈ X0 ×X0 a G-space Pα,βX : the elements of

Pℓα,βX = Pα,βX(ℓ)

for ℓ > 0 are called the execution paths of length ℓ.

The category of Moore flows, denoted by GFlow, is locally presentable by [14, Theo-

rem 6.11]. A map of Moore flows f : X → Y induces a set map f 0 : X0 → Y 0 and a map

of G-spaces Pα,βf : Pα,βX → Pf(α),f(β)Y for each (α, β) ∈ X0 ×X0. Let

PX =
⊔

(α,β)∈X0×X0

Pα,βX

PY =
⊔

(α,β)∈Y 0×Y 0

Pα,βY

Pf =
⊔

(α,β)∈X0×X0

Pα,βf.

4.7. Notation. The map Pf : PX −→ PY can be denoted by f : PX → PY is there is

no ambiguity. The set map f 0 : X0 −→ Y 0 can be denoted by f : X0 −→ Y 0 is there is

no ambiguity.

Every set S can be viewed as a Moore flow with an empty G-space of execution paths

denoted in the same way. Let D : Gop → Top be a G-space. We denote by Glob(D) the

Moore flow defined as follows:

Glob(D)0 = {0, 1}

P0,0Glob(D) = P1,1Glob(D) = P1,0Glob(D) = ∆G0
∅

P0,1Glob(D) = D.

There is no composition law. This construction yields a functor

Glob : [Gop,Top]0 → GFlow.

There exists a unique model structure on GFlow such that

{Glob(FGop

ℓ Sn−1) ⊂ Glob(FGop

ℓ Dn) | n > 0, ℓ > 0} ∪ {C : ∅→ {0}, R : {0, 1} → {0}}

is the set of generating cofibrations and such that all objects are fibrant. The set of

generating trivial cofibrations is

{Glob(FGop

ℓ Dn) ⊂ Glob(FGop

ℓ Dn+1) | n > 0, ℓ > 0}

where the maps Dn ⊂ Dn+1 are induced by the mappings (x1, . . . , xn) 7→ (x1, . . . , xn, 0).

The weak equivalences are the map of Moore flows f : X → Y inducing a bijection

X0 ∼= Y 0 and such that for all (α, β) ∈ X0×X0, the map of G-spaces Pα,βX → Pf(α),f(β)Y

is an objectwise weak homotopy equivalence. The fibrations are the map of Moore flows

f : X → Y such that for all (α, β) ∈ X0 ×X0, the map of G-spaces Pα,βX → Pf(α),f(β)Y

is an objectwise q-fibration of spaces. It is called the q-model structure and we use the

terminology of q-cofibration and q-fibration for naming the cofibrations and the fibrations

respectively.
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4.8.Definition. Let X be a multipointed d-space. Let Pℓα,βX be the subspace of continuous

maps from [0, ℓ] to |X| defined by

Pℓα,βX = {t 7→ γµℓ | γ ∈ PG
α,βX}.

Its elements are called the execution paths of length ℓ from α to β. Let

PℓX =
⊔

(α,β)∈X0×X0

Pℓα,βX.

A map of multipointed d-spaces f : X → Y induces for each ℓ > 0 a continuous map

Pℓf : PℓX → PℓY by composition by f (in fact by |f |).

Note that P1
α,βX = PG

α,βX , that there is a homeomorphism Pℓα,βX
∼= PG

α,βX for all

ℓ > 0, and that for any topological space Z, we have the homeomorphism

Pℓ0,1(GlobG(Z)) ∼= G(ℓ, 1)× Z

for any ℓ > 0 by Proposition 2.12.

The definition above of an execution path of length ℓ > 0 is not restrictive. Indeed, we

have:

4.9. Proposition. Let X be a multipointed d-space. Let φ : [0, ℓ] ∼=+ [0, ℓ]. Let γ ∈ PℓX.

Then γφ ∈ PℓX.

Proof. By definition of PℓX , there exists γ ∈ PGX such that γ = γµℓ. We obtain

γφ = γµℓφµ
−1
ℓ µℓ. Since µℓφµ

−1
ℓ ∈ G(1, 1), we deduce that γµℓφµ

−1
ℓ ∈ PGX and that

γφ ∈ PℓX . �

4.10. Proposition. Let X be a multipointed d-space. Let γ1 and γ2 be two execution paths

of X with γ1(1) = γ2(0). Let ℓ1, ℓ2 > 0. Then
(
γ1µℓ1 ∗ γ2µℓ1

)
µ−1
ℓ1+ℓ2

is an execution path of X.

Proof. Let φ1 : [0,
1
2
] ∼=+ [0, ℓ1] and φ2 : [0,

1
2
] ∼=+ [0, ℓ2]. Then we have

φ1 ⊗ φ2 : [0, 1] ∼=
+ [0, ℓ1 + ℓ2].

We obtain the sequence of equalities
(
(γ1µℓ1) ∗ (γ2µℓ2)

)
µ−1
ℓ1+ℓ2

=
(
(γ1µℓ1) ∗ (γ2µℓ2)

)(
φ1 ⊗ φ2

)(
φ1 ⊗ φ2

)−1
µ−1
ℓ1+ℓ2

=
(
(γ1µℓ1φ1) ∗ (γ2µℓ1φ2)

)(
φ1 ⊗ φ2

)−1
µ−1
ℓ1+ℓ2

=
(
(γ1µℓ1φ1µ

−1
1

2

µ 1
2
) ∗ (γ2µℓ2φ2µ

−1
1

2

µ 1
2
)
)(
φ1 ⊗ φ2

)−1
µ−1
ℓ1+ℓ2

=
(
(γ1 µℓ1φ1µ

−1
1
2︸ ︷︷ ︸

∈G(1,1)

) ∗N (γ2 µℓ2φ2µ
−1
1
2︸ ︷︷ ︸

∈G(1,1)

)
) (
φ1 ⊗ φ2

)−1
µ−1
ℓ1+ℓ2︸ ︷︷ ︸

∈G(1,1)

,

the first equality because φ1⊗φ2 is invertible, the second equality by Proposition 3.4, the

third equality because µ 1
2
is invertible, and finally the last equality by Proposition 3.7.

The proof is complete because the set of execution paths of X is invariant by the action

of G(1, 1). �
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4.11. Proposition. Let X be a multipointed d-space. Let ℓ1, ℓ2 > 0. The Moore compo-

sition of continuous maps yields a continuous maps Pℓ1X × Pℓ2X → Pℓ1+ℓ2X.

Proof. It is a consequence of Definition 4.8 and Proposition 4.10 �

4.12. Theorem. Let X be a multipointed d-space. Then the following data

• The set of states X0 of X

• For all α, β ∈ X0 and all real numbers ℓ > 0, let

Pℓα,βM
G(X) := Pℓα,βX.

• For all maps [0, ℓ] ∼=+ [0, ℓ′], a map f : [0, ℓ′] → |X| of Pℓ
′

α,βM
G(X) is mapped to the

map [0, ℓ] ∼=+ [0, ℓ′]
f
→ |X| of Pℓα,βM

G(X)

• For all α, β, γ ∈ X0 and all real numbers ℓ, ℓ′ > 0, the composition maps

∗ : Pℓα,βM
G(X)× Pℓ

′

β,γM
G(X)→ Pℓ+ℓ

′

α,γ MG(X)

of Proposition 4.11.

assemble to a Moore flow MG(X). This mapping induces a functor

MG : GdTop −→ GFlow

which is a right adjoint.

Note that the left adjoint MG
! : GFlow −→ GdTop preserves the set of states as well

as the functor MG : GdTop −→ GFlow.

Proof. These data give rise to a G-space Pα,βM
G(X) for each pair (α, β) of states of X0

and, thanks to Proposition 4.11, to an associative composition law ∗ : Pℓ1α,βM
G(X) ×

P
ℓ2
β,γM

G(X) → Pℓ1+ℓ2α,γ MG(X) which is natural with respect to (ℓ1, ℓ2). By [14, Section 6],

these data assemble to a Moore flow. Since limits and colimits of G-spaces are calculated

objectwise, the functor MG : GdTop −→ GFlow is limit-preserving and accessible by

Theorem 2.16. Therefore it is a right adjoint by [1, Theorem 1.66]. �

4.13. Proposition. Let X be a multipointed d-space. Let ℓ > 0 be a real number. Let Z

be a topological space. Then there is a bijection of sets

GdTop(GlobGℓ (Z), X) ∼=
⊔

(α,β)∈X0×X0

Top(Z,Pℓα,βX)

which is natural with respect to Z and X.

Proof. A map f of multipointed d-spaces from GlobGℓ (Z) to X is determined by

• The image by f of 0 and 1 which will be denoted by α and β respectively

• A continuous map (still denoted by f) from |GlobGℓ (Z)| to |X| such that for all x ∈ Z

and all φ : [0, 1] ∼=+ [0, ℓ], the map t 7→ f(x, φ(t)) from [0, 1] to |X| belongs to PG
α,βX .

By definition of Pℓα,βX , for every x ∈ Z, the continuous map f(x,−) from [0, ℓ] to |X|

belongs to Pℓα,βX since f(x,−) = f(x, φ(−)).φ−1 for any φ : [0, 1] ∼=+ [0, ℓ]. Since

f is continuous and since Top is cartesian closed, the mapping x 7→ f(x,−) actually

yields a continuous map from Z to Pℓα,βX . Conversely, starting from a continuous map

g : Z → Pℓα,βX , one can define a map of multipointed d-spaces from GlobGℓ (Z) to X by

taking 0 and 1 to α and β respectively and by taking (x, t) ∈ |GlobGℓ (Z)| to g(x)(t). �
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We want to recall for the convenience of the reader:

4.14. Proposition. [14, Proposition 6.10] Let D : Gop → Top be a G-space. Let X be a

Moore flow. Then there is the natural bijection

GFlow(Glob(D), X) ∼=
⊔

(α,β)∈X0×X0

[Gop,Top]0(D,Pα,βX).

4.15. Proposition. For all topological spaces Z and all ℓ > 0, there are the natural

isomorphisms
MG(GlobG

ℓ (Z))
∼= Glob(FGop

ℓ (Z)),

MG
! (Glob(FGop

ℓ (Z))) ∼= GlobGℓ (Z).

Proof. By definition of MG and by Proposition 2.12, the only nonempty path G-space of

MG(GlobG
ℓ (Z)) is

P0,1M
G(GlobGℓ (Z)) = G(−, ℓ)× Z

and we obtain the first isomorphism. There is the sequence of natural bijections, for any

multipointed d-space X ,

GdTop
(
MG

! (Glob(FGop

ℓ (Z))), X
)
∼= GFlow

(
Glob(FGop

ℓ (Z)),MGX
)

∼=
⊔

(α,β)∈X0×X0

[Gop,Top]0
(
FGop

ℓ (Z),Pα,βX
)

∼=
⊔

(α,β)∈X0×X0

Top(Z,Pℓα,βX)

∼= GdTop(GlobG
ℓ (Z), X),

the first bijection by adjunction, the second bijection by Proposition 4.14, the third

bijection by Proposition 4.2 and the last bijection by Proposition 4.13. The proof of the

second isomorphism is then complete thanks to the Yoneda lemma. �

5. Cellular multipointed d-spaces

Let λ be an ordinal. In this section, we work with a colimit-preserving functor

X : λ −→ GdTop

such that

• The multipointed d-space X0 is a set, in other terms X0 = (X0, X0,∅) for some set

X0.

• For all ν < λ, there is a pushout diagram of multipointed d-spaces

GlobG(Snν−1)

��

gν
// Xν

��

GlobG(Dnν )
ĝν

// Xν+1

with nν > 0.

Let Xλ = lim
−→ν<λ

Xν . Note that for all ν 6 λ, there is the equality X0
ν = X0. Denote

by

cν = |GlobG(Dnν )|\|GlobG(Snν−1)|
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the ν-th cell of Xλ. It is called a globular cell. Like in the usual setting of CW-complexes,

ĝν induces a homeomorphism from cν to ĝν(cν) equipped with the relative topology which

will be therefore denoted in the same way. It also means that ĝν(cν) equipped with the

relative topology is ∆-generated. The closure of cν in |Xλ| is denoted by

ĉν = ĝν(|GlobG(Dnν)|).

The boundary of cν in |Xλ| is denoted by

∂cν = ĝν(|GlobG(Snν−1)|).

The state ĝν(0) ∈ X
0 (ĝν(1) ∈ X

0 resp.) is called the initial (final resp.) state of cν . The

integer nν+1 is called the dimension of the globular cell cν . It is denoted by dim cν . The

states of X0 are also called the globular cells of dimension 0.

5.1. Definition. The cellular multipointed d-space Xλ is finite if λ is a finite ordinal and

X0 is finite.

5.2. Proposition. The space |Xλ| is a cellular space. It contains X0 as a discrete closed

subspace. The space |Xλ| is weakly Hausdorff. For every 0 6 ν1 6 ν2 6 λ, the continuous

map |Xν1| → |Xν2| is a q-cofibration of spaces, and in particular a closed T1-inclusion.

Proof. By [9, Theorem 8.2], the continuous map

|GlobG(Snν−1)| → |GlobG(Dnν )|

is a q-cofibration of spaces for all ν > 0 between cellular spaces. Since the functor

X 7→ |X| is colimit-preserving, the space |Xλ| is a cellular space. It is therefore weakly

Hausdorff. For every 0 6 ν1 6 ν2 6 λ, the continuous map |Xν1| → |Xν2| is a transfi-

nite composition of q-cofibrations, and hence a q-cofibration. The map X0 → Xλ is a

transfinite composition of q-cofibrations, and therefore a q-cofibration, and in particular

a closed T1-inclusion. Every subset of X0 is closed since X0 is equipped with the discrete

topology. Consequently, X0 is a discrete closed subspace of |Xλ|. �

5.3. Proposition. For all 0 6 ν1 6 ν2 6 λ, there is the equality

PGXν1 = PGXν2 ∩TOP([0, 1], |Xν1|).

Proof. It is trivial for ν1 = ν2. For ν2 = ν1+1, there is a pushout diagram of multipointed

d-spaces

GlobG(Snν1
−1)

��

gν1
// Xν1

��

GlobG(Dnν1 )
ĝν1

// Xν2.

The equality holds because the set of execution paths of Xν2 is obtained as a Ω-final

structure. We conclude by a transfinite induction on ν2. �

5.4. Proposition. For all 0 6 ν1 6 ν2 6 λ, the continuous map PGXν1 → PGXν2 is a

∆-inclusion.

Proof. Consider a set map [0, 1]→ PGXν1 such that the composite set map

[0, 1] −→ PGXν1 −→ PGXν2
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is continuous. Then by adjunction, we obtain a continuous map

[0, 1]× [0, 1] −→ |Xν2|.

By hypothesis, it factors as a composite of set maps

[0, 1]× [0, 1] −→ |Xν1| −→ |Xν2|.

By Proposition 5.2, the left-hand map is continuous since [0, 1]× [0, 1] is compact. The

proof is complete thanks to Proposition 5.3 and Proposition 2.2. �

5.5. Proposition. Let K be a compact subspace of |Xλ|. Then K intersects finitely many

cν.

Proof. We mimick the proof of [21, Proposition A.1] for the transfinite case. Assume

that there exists an infinite set S = {mj | j > 0} with mj ∈ K ∩ cνj , where (νj)j>0 is a

sequence of mutually distinct ordinals. By transfinite induction on ν > 0, let us prove

that S ∩ |Xν | is a closed subset of |Xν |. The assertion is trivial for ν = 0. There is the

pushout diagram of spaces for all ν < λ

|GlobG(Snν−1)|

��

gν
// |Xν|

��

|GlobG(Dnν )|
ĝν

// |Xν+1|.

By induction hypothesis, g−1
ν (S ∩ |Xν |) is a closed subset of |GlobG(Snν−1)| and ĝν

−1(S ∩

|Xν+1|) is equal to g−1
ν (S ∩ |Xν |) union at most one point. Therefore, S ∩ |Xν+1| is a

closed subset of |Xν+1| because the latter space is equipped with the final topology by

Proposition 5.2. Suppose that we have proved that for all ν < ν ′, S ∩ |Xν | is a closed

subset of |Xν| where ν
′ is a limit ordinal. Then, since the topology of |Xν′ | is the final

topology (it is a tower of one-to-one maps), S ∩ |Xν′ | is a closed subset of |Xν′|. Thus, by

transfinite induction on ν > 0, we prove that S is closed in |Xν | for all 0 6 ν 6 λ. The

same argument proves that every subset of S is closed in |Xλ|. Thus S has the discrete

topology. But it is compact, being a closed subset of the compact space K, and therefore

finite. Contradiction. �

Colimits of multipointed d-spaces are calculated by taking the colimit of the underlying

spaces and of the sets of states and by taking the Ω-final structure which is generated by

the free finite compositions of execution paths. Consequently, the composite functor

GdTop
PG

// Top
⊂

// Set

is finitely accessible. It is unlikely that the functor PG : GdTop→ Top, which is a right

adjoint by Theorem 2.16, is finitely accessible. However, we have:

5.6. Theorem. The composite functor

λ
X
−→ GdTop

PG

−→ Top

is colimit-preserving. In particular the continuous bijection

lim
−→

(PG.X) −→ PG lim
−→

X
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is a homeomorphism. Moreover the topology of PG lim
−→

X is the final topology.

Note that Theorem 5.6 holds both for ∆-generated spaces and ∆-Hausdorff ∆-generated

spaces.

Proof. Consider the set of ordinals
{
ν 6 λ | ν limit ordinal and lim

−→
ν′<ν

(PGXν′) −→ PGXν not isomorphism

}

Assume this set nonempty. Let ν be its smallest element. The topology of lim
−→ν′<ν

PGXν′

is the final topology because the continuous maps PGXν′ → PGXν′+1 are one-to-one. Let

f : [0, 1]→ PGXν be a continuous map. Therefore the composite map

[0, 1]
f
−→ PGXν ⊂ TOP([0, 1], |Xν|)

is continuous. It gives rise by adjunction to a continuous map [0, 1]× [0, 1]→ |Xν |. Since

the functor X : λ → GdTop is colimit-preserving, there is the homeomorphism |Xν | ∼=
lim
−→ν′<ν

|Xν′|. Since [0, 1]× [0, 1] is compact, the latter continuous map then factors as a

composite [0, 1]× [0, 1]→ |Xν′| → |Xν | for some ordinal ν ′ < ν by Proposition 5.2. Since

PGXν′ = PGXν ∩TOP([0, 1], |Xν′|) by Proposition 5.3, f factors as a composite [0, 1]→

PGXν′ → PGXν . Using Corollary 2.3. we obtain the homeomorphism lim
−→ν′<ν

PGXν′ −→

PGXν : contradiction. �

5.7. Theorem. The composite functor

λ
X
−→ GdTop

MG

−→ GFlow

is colimit-preserving. In particular the natural map

lim
−→
ν<λ

MG(Xν) −→MGXλ

is an isomorphism.

Proof. Theorem 5.6 states that there is the homeomorphism

lim
−→
ν<λ

PGXν −→ PGXλ.

We have, by definition of the functor MG , the equality of functors PG = P1.MG . It means

that there is the homeomorphism

lim
−→
ν<λ

P1MG(Xν) −→ P1MG(Xλ).

Since all maps the reparametrization category G are isomorphisms, we obtain for all ℓ > 0

the homeomorphism

lim
−→
ν<λ

PℓMG(Xν) −→ PℓMG(Xλ).

Since colimits of G-spaces are calculated objectwise, we obtain the isomorphism of G-

spaces

lim
−→
ν<λ

PMGXν −→ PMGXλ.

The proof is complete thanks to the universal property of the colimits. �
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5.8. Definition. An execution path γ of a multipointed d-space X is minimal if

γ(]0, 1[) ∩X0 = ∅.

For any (q-cofibrant or not) topological space Z, every execution path of the mul-

tipointed d-space GlobG(Z) is minimal. The following theorem proves that execution

paths of cellular multipointed d-spaces have a normal form.

5.9. Theorem. Let γ be an execution path of Xλ. Then there exist minimal execution

paths γ1, . . . , γn and ℓ1, . . . , ℓn > 0 with
∑

i ℓi = 1 such that

γ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn).

Moreover, if there is the equality

γ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn) = (γ′1µℓ′1) ∗ · · · ∗ (γn′µℓ′
n′
)

such that all γ′j are also minimal and with ℓ′1, . . . , ℓ
′
n′ > 0, then n = n′ and γi = γ′i and

ℓi = ℓ′i for all 1 6 i 6 n.

Proof. The set of execution paths of Xλ is obtained as a Ω-final structure. Using Theo-

rem 3.9, we obtain

γ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn).

for some n > 1 with ℓ1 + · · ·+ ℓn = 1 such that for all 1 6 i 6 n, there exists a globular

cell cνi such that
γi(]0, 1[) ⊂ cνi,

γi(0) = ĝνi(0),

γi(0) = ĝνi(1).

Therefore there exists a finite set {t0, . . . , tn} with t0 = 0 < t1 < · · · < tn = 1 and n > 1

such that γ([0, 1]) ∩ X0 = {γ(ti) | 0 6 i 6 n}. We necessarily have ℓi = ti − ti−1 for

1 6 i 6 n. Let ℓ0 = 0. Then we deduce that
∑

j<i ℓj = ti−1 and
∑

j6i ℓj = ti. The

equality γ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn) therefore implies that γ(t) = (γiµℓi)(t − ti−1) for

ti−1 6 t 6 ti for all 1 6 i 6 n by definition of the Moore composition of paths. We

deduce that we necessarily have the equalities γi(t) = γ(ℓit+ ti−1) for t ∈ [0, 1]. �

Let γ be an execution path of Xλ. Consider the normal form

γ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn).

of Theorem 5.9. There exists a unique sequence [cν1, . . . , cνn] of globular cells such that

for all 1 6 i 6 n, γi(]0, 1[) ⊂ cνi, γi(0) = ĝνi(0) and γi(1) = ĝνi(1). This leads to the

following notion:

5.10. Definition. With the notations above. The sequence of globular cells

Carrier(γ) = [cν1, . . . , cνn]

is called the carrier of γ. The integer n is called the length of the carrier.

5.11. Proposition. An execution path of Xλ is minimal if and only if the length of its

carrier is 1.

Proof. It is a consequence of Theorem 5.9. �
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5.12. Proposition. An execution path γ of Xλ is non-minimal if and only if there exist

two execution paths γ1 and γ2 such that γ = γ1 ∗N γ2.

Proposition 5.12 does not hold for non q-cofibrant multipointed d-spaces. Consider e.g.

the multipointed d-space X obtained by starting from the directed segment
−→
I G and by

adding to the set of states {0, 1} the point 1
2
. Then all execution paths of X are non-

minimal and P0, 1
2
X = P 1

2
,1X = ∅. Note that the q-cofibrant replacement of X consists

of the disjoint sum
−→
I G ⊔ {1

2
}.

Proof. It is a consequence of Theorem 5.9 and Proposition 5.11. �

5.13. Proposition. All execution path of Xλ are locally injective.

In [5], the terminology of regular paths is used.

Proof. All execution paths of globes GlobG(Z) are one-to-one for all topological spaces Z.

Therefore all minimal execution paths are locally injective (it can be a loop). The proof

is complete thanks to Theorem 5.9. �

5.14. Proposition. Consider a minimal execution path γ of Xλ with Carrier(γ) = [cν0 ].

Let cν be a globular cell of Xλ with ν 6= ν0. Then the following two assertions are

equivalent:

(1) γ(]0, 1[) ∩ ĉν 6= ∅

(2) γ([0, 1]) ⊂ ∂cν .

Moreover, when the previous assertions are satisfied, there exists an execution path γ′

from the initial state of cν to its final state such that γ′ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn) with

γ = γi for at least one i ∈ {1, . . . , n}, γ1, . . . , γn minimal and
∑

i ℓi = 1.

Proof. Since ∂cν ⊂ ĉν , we deduce (2)⇒ (1). Assume (1). Since γ(]0, 1[) ⊂ cν0 and ν 6= ν0,

one has ν > ν0. It means that there exists a point ĝν(z, t) of ∂cν which belongs to cν0 with

z ∈ Snν−1 and, since cν0 ∩X
0 = ∅, with t ∈]0, 1[. Therefore the carrier of the execution

path ĝνδz contains the globular cell cν0. We deduce that there exists φ ∈ G(1, 1) such

that

ĝνδzφ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn)

with γ = γi for at least one i ∈ {1, . . . , n}, γ1, . . . , γn minimal and
∑

i ℓi = 1. In particular,

we deduce that γ([0, 1]) ⊂ ∂cν : we have proved (1)⇒ (2). �

5.15. Definition. Let cν be a globular cell of Xλ. Let 0 < h < 1. Let

ĉν [h] =

{
ĝν(z, h) | (z, h) ∈ |GlobG(Dnν)|

}

It is called an achronal slice of the globular cell cν.

5.16. Proposition. For any globular cell cν of Xλ and any minimal execution path γ and

any h ∈]0, 1[, the cardinal of the set
{
t ∈]0, 1[| γ(t) ∈ ĉν [h]

}

is at most one.
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(0 , 0)

(1 , 1)(0 , 1)

(1 , 0)

Figure 1. |X| = [0, 1] × [0, 1], X0 = {0} × [0, 1] ∪ {(x, x) | x ∈ [0, 1]},
PG
(0,t),(t,t)X = G(1, 1) for all t ∈]0, 1], PG

(0,0),(0,0)X = {(0, 0)} and PG
α,βX = ∅

otherwise, there is no composable execution paths.

In other terms, a minimal execution path of Xλ intersects any achronal slice at most

one time. Remember that execution paths of Xλ are locally injective, i.e. they do not

contain zero speed points. Proposition 5.16 does not hold in general for a non-minimal

execution path because it could go back to the initial state of the globular cell after

reaching its final state, which moreover could be equal to the initial state of the globular

cell.

Proof. If the set γ(]0, 1[) ∩ ĉν [h] is nonempty, then the minimal execution path γ has at

least one point of γ(]0, 1[) belonging to ĉν . If [cν ] is the carrier of γ, then γ = δzφ with

z ∈ Dnν\Snν−1 and φ ∈ G(1, 1). We then have
{
t ∈]0, 1[| γ(t) ∈ ĉν [h]

}
=

{
φ−1(h)

}
.

Otherwise, by Proposition 5.14, there is the inclusion γ([0, 1]) ⊂ ∂cν and there exists an

execution path ĝνδzφ for some z ∈ Snν−1 and φ ∈ G(1, 1) from the initial state of cν to

its final state with

ĝνδzφ = (γ1µℓ1) ∗ · · · ∗ (γnµℓn)

with all γi minimal and γ ∈ {γ1, . . . , γn}. Since γ(]0, 1[) ∩ ĉν [h] is nonempty, we have

h ∈

]
φ(
∑

j<i

ℓj), φ(
∑

j6i

ℓj)

[

for some i ∈ {1, . . . , n} and γ = γi (h belongs to the interior of the interval because

γ(]0, 1[) ∩X0 = ∅). We obtain

γ(t) = ĝν

(
z, φ

(
ℓit+

∑

j<i

ℓj
))

for all t ∈ [0, 1]. We deduce the equality
{
t ∈]0, 1[| γ(t) ∈ ĉν [h]

}
=

{
φ−1(h)−

∑
j<i ℓj

ℓi

}
.

�
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5.17. Proposition. Let cν be a globular cell of Xλ for some ν < λ. There exists b ∈]0, 1[

such that

∀h ∈]0, b], ĉν [h] ∩X
0 = ∅.

Proposition 5.17 means that, close enough to the initial state of a globular cell, an

achronal slice does not contain any state of X0. Similarly, it is possible to prove that

close enough to the final state of a globular cell, an achronal slice does not contain any

state of X0 either. It is due to the two following geometric facts. The first one is that

close enough to the initial state of the globular cell, there is no other states of X0 than

the initial state because X0 is discrete. The second one is that a non-constant execution

path cannot be deformed in a continuous way to a point in the space of execution paths

of a cellular multipointed d-space. It is possible in more general multipointed d-spaces as

the one depicted in Figure 1. Note that the q-cofibrant replacement of the latter is equal

to the disjoint sum of the q-cofibrant replacement of the terminal multipointed d-space

and of uncountably many directed segments.

Proof. One has cν ∩ X
0 = ∅. Consequently, if ĝν(z, h) ∈ X0 for some h ∈]0, 1[, then

z ∈ Snν−1. Thus, if nν = 0, then Snν−1 = ∅ and for any h ∈]0, 1[, one has ĉν [h]∩X
0 = ∅.

Assume now that nν > 1. Consider the set

J1 = {h ∈]0, 1[| ĉν [h] ∩ (X0\{ĝν(0)}) 6= ∅}.

If J1 is nonempty, then consider a sequence (h1n)n>0 of J1 converging to the greatest lower

bound inf J1 of J1. For all n > 0, let z1n ∈ Snν−1 such that

ĝν(z
1
n, h

1
n) ∈ X

0\{ĝν(0)}.

By extracting a subsequence, we can suppose that the sequence (z1n)n>0 converges to

z1∞ ∈ Snν−1. Since the space |GlobG(Dnν )| is compact, the subspace ĉν is a compact

subspace of the weakly Hausdorff space |Xλ|. The set ĉν ∩X
0 is therefore finite because

X0 is discrete in |Xλ| by Proposition 5.2. Since

(ĉν ∩X
0)\{ĝν(0)} ⊂ ĉν ∩X

0

is discrete finite as well, the sequence (ĝν(z
1
n, h

1
n))n>0, which converges to ĝν(z

1
∞, inf J1)

by continuity of ĝν , eventually becomes constant. Thus,

ĝν(z
1
∞, inf J1) 6= ĝν(0).

It implies that

inf J1 > 0.

It means that whether J1 is empty or not, there exists a ∈]0, 1[ such that for all h ∈]0, a],

one has ĉν [h] ∩X
0 ⊂ {ĝν(0)}. Consider the set

J2 = {h ∈]0, a] | ĉν [h] ∩X
0 = {ĝν(0)}}.

If J2 is nonempty, then consider a sequence (h2n)n>0 of J2 converging to inf J2. For all

n > 0, there exists z2n ∈ Snν−1 such that

ĝν(z
2
n, h

2
n) = ĝν(0).

By extracting a subsequence, one can suppose that the sequence (z2n)n>0 of Snν−1 con-

verges to z2∞ ∈ Snν−1. Consider the sequence of globular cells (cνn)n>0 such that for all
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n > 0, the globular cell cνn is the first globular cell appearing in Carrier(ĝνδz2n), i.e.

Carrier(ĝνδz2n) = [cνn, cn]

where cn is a sequence of globular cells which is necessarily nonempty because h2n < 1.

Using Proposition 5.5, we have that the compact subspace ĉν intersects finitely many

globular cells of Xλ. Consequently, by extracting a subsequence again, we can suppose

that the sequence of globular cells (cνn)n>0 is constant and equal to the globular cell cν′

for some ν ′ < ν. Write

ĝνδz2n = (ĝν′δz′nφnµtn) ∗ (γnµ1−tn)

with, for all n > 0,

0 < tn 6 h2n < 1,

z′n ∈ Dnν′\Snν′−1,

φn ∈ G(1, 1),

ĝν′(0) = ĝν(0) (the globular cells cν and cν′ have the same initial state),

ĝν′(1) = (ĝνδz2n)(tn),

γn ∈ PG
ĝν′ (1),ĝν(1)

X with Carrier(γn) = [cn].

By extracting a subsequence, one can suppose that the sequence (z′n)n>0 ofD
nν′ converges

to z′∞. Since Carrier(ĝν′δz′∞) exists (it is a sequence of globular cells intersecting ĉν′), the

execution path ĝν′δz′∞ is not constant. Thus, there exists T ∈]0, 1[ such that

ĝν′(z
′
∞, T ) 6= ĝν′(0).

By extracting again a subsequence, one can suppose that the sequence (tnφ
−1
n (T ))n>0 of

[0, 1] converges to t∞. We have

ĝνδz2n(tnφ
−1
n (T )) = ĝν′δz′n

(
φnµtn

(
tnφ

−1
n (T )

))
= ĝν′(z

′
n, T )

for all n > 0. We obtain by passing to the limit

ĝνδz2∞(t∞) = ĝν′(z
′
∞, T ).

We deduce that ĝνδz2∞(t∞) 6= ĝν(0) and therefore that

0 < t∞.

From the inequalities

tnφ
−1
n (T ) 6 tn 6 h2n

for all n > 0, we obtain by passing to the limit the inequalities

0 < t∞ 6 inf J2.

It means that whether J2 is empty or not, there exists b ∈]0, 1[ such that for all h ∈]0, b],

one has ĉν [h] ∩X
0 = ∅. �

5.18. Theorem. Let γ∞ be an execution path of Xλ. Let ν0 < λ. There exists an open

neighborhood Ω of γ∞ in PGXλ such that for all execution paths γ ∈ Ω, the number of

copies of cν0 in the carrier of γ cannot exceed the length of the carrier of γ∞.
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Proof. Let Carrier(γ∞) = [cν1, . . . , cνn]. Consider the decomposition of Theorem 5.9

γ∞ = (γ1∞µℓ1) ∗ · · · ∗ (γ
n
∞µℓn)

with
∑

i ℓi = 1 and all execution paths γi∞ minimal for i = 1, . . . , n. For 1 6 i 6 n, let

νi < λ, φi ∈ G(1, 1) and zi ∈ Dnνi\Snνi
−1 such that

Carrier(γi∞) = [cνi ],

γi∞(]0, 1[) ⊂ cνi,

γi∞ = δziφi.

Using Proposition 5.17, pick h ∈]0, 1[ such that ĉν0[h] ∩X
0 = ∅. For all 1 6 i 6 n, the

set {
t ∈]0, 1[| γi∞(t) ∈ ĉν0[h]

}

contains at most one point ti by Proposition 5.16; if the set above is empty, let ti =
1
2
.

For all 1 6 i 6 n, let Li and L
′
i be two real numbers such that

0 < Li < ti < L′
i < 1.

For 1 6 i 6 n, consider the covering of the segment [
∑

j<i ℓj,
∑

j6i ℓj ] in three nonover-

lapping segments of strictly positive length:

K−
i =

[∑

j<i

ℓj,
∑

j<i

ℓj + µ−1
ℓi
φ−1
i (Li)

]
,

Km
i =

[∑

j<i

ℓj + µ−1
ℓi
φ−1
i (Li),

∑

j<i

ℓj + µ−1
ℓi
φ−1
i (L′

i)

]
,

K+
i =

[∑

j<i

ℓj + µ−1
ℓi
φ−1
i (L′

i),
∑

j6i

ℓj

]
.

The restriction γ∞ ↾ [
∑

j<i ℓj ,
∑

j6i ℓj ]
goes from the initial state of the globular cell cνi to its

final state. We have therefore

γ∞(Km
i ) ⊂ cνi.

We deduce

γ∞(Km
i ) ∩X0 = ∅.

We have

γ∞(K−
i ) ∩ ĉν0 [h] =

(
γ∞({

∑

j<i

ℓj}) ∪ γ∞
(]∑

j<i

ℓj,
∑

j<i

ℓj + µ−1
ℓi
φ−1
i (Li)

]))
∩ ĉν0[h]

=

(
{ĝνi(0)} ∪ γ∞

(]∑

j<i

ℓj ,
∑

j<i

ℓj + µ−1
ℓi
φ−1
i (Li)

]))
∩ ĉν0[h]

⊂

(
{ĝνi(0)} ∪ γ∞

(]∑

j<i

ℓj,
∑

j<i

ℓj + µ−1
ℓi
φ−1
i (ti)

[))
∩ ĉν0[h]

= ∅,

the first equality by formal set identities, the second equality by definition of ĝνi(0), the

inclusion because Li < ti, and the last equality because ĝνi(0) ∈ X
0 and by definition of
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ti. In the same way, we also have

γ∞(K+
i ) ∩ ĉν0 [h] =

(
γ∞

([∑

j<i

ℓj + µ−1
ℓi
φ−1
i (L′

i),
∑

j6i

ℓj
[)
∪ γ∞({

∑

j6i

ℓj})

)
∩ ĉν0[h]

=

(
γ∞

([∑

j<i

ℓj + µ−1
ℓi
φ−1
i (L′

i),
∑

j6i

ℓj
[)
∪ {ĝνi(1)}

)
∩ ĉν0[h]

⊂

(
γ∞

(]∑

j<i

ℓj + µ−1
ℓi
φ−1
i (ti),

∑

j6i

ℓj
[)
∪ {ĝνi(1)}

)
∩ ĉν0[h]

= ∅,

the first equality by formal set identities, the second equality by definition of ĝνi(1), the

inclusion because ti < L′
i, and the last equality because ĝνi(1) ∈ X

0 and by definition of

hi. Since |Xλ| is weakly Hausdorff, the set ĉν0[h] is a closed subset of |Xλ|. Moreover, X0

is a closed subset of the space |Xλ| as well by Proposition 5.2. Consequently, the set

Ω =

i=n⋂

i=1

(
W

(
K−
i , |Xλ|\ĉν0[h]

)
∩W

(
Km
i , |Xλ|\X

0

)
∩W

(
K+
i , |Xλ|\ĉν0[h]

))
,

where

W ([a, b], U) = {f ∈ PGXλ | f([a, b]) ⊂ U}

is an open neighborhood of γ∞ of PGXλ for the compact-open topology, and therefore for

its ∆-kelleyfication which adds open subsets. For all γ ∈ Ω, one has

γ(Km
i ) ∩X0 = ∅

and, one has

γ(K−
i ) ∩ ĉν0[h] = γ(K+

i ) ∩ ĉν0[h] = ∅.

It turns out that the segments of strictly positive length K−
i , K

m
i , K

+
i for 1 6 i 6 n are

a finite partition of [0, 1] into nonoverlapping segments because we have by definition of

the K−
i , K

m
i , K

+
i for 1 6 i 6 n:

[0, 1] =

i=n⋃

i=1

[∑

j<i

ℓj,
∑

j6i

ℓj

]
=

i=n⋃

i=1

(
K−
i ∪K

m
i ∪K

+
i

)
.

Each cν0 appearing in Carrier(γ) corresponds to a minimal execution path from ĝν0(0) to

ĝν0(1) (note that these two states can be equal) of the decomposition of γ obtained using

Theorem 5.9. It necessarily intersects ĉν0 [h]. Thus, the number of copies of cν0 in the

carrier of γ cannot exceed the number of Km
i , i.e. the length of the carrier of γ∞. �

Theorem 5.18 does not mean that the carriers of the execution paths of Ω are of length

at most the length of the carrier of γ∞. Indeed, on the segments K−
0 , K

+
0 ∪ K

−
1 , K

+
1 ∪

K−
2 , . . . , K

+
n , an execution path γ of Ω can a priori intersect X0 an arbitrarily large

number of times. However, it cannot intersect ĉν0[h]. Therefore these segments do not

add copies of cν0 in the carrier of γ.

5.19. Theorem. Let (γk)k>0 be a sequence of execution paths of Xλ which converges in

PGXλ. Let cν0 be a globular cell of Xλ. Let ik be the number of times that cν0 appears in

Carrier(γk). Then the sequence of integers (ik)k>0 is bounded.
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Proof. Write γ∞ for the limit of (γk)k>0 in PGXλ. By Theorem 5.18, there exists an open

Ω containing γ∞ such that for all γ ∈ Ω, the number of copies of cν0 in the carrier of γ does

not exceed the length of the carrier of γ∞. Since the sequence (γk)k>0 converges to γ∞,

there exists N > 0 such that for all k > N , γk belongs to Ω. The proof is complete. �

5.20. Theorem. Let 0 6 ν < λ. Then every execution path of Xν+1 can be written in a

unique way as a finite Moore composition

(f1γ1µℓ1) ∗ · · · ∗ (fnγnµℓn)

with n > 1 such that

(1)
∑

i ℓi = 1.

(2) fi = f and γi is an execution path of Xν or fi = ĝν and γi = δziφi with zi ∈ Dnν\Snν−1

and some φ ∈ G(1, 1).

(3) for all 1 6 i < n, either fiγi or fi+1γi+1 (or both) is (are) of the form ĝνδzφ for some

z ∈ Dnν\Snν−1 and some φ ∈ G(1, 1): intuitively, there is no possible simplification

using the Moore composition inside Xν .

Proof. We use the normal form of Theorem 5.9 and we use Proposition 4.10 to compose

successive execution paths of Xν . �

6. Chains of globes

Let Z1, . . . , Zp be p nonempty topological spaces with p > 1. Consider the multipointed

d-space

X = GlobG(Z1) ∗ · · · ∗GlobG(Zp).

with p > 1 where the ∗ means that the final state of a globe is identified with the initial

state of the next one by reading from the left to the right. Let {α0, α1, . . . , αp} be the

set of states such that the canonical map GlobG(Zi) → X takes the initial state 0 of

GlobG(Zi) to αi−1 and the final state 1 of GlobG(Zi) to αi.

As a consequence of the associativity of the semimonoidal structure on G-spaces recalled

in Theorem 4.3 and of [14, Proposition 5.16], we have

6.1. Proposition. Let U1, . . . , Up be p topological spaces with p > 1. Let ℓ1, . . . , ℓp > 0.

There is the natural isomorphism of G-spaces

FGop

ℓ1
U1 ⊗ . . .⊗ FGop

ℓp
Up ∼= FGop

ℓ1+···+ℓp
(U1 × . . .× Up).

The case p = 1 of Proposition 6.3 is treated in Proposition 2.12 and already used in

Proposition 4.15. An additional argument is required for the case p > 1. At first, we

prove a lemma which is an addition to Proposition 2.5.

6.2. Lemma. The set map (−)−1 : G(1, p)→ G(p, 1) which takes f : [0, 1] ∼=+ [0, p] to its

inverse f−1 : [0, p] ∼=+ [0, 1] is continuous.

Proof. Since all ∆-generated spaces are sequential, it suffices to prove that (−)−1 :

G(1, p) → G(p, 1) is sequentially continuous. Let (fn)n>0 be a sequence of G(1, p) which

converges to f ∈ G(1, p). Let t ∈ [0, p]. Then the sequence (f−1
n (t))n>0 of [0, 1] has

at least one limit point denoted by L(t). By extracting a subsequence of the sequence

(fn(f
−1
n (t)))n>0, we obtain f(L(t)) = t, which implies L(t) = f−1(t). Thus every sub-

sequence of (f−1
n (t))n>0 has a unique limit point f−1(t). Suppose that the sequence
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(f−1
n (t))n>0 does not converge to f−1(t). Then there exists an open neighborhood V of

f−1(t) such that for all n > 0, f−1
n (t) ∈ V c which is compact: contradiction. Therefore

the sequence (f−1
n )n>0 pointwise converges to f−1. By Proposition 2.5, we deduce that

the sequence (f−1
n )n>0 converges to f−1. �

6.3. Proposition. With the notations of this section. There is a homeomorphism

PG
α0,αp

X ∼= G(1, p)× Z1 × . . .× Zp.

Proof. The Moore composition of paths induced a map of G-spaces

P0,1M
GGlobG(Z1)⊗ . . .⊗ P0,1M

GGlobG(Zp) −→ Pα0,αp
MG(X).

By Proposition 4.15, there is the isomorphism of G-spaces

P0,1M
GGlobG(Z) ∼= FGop

1 Z

for all topological spaces Z. We obtain a map of G-spaces

FGop

1 Z1 ⊗ . . .⊗ FGop

1 Zp −→ Pα0,αp
MG(X).

By Proposition 6.1, and since P1
α0,αp

MG(X) = PG
α0,αp

X by definition of the functor MG ,

we obtain a continuous map
{
Ψ : G(1, p)× Z1 × . . .× Zp −→ PG

α0,αp
X

(φ, z1, . . . , zp) 7→ (δz1φ1) ∗ · · · ∗ (δzpφp)

where φi ∈ G(ℓi, 1) with
∑

i ℓi = 1 and φ = φ1 ⊗ . . . ⊗ φp being the decomposition of

Proposition 3.2. Since all executions paths of globes are one-to-one, the map Ψ above

is a continuous bijection. The continuous maps Zi → {0} for 1 6 i 6 p induce by

functoriality a map of multipointed d-spaces X →
−→
I G ∗ · · · ∗

−→
I G (p times) and then a

continuous map
{
k : PG

α0,αp
X −→ PG

α0,αp
(
−→
I G ∗ · · · ∗

−→
I G) = G(1, p)

(δz1φ1) ∗ · · · ∗ (δzpφp) 7→ (δ0φ1) ∗ · · · ∗ (δ0φp) = φ1 ⊗ . . .⊗ φp.

Let i ∈ {1, . . . , p}. Then we have, with γ = (δz1φ1) ∗ · · · ∗ (δzpφp),

γ

(
k(γ)−1(i−

1

2
)

)
= γ(φ−1(i−

1

2
)) = δziφiφ

−1(i−
1

2
) = (zi,

1

2
),

the first equality by definition of k : PG
α0,αp

X → G(1, p), the second equality since i− 1 <

i − 1
2
< i and by definition of γ, and the last equality by definition of the φi’s. The set

map 



PG
α0,αp

X −→ |GlobG(Zi)|

γ 7→ γ

(
k(γ)−1(i− 1

2
)

)

is continuous since k : PG
α0,αp

X → G(1, p) and (−)−1 : G(1, p)→ G(p, 1) are both continu-

ous (see Lemma 6.2 for the latter map). Consequently, the set map
{
k : PG

α0,αp
X −→ Z1 × . . .× Zp

(δz1φ1) ∗ · · · ∗ (δzpφp) 7→ (z1, . . . , zp)
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is continuous. It implies that the set map

Ψ−1 = (k, k) : (δz1φ1) ∗ · · · ∗ (δzpφp) 7→ (φ1 ⊗ . . .⊗ φp, z1, . . . , zp).

is continuous as well and that Ψ is a homeomorphism. �

Until the end of this section, we work like in Section 5 with a cellular multipointed

d-space Xλ, with the attaching map of the globular cell cν for ν < λ denoted by

ĝν : GlobG(Dnν)→ Xλ.

Each carrier

c = [cν1 , . . . , cνn]

gives rise to a map of multipointed d-spaces from a chain of globes to Xλ

ĝc : GlobG(Dnν1 ) ∗ · · · ∗GlobG(Dnνn ) −→ Xλ

by “concatenating” the attaching maps of the globular cells cν1 , . . . , cνn. Let αi−1 (αi
resp.) be the initial state (the final state resp.) of GlobG(Dnνi ) for 1 6 i 6 n in

GlobG(Dnν1 ) ∗ · · · ∗GlobG(Dnνn ). It induces a continuous map

PG ĝc : Xc := PG
α0,αn

(GlobG(Dnν1 ) ∗ · · · ∗GlobG(Dnνn )) −→ PGXλ.

6.4. Proposition. Let γ be an execution path of Xλ. Consider a nondecreasing set map

φ : [0, 1] → [0, 1] preserving the extremities such that γφ = γ. Then φ is the identity of

[0, 1].

Proof. Note that it is not assumed that φ is continuous. Suppose that there exist t < t′

such that φ(t) = φ(t′). Then for t′′ ∈ [t, t′], γ(t′′) = γ(φ(t′′)) = γ(φ(t)) because φ(t) 6

φ(t′′) 6 φ(t′), which contradicts the fact that γ is locally injective by Proposition 5.13.

Thus the set map φ is strictly increasing. Let Carrier(γ) = [cν1, . . . , cνn]. Let γ =

(γ1µℓ1) ∗ · · · ∗ (γnµℓn) with ℓ1 + · · · + ℓn = 1 such that for all 1 6 i 6 n, there exist

zi ∈ Dnνi\Snνi
−1 and φi ∈ G(1, 1) such that for all t ∈]0, 1[, γi(t) = (zi, φi(t)) ∈ cνi,

γi(0) = ĝνi(0) and γi(1) = ĝνi(1). Then

{t ∈ [0, 1] | γ(t) ∈ X0} = {0 = t0 < t1 < · · · < tn = 1}

with ti =
∑

16j6i ℓj for 0 6 i 6 n. We deduce that 0 = φ(t0) < φ(t1) < · · · < φ(tn) = 1

because the set map φ is strictly increasing. Since γ(φ(ti)) = γ(ti) ∈ X
0 for 0 6 i 6 n,

one obtains φ(ti) = ti for 0 6 i 6 n and φ(]ti−1, ti[) ⊂]ti−1, ti[ for all 1 6 i 6 n. Then,

observe that

∀1 6 i 6 n, ∀t ∈]ti−1, ti[, (zi, φi(φ(t))) = (zi, φi(t)).

Since φi is bijective, it means that the restriction φ ↾ ]ti−1,ti[ is the identity of ]ti−1, ti[ for

all 1 6 i 6 n. �

6.5. Notation. Let φ be a set map from a segment [a, b] to a segment [c, d]. Let

φ(x−) = sup{φ(t) | t < x},

φ(x+) = inf{φ(t) | x < t}.
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(0 , 0)

ϕk

(1 , 1)

1−
1

k

1

k

Figure 2. A sequence (φk)k>1 of G(1, 1) without limit point

6.6. Theorem. Let γ1 and γ2 be two execution paths of Xλ such that there exist two

nondecreasing set maps φ1, φ2 : [0, 1]→ [0, 1] preserving the extremities such that

∀t ∈ [0, 1], γ1(φ1(t)) = γ2(t)

∀t ∈ [0, 1], γ1(t) = γ2(φ2(t)).

Then φ1, φ2 ∈ G(1, 1) and φ2 = φ−1
1 .

Proof. Note that it is not assumed that φ1 and φ2 are continuous. For all t ∈ [0, 1], we have

γ1(φ1(φ2(t))) = γ2(φ2(t)) = γ1(t). Using Proposition 6.4, we deduce that φ1φ2 = Id[0,1].

In the same way, we have φ2φ1 = Id[0,1]. This proves that φ1 and φ2 are two bijective set

maps preserving the extremities which are inverse to each other. Suppose e.g. that there

exists t ∈ [0, 1] such that φ1(t
−) < φ1(t). Then φ1 cannot be surjective: contradiction.

By using similar arguments, we deduce that for all t ∈ [0, 1], φ1(t
−) = φ1(t) = φ1(t

+) and

φ2(t
−) = φ2(t) = φ2(t

+). Consequently, the set maps φ1 and φ2 are continuous. �

6.7. Proposition. Let c be the carrier of some execution path of Xλ. Every execution

path of the image of PG ĝc is of the form

(ĝν1δz1 ∗ · · · ∗ ĝνnδzn)φ

with φ ∈ G(1, n) and zi ∈ Dnνi for 1 6 i 6 n.

Proof. The first assertion is a consequence of the definition of ĝc and of Proposition 6.3.

�

6.8. Notation. Let c be the carrier of some execution path of Xλ. Using the identification

provided by the homeomorphism of Proposition 6.3, we can use the notation

(PG ĝc)(φ, z
1, . . . , zn) = (ĝν1δz1 ∗ · · · ∗ ĝνnδzn)φ.

Before proving the main theorem of this section, we need the following topological

lemmas:

6.9. Lemma. Let U1, . . . , Up be p first-countable ∆-Hausdorff ∆-generated spaces with

p > 1. Then the product U1 × . . .× Up in the category TOP of general topological spaces

and continuous maps coincides with the product in Top.
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Proof. Consider U1 × . . .× Up equipped with the product topology in the category TOP

of general topological spaces and continuous maps. This topology is first-countable as

a finite product of first-countable topologies. Each space Ui is locally path-connected,

being ∆-generated. Thus, the finite product U1 × . . . × Up equipped with the product

topology in TOP is locally path-connected. We deduce that U1× . . .×Up equipped with

the product topology in TOP is ∆-generated: the ∆-kelleyfication functor is not required.

Moreover since each Ui is ∆-Hausdorff, the product in TOP is ∆-Hausdorff as well. It

means that U1× . . .×Up equipped with the product topology in TOP coincides with the

product in Top. �

6.10. Lemma. Let U1, . . . , Up be p first-countable ∆-Hausdorff ∆-generated spaces with

p > 1. Let (uin)n>0 be a sequence of Ui for 1 6 i 6 p which converges to ui∞ ∈ Ui. Then

the sequence ((u1n, . . . , u
p
n))n>0 converges to (u1∞, . . . , u

p
∞) ∈ U1 × . . .× Up for the product

calculated in Top.

Note that the converse is obvious: if the sequence ((u1n, . . . , u
p
n))n>0 converges to

(u1∞, . . . , u
p
∞) ∈ U1 × . . . × Up, then the sequences (uin)n>0 converge to ui∞ ∈ Ui for

all 1 6 i 6 p because of the existence of the projection maps U1 × . . .× Up → Ui for all

1 6 i 6 p. A sequence converges to some point in a ∆-generated space if and only if

the corresponding application from the one-point compactification N = N ∪ {∞} of the

discrete space N to the ∆-generated space is continuous. The point is that the one-point

compactification of N is not ∆-generated: its ∆-kelleyfication is a discrete space. There-

fore it does not seem possible to use the universal property of the finite product in Top

to prove Lemma 6.10.

Proof. Each convergent sequence gives rise to a continuous map N → Ui for 1 6 i 6 p.

We obtain a continuous map N → U1 × . . . × Up by using the universal property of the

finite product in TOP thanks to Lemma 6.9 and the proof is complete. �

The sequence (φk)k>1 of G(1, 1) depicted in Figure 2 has no limit point because the only

possibility is the set map which takes 0 to 0 and the other points of [0, 1] to 1: it does not

belong to G(1, 1). Thus, the topological space G(1, n), which is homeomorphic to G(1, 1)

for all n > 1, is not sequentially compact. However, Theorem 6.11 holds anyway.

6.11. Theorem. Let c be the carrier of some execution path of Xλ.

(1) Consider a sequence (γk)k>0 of the image of PG ĝc which converges pointwise to γ∞ in

PGXλ. Let

γk = (PG ĝc)(φk, z
1
k, . . . , z

n
k )

with φk ∈ G(1, n) and zik ∈ Dnνi for 1 6 i 6 n and k > 0. Then there exist

φ∞ ∈ G(1, n) and z
i
∞ ∈ Dnνi for 1 6 i 6 n such that

γ∞ = (PG ĝc)(φ∞, z
1
∞, . . . , z

n
∞)

and such that (φ∞, z
1
∞, . . . , z

n
∞) is a limit point of the sequence ((φk, z

1
k, . . . , z

n
k ))k>0.

(2) The image of PG ĝc is closed in PGXλ.

Proof. (1) By a Cantor diagonalization argument, we can suppose that

• The sequence (zik)k>0 converges to zi∞ ∈ Dnνi for each 1 6 i 6 n.
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• The sequence (φk(r))k>0 converges to a real number denoted by φ∞(r) ∈ [0, m] for each

r ∈ [0, 1] ∩Q.

• The sequence (φ−1
k (r))k>0 converges to a real number denoted by φ−1

∞ (r) ∈ [0, 1] for

each r ∈ [0, n] ∩Q.

Since the sequence of execution paths (γk)k>0 converges pointwise to γ∞, we obtain

γ∞(r) = (ĝν1δz1∞ ∗ · · · ∗ ĝνnδzn∞)(φ∞(r))

for all r ∈ [0, 1] ∩Q and

γ∞(φ−1
∞ (r)) = (ĝν1δz1∞ ∗ · · · ∗ ĝνnδzn∞)(r)

for all r ∈ [0, n] ∩Q. For r1 < r2 ∈ [0, 1] ∩Q, φk(r1) < φk(r2) for all k > 0. Therefore by

passing to the limit, we obtain φ∞(r1) 6 φ∞(r2). Note that φ∞(0) = 0 and φ∞(1) = n

since 0, 1 ∈ Q. In the same way, we see that φ−1
∞ : [0, n] ∩ Q → [0, 1] is nondecreasing

and that φ−1
∞ (0) = 0 and φ−1

∞ (n) = 1. For t ∈]0, 1[, let us extend the definition of φ∞ as

follows:

φ∞(t) = sup{φ∞(r) | r ∈]0, t] ∩Q}.

The upper bound exists since {φ∞(r) | r ∈]0, t]∩Q} ⊂ [0, n]. For each t ∈ [0, 1]\Q, there

exists a nondecreasing sequence (rk)k>0 of rational numbers converging to t. Then

lim
k→∞

φ∞(rk) = φ∞(t).

By continuity, we deduce that

γ∞(t) = (ĝν1δz1∞ ∗ · · · ∗ ĝνnδzn∞)(φ∞(t))

for all t ∈ [0, 1]. It is easy to see that the set map φ∞ : [0, 1] → [0, n] is nondecreasing

and that it preserves extremities. For t ∈]0, 1[, extend the definition of φ−1
∞ as well as

follows:

φ−1
∞ (t) = sup{φ−1

∞ (r) | r ∈]0, t] ∩Q}.

The upper bound exists since {φ−1
∞ (r) | r ∈]0, t]∩Q} ⊂ [0, 1]. For each t ∈ [0, n]\Q, there

exists a nondecreasing sequence (rk)k>0 of rational numbers converging to t. Then

lim
k→∞

φ−1
∞ (rk) = φ−1

∞ (t).

By continuity, we deduce that

γ∞(φ−1
∞ (t)) = (ĝν1δz1∞ ∗ · · · ∗ ĝνnδzn∞)(t)

for all t ∈ [0, n]. It is easy to see that the set map φ−1
∞ : [0, n] → [0, 1] is nondecreasing

and that it preserves extremities. We obtain for all t ∈ [0, 1]

γ∞(t) = (ĝν1δz1∞ ∗ · · · ∗ ĝνnδzn∞)(µ−1
n µnφ∞(t))

γ∞(φ−1
∞ µ−1

n (t)) = (ĝν1δz1∞ ∗ · · · ∗ ĝνnδzn∞)(µ−1
n (t)).

Using Theorem 6.6, we obtain that µnφ∞ : [0, 1] → [0, 1] and φ−1
∞ µ−1

n : [0, 1] → [0, 1] are

homeomorphisms which are inverse to each other. We deduce that φ∞ : [0, 1]→ [0, n] and

φ−1
∞ : [0, n]→ [0, 1] are homeomorphisms which are inverse to each other. Let t ∈ [0, 1]\Q.

Since the sequence (φk(t))k>0 belongs to the sequential compact [0, n], it has at least one

limit point ℓ. There exists a subsequence of (φk(t))k>0 which converges to ℓ. We obtain

∀r ∈ [0, t] ∩Q, ∀r′ ∈ [t, 1] ∩Q, φ∞(r) 6 ℓ 6 φ∞(r′).
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Since φ∞ ∈ G(1, n) and by density of Q, we deduce that ℓ = φ∞(t) necessarily. Now

suppose that the sequence (φk(t))k>0 does not converge to φ∞(t). Then there exists an

open neighborhood V of φ∞(t) in [0, n] such that for all k > 0, φk(t) /∈ V . We deduce

that the sequence (φk(t))k>0 of [0, n] has no limit point: contradiction. We have proved

that the sequence (φk)k>0 converges pointwise to φ∞. Using Proposition 2.5, we deduce

that (φk)k>0 converges uniformly to φ∞. We deduce that (φ∞, z
1
∞, . . . , z

n
∞) is a limit point

of the sequence ((φk, z
1
k, . . . , z

n
k ))k>0 in G(1, n)×Dnν1 × . . .×Dnνn by Proposition 2.5 and

Lemma 6.10.

(2) Let (PG ĝc(Γn))n>0 be a sequence of (PG ĝc)(Xc) which converges in PGXλ. The limit

γ∞ ∈ PGXλ of the sequence of execution paths (PG ĝc(Γn))n>0 is also a pointwise limit. We

can suppose by extracting a subsequence that the sequence (Γn)n>0 of Xc is convergent

in Xc. Thus, by continuity of PG ĝc, we obtain γ∞ = (PG ĝc)(Γ∞) for some Γ∞ ∈ Xc. We

deduce that PG ĝc(Xc) is sequentially closed in PGXλ. Since PGXλ is sequential, being a

∆-generated space, the proof is complete. �

6.12. Corollary. Suppose that Xλ is a finite cellular multipointed d-space without loops.

Then the topology of PGXλ is the topology of the pointwise convergence which is therefore

∆-generated.

We do not know whether the “without loops” hypothesis can be removed and whether

finite can be replaced by locally finite.

Proof. Let (γn)n>0 be a sequence of execution paths of Xλ which pointwise converges to

γ∞. Since Xλ is finite and without loop, the set

T = {Carrier(γ) | γ ∈ PGXλ}

is finite. We obtain a finite covering by (closed) subsets

PGXλ =
⋃

c∈T

(Pĝc)(Xc)

because each execution path has a carrier by Theorem 5.9. Suppose that (γn)n>0 does

not converge to γ∞ in PGXλ. Then there exists an open neighborhood V of γ∞ in PGXλ

such that ∀n > 0, γn /∈ V . Since T is finite, one can suppose by extracting a subsequence

that

∃c ∈ T , ∀n > 0, γn ∈ (Pĝc)(Xc).

By Theorem 6.11, the sequence (γn)n>0 has a limit point which belongs to the complement

of V which is closed. This limit point is necessarily the pointwise limit γ∞. We obtain

γ∞ /∈ V : contradiction. �

Corollary 6.12 can be viewed as a second Dini theorem for the space of execution

paths of a finite cellular multipointed d-space without loops. Indeed, if Xλ =
−→
I G (the

directed segment), then PGXλ = G(1, 1) and we recover the fact that the topology of

G(1, 1) coincides with the pointwise convergence topology by Proposition 2.5.
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MG(GlobG(Sn−1)) = Glob(D)

��

MG(g)
// MG(A)

MG(f)

��

f

��

MG(GlobG(Dn)) = Glob(E)
g

//

MG(ĝ)
//

X

ψ
❍

❍
❍

❍

##❍
❍

❍
❍

MG(X).

Figure 3. Definition of X

7. The unit and the counit of the adjunction on q-cofibrant objects

Consider in this section the following situation: a pushout diagram of multipointed

d-spaces

GlobG(Sn−1)

��

g
// A

f

��

GlobG(Dn)
ĝ

// X

with n > 0 and A cellular. Note that A0 = X0. Let D = FGop

1 Sn−1 and E = FGop

1 Dn.

Consider the Moore flow X defined by the pushout diagram of Figure 3 where the two

equalities
MG(GlobG(Sn−1)) = Glob(D)

MG(GlobG(Dn)) = Glob(E)

come from Proposition 4.15 and where the map ψ is induced by the universal property

of the pushout.

The G-space of execution paths of the Moore flow X can be calculated by introducing

a diagram of G-spaces Df over a Reedy category Pg(0),g(1)(A0) whose definition is recalled

in Appendix A. Let T be the G-space defined by the pushout diagram of [Gop,Top]0

D

��

PMG(g)
// Pg(0),g(1)M

G(A)

Pf

��

E
Pg

// T.

Consider the diagram of spaces Df : Pg(0),g(1)(A0)→ [Gop,Top]0 defined as follows:

Df((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) = Zu0,u1 ⊗ Zu1,u2 ⊗ . . .⊗ Zun−1,un
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with

Zui−1,ui =

{
Pui−1,uiM

G(A) if ǫi = 0

T if ǫi = 1

In the case ǫi = 1, (ui−1, ui) = (g(0), g(1)) by definition of Pg(0),g(1)(A0). The inclusion

maps I ′is are induced by the map Pf : Pg(0),g(1)M
G(A) → T . The composition maps c′is

are induced by the compositions of paths of the Moore flow MG(A).

7.1. Theorem. [14, Theorem 9.7] We obtain a well-defined diagram of G-spaces

Df : Pg(0),g(1)(A0)→ [Gop,Top]0.

There is the isomorphism of G-spaces lim
−→
Df ∼= PX.

By the universal property of the pushout, we obtain a canonical map of G-spaces

Pψ : lim
−→
Df −→ PMGX.

The goal of Theorem 7.2 and of Theorem 7.3 is to prove that the canonical map of G-

spaces Pψ is an isomorphism of G-spaces. The proof is twofold: at first, it is proved that

it is an objectwise continous bijection, and then that it is an objectwise homeomorphism.

7.2. Theorem. Under the hypotheses and the notations of this section. The map of

G-spaces

Pψ : lim
−→
Df −→ PMG(X)

is an objectwive bijection.

Proof. Throughout the proof, the reader must keep in mind that for any map of multi-

pointed d-spaces

q : X1 −→ X2

and for any execution path

γ ∈ PℓX1 = PℓMG(X1)

of length ℓ of the multipointed d-space X1, or equivalently of the Moore flow MG(X1),

there is by Definition 4.8 and Theorem 4.12 the tautological equality
(
PMG(q)

)
(γ) = |q|.γ,

the right-hand term meaning the composite of the underlying continuous map |q| : |X1| →

|X2| between the underlying spaces ofX1 andX2 with the execution path γ : [0, 1]→ |X1|.

It will be denoted qγ or q.γ, as it was always done so far. In other terms, we will be using

the abuse of notation

PMG(q) = q

for any map of multipointed d-spaces q. The reader must also keep in mind that if

γ ∈ PℓX1 and γ′ ∈ Pℓ
′

X1 are two composable execution paths of X1 of length ℓ and ℓ′

respectively, then the Moore composition of execution paths (cf. Proposition 2.7)

γ ∗ γ′ ∈ Pℓ+ℓ
′

X1

is also by Theorem 4.12 the composition of paths in MG(X1) for tautological reasons.

The proof of this theorem is divided in several parts.

• Objectwise calculation.
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It suffices to prove that the continuous map

P1ψ : lim
−→
Df(1) −→ P1MG(X) = PGX.

is a bijection to complete the proof since all objects of the reparametrization category G

are isomorphic and since colimits of G-spaces are calculated objectwise.

• The final topology . If we can prove that the continuous

P1ψ : lim
−→
Df(1) −→ PGX

is a bijection with the colimit lim
−→
Df(1) equipped with the final topology, then the proof

will be complete even in the category of ∆-Hausdorff ∆-generated topological spaces

because of the following facts:

• Let i : A→ B be a continuous one-to-one map between ∆-generated spaces such that

B is also ∆-Hausdorff, then A is ∆-Hausdorff: let f : [0, 1]→ A be a continuous map;

then f being one-to-one, f([0, 1]) = i−1((i.f)([0, 1])) is closed.

• The space PGX is, by definition, equipped with the ∆-kelleyfication of the relative

topology induced by the inclusion of set PGX ⊂ TOP([0, 1], |X|).

• If we work in the category of ∆-Hausdorff ∆-generated topological spaces, then the

space TOP([0, 1], |X|) will be ∆-Hausdorff, hence the space PGX will be ∆-Hausdorff,

and therefore lim
−→
Df equipped with the final topology will be ∆-Hausdorff as well.

• Surjectivity of P1ψ. The map ψ of Figure 3 is induced by the universal property

of the pushout. It is bijective on states. The multipointed d-space X is equipped with

the Ω-final structure because it is defined as a colimit in the category of multipointed

d-spaces. By Theorem 3.9, every execution path of X is therefore a Moore composition

of the form

(f1γ1µℓ1) ∗ · · · ∗ (fnγnµℓn)

such that fi ∈ {f, ĝ} for all 1 6 i 6 n with
{
γi ∈ PGGlobG(Dn) if fi = ĝ

γi ∈ PGA if fi = f

with
∑

i ℓi = 1. Then for all 1 6 i 6 n, γiµℓi ∈ PℓiGlobG(Dn) = PℓiMG(GlobG(Dn)) or

γiµℓi ∈ PℓiA = PℓiMG(A). It gives rise to the execution path

Pf1(γ1µℓ1) ∗ · · · ∗ Pfn(γnµℓn)

with {
fi = g if fi = ĝ

fi = f if fi = f

of length 1 of the Moore flow X . By the commutativity of Figure 3, we obtain the equality

(f1γ1µℓ1) ∗ · · · ∗ (fnγnµℓn) = (P1ψ)

(
Pf1(γ1µℓ1) ∗ · · · ∗ Pfn(γnµℓn)

)
.

It means that the map of Moore flows ψ : X → MG(X) induces a surjective continuous

map from P1X to P1MG(X) = PGX . In other terms, the map P1ψ is a surjection.

• The map Ĉ. Consider the diagram of topological spaces

Ef : Pg(0),g(1)(A0)→ Top
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defined as follows:

Ef((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) =
⊔

(ℓ1,...,ℓn)
ℓ1+···+ℓn=1

Zu0,u1(ℓ1)× . . .× Zun−1,un(ℓn)

with

Zui−1,ui(ℓi) =

{
Pℓiui−1,ui

MG(A) = Pℓiui−1,ui
A if ǫi = 0

T (ℓi) if ǫi = 1 (⇒ (ui−1, ui) = (g(0), g(1))).

The composition maps c′is are induced by the Moore composition of execution paths of A.

The inclusion maps I ′is are induced by the continuous maps Pℓf : Pℓg(0),g(1)M
G(A)→ T (ℓ)

for ℓ > 0. We obtain a well-defined diagram of topological spaces 2

Ef : Pg(0),g(1)(A0)→ Top

and, by Proposition 4.5, there is an objectwise continuous surjective map

k : Ef −→ Df(1).

We deduce that lim
−→

k is surjective. We want to prove that the composite map

Ĉ : lim
−→
Ef

lim
−→

k
// // (lim
−→
Df)(1)

P1ψ
// P1MG(X) = PGX

is a continuous bijection. We already know that the map P1ψ is surjective, and therefore

that the map Ĉ : lim
−→
Ef → PGX is surjective as well. To prove that Ĉ : lim

−→
Ef → PGX is

one-to-one, we must first introduce the notion of simplified element. Let x be an element

of some vertex of the diagram of spaces Ef . We say that x ∈ Ef(n) is simplified if 3

d(n) = min
{
d(m) | ∃m ∈ Obj(Pg(0),g(1)(A0)) and ∃y ∈ Ef(m), y = x ∈ lim

−→
Ef

}
.

Let x be a simplified element belonging to some vertex Ef(n) of the diagram Ef with

n = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)).

• Case 1 . It is impossible to have ǫi = ǫi+1 = 0 for some 1 6 i < n. Indeed, otherwise

x would be of the form

(. . . , γiµℓi, γi+1µℓi+1
, . . . )

where γi and γi+1 would be two execution paths of A. Using the equality

ci
(
(. . . , γiµℓi, γi+1µℓi+1

, . . . )
)
= (. . . , γiµℓi ∗ γi+1µℓi+1

, . . . ),

the tuple x can then be identified in the colimit with the tuple
(
. . . ,

(
γiµℓi ∗ γi+1µℓi+1

)
µ−1
ℓi+ℓi+1︸ ︷︷ ︸

∈PGA by Proposition 4.10

µℓi+ℓi+1
, . . .

)
∈ Ef(n′)

with

d(n′) = n− 1 +
∑

i

ǫi < d(n).

It is a contradiction because x is simplified by hypothesis.

2This point is left as an exercice; Verifying the commutativity relations is easy.
3
d is the degree function of the Reedy category, see Appendix A.
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• Case 2 . Suppose that ǫi = 1 for some 1 6 i 6 n and that x is of the form

(. . . ,Pg(δziφiµℓi), . . . ).

If zi ∈ Sn−1, then using the equality

Ii
(
(. . . , gδziφiµℓi, . . . )

)
= (. . . ,Pg(δziφiµℓi), . . . ),

the tuple x can then be identified in the colimit with the tuple

(. . . , gδziφiµℓi, . . . ) ∈ E
f(n′)

with

d(n′) = n+
(∑

i

ǫi
)
− 1 < d(n).

It is a contradiction because x is simplified by hypothesis. We deduce that in this case,

zi ∈ Dn\Sn−1.

• Partial conclusion. Consequently, for all simplified elements x = (x1, . . . , xn) of E
f ,

we have

Ĉ(x) = (f1x1) ∗ · · · ∗ (fnxn)

with for all 1 6 i 6 n,
{
fi = f and xi ∈ PℓiA

fi = Pψ and xi = Pg(δziφiµℓi) with zi ∈ Dn\Sn−1

and there are no two consecutive terms of the first form (i.e. fi = fi+1 = f for some i).

It means that it is the finite Moore composition of Ĉ(x) of Theorem 5.20.

• Injectivity of Ĉ. Let x and y be two elements of lim
−→
Ef such that Ĉ(x) = Ĉ(y). We

can suppose that both x and y are simplified. Let x = (x1, . . . , xm) and y = (y1, . . . , yn).

Then

(f1x1) ∗ · · · ∗ (fmxm) = (g1y1) ∗ · · · ∗ (gnyn).

Since both members of the equality are the finite Moore composition of Theorem 5.20,

we deduce that m = n and that for all 1 6 i 6 m, we have fixi = giyi. For a given

i ∈ [1, m], there are two mutually exclusive possibilities:

(1) fi = gi = f and xi and yi are two paths of length ℓi of A. Since f is one-to-one

because Sn−1 is a subset of Dn, we deduce that xi = yi.

(2) fi = gi = Pψ, xi = gδziφiµℓi and yi = gδtiψiµℓi, with zi, ti ∈ Dn\Sn−1 and φi, ψi ∈

G(1, 1). We also have Pψ(xi) = ĝδziφiµℓi and Pψ(yi) = ĝδtiψiµℓi. The restriction of

ĝ to GlobG(Dn)\GlobG(Sn−1) being one-to-one, we deduce that zi = ti, φi = ψi and

therefore once again that xi = yi.

We conclude that x = y and that the map Ĉ : lim
−→
Ef → PGX is one-to-one.

• Informal summary. The arrows of the small category Pg(0),g(1)(A0) and the relations

satisfied by them prove that each element of the colimit lim
−→
Ef has a simplified rewriting

and this simplified rewriting coincides with the normal form of Theorem 5.20. The latter

theorem relies on the fact that all execution paths of globes are one-to-one, and more

generally that all execution paths of cellular multipointed d-spaces are locally injective.
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• Injectivity of P1ψ. At this point of the proof, we have a composite continuous map

lim
−→
Ef

continuous bijection

Ĉ

;;

lim
−→

k
// // lim
−→
Df(1)

P1ψ
// // PGX.

Let a, b ∈ lim
−→
Df(1) such that P1ψ(a) = P1ψ(b). Let a, b ∈ lim

−→
Ef such that (lim

−→
k)(a) = a

and (lim
−→

k)(b) = b. Then a = b and therefore a = b. We have proved that the continuous

map P1ψ : lim
−→
Df(1)→ PGX is one-to-one. �

7.3. Theorem. Under the hypotheses and the notations of this section. The map of

G-spaces

Pψ : lim
−→
Df −→ PMG(X)

is an isomorphism of G-spaces.

Proof. We already know by Theorem 7.2 that the map of G-spaces

Pψ : lim
−→
Df −→ PMG(X)

is an objectwise continuous bijection. We want to prove that it is an objectwise homeo-

morphism. Since all objects of the reparametrization category G are isomorphic, it suffices

to prove that

P1ψ : lim
−→
Df(1) −→ PGX

is a homeomorphism. Consider a set map ξ : [0, 1]→ lim
−→
Df(1) such that the composite

map

ξ : [0, 1]
ξ
−→ lim
−→
Df(1)

P1ψ
−→ PGX

is continuous. By Corollary 2.3, it suffices to prove that the set map

ξ : [0, 1] −→ lim
−→
Df(1)

is continuous as well.

• First reduction. The composite continuous map ξ gives rise by adjunction to a

continuous map

ξ̂ : [0, 1]× [0, 1] −→ |X|.

Since [0, 1] × [0, 1] is compact and since |X| is weakly Hausdorff by Proposition 5.2,

the subset ξ̂([0, 1] × [0, 1]) is a compact subset of |X|. By Proposition 5.5, ξ̂([0, 1] ×

[0, 1]) intersects a finite number of globular cells of the cellular multipointed d-space X .

Therefore we can suppose that the multipointed d-space X is finite by Proposition 5.4.

Write

{cj | j ∈ J}

for its finite set of globular cells.

• Second reduction. It suffices to prove that there exists a finite covering {F1, . . . , Fn}

of [0, 1] by closed subsets such that each restriction ξ ↾ Fi
factors through the colimit

lim
−→
Df(1). Let T be the set defined as follows:

T =

{
Carrier

(
ξ(u)

)
| u ∈ [0, 1]

}
.
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Suppose that T is infinite. Since J is finite, there exist j0 ∈ J and a sequence (ξ(un))n>0

of execution paths of X such that the numbers in of times that cj0 appears in the carrier

of ξ(un) for n > 0 give rise to a strictly increasing sequence of integers (in)n>0. Since

[0, 1] is sequentially compact, the sequence (un)n>0 has a convergent subsequence. By

continuity, the sequence (ξ(un))n>0 has therefore a convergent subsequence in PGX . This

contradicts Theorem 5.19. Consequently, the set T is finite. For each carrier c ∈ T , let

Uc =

{
u ∈ [0, 1] | Carrier(ξ(u)) = c

}
.

Consider the closure Ûc of Uc in [0, 1]. We obtain the finite covering of [0, 1] by closed

subsets

[0, 1] =
⋃

c∈T

Ûc.

We replace [0, 1] by Ûc which is compact, metrizable and therefore sequential. The carrier

c = [cj1 , . . . , cjm]

is fixed until the very end of the proof.

• Third reduction. The attaching maps

ĝjk : GlobG(Dnjk ) −→ X

for 1 6 k 6 m of the cells cj1 , . . . , cjm yield a map of multipointed d-spaces

ĝc : GlobG(Dnj1 ) ∗ · · · ∗GlobG(Dnjm ) −→ X.

Let αi−1 (αi resp.) be the initial state (the final state resp.) of GlobG(Dnji ) for 1 6 i 6 m

in GlobG(Dnj1 ) ∗ · · · ∗GlobG(Dnjm ). We obtain a map of G-spaces

FGop

1 (Dnj1 )⊗ . . .⊗ FGop

1 (Dnjm ) −→ Df(m)

for some m belonging to Pg(0),g(1)(A0) such that

Df(m) = Zĝc(α0),ĝc(α1) ⊗ . . .⊗ Zĝc(αm−1),ĝc(αm).

Using Proposition 6.1, we obtain a continuous map

yc : G(1, m)×Dnj1 × . . .×Dnjm −→ Zc ⊂ D
f(m)(1)

where Zc is, by definition, the image of yc. At this point, we have obtained that the

continuous map

ξ ↾Uc
: Uc −→ PGX

factors as a composite of maps

ξ ↾Uc
: Uc −→ Zc ⊂ D

f(m)(1)
pm
−→ lim
−→
Df(1) −→ PGX.

Consider a sequence (un)n>0 of Uc converging to u∞ ∈ Ûc. Then for each n > 0, ξ(un)

belongs to the image of PG ĝc which is a closed subset of the sequential space PGX by

Theorem 6.11. Thus ξ(u∞) belongs to the image of PG ĝc as well. Since

PG ĝc = P1ψ.pm.yc,

we have obtained that the continuous map

ξ ↾
Ûc

: Ûc −→ PGX
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factors as a composite of maps

ξ ↾
Ûc

: Ûc −→ Zc ⊂ D
f(m)(1)

pm
−→ lim
−→
Df(1)

P1ψ
−→ PGX.

They are all of them continuous except maybe the left-hand one from Ûc to Zc (cf. the

remark after this proof). Since Ûc is sequential, it remains to prove that the map

ξ ↾
Ûc

: Ûc −→ Zc ⊂ D
f(m)(1)

pm
−→ lim
−→
Df(1)

is sequentially continuous to complete the proof.

• Sequential continuity . Consider a sequence (un)n>0 of Ûc which converges to u∞ ∈ Ûc.

Write

ξ(un) = pm
(
yc(φn, z

1
n, . . . , z

m
n )

)

for all n > 0. We obtain

ξ(un) = (PG ĝc)(φn, z
1
n, . . . , z

m
n )

for all n > 0. By Theorem 6.11, the sequence ((φn, z
1
n, . . . , z

m
n ))n>0 has a limit point

(φ∞, z
1
∞, . . . , z

m
∞). We deduce that the sequence (ξ(un))n>0 has a limit point because both

yc and pm are continuous. It is necessarily equal to ξ(u∞) because the map

P1ψ : lim
−→
Df(1)→ PGX

is continuous bijective by Theorem 7.2 and because

ξ = P1ψ.ξ.

The same argument shows that every subsequence of (ξ(un))n>0 has a limit point which

is necessarily ξ(u∞). Suppose that the sequence (ξ(un))n>0 does not converge to ξ(u∞).

Then there exists an open neighborhood V of ξ(u∞) such that for all n > 0, ξ(un) /∈ V .

Since V c is closed in lim
−→
Df(1), it means that ξ(u∞) cannot be a limit point of the

sequence (ξ(un))n>0. Contradiction. It implies that the sequence (ξ(un))n>0 converges to

ξ(u∞). �

Before expounding the consequences of Theorem 7.2 and of Theorem 7.3, let us add an

additional remark about the proof of Theorem 7.3. It can be proved that the inverse image

p−1
m (γ) for each γ ∈ lim

−→
Df(1) is always finite. When the multipointed d-space X does not

contain any loop, i.e. when PG
α,αX is empty for all α ∈ X0, the map pm is even one-to-one

and it is then possible to prove that the set map Ûc → Zc is always continuous. On

the contrary, when X contains loops, the set map Ûc → Zc is not necessarily continuous

mainly because an inverse image p−1
m (γ) may contain several points.

7.4. Corollary. Suppose that A is a cellular multipointed d-space. Consider a pushout

diagram of multipointed d-spaces

GlobG(Sn−1)

��

// A

��

GlobG(Dn) // X
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with n > 0. Then there is the pushout diagram of Moore flows

MG(GlobG(Sn−1)) = Glob(FGop

1 Sn−1)

��

// MG(A)

��

MG(GlobG(Dn)) = Glob(FGop

1 Dn) // MG(X).

7.5. Corollary. Let X be a q-cofibrant multipointed d-space. Then MG(X) is a q-cofibrant

Moore flow.

Proof. For every q-cofibrant Moore flow X , the canonical map ∅ → X is a retract of

a transfinite composition of the q-cofibrations C : ∅ → {0}, R : {0, 1} → {0} and of

the q-cofibrations Glob(FGop

ℓ Sn−1) ⊂ Glob(FGop

ℓ Dn) for ℓ > 0 and n > 0. The cofibration

R : {0, 1} → {0} is not necessary to reach all q-cofibrant objects. Therefore, this theorem

is a consequence of Theorem 5.7 and of Corollary 7.4. �

7.6. Theorem. Let X be a q-cofibrant Moore flow. Then the unit of the adjunction

X → MG(MG
! (X)) is an isomorphism.

Proof. By Proposition 4.15, the theorem holds when X is a globe. It also clearly holds

for X = {0}. For every q-cofibrant Moore flow X , the canonical map ∅→ X is a retract

of a transfinite composition of the q-cofibrations C : ∅ → {0}, R : {0, 1} → {0} and of

the q-cofibrations Glob(FGop

ℓ Sn−1) ⊂ Glob(FGop

ℓ Dn) for ℓ > 0 and n > 0. The cofibration

R : {0, 1} → {0} is not necessary to reach all q-cofibrant objects. Therefore, this theorem

is also a consequence of Theorem 5.7 and of Corollary 7.4. �

7.7. Corollary. Let X be a q-cofibrant Moore flow. Then there is the homeomorphism

P1X ∼= PG(MG
! (X)).

Proof. Apply the functor P1(−) to the isomorphism X ∼= MG(MG
! (X)). �

7.8. Theorem. Let λ be a limit ordinal. Let

X : λ −→ GdTop

be a colimit preserving functor such that

• The multipointed d-space X is a set, in other terms X = (X0, X0,∅).

• For all ν < λ, there is a pushout diagram of multipointed d-spaces

GlobG(Snν−1)

��

gν
// Xν

��

GlobG(Dnν)
ĝν

// Xν+1

with nν > 0.

Let Xλ = lim
−→ν<λ

Xν. For all ν 6 λ, the counit map

κν : M
G
! (M

G(Xν)) −→ Xν
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is an isomorphism.

Proof. The map κ0 is an isomorphism because X0 is a set. By Theorem 5.7, and since

MG
! is a left adjoint, it suffices to prove that if κν is an isomorphism, then κν+1 is an

isomorphism. Assume that κν is an isomorphism. By Corollary 7.4, there is the pushout

diagram of Moore flows

MG(GlobG(Snν−1)) = Glob(FGop

1 Snν−1)

��

gν
// MG(Xν)

��

MG(GlobG(Dnν)) = Glob(FGop

1 Dnν )
ĝν

// MG(Xν+1).

Apply again the left adjoint MG
! to this diagram, we obtain by using the induction hy-

pothesis that κν+1 is an isomorphism. �

7.9.Corollary. For every q-cofibrant multipointed d-space X, the counit of the adjunction

MG
! (M

G(X))→ X is an isomorphism of multipointed d-spaces.

Proof. It is due to the fact that every q-cofibrant multipointed d-space X is a retract of a

cellular multipointed d-space (note that the cofibration R : {0, 1} → {0} is not required

to reach all cellular multipointed d-spaces) and that a retract of an isomorphism is an

isomorphism. �

8. From multipointed d-spaces to flows

The goals of this final section are to complete the proof of the Quillen equivalence

between multipointed d-spaces and Moore flows in Theorem 8.1, which together with

the results of [14] establish that multipointed d-spaces and flows have Quillen equivalent

q-model structures, and to give a new and conceptual proof of [11, Theorem 7.5] in

Theorem 8.14 independent of [8]. We also give a new presentation of the underlying

homotopy type of flow in Proposition 8.16.

8.1. Theorem. The adjunction MG
! ⊣ MG : GFlow ⇆ GdTop induces a Quillen equiv-

alence between the q-model structure of Moore flows and the q-model structure of multi-

pointed d-spaces.

Proof. Since the q-fibrations of Moore flows are the maps of Moore flows inducing an ob-

jectwise q-fibration on the G-spaces of execution paths, the functor MG takes q-fibrations

of multipointed d-spaces to q-fibrations of Moore flows. Since MG preserves the set of

states and since trivial q-fibrations of Moore flows are maps inducing a bijection on states

and an an objectwise trivial q-fibration on the G-spaces of execution paths, the functor

MG takes trivial q-fibrations of multipointed d-spaces to trivial q-fibrations of Moore flows.

Therefore, the functor MG : GdTop→ GFlow is a right Quillen adjoint.

By Theorem 7.6, the map X → MG(MG
! (X)) is a weak equivalence of Moore flows for

every q-cofibrant Moore flow X . Let Y be a (q-fibrant) multipointed d-space. Then the

composite map of multipointed d-spaces

MG
! (M

G(Y cof))
∼=
−→ Y cof ≃

−→ Y
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where Y cof is a q-cofibrant replacement of Y , is a weak equivalence of multipointed

d-spaces because: 1) the left-hand map is an isomorphism by Corollary 7.9; 2) the right-

hand map is a weak equivalence by definition of a cofibrant replacement. �

Let us give now some reminders about flows and the categorization functor cat from

multipointed d-spaces to flows.

8.2. Definition. [7, Definition 4.11] A flow is a small semicategory enriched over the

closed monoidal category (Top,×). The corresponding category is denoted by Flow.

Let us expand the definition above. A flow X consists of a topological space PX of

execution paths, a discrete space X0 of states, two continuous maps s and t from PX to

X0 called the source and target map respectively, and a continuous and associative map

∗ : {(x, y) ∈ PX × PX ; t(x) = s(y)} −→ PX

such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism of flows f : X −→ Y consists

of a set map f 0 : X0 −→ Y 0 together with a continuous map Pf : PX −→ PY such that

f 0(s(x)) = s(Pf(x)),

f 0(t(x)) = t(Pf(x)),

Pf(x ∗ y) = Pf(x) ∗ Pf(y).

Let

Pα,βX = {x ∈ PX | s(x) = α and t(x) = β}.

8.3. Notation. The map Pf : PX −→ PY can be denoted by f : PX → PY is there is

no ambiguity. The set map f 0 : X0 −→ Y 0 can be denoted by f : X0 −→ Y 0 is there is

no ambiguity.

The category Flow is locally presentable. Every set can be viewed as a flow with

an empty path space. The obvious functor Set ⊂ Flow is limit-preserving and colimit-

preserving. One another example of flow is important for the sequel:

8.4. Example. For a topological space Z, let Glob(Z) be the flow defined by

Glob(Z)0 = {0, 1},

PGlob(Z) = P0,1Glob(Z) = Z,

s = 0, t = 1.

This flow has no composition law.

8.5. Notation.
C : ∅→ {0},

R : {0, 1} → {0},
−→
I = Glob({0}).

The q-model structure of flows is the unique combinatorial model structure such that

{Glob(Sn−1) ⊂ Glob(Dn) | n > 0} ∪ {C,R}

is the set of generating cofibrations and such that

{Glob(Dn × {0}) ⊂ Glob(Dn+1) | n > 0}
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is the set of generating trivial cofibrations (e.g. [16, Theorem 7.6]) where the maps Dn ⊂

Dn+1 are induced by the mappings (x1, . . . , xn) 7→ (x1, . . . , xn, 0). The weak equivalences

are the maps of flows f : X → Y inducing a bijection f 0 : X0 ∼= Y 0 and a weak homotopy

equivalence Pf : PX → PY and the fibrations are the maps of flows f : X → Y inducing

a q-fibration Pf : PX → PY of topological spaces.

Let X be a multipointed d-space. Consider for every (α, β) ∈ X0×X0 the coequalizer

of spaces

Pα,βX = lim
−→

(
PG
α,βX × G(1, 1) ⇒ PG

α,βX
)

where the two maps are (c, φ) 7→ c and (c, φ) 7→ c.φ. Let [−]α,β : PG
α,βX → Pα,βX be the

canonical map.

8.6. Theorem. [11, Theorem 7.2] Let X be a multipointed d-space. Then there exists

a flow cat(X) with cat(X)0 = X0, Pα,βcat(X) = Pα,βX and the composition law ∗ :

Pα,βX × Pβ,γX → Pα,γX is for every triple (α, β, γ) ∈ X0 × X0 × X0 the unique map

making the following diagram commutative:

PG
α,βX × PG

β,γX
∗N

//

[−]α,β×[−]β,γ

��

PG
α,γX

[−]α,γ

��

Pα,βX × Pβ,γX // Pα,γX

where ∗N is the normalized composition (cf. Definition 2.9). The mapping X 7→ cat(X)

induces a functor from GdTop to Flow.

8.7. Definition. The functor cat : GdTop→ Flow is called the categorization functor.

The motivation for the constructions of this paper and of [14] comes from the following

theorem which is added for completeness.

8.8. Theorem. The categorization functor cat : GdTop→ Flow is neither a left adjoint

nor a right adjoint. In particular, it cannot be a left or a right Quillen equivalence.

Proof. This functor is not a left adjoint by [11, Proposition 7.3]. Suppose that it is a

right adjoint. Let L : Flow → GdTop be the left adjoint. Pick a nonempty topological

space Z. The adjunction yields the bijection of sets

GdTop(L(Glob(Z)),
−→
I G) ∼= Flow(Glob(Z),

−→
I ).

Since Z is nonempty, a map of flows from Glob(Z) to
−→
I is determined by the choice

of a map from Z to {0}. We deduce that there is exactly one map f of multipointed d-

spaces from L(Glob(Z)) to
−→
I G . Suppose that L(Glob(Z)) contains at least one execution

path φ : [0, 1] → |L(Glob(Z))|. Then f.φ is an execution path of
−→
I G . Every map

g ∈ GdTop(
−→
I G ,
−→
I G) ∼= {[0, 1] ∼=+ [0, 1]} gives rise to and execution path g.f.φ of

−→
I G.

since g.f ∈ GdTop(L(Glob(Z)),
−→
I G), we deduce that g.f = f . Contradiction. We

deduce that the multipointed d-space L(Glob(Z)) does not contain any execution path.

Therefore this multipointed d-space is of the form (UZ , U
0
Z ,∅). We obtain the bijection

MTop((UZ , U
0
Z), ([0, 1], {0, 1}))

∼= {f}. Suppose that UZ is nonempty. Then for all
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g ∈MTop(([0, 1], {0, 1}), ([0, 1], {0, 1})), we have g.f = f . The only possibilities are that

f = 0 or f = 1. Since f is the unique element, we deduce that UZ = ∅. There are also

the natural bijections of sets

GdTop(L({0}), X) ∼= Flow({0}, cat(X)) ∼= cat(X)0 ∼= X0 ∼= GdTop({0}, X).

By the Yoneda lemma, we obtain L({0}) = {0}.

To summarize, if L : Flow → GdTop is a left adjoint to the functor cat : GdTop →

Flow, then one has L({0}) = {0} and for all nonempty topological spaces Z, there is

the equalities L(Glob(Z)) = ∅. By [7, Theorem 6.1], any flow is a colimit of globes and

points. Since L is colimit-preserving, we deduce that for all flows Y , the multipointed

d-space L(Y ) is a set. We go back to the natural bijection given by the adjunction:

GdTop(L(Y ), X) ∼= Flow(Y, cat(X)).

Since L(Y ) is a set, we obtain the natural bijection Set(L(Y ), X0) ∼= Flow(Y, cat(X)).

We obtain the natural bijection GdTop(L(Y ), X0) ∼= Flow(Y, cat(X)) and by adjunction

the natural bijection Flow(Y,X0) ∼= Flow(Y, cat(X)) since cat(X0) = X0. By Yoneda,

we conclude that cat(X) = X0 for all multipointed d-spaces X , which is a contradiction.

�

8.9. Proposition. [14, Proposition 5.17] Let U and U ′ be two topological spaces. There

is the natural isomorphism of G-spaces

∆GopU ⊗∆GopU ′ ∼= ∆Gop(U × U ′).

Let X be a flow. The Moore flow M(X) is the enriched semicategory defined as follows:

• The set of states is X0.

• The G-space Pα,βM(X) is the G-space ∆Gop(Pα,βX).

• The composition law is defined, using Proposition 8.9 as the composite map

∆Gop(Pα,βX)⊗∆Gop(Pβ,γX) ∼= ∆Gop(Pα,βX × Pβ,γX)
∆Gop(∗)

// ∆Gop(Pα,γ)X.

The construction above yields a well-defined functor

M : Flow → GFlow.

Consider a G-flow Y . For all α, β ∈ Y 0, let Yα,β = lim
−→

Pα,βY . Let (α, β, γ) be a triple of

states of Y . The composition law of the G-flow Y induces a continuous map

Yα,β × Yβ,γ ∼= lim
−→

(Pα,βY ⊗ Pβ,γY ) −→ lim
−→

Pα,γY ∼= Yα,γ

which is associative. We obtain the

8.10. Proposition. [14, Proposition 10.6 and Proposition 10.7] For any G-flow Y , the

data

• The set of states is Y 0

• For all α, β ∈ Y 0, let Yα,β = lim
−→

Pα,βY

• For all α, β, γ ∈ Y 0, the composition law Yα,β × Yβ,γ → Yα,γ

assemble to a flow denoted by M!(Y ). It yields a well-defined functor

M! : GFlow → Flow.

There is an adjunction M! ⊣M.
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8.11. Theorem. There is the isomorphism of functors

cat ∼= M!.M
G .

Proof. First, let us notice that the functors cat : GdTop → Flow (Theorem 8.6), MG :

GdTop→ GFlow (Theorem 4.12) and M! : GFlow → Flow (Proposition 8.10) preserve

the set of states by definition of these functors. Therefore, for every multipointed d-

space X , the flows cat(X) and M!.M
G(X) have the same set of states X0. Let G1 be

the full subcategory of G generated by 1: the set of objects is the singleton {1} and

G1(1, 1) = G(1, 1). For (α, β) ∈ X0 × X0, the inclusion functor ι : G1 ⊂ G induces a

continuous map

lim
−→
G1

((
Pα,βM

GX
)
.ι

)
→ lim
−→
G

Pα,βM
GX.

It turns out that there is the natural homeomorphisms

lim
−→
G1

((
Pα,βM

GX
)
.ι

)
∼= lim
−→
G1

P1
α,βM

GX ∼= lim
−→
G1

PG
α,βX

∼= Pα,βcat(X),

the first one by definition of ι, the second one by definition of MG and the last one by

definition of cat. We obtain a natural map of flows cat(X) → (M!.M
G)(X) which is

bijective on states. Let ℓ > 0 be an object of G. Then the comma category (ℓ ↓ ι) is

characterized as follows:

• The set of objects is G(ℓ, 1) which is always nonempty for every ℓ > 0.

• The set of maps from an arrow u : ℓ → 1 to an arrow v : ℓ → 1 is an element of

Mor(G)(u, v).

The comma category (ℓ↓ ι) is connected since in any diagram of G of the form

[0, ℓ]
u

// [0, 1]

k

��
✤

✤

✤

✤

✤

[0, ℓ]
v

// [0, 1],

there exists a map k ∈ G([0, 1], [0, 1]) making the square commute: take k = v.u−1.

By [29, Theorem 1 p. 213], we deduce that the natural map of flows cat(X)→ (M!.M
G)(X)

induces a homeomorphism between the spaces of paths. �

8.12. Corollary. Suppose that A is a cellular multipointed d-space. Consider a pushout

diagram of multipointed d-spaces

GlobG(Sn−1)

��

// A

��

GlobG(Dn) // X
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with n > 0. Then there is the pushout diagram of flows

Glob(Sn−1)

��

// cat(A)

��

Glob(Dn) // cat(X).

Proof. It is a consequence of Corollary 7.4, Theorem 8.11 and of the fact that M! :

GFlow → Flow is a left adjoint. �

8.13. Definition. We consider the composite functors

(Lcat) : GdTop
(−)cof

// GdTop
cat

// Flow

(Lcat)−1 : Flow
M

// GFlow
(−)cof

// GFlow
MG

!
// GdTop

where (−)cof is a q-cofibrant replacement functor.

We can now write down the new proof of [11, Theorem 7.5].

8.14. Theorem. The categorization functor from multipointed d-spaces to flows

cat : GdTop −→ Flow

takes q-cofibrant multipointed d-spaces to q-cofibrant flows. Its total left derived functor

in the sense of [4] induces an equivalence of categories between the homotopy categories

of the q-model structures.

Proof. The functor cat ∼= M!.M
G takes q-cofibrant multipointed d-spaces to q-cofibrant

flows by Corollary 7.5 and because M! is a left Quillen adjoint. The rest of the proof is

divided in four parts.

• X ≃ Y ⇒ (Lcat)(X) ≃ (Lcat)(Y ). Let X ≃ Y be two weakly equivalent multi-

pointed d-spaces in the q-model structure. Then there is the weak equivalence Xcof ≃

Y cof . Since all multipointed d-spaces are q-fibrant, the right Quillen functor MG takes

weak equivalences of multipointed d-spaces to weak equivalences of Moore flows. Since

M! is a left Quillen functor and since MG preserves q-cofibrancy by Corollary 7.5, we

deduce using Theorem 8.11 the sequence of isomorphisms and weak equivalences

(Lcat)(X) ∼= M!M
G(Xcof) ≃M!M

G(Y cof) ∼= (Lcat)(Y ).

•X ≃ Y ⇒ (Lcat)−1(X) ≃ (Lcat)−1(Y ). Let X ≃ Y be two weakly equivalent flows in

the q-model structure. Since M is a right Quillen functor and since all flows are q-fibrant,

we obtain the weak equivalence of Moore flows M(X) ≃M(Y ). By definition of (Lcat)−1

and since MG
! is a left Quillen adjoint, we deduce the sequence of isomorphisms and weak

equivalences

(Lcat)−1(X) ∼= MG
! (M(X))cof ≃MG

! (M(Y ))cof ∼= (Lcat)−1(Y ).

The functors (Lcat) and (Lcat)−1 therefore induce functors between the homotopy cate-

gories.
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• (Lcat)−1(Lcat)(X) ≃ X . Let X be a multipointed d-space. Then we have the se-

quence of isomorphisms and of weak equivalences

(Lcat)−1(Lcat)(X) ∼= MG
!

(
MM!

q-cofibrant
by Corollary 7.5

MG(Xcof)

)cof

≃MG
!

(
MG(Xcof)

)cof

≃MG
! M

G(Xcof)

∼= Xcof

≃ X,

the first isomorphism by definition of (Lcat) and (Lcat)−1 and by Theorem 8.11, the

first weak equivalence since the adjunction M! ⊣ M is a Quillen equivalence by [14,

Theorem 10.9] and since MG
! is a left Quillen adjoint, the second weak equivalence by

Corollary 7.5 and again since MG
! is a left Quillen adjoint, the second isomorphism by

Corollary 7.9, and the last weak equivalence by definition of a q-cofibrant replacement.

• (Lcat)(Lcat)−1(Y ) ≃ Y . Let Y be a flow. Then we have the sequence of isomorphisms

and of weak equivalences

(Lcat)(Lcat)−1(Y ) ∼=
(
M!M

G
)(

MG
! (MY )cof

)cof

≃
(
M!M

G
)(

MG
! (MY )cof

)

∼= M!(MY )cof

≃ Y,

the first isomorphism by definition of (Lcat) and (Lcat)−1 and by Theorem 8.11, the

first weak equivalence because MG is a right Quillen adjoint, because MG
! (MY )cof is q-

cofibrant, because MG preserves q-cofibrancy by Corollary 7.5 and finally because M! is

a left Quillen adjoint, the second isomorphism by Theorem 7.6, and finally the last weak

equivalence since the adjunction M! ⊣ M is a Quillen equivalence by [14, Theorem 10.9].

The proof is complete. �

The underlying homotopy type of a flow is, morally speaking, the underlying space of

states of a flow after removing the execution paths. It is defined only up to homotopy,

not up to homeomorphism. We conclude the section and the paper by recovering it in a

very intuitive way by using (Lcat)−1.

It is proved in [9, Theorem 6.1] that for every cellular flow X , there exists a cellular

multipointed d-space X top such that there is an isomorphism cat(X top) ∼= Xcof .

8.15. Definition. [9, Section 6], The underlying homotopy type of a flow X is the

topological space

||X|| := |X top|
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where |X top| is the underlying topological space of the cellular multipointed d-space X top.

This yields a well defined functor

|| − || : Flow −→ Ho(Top)

from the category of flows to the homotopy category of the q-model structure of Top.

8.16. Proposition. For any flow X, there is the homotopy equivalence of topological

spaces

||X|| ≃ |(Lcat)−1(X)|.

Proof. One has

cat(MG
! (M(X)cof)) = (M!M

G)(MG
! (M(X)cof)) ∼= M!(M(X)cof),

the equality by Theorem 8.11 and the isomorphism by Theorem 7.6. Using the Quillen

equivalence M! ⊣M of [14, Theorem 10.9], we obtain the weak equivalences of flows

cat(MG
! (M(X)cof)) ≃ X ≃ cat(X top).

Thanks to Theorem 8.14, we obtain the weak equivalence of q-cofibrant multipointed

d-spaces

MG
! (M(X)cof) ≃ X top.

We deduce the homotopy equivalence between the underlying q-cofibrant spaces

|MG
! (M(X)cof)| ≃ |X top|

because the underlying topological space functor | − | is a left Quillen functor by [11,

Proposition 8.1]. �

The composite functor

GFlow
MG

!
// GdTop

|−|
// Top

is the composite of two left Quillen functors. Therefore the mapping

X 7→ |MG
! (X

cof)|

induces a functor from GFlow to Ho(Top). For all G-flows X , there is the isomorphism

Xcof ∼= MG(MG
! (X

cof)) by Theorem 7.6. Consequently, the functor |MG
! ((−)

cof )| can be

regarded as the underlying homotopy type functor for G-flows.

Appendix A. The Reedy category Pu,v(S): reminder

Let S be a nonempty set. Let Pu,v(S) be the small category defined by generators and

relations as follows (see [15, Section 3]):

• u, v ∈ S (u and v may be equal).

• The objects are the tuples of the form

m = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un))

with n > 1, u0, . . . , un ∈ S, ǫ1, . . . , ǫn ∈ {0, 1} and

∀i such that 1 6 i 6 n, ǫi = 1⇒ (ui−1, ui) = (u, v).
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• There is an arrow

cn+1 : (m, (x, 0, y), (y, 0, z), n)→ (m, (x, 0, z), n)

for every tuple m = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) with n > 1 and every

tuple n = ((u′0, ǫ
′
1, u

′
1), (u

′
1, ǫ

′
2, u

′
2), . . . , (u

′
n′−1, ǫ

′
n′ , u′n′)) with n′ > 1. It is called a compo-

sition map.

• There is an arrow

In+1 : (m, (u, 0, v), n)→ (m, (u, 1, v), n)

for every tuple m = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) with n > 1 and every

tuple n = ((u′0, ǫ
′
1, u

′
1), (u

′
1, ǫ

′
2, u

′
2), . . . , (u

′
n′−1, ǫ

′
n′, u′n′)) with n′ > 1. It is called an

inclusion map.

• There are the relations (group A) ci.cj = cj−1.ci if i < j (which means since ci and cj
may correspond to several maps that if ci and cj are composable, then there exist cj−1

and ci composable satisfying the equality).

• There are the relations (group B) Ii.Ij = Ij .Ii if i 6= j. By definition of these maps, Ii
is never composable with itself.

• There are the relations (group C)

ci.Ij =

{
Ij−1.ci if j > i+ 2

Ij.ci if j 6 i− 1.

By definition of these maps, ci and Ii are never composable as well as ci and Ii+1.

By [15, Proposition 3.7], there exists a structure of Reedy category on Pu,v(S) with

the N-valued degree map defined by

d((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) = n+
∑

i

ǫi.

The maps raising the degree are the inclusion maps. The maps decreasing the degree are

the composition maps.

Appendix B. An explicit construction of the left adjoint MG
!

The proof of Theorem 4.12 uses a well-known characterization of right adjoint functors

between locally presentable categories. It is possible to describe more explicitly the

functor MG
! : GFlow → GdTop as follows.

B.1. Notation. The composite of two natural transformations µ : F ⇒ G and ν : G⇒ H

is denoted by ν⊙µ to make the distinction with the composition of maps and of functors.

The category D(GFlow) of all small diagrams of Moore flows over all small categories

is defined as follows. An object is a functor F : I → GFlow from a small category I

to GFlow. A morphism from F : I1 → GFlow to G : I2 → GFlow is a pair (f : I1 →

I2, µ : F ⇒ G.f) where f is a functor and µ is a natural transformation. If (g, ν) is

a map from G : I2 → GFlow to H : I3 → GFlow, then the composite (g, ν).(f, µ) is

defined by (g.f, (ν.f) ⊙ µ). The identity of F : I1 → GFlow is the pair (IdI1 , IdF ). If

(h, ξ) : (H : I3 → GFlow) → (I : I4 → GFlow) is another map of D(GFlow), then we
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have
((h, ξ).(g, ν)) .(f, µ) = (h.g, ξ.g ⊙ ν).(f, µ)

= (h.g.f, ξ.g.f ⊙ ν.f ⊙ µ)

= (h, ξ).(g.f, ν.f ⊙ µ)

= (h, ξ). ((g, ν).(f, µ)) .

Thus the composition law is associative and the category D(GFlow) is well-defined. It

is well-known that the colimit of small diagrams induces a functor lim
−→

: D(GFlow) →

GFlow (see e.g. [15, Proposition A.2]).

B.2. Theorem. There exists a functor D : GFlow→ D(GFlow) such that the composite

functor

GFlow
D

// D(GFlow)
lim
−→ // GFlow

is the identity functor and such that every vertex of D(X) for any Moore flow X is one

of the following kind:

(1) the Moore flow {0},

(2) the globe Glob(D) of some G-space D,

(3) the Moore flow Glob(D)∗Glob(E) for two G-spaces D and E where the final state

of Glob(D) is identified with the initial state of Glob(E) (it is the “composition”

of the two globes, hence the notation).

Moreover, each G-space D and E used by the diagram is of the form Pα,γX or Pα,βX ⊗

Pβ,γX.

Proof. This theorem is proved in [7, Theorem 6.1] for the category of flows which are

semicategories enriched over the closed (semi)monoidal bicomplete category (Top,×)

(see Definition 8.2). The diagram is depicted in Figure 4. We refer to the proof of [7,

Theorem 6.1] for the definitions of the maps. Since a Moore flow is a semicategory

enriched over the closed semimonoidal bicomplete category ([Gop,Top]0,⊗), the proof is

complete. �

B.3. Notation. Denote by B(GFlow) 4 the full subcategory of GFlow generated by {0}

and Glob(D) where D runs over the class of all G-spaces.

B.4. Theorem. Let K be a bicomplete category. A functor

F : K −→ GFlow

has a left adjoint

F! : GFlow −→ K

if and only if there exists a functor m : B(GFlow) → K such that there are the natural

bijections
K(m({0}), Y ) ∼= F (Y )0

K(m(D), Y ) ∼= GFlow(Glob(D), F (Y ))

for all objects Y of K and all G-spaces D.

4B like “brick”: the globes and the point are the elementary bricks to build flows.
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Figure 4. The Moore flow X as a colimit of globes and points (the defini-
tion of the maps are easily understandable, cf. the proof of [7, Theorem 6.1]
for further explanations)

Proof. The “only if” direction comes from the fact that there is a natural bijection

F (X)0 ∼= GFlow({0}, F (X)).

Let D and E be two G-spaces. Let m(Glob(D) ∗Glob(E)) be the object of K defined by

the pushout diagram of K

m({0})
m(07→1)

//

m(07→0)

��

m(D)

��

m(E) // m(Glob(D) ∗Glob(E)).

By taking the image by the functor K(−, Y ) : K → Set, we obtain the pullback diagram

of sets

K(m(Glob(D) ∗Glob(E)), Y ) //

��

K(m(D), Y )

��

K(m(E), Y ) // K(m({0}), Y )

for all objects Y of K. We therefore obtain the natural bijection of sets

K(m(Glob(D) ∗Glob(E)), Y ) ∼= GFlow(Glob(D) ∗Glob(E), F (Y ))

for all objects Y of K. Let

F!(X) := lim
−→

m(D(X)).

This defines a functor from GFlow to K. For all objects Y of K, there is the sequence of

natural bijections (note that in the calculation below, the colimits are taken over a same
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small category which depends only on X)

K(F!(X), Y ) ∼= K(lim−→
m(D(X)), Y )

∼= lim
←−
K(m(D(X)), Y )

∼= lim
←−
GFlow(D(X), F (Y ))

∼= GFlow(lim
−→

D(X), F (Y ))

∼= GFlow(X,F (Y )),

the first one by definition of F!, the second one and the fourth one by the universal

property of the (co)limit, the third one by hypothesis and by the calculation above, and

finally the last one by Theorem B.2. �

After Theorem B.4, it suffices now to find a multipointed d-space denoted by MG
! ({0})

such that there is a natural bijection with respect to X

GdTop
(
MG

! ({0}), X
)
∼= MG(X)0

and a multipointed d-space denoted by MG
! (Glob(D)) natural with respect to the G-space

D such that there is a natural bijection with respect to D and X

GdTop
(
MG

! (Glob(D)), X
)
∼= GFlow(Glob(D),MG(X)).

We have the natural bijections

GdTop
(
{0}, X

)
∼= X0 ∼= MG(X)0,

and therefore

MG
! ({0}) = {0}.

We have the sequence of natural bijections

GdTop

(∫ ℓ

GlobG
ℓ (D(ℓ)), X

)
∼=

∫

ℓ

GdTop(GlobGℓ (D(ℓ)), X)

∼=

∫

ℓ

⊔

(α,β)∈X0×X0

Top(D(ℓ),Pℓα,βM
G(X))

∼=
⊔

(α,β)∈X0×X0

∫

ℓ

Top(D(ℓ),Pℓα,βM
G(X))

∼=
⊔

(α,β)∈X0×X0

TopGop

(D,Pα,βM
G(X))

∼=
⊔

(α,β)∈X0×X0

[Gop,Top]0(D,Pα,βM
G(X))

∼= GFlow(Glob(D),MG(X)),

the first bijection by definition of a (co)limit, the second bijection by Proposition 4.13,

the third bijection because the underlying diagram of this end is connected, the fourth

bijection by [29, page 219 (2)], the fifth bijection since [Gop,Top]0 is a full subcategory

of TopGop

, and finally the last bijection by Proposition 4.14. We obtain

MG
! (Glob(D)) =

∫ ℓ

GlobGℓ (D(ℓ)).
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Appendix C. The setting of k-spaces

In this appendix, the category of k-spaces is denoted by Topk and the category of

∆-generated spaces by Top∆. The proofs are just sketched.

We must at first prove the existence of the projective q-model structure of [Gop,Topk]0:

[12] is written in the locally presentable setting. We do not know whether the arguments

of [31] are valid here since they are written in the category of Hausdorff k-spaces. Anyway,

it is possible to give a much simpler argument. The inclusion Top∆ ⊂ Topk has a right

adjoint k∆ : Topk → Top∆, which gives rise to a Quillen equivalence. In fact, the q-model

structure of Topk is right-induced by k∆ : Topk → Top∆ in the sense of [6, 23]. From

the functor k∆, we obtain a right adjoint U : [Gop,Topk]0 → [Gop,Top∆]0. For an object

X of [Gop,Topk]0, let Path(X) = ℓ 7→ TOPk([0, 1], X(ℓ)) where TOPk is the internal

hom of Topk. Since the composite functor k∆.TOPk is the internal hom of Top∆, the

Quillen path object argument can be used to obtain that U : [Gop,Topk]0 → [Gop,Top∆]0
right-induces the projective q-model structure of [Gop,Topk]0. This technique still works

in the cofibrantly generated non-combinatorial setting: it dates back to [32] (see also [24,

Theorem 11.3.2]).

The q-model category of multipointed d-spaces is constructed in [16, Theorem 6.14]

by right-inducing it and by using the Quillen path object argument again. The q-model

category of G-flows is constructed in [14, Theorem 8.8] by mimicking the method used

in [13, Theorem 3.11] which works for any convenient category of topological spaces.

Indeed, it uses Isaev’s work [26] about model categories of fibrant objects which does not

require to work in a locally presentable setting.

Theorem 2.16 is not valid anymore. See [15, Theorem 5.10] for a treatment of the

similar problem for flows. The reason is that a k-space is not necessarily homeomorphic

to the disjoint sum of its path-connected components (e.g. the Cantor space). It is used in

Theorem 4.12 together with the local presentability of the category of ∆-generated spaces

to prove the existence of the left adjoint MG
! : GFlow → GdTop. In the framework of

k-spaces, the existence of MG
! can be proved using Appendix B. We have therefore a

Quillen adjunction

MG
! ⊣MG : GFlow(Topk) ⇆ GdTop(Topk)

between the q-model structures, where the notation (Topk) is to specify the category of

topological spaces which is used.

A k-space, unlike a ∆-generated space, is not necessarily sequential. It is not clear how

to adapt the proof of Theorem 6.11 by replacing sequences by nets since there is a Cantor

diagonalization argument which does not seem to be adaptable at least with uncountable

nets. It is not clear either how to modify accordingly the last part of the proof of Theo-

rem 7.3 about the sequential continuity because Ûc is an arbitrary compact space now, and

not necessarily a closed subset of [0, 1] anymore. To obtain Theorem 1.1 for k-spaces, an-

other method must be used. For all k-spaces Z, the canonical map k∆(Z)→ Z is a weak

homotopy equivalence which induces a bijection Topk([0, 1], k∆(Z))
∼= Top∆([0, 1], Z)

because [0, 1] ∈ Top∆ ⊂ Topk. From these observations, we obtain two left Quillen

equivalences GFlow(Top∆)→ GFlow(Topk) and GdTop(Top∆)→ GdTop(Topk). We
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obtain a diagram of left Quillen adjunctions

GFlow(Top∆)
⊂

//

��

GFlow(Topk)

��

GdTop(Top∆)
⊂

// GdTop(Topk)

which is commutative because the G-flows {0} and Glob(D) of GFlow(Top∆) are taken

to the same multipointed d-space of GdTop(Topk) by Appendix B. Using the two-out-

of-three property, we obtain that the Quillen adjunction

MG
! ⊣MG : GFlow(Topk) ⇆ GdTop(Topk)

is a Quillen equivalence. Let X be a q-cofibrant object of GdTop(Topk). Then X ∈

GdTop(Top∆). By Corollary 7.9, there is the isomorphism MG
! (M

G(X)) ∼= X . Let X be

a q-cofibrant object of GFlow(Topk). Then X ∈ GFlow(Top∆). By Theorem 7.6, there

is the isomorphism X ∼= MG(MG
! (X)).

At this point, it is legitimate to ask whether the main results of the companion paper

[14] are valid for k-spaces. The answer is that they are. The main tool of [14] is the Quillen

equivalence lim
−→

: [Gop,Top∆]0 ⇆ Top∆ : ∆Gop proved in [12, Theorem 7.6]. There is the

commutative diagram of left Quillen adjoints

[Gop,Top∆]0 //

��

Top∆

��

[Gop,Topk]0 // Topk.

All left Quillen adjoints except maybe the bottom horizontal one are left Quillen equiva-

lences. Therefore the bottom horizontal one is a left Quillen equivalence as well.

As a conclusion, most of the results, but not all, of this paper and of the companion

paper [14] are still valid for k-spaces. However, there is no known proofs avoiding to use

∆-generated spaces.
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