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Response modes computed via linear resolvent analysis of a turbulent mean-flow field
have been shown to qualitatively capture characteristics of the observed turbulent co-
herent structures in both wall-bounded and free shear flows. To make such resolvent
models predictive, the nonlinear forcing term must be closed. Strategies to do so include
imposing self-consistent sets of triadic interactions, proposing various source models, or
through turbulence modelling. For the latter, several investigators have proposed using
the mean-field eddy viscosity acting linearly on the fluctuation field. In this study, a data-
driven approach is taken to quantitatively improve linear resolvent models by deducing
an optimal eddy-viscosity field that maximizes the projection of the dominant resolvent
mode to the energy-optimal coherent structure educed using spectral proper orthogonal
decomposition (SPOD) of data from high-fidelity simulations. We use large-eddy simula-
tion databases for round isothermal jets at subsonic, transonic, and supersonic conditions
and show that the optimal eddy viscosity substantially improves the agreement between
resolvent and SPOD modes, reaching over 90% agreement at those frequencies where the
jet exhibits a low-rank response. We then consider a fixed model for the eddy viscosity
and show that with the calibration of a single constant, the results are generally close to
the optimal one. In particular, the use of a standard Reynolds-Averaged-Navier-Stokes
(RANS) eddy-viscosity resolvent model, with a single coefficient, provides substantial
agreement between SPOD and resolvent modes for three turbulent jets and across the
most energetic wavenumbers and frequencies.

1. Introduction
Resolvent analysis (also known as input/output analysis) determines a volumetric

distribution of forcing in the frequency domain that gives rise, when acting in a time-
invariant flow, to the most amplified linear response, typically measured in terms of its
total kinetic energy. It is an important tool in stability and transition analysis (Trefethen
et al. 1993; Farrell & Ioannou 1993; Schmid et al. 2002; Jovanović & Bamieh 2005),
and has more recently been proposed as a reduced-order model of coherent structures
in fully-developed turbulence (McKeon & Sharma 2010; Hwang & Cossu 2010b). In
the latter context, resolvent analysis can be derived by partitioning the Navier–Stokes
equations into terms that are linear and nonlinear with respect to perturbations. Such
a rearrangement of the equations is exact, and the equations may be explored without
recourse to any further modeling. With varying degrees of formality, similar approaches
were proposed in the past (Malkus 1956; Michalke 1971; Crighton & Gaster 1976; Butler
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& Farrell 1992), but increases in computer power that speed up the singular value
decomposition (SVD) of the linear operator using direct LU decomposition (multi-frontal
algorithms for sparse systems) have allowed a detailed characterization of the resolvent
spectrum in several turbulent, canonical wall-bounded (Hwang & Cossu 2010a,b; McKeon
& Sharma 2010; Sharma & McKeon 2013; Moarref et al. 2013) and free shear flows (Jeun
et al. 2016; Schmidt et al. 2018).

At those frequencies where the dominant singular value is significantly larger than
the subdominant ones (which we refer to as low-rank behavior), the dominant modes
are qualitatively similar to coherent modes extracted from data (Schmidt et al. 2018).
However, when the response is not low rank, a non-trivial structure of the nonlinear
forcing terms may lead to discrepancies between resolvent and observed modes. Thus, it
is necessary to model the nonlinear forcing to attain resolvent analyses that are quan-
titatively predictive. Previous studies have considered several approaches for modeling
the nonlinear forcing in linear analyses. These include empirical models (Bechara et al.
1994; Tam & Auriault 1999; Cavalieri et al. 2011; Cavalieri & Agarwal 2014; Towne et al.
2017), estimation given partial statistics of the response (Zare et al. 2017; Towne et al.
2020; Martini et al. 2020), and/or the use of a turbulent, or eddy, viscosity. An eddy
viscosity may be motivated by concepts underlying the triple decomposition (Reynolds
& Tiederman 1967; Reynolds & Hussain 1972), which identifies the Reynolds stresses as
acting on the coherent fluctuations (from both the coherent and incoherent fluctuations),
even though the phase average used to define the coherent part of the turbulent-viscosity
field is ambiguous in unforced turbulent flows. Many studies have applied eddy-viscosity
models in the wall-bounded turbulence literature (Del Alamo & Jimenez 2006; Cossu
et al. 2009; Pujals et al. 2009; Hwang & Cossu 2010a,b; Hwang 2016; Vadarevu et al.
2019; Hwang & Eckhardt 2020) either through implementation of the Cess (1958) model
or by estimating the eddy-viscosity field via the Reynolds stresses and the mean shear
rate of strain. Similarly, global stability analyses have applied eddy-viscosity models to
identify and/or control forced or self-sustained resonances in transitional and turbulent
flows (Crouch et al. 2007; Meliga et al. 2012; Mettot et al. 2014; Sartor et al. 2014;
Semeraro et al. 2016a; Tammisola & Juniper 2016; Rukes et al. 2016; Oberleithner et al.
2014). These studies implemented eddy viscosity on an ad hoc basis, citing improved
qualitative agreement or improved integrated energy-densities.

In a more quantitative sense, eddy-viscosity enhanced linear models have also proven
useful for assimilating known data to reconstruct observed energy spectra and mean-flow
quantities. Moarref & Jovanović (2012) showed that a data-driven, white-in-time forcing
could reproduce the DNS-based turbulent energy spectrum and, similarly, Illingworth
et al. (2018) could match DNS energy spectra using time-resolved velocity measurements.
More recently, Towne et al. (2020) showed that incorporating an eddy-viscosity model
led to accurate estimates of space-time statistics using partially known data from DNS.
Finally, Pickering et al. (2020b) used an eddy-viscosity enhanced resolvent model to
reconstruct the large-eddy simulation (LES) acoustic field of transonic and supersonic
turbulent jets at a significantly lower rank when compared to their non-eddy-viscosity
enhanced computations. Other approaches have implemented eddy-viscosity fields to
develop self-consistent models, such as Yim et al. (2019) or Hwang & Eckhardt (2020),
where the former study coupled a harmonically forced, quasi-linear resolvent analysis
with RANS equations, citing eddy viscosity as a necessary link between the coherent and
incoherent perturbation dynamics.

Although the utility of eddy-viscosity enhanced linear models for turbulent modeling
and control has become increasingly apparent, a quantitative assessment of their effect
on turbulent structures is lacking; even more, it is unclear which statistics turbulence
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models should seek to predict. One appealing target is modes educed by spectral proper
orthogonal decomposition (SPOD), as these modes optimally reconstruct the turbulent
kinetic energy and represent space-time coherent structures (Towne et al. 2018). In fact,
the SPOD has a theoretical connection with resolvent analysis. Towne et al. (2018)
showed that if the resolvent forcing modes, at a given frequency and wavenumber, are
mutually uncorrelated, then the resolvent response modes are identical to the SPOD
modes. Likewise, discrepancies between the SPOD and resolvent modes imply correlated
forcing modes.

Morra et al. (2019) applied a similar line of thinking by including an eddy viscosity
in their resolvent analysis of turbulent channel flow, showing that the resulting resolvent
modes were in greater agreement with the SPOD modes educed from high-fidelity
simulation data than resolvent analysis using only molecular viscosity. We extend this
approach to turbulent jets, but consider a more general framework. The central question
we ask is: how well can the inclusion of an eddy-viscosity model in the resolvent operator
approximate the correlations of the forcing cross spectral density tensor? In this approach,
an ideal model would render any remaining forcing as uncorrelated, meaning that the
resolvent and SPOD modes coincide. We therefore define a data-informed variational
problem that seeks an optimal eddy-viscosity field that maximizes the projection of the
first SPOD mode on the first resolvent mode. We then show that we can achieve nearly
optimal projections using standard eddy-viscosity models, including one directly inferred
from a corresponding Reynolds-Average Navier-Stokes (RANS) simulation.

The work presented here is also relevant to a broader debate taking place regarding the
interpretation of resolvent analysis. Since we can define the resolvent operator from the
full nonlinear equations without introducing approximations or closures, it is attractive
to proceed without introducing ad hoc models such as eddy viscosity, since we can
still consider the framework exact. With a minor caveat (i.e. while exact, the resolvent
decomposition is not necessarily unique as it can depend on the choice of dependent
variables used to express the governing equations (Karban et al. 2020)), this implies
that the forcing terms are physically interpretable (i.e. measurable) quantities. This
perspective is, in our opinion, valuable, and may be pursued alongside efforts (such
as the present work) aimed at empirically modeling the forcing. However, there is a
subtlety that confounds the separation between “exact” and “modeled” resolvent analyses:
namely, it may not be possible to compute, with meaningful accuracy, the exact resolvent
modes in high Reynolds number flows, particularly when the mean flow is two- or three-
dimensional. The fine-scale structure of the modes can require resolutions similar to
DNS, and inversion of the resulting linear systems for singular value decomposition can
be prohibitive. A survey of resolvent analyses conducted to date on multidimensional base
flows shows that a variety of regularizations of the resolvent operator have been used to
reduce the computational burden. By regularizations, we mean linear modifications to
the operator that, whether through physical or numerical justification, provide results
that are free from numerical artifacts or which more closely resemble observed quantities.
These include the use of eddy-viscosity models (as discussed at length above), fourth-
order numerical filters (Jeun et al. 2016), effective Reynolds numbers (Schmidt et al.
2018), and linear damping (Yeh & Taira 2019).

From a more general perspective, the present work also has a connection to the building
of data-augmented turbulence models (Duraisamy et al. 2019). Here, we specifically target
the modeling of unsteady features (Wang et al. 2018; Maulik et al. 2019) and the optimal
eddy-viscosity fields found, at each frequency-wavenumber pair, which are analogous to
field-inversion steps (also based on variational data-assimilation methods, Foures et al.
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case Mj Rej
p0
p∞

T0
T∞

ncells ∆ta∞/D ∆St

subsonic 0.4 4.5× 105 1.117 1.03 15.9× 106 0.2 0.049
transonic 0.9 1.01× 106 1.7 1.15 15.9× 106 0.2 0.022
supersonic 1.5 1.76× 106 3.67 1.45 31× 106 0.1 0.026

Table 1: Parameters, sampling rate, and frequency resolution for the LES.

(2014); Parish & Duraisamy (2016)) that assist machine learning techniques in generating
eddy-viscosity models from mean-flow quantities.

We organize the paper as follows. In § 2 we outline the governing equations, resolvent
analysis, and SPOD. In § 3 we discuss the optimization framework developed to match, or
align, SPOD and resolvent modes, and the specific eddy-viscosity models examined. § 4
provides the resulting resolvent mode shapes found via the four eddy-viscosity models and
§ 5 analyzes the associated optimal eddy-viscosity fields. In § 6 we show a favorable impact
of the eddy-viscosity models on the subdominant resolvent modes and then conclude the
analysis in § 7 by assessing the sensitivity of the RANS eddy-viscosity model. In this
final section, we ultimately find a frequency independent RANS eddy-viscosity field that
performs well for three turbulent jets (i.e. subsonic, transonic, and supersonic) and their
most energetic frequencies (St ∈ [0.05, 1]) and azimuthal wavenumbers (m ∈ N ⊂ [0, 5]).

2. Methods
The LES database, resolvent analysis, and SPOD were described in Schmidt et al.

(2018) and Towne et al. (2018). For brevity, we only recall the main details here.

2.1. Large Eddy Simulation database
The flow solver Charles was used to compute the LES databases, including subsonic

(Mach 0.4), transonic (Mach 0.9), and supersonic (Mach 1.5) cases; Brès et al. (2017)
contains the details on the numerical method, meshing, and subgrid-models. Experiments
conducted at PPRIME Institute, Poitiers, France were used to validate the Mach 0.4 and
0.9 jets (Brès et al. 2018). Table 1 provides a summary of parameters for the three jets
considered. Parameters include the Reynolds number based on diameter Rej = ρjUjD/µj
(where subscript j specifies the value at the centerline of the jet nozzle exit, ρ is density,
µ is viscosity) and the Mach number, Mj = Uj/aj , where aj is the speed of sound. The
simulated Mj = 0.4 jet corresponds to the experiments in Cavalieri et al. (2013); Jaunet
et al. (2017); Nogueira et al. (2019) with the same nozzle geometry and similar boundary-
layer properties at the nozzle exit. Throughout the manuscript, reported results are non-
dimensionalized by the mean jet velocity Uj , jet diameter D, and dynamic pressure ρjU2

j .
We report frequencies in Strouhal number, St = fD/Uj , where f is the frequency.

Each database comprises 10,000 snapshots separated by ∆ta∞/D, where a∞ is the
ambient speed of sound, and is interpolated onto a structured cylindrical grid x, r, θ ∈
[0, 30] × [0, 6] × [0, 2π], where x, r, θ are streamwise, radial, and azimuthal coordinates,
respectively. Variables are reported by the vector

q = [ρ, ux, ur, uθ, T ]T , (2.1)

where ux, ur, uθ are the three velocity components, and a standard Reynolds decompo-
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sition separates the vector into mean, q̄, and fluctuating, q′, components

q(x, r, θ, t) = q̄(x, r) + q′(x, r, θ, t). (2.2)

2.2. Resolvent analysis
We start with the nonlinear flow equations of the form

∂q

∂t
= F (q), (2.3)

where F is the time-independent compressible Navier-Stokes operator (plus continuity
and energy). Substituting equation (2.2) for q and separating terms linear in state
perturbations, q′, to the left-hand side gives

∂q′

∂t
−A(q̄)q′ = f(q̄, q′), (2.4)

where

A(q̄) =
∂F

∂q
(q̄) (2.5)

is the linearized flow operator (provided in Appendix B) and f contains the nonlinear
terms and any additional external inputs (e.g. environmental noise or perturbations at
the boundary).

For the round, statistically-stationary turbulent jets we consider, equation (2.4) is
Fourier transformed both temporally and azimuthally to the compact expression

(iωI−Am)qm,ω = fm,ω, (2.6)

where ω = 2πSt is the frequency and m represents the azimuthal wavenumber. We can
then rewrite equation (2.6) by defining the resolvent operator, Rω,m = (iωI −Am)−1,

qm,ω = Rm,ωfm,ω, (2.7)

and introduce the compressible energy norm (Chu 1965) via the matrix W ,

〈q1, q2〉E =

∫ ∫ ∫
q∗1diag

(
T̄

γρ̄M2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)T̄M2

)
q2rdrdxdθ = q∗1Wq2, (2.8)

to the forcing and response, where W = Wf = Wq. The resolvent modes under this
norm are then found by taking the singular value decomposition of the weighted resolvent
operator,

R̃m,ω = W 1/2
q Rm,ωW

−1/2
f = Ũm,ωΣm,ωṼ

∗
m,ω, (2.9)

where the diagonal matrix Σm,ω contains the ranked gains and the columns of Um,ω =

W
−1/2
q Ũm,ω and Vm,ω = W

−1/2
f Ṽm,ω contain the response and forcing modes, respec-

tively. These modes are orthonormal in the energy norm, equation (2.8),

U∗m,ωWUm,ω = V ∗m,ωWVm,ω = I, (2.10)

and recover the resolvent operator from equation (2.7) as,

Rm,ω = Um,ωΣm,ωV
∗
m,ωW . (2.11)

For the resolvent analysis presented here, just as in Schmidt et al. (2018), the above
equations are discretized in the streamwise and radial directions with fourth-order
summation by parts finite differences (Mattsson & Nordström 2004), while the polar
singularity is treated as in Mohseni & Colonius (2000) and non-reflecting boundary
conditions are implemented at the domain boundaries.
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2.3. Spectral Proper Orthogonal Decomposition
SPOD, similar to space-only proper orthogonal decomposition (POD) and originally

shown by Lumley (1967, 1970), determines an optimal (i.e. in terms of energy) set of
orthogonal modes to describe a dataset, but unlike space-only POD, produces modes
that express both spatial and temporal correlation in the data. Like dynamic mode
decomposition, SPOD modes are computed at unique frequencies. However, through
appropriate averaging, SPOD naturally ranks modes by energy and optimally accounts
for the statistical variability of turbulent flows (Towne et al. 2018). Thus, the associated
SPOD modes provide the ideal measurement tool to assess modes computed via resolvent
analysis.

Decomposing the LES database Q, where Q represents the temporal ensemble of per-
turbations (q′) found by applying the standard Reynolds decomposition, in the azimuthal
and temporal dimensions via the discrete Fourier transform gives the decomposed data
matrices, Q̂m,ω. Multiplying the decomposed matrices, at a particular frequency and
azimuthal wavenumber, by their complex conjugate give the cross-spectral density

Sm,ω = Q̂m,ωQ̂
∗
m,ω, (2.12)

to which we solve the SPOD eigenvalue problem presented by Lumley (1967, 1970)

Sm,ωWΨm,ω = Ψm,ωΛm,ω. (2.13)

The SPODmodes form the columns of Ψm,ω, ranked by the diagonal matrix of eigenvalues
Λm,ω = diag(λ1, λ2, ..., λN ). The modes are orthonormal in the norm 〈·, ·〉E , and satisfy
Ψ∗m,ωWΨm,ω = I. As a result, expansion of the cross-spectral density tensor gives,

Sm,ω = Ψm,ωΛm,ωΨ
∗
m,ω. (2.14)

In this study, we perform all SPOD computations with a Hamming window and realiza-
tion sizes of 256 snapshots with 50% overlap, resulting in 78 independent realizations.

To avoid ambiguity in referring to computed SPOD and resolvent modes, we use the
following notation for the rest of the manuscript. First, all computed mode’s subscripts
m,ω are dropped, but referenced when necessary in the text. Second, ψn represents
the n-th most energetic SPOD mode, while vn and un denote the resolvent forcing and
response, respectively, that provide the n-th largest linear-amplification gain between vn
and un. Finally, we use the notation ψ1 : ux when referring to specific components of
each mode, as shown here with streamwise velocity.

2.4. Using SPOD to inform resolvent analysis
As SPOD provides the optimal description of the second order flow statistics, we wish

to use this decomposition to inform our resolvent approach to match such statistics.
The connection can be made through multiplication of equation (2.7) by its complex
conjugate and then applying the expectation operator to present the relation between
the CSD tensors of the forcing and response through the resolvent operator,

Sqq = E[qq∗] = E[Rff∗R∗] = RSffR
∗. (2.15)

If q is projected onto the SPOD modes and f is projected onto the input resolvent modes,
β = V ∗Wf , where the vector β is the projection coefficients, then we may write

ΨΛΨ∗ = UΣSββΣU
∗, (2.16)

which highlights that if the forcing coefficients are uncorrelated (Sββ = Λβ ) then the
resolvent modes would be equivalent to the SPOD modes (Towne et al. 2018). Conversely,
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Turbulence model µT form Optimal parameter LES data used Abbreviation

Baseline* 1/ReT = 3.3̄×10−5 – – Baseline
Optimal field µT (x) µT (x) Ψ Opt. µT
Mean-flow consistent cµT (x) c q Mean µT
RANS cρCµk

2/ε c – RANS µT
Turbulent Re 1/ReT 1/ReT – ReT,Opt

Table 2: Turbulence models investigated in this study. The baseline* case refers to the
results of Schmidt et al. (2018).

when the resolvent and SPOD modes are not identical, which is the case in our study,
the forcing coefficients are correlated and this correlation must be modeled.

Rather than pursuing a direct model of the forcing coefficients, we take an alternative
perspective that asks whether a modified resolvent operator, RT , can match one or more
of the dominant resolvent and SPOD modes. A trivial solution would be to define the
operator by the SPOD expansion, i.e. RT = Ψ , but this operator then corresponds to
the (discretization of any) general (non-local) linear operator, rather than a specific
partial differential equation (PDE). Instead, a practical model can be obtained by
posing a modified PDE of the linearized governing equations with one or more unknown
coefficients, and then finding the best choice of coefficients such that the resolvent and
SPOD modes are optimally matched. We propose such an approach in the next section
by exploiting an eddy-viscosity model, and develop an optimization procedure that fits
the parameters to align one, or more, of the most dominant resolvent and SPOD modes.

To the extent that the modified resolvent operator achieves alignment of any one of its
output modes with a specific SPOD mode, we may directly interpret the corresponding
diagonal entry of Sββ as the forcing amplitude, λβ , required to reproduce the SPOD
mode amplitude λ, through the resolvent gain, σ2. In other words,

λn = σ2
nλβn for any n where un = ψn, (2.17)

independent of whether the other modes are aligned (as other modes are orthogonal).

3. Models considered
We now add an eddy-viscosity model to the linearized governing equations (2.4). We

follow the ad hoc model used in (amongst other references) Del Alamo & Jimenez (2006)
and Hwang & Cossu (2010b), which is typically justified by extending eddy viscosity
from its traditional use in modeling the mean Reynolds stresses to modeling the effect of
the “background turbulence” on the coherent motion.

The perturbation equations including the eddy viscosity are, with the replacement
µ 7→ µeff = µj + µT , identical to the original linearized equations, provided one accounts
for the (spatial) variability of µT (equations provided in Appendix B). There remains an
unknown forcing that is the residual between the original forcing and the “coherent” part
that is is modeled by the eddy viscosity. Unfortunately, the residual forcing no longer
possesses its exact physical interpretation as the nonlinear interactions of resolved modes.
However, the advantage is that the resulting response modes can significantly reduce the
rank of the problem and lead to a residual forcing CSD that is tractable to model when
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compared to the forcing CSD of the exactly rearranged equations (Pickering et al. 2020b;
Towne et al. 2020).

In what follows, we refer to the modified linear operator with µT 6= 0 as AT and note
that the operator depends on the chosen field for µT , which, upon discretization becomes
a vector µT . Since we assume that µT is steady and axisymmetric, the operators have a
similar temporal/azimuthal Fourier transform that we denote ATm.

We now consider four models for the eddy-viscosity field. The first model directly
optimizes the eddy-viscosity field to maximize agreement between the dominant resolvent
and SPOD modes. The second model fits an eddy viscosity to the LES mean flow
by minimizing the residual in the steady RANS equations. The third model uses an
independently computed eddy-viscosity field from a RANS k − ε model. Finally, we
consider a simpler constant eddy-viscosity model based solely upon a turbulent Reynolds
number.

For brevity, we refer to the modes computed with the above eddy-viscosity models
as EVRA (eddy-viscosity resolvent analysis) modes, while modes termed “baseline” refer
to those computed by Schmidt et al. (2018). We chose this study as a reference for
its extensive comparison of resolvent and SPOD modes across all three turbulent jets
and many wavenumbers and frequencies. In the baseline study, they chose an effective
Reynolds number of ReT = 3 × 104, a value that is an order of magnitude smaller
than the molecular Reynolds number, yet not consistent with the expected magnitude
of an eddy viscosity (i.e. ReT << 3 × 104) . Instead, we regard this intermediate value
as a regularization of the resolvent operator. Table 2 summarizes the various models
investigated.

For exploratory purposes, we find an eddy-viscosity field that best matches the (so
modified) resolvent operator to the measured SPOD modes independently for each
frequency and azimuthal mode. The purpose is to gauge the sensitivity of the eddy
viscosity value needed to model the different frequencies and azimuthal modes, and should
not be interpreted as a proposal for a frequency-dependent eddy viscosity.

Parenthetically, within the following optimization framework we can consider any
turbulence model or regularization based on mean-flow quantities. A further example
is given in appendix A, where we consider a linear damping model recently proposed for
resolvent analysis of unstable base flows (Yeh & Taira 2019). In the appendix, we find
that the linear damping improves agreement, but the performance is generally inferior
to the eddy-viscosity models. This is likely due to the monolithic damping effect over
all regions and wavenumbers, whereas the eddy-viscosity methods directly addresses the
effect of the Reynolds stresses both in regard to specific regions of the flow and the
approach’s ability to account for spatial gradients in the eddy-viscosity field.

3.1. Optimal eddy-viscosity field
Here we develop an optimization, computed independently for each frequency and

azimuthal mode, that finds the eddy-viscosity field that is optimal (i.e. the upper bound)
in matching the leading resolvent and SPOD modes. To find the analytical expression
that determines the sensitivity of mode agreement to an eddy-viscosity field, we use a
Lagrangian technique analogous to Brandt et al. (2011) that accounts for the non-modal
behavior of the resolvent operator. This technique couples constraints from the governing
equations, resolvent analysis, a normalization, and a cost function (agreement of the
leading SPOD and resolvent modes), into a Lagrangian functional for whose stationary
point provides the desired maximum.

To build the Lagrangian functional, we begin with the forward equation (2.6) and
substitute L with LT , the linear operator that includes an eddy-viscosity model. The
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singular value / singular vector (v1,u1, σ1) as defined in (2.11) is a solution of both the
forward equation (2.6),

v1 = LTu1, (3.1)

where v1 replaces f as the forcing and u1 replaces q as the associated response, and the
resolvent eigenvalue problem,

Wu1 = σ2
1L
∗
TWv1. (3.2)

The above resolvent eigenvalue solution is found by taking the energy norm of equation
(2.7) and dividing by the forcing energy to give

u∗1Wu1

v∗1Wv1
= σ2

1 =
v∗1R

∗
TWRTv1

v∗1Wv1
. (3.3)

Rearranging and eliminating v∗n we arrive at

R∗TWRTv1 = σ2
1Wv1, (3.4)

where replacing RTv1 with u1 and multiplying both sides by R−∗T = L∗T recovers
equation (3.2). Finally,we define a normalization constraint via,

〈u1,u1〉E = u∗1Wu1 = 1. (3.5)

The last component of the Lagrangian functional is the cost function,

J = u∗1Wψ1ψ
∗
1Wu1 − l2µ∗TMµT , (3.6)

where the first term, representing the primary objective, measures the squared projection,
what we term the alignment or agreement, between the dominant SPOD mode, ψ1, and
the first resolvent mode, u1. The alignment measure, u∗1Wψ1, is squared to ensure the
cost function is real. For brevity, we denote the outer product of the dominant SPOD
mode as Ψ1 = ψ1ψ

∗
1 = Ψ∗1 . The cost function may also consider multiple resolvent/SPOD

modes by considering a (weighted if desired) sum of the squared alignment terms.
The second term, −l2µ∗TMµT , is a Tikhonov regularization that penalizes values of

µT that do not affect the alignment (high values of µT diminish the value of J ), with
M representing the cylindrical quadrature weights of the grid. As done in standard
regularization methods, the value of l2 is chosen high enough to remove the values of µT
in insensitive regions, but also sufficiently small to not interfere with the primary objective
(Hansen & O’Leary 1993). This penalization is effective at minimizing the eddy viscosity
in non-turbulent regions of the flow such as the far field. A substantial range of l2 values
(i.e. multiple orders of magnitude) removes negligible regions of the eddy-viscosity field
from the initial field without an observable drop in the primary objective, alignment
between u1 and ψ1.

We now formally construct the Lagrangian functional to include the cost function (3.6),
forward equation (3.1), the resolvent eigenvalue problem (3.2), and the normalization
constraint (3.5) to give,

L = u∗1WΨ1Wu1 − l2µ∗TMµT

− ũ∗1(LTu1 − v1)− ṽ∗1(Wu1 − σ2
1L
∗
TWv1)− σ̃1(u∗1Wu1 − 1) + c.c., (3.7)

where (ũ1, ṽ1, σ̃1) are Lagrange multipliers, σ̃1 is real-valued (as the corresponding
constraint is real), and c.c. is the complex conjugate. This results in a functional that
depends on seven variables,

L([u1,v1, σ1], [ũ1, ṽ1, σ̃1],µT ). (3.8)



10
Algorithm 1 Optimization

1: Initialize. Choose an initial eddy-viscosity/turbulence model and target SPOD mode.
2: while dJ /dµT 6= 0 do
3: Compute the EVRA mode(s).
4: Solve for the Lagrange multipliers.
5: Calculate the update direction, dJ /dµT .
6: Determine the optimal value of the step α by repeated evaluation of the cost

functional along the steepest ascent direction.
7: end while

Figure 1: Schematic of the optimization framework for determining the optimal eddy-
viscosity field that maximizes the alignment/agreement between computed resolvent
modes, u1, and educed SPOD modes, ψ1. Included graphics are from implementation of
the full-field eddy-viscosity model at St = 0.6, m = 0, and Mj = 0.4.

We can find the maximum of the cost function by finding the stationary point of the
entire functional (i.e. where variations with respect to each variable are zero). Stationarity
with respect to the Lagrange multipliers yields the state equations, which are by definition
satisfied, while stationarity with respect to the state variables yields:

∂L
∂u1

δu1 = (2WΨ1Wu1 −L∗T ũ1 −Wṽ1 − 2σ̃1Wu1)∗δu1 = 0 (3.9)

∂L
∂v1

δv1 = (ũ1 + σ2
1WLT ṽ1)∗δv1 = 0 (3.10)

∂L
∂σ1

δσ1 = (ṽ∗1L
∗
TWv1)∗δσ1 = 0, (3.11)

and the condition in the last equation may be simplified into ṽ∗1L∗TWv1 = ṽ∗1Wu1 using
equation (3.2). The stationary point is subsequently met by constructing the following
system of equations and solving for the Lagrange multipliers:−L∗T −W −2Wu1

W−1 LTσ
2
1 0

0 u∗1W 0

ũ1

ṽ1

σ̃1

 =

−2WΨ1Wu1

0
0

 . (3.12)

The upper left 2 × 2 block is degenerate due to the state equations (3.1) and (3.2) (the
couple, ũ1 = Wv1 and ṽ1 = −σ−2

1 u1, is in the null-space of this block) and the third
column and line regularizes this system. Combining the three equations, one can show
that σ̃1 = u∗1WΨ1Wu1, proving that σ̃1 is a real value.

A final variation is taken with respect to the eddy-viscosity, µT (which may be a scalar
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or vector quantity), providing the direction of gradient ascent for the eddy-viscosity field,

∂L
∂µT

δµT = −ũ∗1
(
∂LT
∂µT

δµT

)
u1 + σ2

1 ṽ
∗
1

(
∂L∗T
∂µT

δµT

)
Wv1 − 2l2µ∗TMδµT + c.c

(3.13)

=

(
dJ
dµT

)∗
MδµT . (3.14)

The gradient at the kth grid point is then:

dJ
dµT

∣∣∣∣
k

= M−1
km

(
−u∗1,jL∗m,ijũ1,i + σ2

1Wljv
∗
1,lLm,jiṽ1,i

)
− 2l2µT,k + c.c, (3.15)

where Lm,ij = limε→0
LT+εδµm,ij−LT,ij

ε , δµm being a null vector except at the mth

position where it is equal to 1. This tensor may be obtained either through automatic
differentiation of LT with respect to µT or by finite differences. Full storage of such
tensors is not an issue when finite differences, finite volumes, or finite elements are used
for the spatial discretization as the resulting tensors are extremely sparse.

The updated optimization parameter is then:

µ
(k+1)
T = µ

(k)
T + α

dJ
dµT

, (3.16)

where k is the iteration number and α is a step size determined through a root finding
algorithm or a line search. If multiple SPOD /resolvent modes are considered for the
optimization, then one has to solve equation (3.12) for each couple [Ψn, (vn,un, σn)]
and the total gradient dJ

dµT
is the sum of each individual gradient, while the line search

for α is performed considering the full cost functional. Although considering multiple
modes is theoretically straightforward (and we present one example in § 6), there are
two practical issues. Each additional mode brings further complexity to the gradient,
increasing computation time, and the quality of SPOD modes, Ψn, become increasingly
noisy with n, thus rendering gains via the optimization as marginal. We discuss the
latter issue in more detail throughout the manuscript. Figure 1 presents a schematic
of the above optimization framework, including graphical examples from the optimal
eddy-viscosity field case at St = 0.6, m = 0, and Mj = 0.4.

For some cases, the optimization step imparts a region of negative effective viscosity
(i.e. −µT > µj) presenting a challenge in both the physical interpretation and the
numerical stability of the resolvent operator. However, negative eddy viscosity is not a
unique concept to the algorithm presented. Literature surrounding eddy-viscosity models
used in RANS and LES, where the eddy and effective viscosities are identical, attribute
physical interpretations of negative eddy-viscosity to backscattering of turbulent energy,
which, in many simulations, results in unstable simulations (Ghosal et al. 1995). Common
treatment of a negative eddy viscosity has included filtering operations, ensemble aver-
aging in homogeneous directions, and ad hoc clipping of the eddy-viscosity field (Vreman
2004), while inferences of the eddy-viscosity field via a Boussinesq approximation of data
are often regularized to remove negative regions (e.g. Semeraro et al. (2016b)). Here, we
similarly elect to remove any negative effective viscosity using a simple clipping strategy
by setting any negative regions to the molecular value. Although a reduction of effective
viscosity below the molecular viscosity is theoretically possible, we found that permitting
the optimization to do so either led to numerical instabilities or negligible improvements
in alignment.

The topology of the proposed cost function is complex, as µT involves many degrees of
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freedom, and our optimizer may return a local rather than global maximum. Therefore,
a complete assessment of the sensitivity of initial conditions or demonstration of a global
maximum is intractable, but the relative insensitivity of the results to initial guesses
and the fact that no other considered method outperforms the full optimization (shown
later in figure 4) provides confidence in the robustness of the maxima achieved. For all
of the results presented here, we use the optimal constant eddy-viscosity field results
(introduced in § 3.4) as the initial condition for the full-field optimizations.

Finally, the above optimization is derived considering the full (perturbation) state as
the output. The formulation is similar if the input and output spaces are restricted, as
shown in Appendix C. Such an extension is of particular use for experiments, or coarse
simulations, where observed data may be sparse.

3.2. Mean-flow consistent eddy-viscosity model
For many experimental and numerical datasets, including the LES databases used

here, an eddy-viscosity field is absent. We circumvent this issue by finding the eddy-
viscosity field that minimizes the error to which the mean flow satisfies the (zero frequency
and axisymetric wavenumber) linearized Navier-Stokes equations, supplemented with an
eddy-viscosity model, provided in Appendix B. To do so, we find an eddy-viscosity field
that minimizes the residual f given by

LTq = f . (3.17)

Thus we define the cost function,

J = −f∗Wf , (3.18)

and develop a Lagrangian functional with the forward equation as the only additional
constraint to give

L = −f∗Wf − ũ∗(LTq − f). (3.19)
Variations with respect to the residual are

∂L
∂f

δf = (−2Wf + ũ)∗δf = 0, (3.20)

and we may directly solve for the Lagrange multipliers as,

ũ = −2Wf . (3.21)

Then by taking variations with respect to the eddy-viscosity field gives,

∂L
∂µT

δµT = −2(Wf)∗
(
∂LT
∂µT

δµT

)
q. (3.22)

Similar to equation (3.15), we obtain the update step:

dJ
dµT

∣∣∣∣
k

= −2M−1
kmqjLm,ijWilf l, (3.23)

and find the field via a line search. These steps are described in greater detail in the
preceding subsection § 3.1. Figure 2 (a) provides the eddy-viscosity field that optimally
minimizes the residual of the mean-flow solution. The associated residual field for this
model reduced errors to approximately 10% of the original residual field, with the
exception where the shear layer is thin near the nozzle. The thin shear-layer region
improved by only ≈ 50%, but as shown later in the manuscript, modes in this region are
generally less sensitive to the eddy-viscosity field.
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Figure 2: (a) Mean-flow consistent eddy-viscosity model computed at zero frequency and
azimuthal wavenumber. (b) Eddy-viscosity field computed via a RANS simulation for
the Mj = 0.4 jet, c = 1.

We refer to this model as the mean-flow consistent eddy-viscosity model, and we
optimally tune this field at each frequency by introducing the coefficient, c, µT =
cµT,Mean. Our interest in the value of c is not to propose a functional of its frequency
dependence (or assign to it a physical meaning), but to measure and observe the overall
variation and help determine whether a frequency independent coefficient might suffice.

3.3. RANS-based eddy-viscosity field
We compute steady-state RANS solutions for each case to assess the applicability of

the associated eddy-viscosity field for resolvent analysis. For simplicity, we perform the
RANS computations in Fluent. The 2D axisymmetric grid extends 40 diameters in the
streamwise directions and 20 diameters in the radial direction with grid spacing mirroring
that of the interpolated LES grid scaled to be four times finer, giving 3×105 grid points.
We set the inlet boundary conditions to the base-flow profile from the LES simulations
and use the standard 2-equation k − ε model (Launder & Spalding 1983) for turbulence
modeling. Coefficients used for the model are variants of those suggested by Thies & Tam
(1996), with turbulent viscosity coefficient Cµ = 0.0874, dissipation transport coefficients
Cε1 = 1.4 and Cε2 = 2.02, turbulent Prandtl numbers for kinetic energy σk = 0.324 and
dissipation σε = 0.377, and the turbulent Prandtl number PrT = 0.422. However, the
standard κ − ε model provided in ANSYS does not incorporate the Pope (1978) and
Sarkar et al. (1991) correction terms used in Thies & Tam (1996), requiring a calibration
of the mean-flow quantities by introducing a scaling constant a to Cµ = 0.0874/a, σK =
0.324/a, and σε = 0.377/a.

RANS mean-flow quantities closely match those of the LES for each of the three
turbulent jets using values for a of 1.2, 1.3, and 1.575, for Mj = 0.4, 0.9, and 1.5,
respectively. While tuning of the constant a to match LES is not in the spirit of obtaining
a universal RANS model, we do so here to give the RANS-generated eddy-viscosity field
the best chance at being consistent with the LES results from which the SPOD modes
were educed. For a full assessment of the accuracy of RANS predictions for turbulent
jets, we refer the reader to Thies & Tam (1996); Georgiadis et al. (2006).

Figure 2 (b) presents the RANS-predicted eddy-viscosity field for the Mj = 0.4 jet,
and figure 3 shows near identical agreement with the mean LES streamwise flow. We
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Figure 3: Mean-flow profiles of both the Mj = 0.4 LES and RANS, where the RANS
simulation was tuned to best match the LES mean flow. (a) presents the streamwise
mean velocity at three radial locations, r/D = 0.25, 0.5, 1, versus streamwise
distance from the nozzle, while (b) gives the streamwise mean velocity at three streamwise
locations, x/D = 0.5, 5, 10, versus radial distance.

observe similar agreement in radial velocity, density, and turbulent kinetic energy, and
also find close agreement for the Mj = 0.9 and 1.5 jets; we do not show these results
for brevity. For determination of the optimal RANS-based eddy-viscosity field at each
frequency, we take the computed eddy-viscosity fields,

µT,RANS = ρCµ
k2

ε
, (3.24)

and introduce the coefficient, c, µT = cµT,RANS (just as in § 3.2). This final relation
underscores the difference between the traditional use of eddy viscosity with RANS
and ours via resolvent analysis. In the former context, eddy viscosity accounts for all
perturbations, while in resolvent analysis, the eddy viscosity is intended to model the
effect of nonlinear, triadic interactions and the background turbulence on the linear
structures. Thus, a coefficient of c < 1, for resolvent analysis, presents an eddy viscosity
that omits a fraction of the overall eddy-viscosity field. As will be shown, we find all
optimal values for c to be less than unity. This interpretation may also be applied to the
mean-flow consistent eddy-viscosity field presented in the previous sub-section.

3.4. Constant eddy-viscosity field

Finally, we consider a simple, constant eddy viscosity, µT = 1/ReT . We primarily
investigate this model because of its use in many turbulent jet studies that used a
Reynolds number based either upon the molecular viscosity (Jeun et al. 2016; Lesshafft
et al. 2019), on the order of 105−106, or through an effective turbulent viscosity (Garnaud
et al. 2013; Schmidt et al. 2018), on the order of 103−104. These, quite different, choices
inevitably provided discrepancies in amplification gains and mode shapes across each
study, particularly at low frequencies (i.e. St < 0.3 for m = 0) – showing that the
Reynolds stresses have a substantial impact on resolvent analyses of turbulent jets. Here,
we find the optimal ReT at each frequency and azimuthal mode number by a line search.
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4. Optimal SPOD and resolvent mode alignment
In this section, we present modes predicted by the various EVRA models presented

in the previous section. We focus on the axisymmetric disturbances, m = 0, for the
Mj = 0.4 jet, and report results for other azimuthal modes and jet Mach numbers in
§ 7. We performed optimizations over the frequency range St ∈ [0.05, 1], resulting in the
alignment coefficients displayed in figure 4, with alignment defined as |ψ∗1Wu1|. This
metric not only represents how similar the spatial structures, represented as complex
eigenfunctions, are between the dominant resolvent and SPOD modes, but also measures
the similarity in distribution of energy amongst the five state variables. A value of 1
signifies perfect agreement, giving both identical agreement in structure and distribution
of energy in the state variables. Typically, in this metric, values of approximately 0.4
or greater show qualitative agreement, whereas values less than 0.4 have little visual
similarity.

Figure 4 (a) shows that throughout the frequency range considered, the alignments
improve considerably from the baseline case (constant eddy viscosity with ReT = 3×104).
The alignment is best for St > 0.3, which corresponds to the frequencies where the
jet has a strong, low-rank Kelvin-Helmholtz (KH) response (Schmidt et al. 2018), as
highlighted by figure 4 (b), presenting the spectra of the first five SPOD modes and their
95% confidence interval. For this region, St > 0.3, the baseline case gives reasonable (>
75% alignment) results, nonetheless, the eddy-viscosity models still improve the modes
to nearly perfect alignment. At lower frequencies, St 6 0.3, we find the most dramatic
increase in alignments, from approximately 10% to 80%. These substantial improvements,
at St 6 0.3, coincide with a change of mode type, from KH to Orr (Schmidt et al.
2018), a viscous, non-modal instability mechanism sensitive to Reynolds number (with
rapidly increasing amplification as Reynolds number increases), that dominates the non-
optimized, low-frequency and subdominant regions of the resolvent spectrum for the
Mj = 0.4 jet. We also find that the optimal eddy-viscosity field provides the greatest
alignment among the models, which is at least suggestive that the optimization achieved
a global maximum.

Surprisingly, the other eddy-viscosity models produce alignments close to the optimal
eddy-viscosity field. The constant eddy-viscosity is nearly optimal at lower frequencies
(Orr-type modes), whereas the RANS and optimal mean-flow eddy-viscosity models are
more nearly optimal at higher ones. We stress that in the optimal mean-flow, RANS, and
constant µT models, a different optimal value of the coefficient (i.e. c and ReT ) is used
at each frequency. We defer a discussion of the sensitivity of these coefficients to § 7.1.

Starting with the lowest frequency, St = 0.05, we now investigate the mode shapes
associated with the improved resolvent alignments achieved with the optimized eddy-
viscosity models. Figure 5 displays the real part of the fluctuating field for all state
variables for the dominant SPOD and resolvent modes, comparing resolvent results using
both the optimal eddy-viscosity field and the baseline case with constant ReT = 3× 104.
It is immediately apparent that the optimal eddy-viscosity resolvent mode can closely
match the observed mode shapes from SPOD for all variables (including the correct
distribution of energy), while the baseline resolvent mode bears little resemblance to the
SPOD modes for any of the variables.

Despite the increased alignment, there remains an obvious mismatch in u′θ between
the SPOD and resolvent modes, highlighting a statistical limitation to our approach.
For the axisymmetric wavenumber, m = 0, perturbations in the azimuthal velocity must
be zero. Both resolvent models meet this constraint, however, the SPOD mode does
not. One should then view the nonzero component in the SPOD mode as a statistical
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Figure 4: (a) Optimal alignments for all methods investigated including the baseline case,
ReT = 3× 104. (b) SPOD eigenvalue spectra of the first five modes for m = 0, including
the 95% confidence intervals and the modes associated with the Kelvin-Helmholtz and
Orr mechanisms.
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Figure 5: Real component of the fluctuating response state variables, q′ =
[ρ, ux, ur, uθ, T ], and pressure, p, at St = 0.05, m = 0. The columns display
SPOD (ψ1), optimal eddy viscosity (u1), and baseline (u1) modes from left to right,
respectively. Contours (���) are given by ±0.5||ψ1 : ·||∞ of the SPOD mode, where
· is the fluctuating variable in question (with ||ψ1 : ·||∞ values: [ρ, ux, ur, uθ, T, p] =
[2.8, 198.6, 46.0, 37.2, 1.2, 10.4]× 10−3).

error. Compared to the streamwise velocity, u′θ is about five times smaller in magnitude,
and lacks the coherent wavepacket structure of the other variables. The corresponding
u′θ contribution in the projection coefficient |ψ∗1Wψ1| is ≈ 0.08, bounding the physical
maximum of the optimization to |ψ∗1Wu1| 6 0.92 without considering additional error
in the other variables. We link these statistical errors to the weak low-rank behavior with
this frequency, where there is little eigenvalue separation between the dominant and
subdominant modes (Schmidt et al. 2018). We may then view the projection-coefficient
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Figure 6: Real component of the response pressure fluctuations (���, ±0.5||ψ1 : p||∞)
for St = 0.05 and St = 0.2 in the left and right columns, respectively. Row 1 presents the
dominant SPOD mode for which the optimization seeks to match. The following rows
present results for the baseline, optimal eddy-viscosity field, mean-flow consistent model,
RANS eddy-viscosity model, and the optimal turbulent Reynolds number.

value of 0.08 as a kind of error bar on the alignments produced by the optimal eddy-
viscosity field, as it is attempting to align to a mode shape that is (at this frequency) in
error by as much as about 10%.

The pressure field, a quantity of particular interest for jet noise, provides a relatively
simple representative mode shape for each case. We proceed by visualizing only the
fluctuating pressure component for the rest of the study, however, the projection coef-
ficients, |ψ∗1Wu1|, account for the full state results. Further, for all response pressure
modes presented, we see similar trends and improvements in all flow variables similar to
figure 5.

Figure 6 shows the pressure modes at two low frequencies, St = 0.05 and 0.2, and
compares the results for all considered eddy-viscosity models. The top row shows the
dominant SPOD mode from the LES, the second row gives the dominant resolvent mode
for the baseline case, and the remaining rows provide the four optimized models. At low
frequencies, the baseline resolvent analysis cannot capture the observed mode shapes,
while the optimized eddy-viscosity models have much better alignment with SPOD. The
EVRA models increase the projection coefficients by as much as 10-fold and display a
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Figure 7: Real component of the response pressure fluctuations for St = 0.6 and St = 1 in
the left and right columns, respectively. Rows present the equivalent methods as described
in figure 6.

wavepacket structure consistent with the SPOD mode. Orr-type modes dominate the
low-frequency (i.e. St < 0.3) baseline resolvent spectrum (Schmidt et al. 2018), and we
see that the eddy viscosity attenuates these modes in favor of a KH-like response that
peaks further upstream, consistent with the observed SPOD modes.

Proceeding to higher frequencies, figure 7 displays the dominant fluctuating pressure
modes for SPOD and the five EVRA models for St = 0.6 and 1. The baseline projection
coefficients are already high for these frequencies, but are further increased with the
eddy-viscosity models, reaching 96% for the optimal eddy viscosity. Here the differences
in the mode shapes are subtle, with the streamwise extent of the modes shortening
from the baseline case to better match the SPOD at both frequencies. At these higher
frequencies, the jet response is a clear, low-rank KH wavepacket (a modal, inviscid
stability mechanism), and it is thus unsurprising that the results are relatively insensitive
to the precise eddy-viscosity model. However, the improved alignment is a product of the
non-zero eddy-viscosity field, showing that a turbulence model is still important.

For St = 1, the optimized projection coefficient is falling compared to the St = 0.6
case. This is due to the emergence of Orr-type modes with similar energy as the KH
modes. When performing SPOD in limited domains near the nozzle exit, the modal, low-
rank KH response continues to dominate at much higher frequencies in the near nozzle
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Figure 8: The optimal parameters across St ∈ [0.05, 1] for (a) the optimal constant field
1/ReT , (b) optimal eddy-viscosity field model, (c) the mean-flow consistent model, and
(d) the optimal RANS model. The optimal eddy-viscosity field parameter shown is the
maximum value of the field at each frequency, ‖µT ‖∞, while the latter two models present
the optimal coefficient c. The associated alignments for each model/parameter are shown
in figure 4.

region (Sasaki et al. 2017), but when considering the global response, the KH response
becomes inferior, in energy, to the Orr response, which peaks further downstream.

5. Analysis of the optimized eddy-viscosity fields
The previous section shows that the EVRA approach results in substantial alignment

of the dominant resolvent and SPOD modes. In this section, we examine the optimal
parameters associated with the eddy-viscosity fields to investigate how the eddy viscosity
improved the alignment and to identify potential universalities in modeling coefficients.

5.1. Structure of the eddy-viscosity fields
For the constant eddy viscosity, RANS-based, and mean-flow consistent eddy-viscosity

fields, the optimization is over a single value, and we plot the optimal values as a function
of frequency (still for m = 0) in figure 8 (a,c,d) and the maximum value of the optimal
field in 8 (b). We investigated several other metrics for the optimal field and each metric
provided similar trends and therefore, we chose ‖µT ‖∞, as it gave the most intuitive
comparison against the other scalar quantities. For all models, the frequency dependence
of the values is similar, with three regions of interest: St ∈ [0.05, 0.3], St =∈ [0.3, 0.8],
and St ∈ [0.8, 1].

In the low frequency region, the baseline jet response comprises of spatially extensive
Orr-type modes that have a strong Reynolds number dependence, requiring a relatively
larger eddy viscosity to damp them. For St = 0.05 the ratio of the optimal effective
Reynolds number to the molecular Reynolds number is µT /µj ≈ 13, 500, a four order-
of-magnitude difference when compared to the molecular viscosity.

In the moderate frequency regime, where the baseline spectrum transitions from
the broadband, viscous Orr mechanism to the low-rank, inviscid KH mechanism, eddy
viscosity becomes less important, and we expect (confirming below, in § 7.1) insensitivity
to the overall value based on the relatively favorable alignment achieved in the baseline
case. As frequency increases, the responses transition back to a mix of KH and Orr-type
waves, with a progression towards broadband, viscous Orr modes at higher frequency.

At these higher frequencies, we see that the low-frequency dependence on inverse
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Figure 9: Comparisons of the optimal eddy-viscosity fields (i.e. full-field optimal, mean-
flow consistent, and RANS) and the associated dominant resolvent mode found via the
optimization for St = 0.2 and 0.6. Contours for all six eddy-viscosity fields are set from
0 to 3× 10−3.

effective Reynolds number resumes, similar to low the frequencies. Interestingly, this
trend shows that at higher frequencies ReT → Rej such that the effect of eddy viscosity
“turns-off” as frequency increases and the associated wavepacket wavelength becomes
small (i.e. approaching finer-scale turbulence), as expected on physical grounds.

Similar trends are observed for the mean-flow consistent and RANS eddy-viscosity
coefficients. For both eddy-viscosity fields, c is less than unity and only varies from 0.7 to
0.1 with a few exceptions. These values suggest that the optimal eddy-viscosity model is a
fraction of the total RANS or mean-flow consistent eddy-viscosity models that integrate
all perturbations.

For the full-field eddy-viscosity optimization, we stress that its primary purpose is
to determine what may be an upper bound for how well any eddy-viscosity model
could perform. Given that the alignments between the resolvent and SPOD modes
were not significantly higher for the optimized scheme than for the modeled eddy-
viscosity approaches (with optimal parameters), the detailed eddy-viscosity fields are
of lesser importance. Still, some aspects of the physics, such as the spatial locations
where Reynolds stresses become important for each frequency, are apparent in the
optimized fields. Figure 9 presents the optimized fields for two selected Strouhal numbers,
comparing them to both the RANS and mean-flow consistent eddy-viscosity fields scaled
by their optimal coefficient c at each frequency. In addition, the dominant resolvent mode,
computed with the displayed optimal-eddy-viscosity field, is shown for comparison with
the eddy-viscosity fields. The contours for the eddy-viscosity fields are set from 0 to the
maximum value of the St = 0.6 optimal eddy-viscosity field.

Overall, both frequencies present optimal eddy-viscosity fields that are complex, un-
surprising given the ability of the optimization to choose any eddy-viscosity field, con-
strained only by the structure of the equations and positivity. The optimal eddy-viscosity
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fields pinpoint the locations where linear structures break down (i.e. where nonlinear-
ities/Reynolds stresses become important) and inform what features an eddy-viscosity
model must include. In both cases, the optimization removes viscosity from the potential
core (i.e. the interior region of the jet relative to the critical layer), when compared to the
initial guess, while increasing the turbulent viscosity just outside of the critical layer. The
increase in eddy-viscosity is most often observed just downstream of the peak amplitude
of the wavepacket, coinciding with each wavepacket’s decay downstream.

Although not entirely clear from figure 9, these findings are reasonably consistent with
each of the modeled eddy-viscosity fields when restricting the view to the region where
the resolvent/SPOD mode has significant amplitude. We can see that both the RANS and
mean-flow consistent eddy-viscosity fields present similar features as the optimal field,
explaining the ability of each model to achieve nearly optimal results. We will show in the
following section how such features also explain the ability of the RANS and mean-flow
consistent models to predict the subdominant modes, which require further turbulence
modeling downstream.

6. Alignment of subdominant modes
Although the optimization presented only aligns the dominant SPOD and resolvent

modes, subdominant modes are also of interest, particularly as they are necessary to
reconstruct flow statistics in the near field and are relevant for modeling coherence decay
associated with the “jittering of wavepackets” to produce sound (Cavalieri et al. 2011). In
this section we seek to answer two questions: whether alignment with only the dominant
mode substantially alters the alignment of the subdominant modes and the effect of
expanding the optimization to subdominant modes. We first assess the former case using
the optimal parameters for each method. We show the computed subdominant modes in
figure 10 for modes 2 and 3 for the St = 0.6, m = 0 frequency-wavenumber pair.

Comparing the second mode to the baseline case (ReT = 3 × 104), we find that all
EVRA models give significantly improved alignments, reaching ≈70% for the RANS
and mean-flow consistent models. Both the RANS and mean-flow consistent models are
superior to the optimal eddy-viscosity field, which is only fitted to align the dominant
mode. The RANS and mean-field models are also superior for the third, fourth, and fifth
modes (the latter two not shown for brevity), but with an alignment that falls off with
increasing mode number.

To observe how well the optimization of the first SPOD mode models the forcing
statistics (i.e. diagonalizes the forcing CSD Sff ), we compare projections of the first five
SPOD modes with the first five modes from each eddy-viscosity method (including a 2-
mode optimization described next) in figure 11. The plots show that the EVRA models,
in particular the RANS and mean-flow consistent models, are superior at diagonalizing
the CSD when compared to the baseline case.

Although the optimal eddy-viscosity field, aligned only with the dominant SPODmode,
shows improvements in the subdominant modes, we can extend the optimization to align
an arbitrary number of subdominant modes and achieve alignment superior to any eddy-
viscosity model. However, convergence issues with increasing SPODmode number suggest
that optimizing for many modes (e.g. n > 5) would have marginal returns. For this study,
we present only the optimization of both the first and second modes at St = 0.6, m = 0
to show the generality of the optimization framework and the physical implications of
the associated eddy-viscosity field for the subdominant modes.

Figure 12 presents the aligned resolvent mode via the optimization and the associated
eddy-viscosity field for the first subdominant mode. By including the second SPOD mode,
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Figure 10: Subdominant modes 2 and 3 at St = 0.6,m = 0 in the left and right columns
respectively for SPOD, baseline, and all EVRA models.
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Figure 11: Projections of the first five SPOD modes into the first five resolvent modes
computed for all EVRA models at St = 0.6,m = 0, including the 2-mode optimization
shown in figure 12.

the optimization can achieve an alignment of 77%, superior to any of the other eddy-
viscosity models, without altering the alignment of the dominant mode, 96%. We also
observe that the remaining subdominant modes also increase in their projections, as
shown in figure 11. This observation is likely linked to the difference in mechanisms of
the dominant and subdominant modes at St = 0.6, m = 0. The dominant mode is KH-
type, while the subdominant modes are of Orr-type. By aligning just the first Orr-type
mode, we observe improved alignments for the entire family of Orr modes, conversely,
alignment of only the KH mode does not substantially improve Orr modes.

The increase in alignment results from additional eddy-viscosity located downstream
of the 1-mode, KH-type field, µT,1, shown in figure 9. The second mode imposes a
need for further eddy-viscosity acting further downstream and towards the centerline, as
representative of the Orr-mechanism at m = 0 for turbulent jets (Pickering et al. 2020a).



23

5 10 150 5 10 15

0

1

2

Figure 12: The second subdominant mode at St = 0.6 and the associated eddy-viscosity
field that provides the optimal alignment for both modes. The contour for the eddy-
viscosity field is set to the same value as those shown in figure 9 from 0 to 3× 10−3.
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Figure 13: Alignments across all Strouhal numbers for the RANS eddy-viscosity model
coefficients compared with the optimal RANS coefficient at each frequency. The RANS
coefficients are c = [1, 0.5, 0.32, 0.2, 0.08].

We find that this additional downstream eddy-viscosity, present in both the RANS
and mean-flow consistent models, is responsible for the increased subdominant mode
alignment. Considering the simpler RANS (and mean-flow) model also shows similar
downstream structure, we investigate its merit for a predictive model in the next section.

7. Towards a predictive EVRA model for turbulent jets
Through the previous sections, we have shown that both the RANS and mean-flow

consistent eddy-viscosity models perform well across Strouhal numbers from 0.05 to
1 at m = 0, provided the overall constant associated with their application to the
disturbance fields is optimal (at each frequency and azimuthal mode number). In this
section, we consider the sensitivity of the results regarding the choice of a frequency
(and wavenumber) independent constant, and show that over a range of frequencies and
azimuthal mode numbers, alignments are relatively insensitive to the choice of a constant,
such that a single, universal value may be acceptable. While both RANS and mean-flow
consistent models both performed well with optimal coefficients, we focus only on the
RANS k − ε model, as it is better regarded as universal across a range of flows. We
then apply EVRA-RANS to the Mj = 0.4 jet using a single constant to six azimuthal
wavenumbers, m = 0 − 5, and find substantially improved predictions when compared
to the baseline. We also find similar observations when using the same EVRA-RANS
model for both the transonic and supersonic jets. Finally, we present the effect of the
eddy viscosity on the resolvent spectra.
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Figure 14: Alignments for frequencies, St ∈ [0.05, 1], and azimuthal wavenumbers, m =
0−5, for the (a) RANS eddy-viscosity model using c = 0.2 and the (b) baseline, constant
eddy-viscosity case (i.e. ReT = 3× 104).

7.1. Frequency and azimuthal mode sensitivity
The optimal RANS coefficients (figure 8) ranged from c = 0.7−0.004, with a relatively

constant region, c = 0.5, for moderate frequencies and, considering the fully optimized
eddy-viscosity field produced only marginally improved alignments for most cases, the
results may not be sensitive to the precise constant. We test this hypothesis for the
RANS model across a range of frequencies with proposed “universal” values of constant
c = [1, 0.5, 0.32, 0.2, 0.08]. We plot the resulting alignments versus frequency in figure 13.
With little compromise, compared to the optimal constant for each frequency, a single
constant of c = 0.2 provides significant alignment across all frequencies up to St = 1.
Although not shown for brevity, we found similar observations using c = 0.08− 1 for all
three Mach numbers and six azimuthal wavenumbers. In these cases, not only did c = 0.2
give the best overall alignment, but the alignments were comparably insensitive to the
value of c chosen over this range.

We do not present a rigorous justification for the value of c = 0.2, however, c may have
a connection with LES eddy-viscosity modeling. If we compare the empirical coefficients
used in this RANS eddy-viscosity analysis, cCµ, to the square of the Smagorinsky
coefficient, C2

s , used for SGS eddy-viscosity fields in LES (Smagorinsky 1963), we can
find that the value of c = 0.2 lies within the bounds of wall-bounded and isotropic
turbulence. Setting equal the products of each set of coefficients, we find c = C2

s/Cµ.
Then using the Mj = 0.4 RANS coefficient, Cµ = 0.073, and the commonly used range
of Cs, 0.1 for wall-bounded flows and 0.18 for isotropic turbulence (Zhiyin 2015), we find
that c = [0.14− 0.45] (ranges for the Mj = 0.9, 1.5 jet are c = [0.15− 0.48], [0.17− 0.57],
respectively). This range approximately corresponds to the acceptable values found in
figure 13.

For nonzero azimuthal modes, figure 14 presents the alignment of the EVRA-RANS
model with SPOD using c = 0.2 and the baseline case for m = 0 − 5. The EVRA-
RANS model substantially increases the alignments for all nonzero wavenumbers. The
results for m = 1 are particularly encouraging, with a uniform, 80% alignment across
all frequencies. Azimuthal modes greater than 1 result in poorer alignment, albeit much
improved compared to the baseline case, especially when m > 2.

Expanding to nonzero azimuthal wavenumbers, the eddy-viscosity field also affects
a third mechanism observed in the global SPOD spectrum (as St → 0), the lift-up
mechanism (Pickering et al. 2020a). Similar to the Orr mechanism, the lift-up mechanism
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Figure 15: Alignments using the RANS eddy-viscosity model with coefficient c = 0.2
across Strouhal numbers St ∈ [0.05, 1] and azimuthal wavenumbers m = 0−5 for the (a)
Mj = 0.9 and (b) 1.5 jets.

arises from triadic nonlinear interactions in the flow (Hamilton et al. 1995; Sharma &
McKeon 2013; de Giovanetti et al. 2017; Cho et al. 2018), identifying it as a likely
benefactor to an EVRA approach. Figure 14 supports this claim, showing significant
improvements at low frequencies for nonzero wavenumbers. These observations also agree
with Pickering et al. (2020a), who showed that resolvent modes related to streaks required
an eddy-viscosity model (using the TKE model reported by Pickering et al. (2019) with
c = 0.0065). They also observed that, in turbulent jets, the spatial extent of resolvent
modes increase as frequency decreases and that without an eddy-viscosity, modes extend
indefinitely downstream for St = 0. This is analogous to theory surrounding streaks
where the lift-up mechanism presents a rapid spatial growth of streamwise streaks until
viscous dissipation becomes dominant and the structures decay (Hultgren & Gustavsson
1981). Considering the significant improvements between alignments for low-frequency
and nonzero wavenumbers, we find the lift-up mechanism to also be sensitive to an eddy-
viscosity model.

7.2. Transonic and supersonic turbulent jets
We now generalize the RANS-EVRA model performance for both Mj = 0.9 and 1.5

turbulent jets using c = 0.2. Figure 15 provides the alignments across frequencies and
azimuthal wavenumbers for each. The transonic jet gives substantial agreement form = 0
and m = 1 at about 80% for much of the frequency range, while m = 2 gives alignments
of 60%, on average. For the supersonic jet, the agreement is not as favorable, however,
much improved from the ReT = 3× 104 alignments (not shown here for brevity).

The RANS eddy-viscosity model increases many of the alignments, however, poor
alignments remain, and these alignments appear to correspond to SPOD spectra without
large energy separation. As shown earlier in figure 4, EVRA and SPOD modes aligned
best when there exists large eigenvalue separation between the first and second SPOD
mode. We find similar behavior here for all cases. Figure 16 presents the SPOD spectra of
the first five modes across all six azimuthal wavenumbers and three turbulent jets, with
their associated 95 % confidence intervals in light blue. A handful of the spectra show
a clear separation between mode energies, such as those between the first and second
mode for Mj = 0.4, m = 0 and 1, for Mj = 0.9, m = 0 and 1 (and higher frequencies
for m = 2 − 5), and for Mj = 1.5, m = 1. In each case where there is large eigenvalue
separation, we find, from figures 14 and 15, significantly greater agreement in projection
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Figure 16: Spectra, and their associated 95 % confidence interval in light blue, of the
first five SPOD modes for azimuthal wavenumbers m = 0− 5 from left to right and the
subsonic, transonic, and supersonic jets from top to bottom, respectively.

coefficients between the resolvent and SPOD modes, while finding poor projections for
cases without clear separation in eigenvalues. We also observe this for the subdominant
modes investigated in the Mj = 0.4, m = 0 case in § 6.

These observations point to a limitation to our method when comparing EVRA
modes with SPOD modes. For the SPOD modes without clear eigenvalue separation, the
eigenvalues themselves fall within the uncertainty bands (i.e. 95 % confidence interval)
of the other modes. The eigenvectors corresponding to these eigenvalues are expected to
have, at best, similar uncertainty levels. Thus, without more data, it is not possible to
attribute the lack of agreement to a failure of the EVRA ansatz.

7.3. Singular values
We return to the m = 0, St ∈ [0.05, 1] case to assess the EVRA-RANS c = 0.2 model’s

effect on the singular values and compare them to the baseline case and the SPOD
eigenvalues. Figure 17 provides the spectra of the first five modes for SPOD (accompanied
by a shaded region providing the 95% confidence interval of the eigenvalues), the baseline
resolvent model, and the RANS-EVRA model (using c = 0.2) for m = 0. Comparing the
resolvent spectra to the SPOD spectra, we immediately see that the separation between
λ (i.e. the ratio between λn/λn+1) and σ2 of either resolvent models does not compare
favorably. In fact, the RANS-EVRA spectra has increased its energetic separation when
compared to the baseline case.

This behavior may be linked to multiple (in this case two for m = 0) distinct
mechanisms represented in the flow, the KH and Orr-mechanisms. As detailed earlier, the
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Figure 17: Spectra of first five (a) SPOD, (b) baseline resolvent, and (c) the RANS
eddy-viscosity model resolvent modes at m = 0 for St ∈ [0.05, 1].

inclusion of an eddy-viscosity model presents a substantial effect on the Orr modes signif-
icantly reducing the streamwise extent of each mode, while the KH modes are relatively
unchanged. We observe an analogous effect here in figure 17 where the singular values
related to the Orr mechanism decrease substantially, pulling away from the unaffected
singular values of the KH mechanism, resulting in a much larger separation between
singular values than is observed between the SPOD eigenvalues. This sensitivity of Orr
modes to an eddy-viscosity was also observed in Schmidt et al. (2018) at St = 0.6,m = 0
when adjusting ReT , finding that the squared singular values of the subdominant Orr
modes scaled as Re1.2

T . We observe the same effect using the RANS eddy-viscosity model,
interestingly (and perhaps unsurprising given the preceding discussions), figure 17 (c)
provides similar values as those reported by Schmidt et al. (2018) at St = 0.6,m = 0
when using ReT = 103.

Figure 17 (a) and (c) also show that the forcing amplitudes, λβ , are not uniform in
turbulent jets, contrary to a customary assumption used in resolvent analysis where
Λβ = αI, with α as an arbitrary constant (Morra et al. 2019; Lesshafft et al. 2019;
Hwang & Eckhardt 2020). Focusing on only the first and second resolvent and SPOD
modes for St = 0.6 and m = 0, where mode alignments are 95% and 69%, respectively
(the optimal-field case increases the latter value to 77% without appreciably changing
the singular value), we may assume that the diagonal components of the forcing, λβ,1 and
λβ,2, account for nearly all the energetic contributions by these two modes. As shown by
equation (2.17), this assumption allows for a one-to-one comparison between the first two
SPOD eigenvalues, resolvent singular values, and forcing amplitudes (i.e. λβ,n = λnσ

−2
n

for n = 1, 2). If the customary assumption of uniform forcing is applied, Λβ = αI, then
α = λ1σ

−2
1 = λ2σ

−2
2 or, alternatively, λ1/λ2 = σ2

1/σ
2
2 , and figure 17 shows this cannot be

true. Therefore, unless the SPOD and resolvent spectra are equivalent, we must model
or estimate the non-trivial forcing amplitudes.

The sizeable difference between the singular values reflects the forcing of different mech-
anisms at significantly different amplitudes in the flow. Pickering et al. (2020a) showed
that there are three distinct spatial regions that lead to the most efficient amplification
of the KH, Orr, and the lift-up mechanisms. They found that regions localized near the
nozzle where perturbations are smaller, associate with KH-type responses, while regions
downstream and near the end of the potential core where perturbations are significantly
larger, support Orr-type responses. Considering these observations, a logical next step in
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completing a resolvent-based turbulence model is to tie the forcing amplitude of different
modes to the turbulence intensities in the respective regions that force them.

8. Conclusions
We developed a data-informed optimization that quantitatively tested the extent to

which an eddy-viscosity model improves the alignment (i.e. agreement) between observed
large-scale structures, educed via SPOD, and those computed from resolvent analysis.
This eddy-viscosity approach acts as a proxy for modeling the effect of turbulence on
large-scale structures, and we found this approach provides substantial improvements in
agreement (i.e. when compared to a baseline case that used a constant eddy-viscosity
model corresponding to a value of ReT = 3 × 104). By directly optimizing the eddy
viscosity field to achieve the best alignment, we found alignments between resolvent and
SPODmodes as high as 96% or improvements of over ten-fold from the baseline alignment
(i.e. 8% to 80%).

Across the frequencies and wavenumbers considered, the addition of an eddy-viscosity
model to the resolvent operator highlighted its effect on the different amplifications
mechanisms in the turbulent jet: Orr-type, KH-type, and lift-up. Although eddy-viscosity
models improved modes related to the KH-type mode, we found KH modes to be
rather insensitive to the eddy-viscosity field, a result expected from the inviscid nature
of the inflectional KH instability. For resolvent modes associated with the Orr and
lift-up mechanisms, known to arise from nonlinear interactions, we found significant
sensitivity. Resolvent modes computed without a sufficient eddy-viscosity model were
visually unrecognizable from their SPOD counterpart, while those computed with an
eddy-viscosity model aligned to nearly 80%.

The optimal eddy-viscosity field also provided an upper bound for mode agreement,
providing a benchmark to assess three additional eddy-viscosity models. Of these models,
we found that traditional eddy-viscosity models (e.g. RANS based) perform nearly as
well as the optimal eddy-viscosity models in aligning the most energetic mode. The
traditional models even outperformed the optimal model (i.e. optimal in the first mode)
when considering the subdominant modes, giving the greatest diagonalization of the
forcing CSD at m = 0, St = 0.6 (i.e. ability to model the effect of nonlinear forcing),
leading to a more efficient resolvent basis for describing turbulent jets.

Finally, we tested the modeling potential of a RANS-inferred EVRA through a sensi-
tivity analysis and observed its performance over frequency, azimuthal wavenumber, and
Mach number. We found the sensitivity of the RANS-based EVRA model’s calibration
constant, c, to be weak, giving similar agreement for coefficients ranging over an order
of magnitude. We found that the coefficients resulting in similar agreement fell within a
range of values that may have a connection to the Smagorinsky coefficient for sub-grid
scale modeling of eddy viscosity in LES. Choosing a frequency-independent RANS-EVRA
model (i.e. c = 0.2), we tested its performance across six azimuthal frequencies and three
turbulent jets, spanning subsonic, transonic, and supersonic regimes. For the first three
azimuthal wavenumbers (i.e. m = 0− 2), we observed substantially increased alignments
for all three turbulent jets and across Strouhal numbers St ∈ [0.05, 1]. Overall, these
results show that “classical” eddy-viscosity models (RANS or a mean-flow consistent
model) aid in estimating the impact of the Reynolds stresses for resolvent analysis.

While the present data-driven analysis points to the efficacy of relatively simple eddy-
viscosity-based models for modeling the effect of nonlinear forcing and providing a more
efficient resolvent basis, there remains a need for refinements to this approach and careful
comparison and consideration of alternative formulations.
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Figure 18: Optimal alignments for the linear damping term and the baseline case, ReT =
3× 104.
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Appendix A. Linear damping term
Besides the studied eddy-viscosity models, we also investigated the impact of a linear

damping term, which is equivalent to a finite-time-horizon resolvent analysis introduced
by Jovanović (2004), recently studied by Yeh & Taira (2019) to localize the resolvent
forcing and response modes on an airfoil. For this model, we modify the operator so that,

Lβ = L− βI, (A 1)

where β = 1/τ > 0, and τ is the desired temporal decay rate. We then find the value of
β that best matches the dominant resolvent and SPOD modes.

Figure 18 presents the agreements/alignments for the linear damping case. Although
linear damping improves alignments, the performance is significantly inferior to the eddy-
viscosity models, likely because of its monolithic damping effect over all wavenumbers,
whereas the eddy-viscosity methods directly address the effect of the Reynolds stresses.
Considering its suboptimal performance when compared to eddy-viscosity models, we
only present results for the Mj = 0.4, m = 0, and St ∈ [0.05, 1] cases.
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Appendix B. Governing equations

Conservation of mass, momentum, and energy for a compressible, Newtonian fluid are
written as,

Dρ

Dt
= −ρΘ (B 1)

ρ
Du

Dt
= − 1

γM2
j

∇(ρT ) +∇ ·
[
µ

(
(∇u) + (∇u)T − 2

3
ΘI
)]

(B 2)

ρ
DT

Dt
= − 1

γM2
j

ρTΘ +
µ

(γ − 1)M2
j Pr∞

∇2T

+ γM2
j µ

[
1

2

{
(∇u) + (∇u)T

}
:

{
(∇u) + (∇u)T

}
− 2

3
Θ2

]
, (B 3)

respectively, where Θ = ∇ · u is the dilatation. We take Pr∞ = 0.7 and γ = 1.4 as
constants. The equations have been made nondimensional with the jet density (ρj),
speed (Uj) , and diameter, D. The nondimensional viscosity, µ = 1

Rej
, is also a constant.

Applying the Reynolds decomposition (i.e. q(x, t) = q̄(x) + q′(x, t)) to the above
equations and separating terms that are linear and nonlinear in the fluctuations to the
left- and right-hand sides, respectively, gives

D̄ρ′

Dt
+ u′ · ∇ρ̄+ ρ′Θ̄ + ρ̄Θ′ = fρ (B 4)

ρ̄
D̄u′

Dt
+ ρ̄u′ · ∇u+ ρ′u · ∇u

+
1

γM2
j

(
ρ̄∇T ′ + ρ′∇T̄ + T̄∇ρ′ + T ′∇ρ̄

)
−∇ ·

[
µ

(
(∇u′) + (∇u′)T − 2

3
Θ′I
)]

= fu (B 5)
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3
Θ̄Θ′

]
= fT . (B 6)

with D̄
Dt = ∂

∂t + u · ∇, and where we have grouped all the nonlinear terms as forcing
terms on the right-hand sides.

The left-hand side is then transformed to a cylindrical coordinate frame and Fourier
transformed in time (ω) and azimuth (m). The resulting equations are discretized as
discussed in § 2.

The eddy-viscosity model we use, discussed in § 2, simply replaces µ in equations (B 4)
to (B 6) with µ+ µT (x, r).
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Appendix C. Optimizing in an input and output framework
In resolvent analysis, it is often useful to restrict the input and output spaces by writing

LTq = Bf (C 1)
y = Cq

y = CL−1
T Bf , (C 2)

where C transforms the state vector to a desired output space y and B maps a smaller
dimensional input space to the state space. Here we show that such additions do not
hinder the generality of the optimization presented in this manuscript.

The structure of the cost function does not change,

J = u∗1Wyψ1ψ
∗
1Wyu1 − l2µ∗TMµT + c.c, (C 3)

but the SPOD modes, ψ, and the resolvent modes, u, are now computed considering the
observable y, and the appropriate norms for the input and output space are defined by
including weighting matrices Wy andWf , respectively. The Lagrangian functional also
takes a similar form as § 3.1,

L = u∗1Wyψ1ψ
∗
1Wyu1 − l2µ∗TMµT − ũ∗1

(
u1 −CL−1

T Bv1

)
(C 4)

− ṽ∗1
(
B∗L−∗T C∗Wyu1 − σ2

1Wfv1

)
− σ̃1

(
u∗1Wyu1 − 1

)
+ c.c,

where, ũ1, ṽ1, σ̃1 are the Lagrange multipliers. The effective composition of the functional
is identical to that of the full-state optimization as it is composed of the cost function,
the forward solution, the resolvent eigenvalue problem, and a normalization constraint.
Taking variations with respect to each variable, with exception to the eddy-viscosity
term, results in the following system of equations, I W ∗

yCL
−1
T B Wyu1

B∗L−∗T C∗ σ2
1W

∗
f 0

0 v∗1Wf 0

ũ1

ṽ1

σ̃1

 =

2WyΨ1Wyu1

0
0

 , (C 5)

whose solution provides the Lagrange multipliers, ũ1, ṽ1, σ̃1.
A difficulty that arises in building equation C 5 is that the term L−1

T is a large, dense
matrix. When L, B, C, and the weighting matrices are sparse, we may instead introduce
auxiliary variables through

LT η̃1 = Bũ1

L∗T ζ̃1 = C∗ṽ1,

whereupon equation C 5 may be written as a larger, but now sparse, system of equations
L∗T 0 −C∗ 0 0
0 LT 0 −B 0
0 W ∗

yC I 0 Wyu1

B∗ 0 0 σ2
1W

∗
f 0

0 0 0 v∗1Wf 0



ζ̃1

η̃1

ũ1

ṽ1

σ̃1

 =


0
0

2WyΨ1Wyu1

0
0

 . (C 6)

The above presents a general optimization framework for aligning/matching any input-
output resolvent analysis to data (i.e. here we use SPOD modes, but Ψ need not be
restricted to SPOD modes). Variations with respect to any parameter of the resolvent
operator may now be made to investigate their effect on modelling (or assimilating)
known quantities.
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