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Quantifying the statistical noise in computer simulations of Stark broadening

Computer simulations employed in Stark broadening calculations are reexamined within the perspective of giving error bars to results. As a rule, the calculated spectra exhibit a noisy structure, which is inherent to the random number generators involved in the numerical method. Using a variance estimator, we quantify the statistical noise on simulated line shapes. Two expressions for the radiated power spectrum, which are analytically equivalent but lead to different noise levels, are considered. A discussion of this difference is carried out based on an analytical model.

Introduction

In plasma spectroscopy, the shape of an atomic line is determined by the perturbation of the energy levels due to the charged particles surrounding the emitter or absorber under consideration. This is the celebrated Stark broadening problem [START_REF] Griem | Spectral Line Broadening by Plasmas[END_REF]. It still has no solution, in the sense that no general formula has been found for a line shape relative to an arbitrary atomic species. The Dyson series, which provides a solution to the time-dependent Schrdinger equation, is only a formal relation hardly applicable to calculations in realistic conditions. The computer simulation technique has been developed in the seventies and the early eighties with the purpose of reproducing the exact solution as closely as possible [START_REF] Stamm | On the role of ion dynamics in the Stark broadening of hydrogen lines[END_REF][START_REF] Stamm | Ion-Dynamics Effect on Hydrogenic Stark Profiles in Hot and Dense Plasmas[END_REF][START_REF] Gigosos | Hydrogen Stark profiles: A simulation-oriented mathematical simplification[END_REF]. Its advantages with respect to other models is that it is free from constraining assumptions such Email address: joel.rosato@univ-amu.fr () Preprint submitted to Journal of Quantitative Spectroscopy and Radiative TransferMarch 29, 2020 as, for example, the binary condition involved in collision operator-based approaches (impact approximation [START_REF] Baranger | Problem of Overlapping Lines in the Theory of Pressure Broadening[END_REF][START_REF] Kolb | Theory of Line Broadening in Multiplet Spectra[END_REF]) or the ad hoc description of the microfield dynamics used in stochastic models (like the MMM [START_REF] Brissaud | Theory of Stark broadening-II Exact line profile with model microfield[END_REF][START_REF] Stehlé | Stark broadening of hydrogen Lyman and Balmer in the conditions of stellar envelopes[END_REF] and the FFM [START_REF] Talin | Frequency-fluctuation model for line-shape calculations in plasma spectroscopy[END_REF][START_REF] Calisti | Dynamic Stark broadening as the Dicke narrowing effect[END_REF][START_REF] Stambulchik | Quasicontiguous frequency-fluctuation model for calculation of hydrogen and hydrogenlike Stark-broadened line shapes in plasmas[END_REF]). It has been recognized that computer simulations can serve as benchmark for line shape models; cross-checks between models and simulations have been reported in the literature and workshops [e.g., at the International Workshop on Radiative Properties of Hot Dense Matter (RPHDM), at the Spectral Line Shapes in Plasmas code comparison workshop (SLSP)] [START_REF] Rosato | Stark broadening of hydrogen lines in low-density magnetized plasmas[END_REF][START_REF] Stambulchik | Review of the 1st Spectral Line Shapes in Plasmas code comparison workshop[END_REF][START_REF] Ferri | Ion Dynamics Effect on Stark-Broadened Line Shapes: A Cross-Comparison of Various Models[END_REF][START_REF] Stambulchik | Dynamic Stark broadening of Lyman-α[END_REF][START_REF] Rosato | Report on the third SLSP code comparison workshop[END_REF][START_REF] Stambulchik | Special Issue on Spectral Line Shapes in Plasmas[END_REF][START_REF] Stambulchik | Spectral Line Shapes in Plasmas II[END_REF]. Essentially, a simulation consists in numerically integrating the time-dependent Schrdinger equation that governs the dynamics of an atom perturbed by a fluctuating electric field, itself being generated from a numerical integration of the Newtonian equations of motion for the charged particles moving in the vicinity of the emitter. The initial conditions for the perturbers are generated randomly and, due to this, the simulated line shape exhibits a noisy behavior, which can be reduced only by increasing the number of runs. In this work, we examine the noise present in simulated spectra. Two variants of the simulation method are considered: one involves a direct calculation of the power spectrum, based on the Fourier transform of the dipole operator, and the other one involves an evaluation of the dipole autocorrelation function as intermediary step. Each of these approaches have been used and reported in the literature; they yield identical results [START_REF] Stambulchik | Stark broadening of high principal quantum number hydrogen Balmer lines in low-density laboratory plasmas[END_REF] but the noise level is different. The article is organized as follows: section 2 gives an overview of the Stark broadening formalism, with a focus on the numerical simulation method; the quantification of statistical noise is addressed in section 3 in terms of a variance estimator; finally, the two variants of the simulation method are examined in section 4. The difference in noise level obtained from the two approaches is discussed in terms of an analytical model.

Stark broadening formalism

The shape of spectral lines observed in a plasma depends upon the environmental conditions under which they are formed. The microfield is usually large enough so that it alters the energy level structure of the emitters and this alteration results in a broadening of the lines. We give hereafter the main lines of the formalism involved in the modeling of Stark line broadening. We consider an atomic system that emits a photon in the presence of charged particles located at its vicinity; this system will be referred to as an "atom" in the following, but it can also be an ion or a molecule. According to quantum electrodynamics, the power spectrum is given by the following relation

P (ω) = ω 4 3πε 0 c 3 lim T →∞ 1 T ∑ αβ p α ⟨ ∫ T /2 -T /2 dt⟨β| ⃗ d(t)|α⟩e iωt 2 ⟩ . ( 1 
)
Here, ⃗ d(t) denotes the dipole operator expressed in the Heisenberg picture, the sum is performed over the upper (α) and lower (β) states that contribute to the line under consideration, p α is the probability of the atom being initially in the state α (p α = ⟨α|ρ|α⟩ with ρ being the density operator) and the brackets ⟨...⟩ stand for an average over the charged particles. Equation ( 1) is a generalization of the Larmor formula to quantum emitter. This expression has been reported as a starting point for plasma spectroscopy models in early textbooks and articles, e.g. [START_REF] Baranger | Problem of Overlapping Lines in the Theory of Pressure Broadening[END_REF][START_REF] Schiff | Quantum Mechanics[END_REF][START_REF] Baranger | Atomic and Molecular Processes[END_REF]. In the appendix, we provide a derivation based on the Poynting theorem expressed in quantum mechanical terms, using operators in the Heisenberg picture. It is common to use an alternative to Eq. ( 1) that employs the Fourier transform of the dipole autocorrelation function. Assuming that the dipole is a stationary process, the power spectrum reads

P (ω) = ω 4 3πε 0 c 3 × 2 Re ∫ ∞ 0 dt⟨Tr[ρ ⃗ d(0) • ⃗ d(t)]⟩e iωt . ( 2 
)
This relation has been widely used for the development of Stark broadening models because it provides direct information on the dipole's stochastic properties, through the autocorrelation function ⟨Tr[ρ ⃗ d(0) • ⃗ d(t)]⟩; furthermore, the formula does not involve a limiting process as in Eq. [START_REF] Griem | Spectral Line Broadening by Plasmas[END_REF]. The dipole at time t is obtained from the relation ⃗ d

(t) = U † (t) ⃗ d(0)U (t)
, where U (t) is the evolution operator; it obeys the time-dependent Schrödinger equation

i dU dt (t) = [H 0 + V (t)]U (t), (3) 
where

V (t) = -⃗ d • ⃗ E(t)
is the Stark effect term that involves the plasma microfield ⃗ E(t). According to Eq. ( 2), one needs to solve the Schrödinger equation on a time scale which is of the order of the dipole's characteristic decorrelation time in order to get a meaningful representation of the spectrum; this time is referred to as the "time of interest" in textbooks (e.g., [START_REF] Griem | Spectral Line Broadening by Plasmas[END_REF]).

If the electric field is nearly constant during the time of interest, one can neglect its evolution (quasistatic approximation), the Schrödinger equation can be solved exactly and the power spectrum can be written explicitly in terms of the microfield probability density function. The other limiting case can also be tackled analytically by using a set of assumptions that involve the microfield fluctuation time scale (impact approximation); the treatment yields an exponential behavior for the autocorrelation function in Eq. ( 2) and an explicit relation, involving Lorentzian functions, is obtained for the power spectrum. The issue we focus on hereafter concerns the use of computer simulations in Stark line shape calculations. The main idea of such simulations is to reproduce the microfield evolution in a way as realistic as possible by generating particles in a box and making them move around the emitter following prescribed trajectories; the latter are obtained from a molecular dynamics algorithm. For a set of simulated microfield histories corresponding to different initial conditions, the Schrödinger equation is solved numerically and the resulting dipole operator is evaluated. It is next inserted in the power spectrum formula, either through equation ( 1) or equation [START_REF] Stamm | On the role of ion dynamics in the Stark broadening of hydrogen lines[END_REF]. Computer simulations can serve as a benchmark for other models. In early works, they were devoted to address the influence of ion dynamics on Stark line shapes [START_REF] Stamm | On the role of ion dynamics in the Stark broadening of hydrogen lines[END_REF][START_REF] Stamm | Ion-Dynamics Effect on Hydrogenic Stark Profiles in Hot and Dense Plasmas[END_REF][START_REF] Gigosos | Hydrogen Stark profiles: A simulation-oriented mathematical simplification[END_REF]. Several codes have been written and are still under development today; applications include astrophysics, inertial and magnetic fusion research, and other laboratory plasma studies, e.g., see [START_REF] Rosato | Stark broadening of hydrogen lines in low-density magnetized plasmas[END_REF][START_REF] Stambulchik | Stark broadening of high principal quantum number hydrogen Balmer lines in low-density laboratory plasmas[END_REF][START_REF] Alexiou | Overview of plasma line broadening[END_REF][START_REF] Halenka | Pressure shift and gravitational redshift of Balmer lines in white dwarfs: rediscussion[END_REF][START_REF] Gomez | Effect of higher-order multipole moments on the Stark line shape[END_REF]. A feature of the simulations is that they involve (pseudo-)random number generators for the initial position and velocity of the perturbers. Simulated spectra are affected by statistical noise and this noise can be important if the number of histories is not large enough. This point is illustrated in Figure 1. The Lyman α line of an Ar XVIII emitter in a deuterium plasma has been calculated assuming N e,i = 2 × 10 23 cm -3 and T e,i = 1 keV, with 10 and 1000 histories. The power spectrum has been evaluated using Eq. ( 2) and only ion Stark broadening has been retained. As can be seen in the figure, the spectrum exhibits a noisy structure at 10 histories, which indicates that the number of runs is not large enough in this case. In contrast, the spectrum obtained with 1000 histories is much cleaner. As a rule, the strength of the noise decreases with the number of statistical realizations. This trend is proper to algorithms based on random number generation (Monte Carlo method). An estimate of the fluctuation level around the exact result is provided by variance estimators. We address this issue, together with the convergence of the simulation toward the exact result, in the next section. 

Variance estimator

We use the same terminology as in the literature on Monte Carlo simulation methods, e.g. [START_REF] Spanier | Monte Carlo Principles and Neutron Transport Problems[END_REF]. The average ⟨...⟩ involved in the power spectrum is identical to the expectation value of a random variable X; namely,

X ≡ ω 4 3πε 0 c 3 lim T →∞ 1 T ∑ αβ p α ∫ T /2 -T /2 dt⟨β| ⃗ d(t)|α⟩e iωt 2 (4) 
if Eq. ( 1) is used, and

X ≡ ω 4 3πε 0 c 3 × 2 Re ∫ ∞ 0 dtTr[ρ ⃗ d(0) • ⃗ d(t)]e iωt ( 5 
)
if Eq. ( 2) is used. According to the law of large numbers, the expectation value of X can be estimated as the empirical mean of a set of realizations x 1 , x 2 ... of this random variable

⟨X⟩ ≃ 1 n n ∑ j=1 x j ≡ xn . (6) 
A strict equality holds at the n → ∞ limit. In the numerical simulation method, n is kept finite and Equation ( 6) is used for the spectrum evaluation.

The fluctuation level around the exact result can be estimated in confidence interval terms. As in standard statistical analysis, we define the variance estimator

s 2 n = 1 n -1 n ∑ j=1 (x j -xn ) 2 . ( 7 
)
If a 99% confidence interval is sought for the result, error bars at 3 × s n (referred to as "3σ") can be devised. An illustration is given in figure 2. The same spectrum as in the previous section, with 3σ error bars, is shown. The size of error bars decreases with the number of histories. This is in agreement with the qualitative discussion of Fig. 1 given in the previous section. The noise on the overall spectrum can be estimated by summing the variance estimator over the frequencies (note that s n is a function of ω). Consider the following definition

d 2 n = nω ∑ k=1 s 2 n (ω k ). (8) 
Here, the sum is carried out over the discretized frequency points ω k , of number n ω . Figure 3 shows a plot of d n in terms of n, assuming n = 10, 100, and 1000, with a total number of points n ω = 500. As can be seen in the figure, the noise on the overall spectrum decreases with n. The obtained values of d n (13.9, 4.33, and 1.39) are well fitted by a 1/ √ n law, which is in agreement with the variance estimator formula [START_REF] Brissaud | Theory of Stark broadening-II Exact line profile with model microfield[END_REF].

Comparison of the two formulas

The formula based on direct power spectrum evaluation [Eq. ( 1)] and the formula involving the dipole autocorrelation function [Eq. ( 2)] yield the same result at the n → ∞ limit, they converge with the same speed (∝ 1/ √ n), but the variances are different. The direct power spectrum evaluation involves a temporal averaging process, which is not performed if Eq. ( 2) is used. This point is made apparent if one notes that Eq. ( 1) can be rewritten in a way formally equivalent to Eq. ( 2) in terms of the following autocorrelation function

C 1 (t) = lim T →∞ 1 T ∫ T 0 dt ′ ⟨Tr[ρ ⃗ d(t ′ ) • ⃗ d(t ′ + t)]⟩, (9) 
instead of that used in Eq. ( 2), namely,

C 2 (t) = ⟨Tr[ρ ⃗ d(0) • ⃗ d(t)]⟩. ( 10 
)
This way of rewriting Eq. ( 1) was already noticed in Ref. [START_REF] Stambulchik | Stark broadening of high principal quantum number hydrogen Balmer lines in low-density laboratory plasmas[END_REF]. The temporal averaging process in Eq. ( 9) provides better statistics on the calculated spectrum. We have performed simulations with the same conditions as above, using Eq. ( 1); the obtained spectra are indeed less noisy (see Fig. 4). An analysis of the noise relative to the autocorrelation functions ( 9) and ( 10) can be done in analytical terms through the classical oscillator model of the atom. In this model, perturbations are accounted for through sudden interruptions, occurring at random times following a Poisson process. After each interruption, a new random phase is generated uniformly in the [0, 2π[ interval and a new frequency is also generated according to some prescribed probability density function. Denoting z the coordinate of the oscillator, we have The spectrum obtained using direct evaluation of the power spectrum, according to Eq. ( 1), is less noisy than that obtained from the relation (2) that involves the dipole autocorrelation function. Here, the plot corresponds to an Ar XVIII Lyman α line shape with the same conditions as above, obtained using Eq. ( 1) and assuming 10 histories. Error bars at each frequency are smaller than those in Fig. 2(a).

z(t) = ∑ j≥0 e -i(Ω j t+φ j ) θ(t -t j )θ(t j+1 -t), ( 11 
)
where θ stands for the Heaviside step function, the times t j are generated according to the Poisson distribution

p(t j ) = θ(t j ) γ j t j-1 j (j -1)! e -γt j , (12) 
and φ j and Ω j are the oscillator's phase and frequency between t j and t j+1 ; they are assumed to be independent of each other. In Eq. ( 12), γ is a rate denoting the number of collisions per unit time that contribute to the phase destruction. The oscillation amplitude has been set equal to 1 for simplicity sake. The autocorrelation functions defined by Eqs. ( 9) and ( 10) become

C 1 (t) = lim T →∞ 1 T ∫ T 0 dt ′ ⟨z * (t ′ )z(t ′ + t)⟩, (13) 
and

C 2 (t) = ⟨z * (0)z(t)⟩, (14) 
respectively, and they are both identical to

θ(t)⟨e -iΩ 0 t ⟩e -γt . ( 15 
)
The impact and static limits correspond to γ → ∞ and γ → 0, respectively. The noise level is estimated by introducing the second moments

1 T ∫ T 0 dt ′ 1 T ∫ T 0 dt ′′ ⟨z(t ′ )z * (t ′ + t)z * (t ′′ )z(t ′′ + t)⟩, ( 16 
)
⟨z(0)z * (t)z * (0)z(t)⟩, (17) 
and their related variances σ 2 1 and σ 2 2 , obtained by subtracting the square module of Eq. ( 15) from Eqs. ( 16) and ( 17). An explicit calculation yields (details are given in the appendix)

σ 2 1 ∼ T →∞ 2τ c T , ( 18 
)
and

σ 2 2 = 1, (19) 
where τ c = Re ∫ ∞ 0 dt⟨e -iΩ 0 t ⟩e -γt is the characteristic dipole decorrelation time. The first variance is smaller than the second one, which indicates that the noise level is smaller. This trend is in agreement with fully numerical simulations.

Conclusion

The characterization of laboratory and astrophysical plasmas involves passive spectroscopy diagnostics. In this work, we have reexamined the numerical simulation method utilized in Stark broadening calculations and we have addressed the issue of statistical noise quantification. Using an estimator for the variance, we have shown that the noise decreases with the number of statistical realizations n and follows the power law 1/ √ n. Two formulas, one based on a direct calculation of the power spectrum and the other one involving an evaluation of the dipole autocorrelation function as intermediary step, have been examined in detail. Both yield the same result if a large number of realizations is assumed, but the noise levels they provide are different. Using an analytical model, we have shown that the direct evaluation of the power spectrum yields a result less noisy. This trend is in agreement with fully numerical simulations. Presently, a drawback of numerical simulations is that runs are CPU time consuming, especially if a complex atomic system, with a large number of energy levels, is considered. The design of routines that allow fast evaluation of spectra is a major issue. The method based on direct power spectrum evaluation and discussed here enter the class of the so-called variation reduction techniques. Work is presently underway in order to quantify the total computational cost (including numerical Fourier transform, matrix product etc.) involved in numerical simulations. Comparisons to other line shape codes will be performed and confrontations to experimental spectra will also be done. The simulation methods right now are limited to classical-path treatments, which means that they cannot take into account any back-reaction of the plasma to the radiator [START_REF] Smith | Classical Path Methods in Line Broadening. I. The Classical Path Approximation[END_REF], as well as any quantum mechanical effects, such as recombination [START_REF] Gomez | Effect of Electron Capture on Spectral Line Broadening in Hot Dense Plasmas[END_REF]. An extension of this investigation to fully quantum mechanical simulations, i.e., where both the emitter and the perturbers are treated quantum mechanically, is foreseen. Techniques specific to condensed matter physics (such as quantum Monte Carlo [START_REF] Ceperley | Microscopic simulations in physics[END_REF]), designed to tackle quantum many-body problems, will be addressed and examined in detail.

Appendix A.

The power spectrum formula (1) that serves as a basis in line shape calculations stems from the energy conservation relation in basic electromagnetism. According to the Poynting theorem, the rate of work delivered by an atom to the electromagnetic field is given by

P = -lim T →∞ 1 T ∫ T /2 -T /2 dt ∫ d 3 r⟨ ⃗ j(⃗ r, t) • ⃗ E(⃗ r, t)⟩, (A.1)
where ⃗ j(⃗ r, t) = ⃗ d(t)δ(⃗ r) is the current density associated with the atomic dipole and ⃗ E is the electric part of the radiation field. It is assumed that the atom is motionless, is located at ⃗ r = ⃗ 0, and has negligible spatial extent. The brackets ⟨...⟩ denote a statistical average over the perturbers. Equation (A.1) holds both classically and quantum mechanically. In quantum mechanics, ⃗ j and ⃗ E are operators expressed within the Heisenberg picture and written in normal order [START_REF] Milonni | The Quantum Vacuum An Introduction to Quantum Electrodynamics[END_REF]. At the lowest interaction order (weak coupling approximation), ⃗ j is assumed independent of ⃗ E (no radiation feedback is considered) and ⃗ E is expressed as a linear function of ⃗ j, according to the following relation [START_REF] Jackson | Classical Electrodynamics[END_REF] ⃗ E(⃗ r, t) = -1 ε 0 c 2 The normal order prescription leads to formally perform the substitution ⃗ d(t)

2 ↔ 2 ⃗ d (-) (t) • ⃗ d (+) (t) = 2 ⃗ d (+) (t) 2 
, where the plus and minus exponents denote positive and negative frequency contributions. The contribution of various atomic states to the spectrum is retained through the substitution

⟨ ⃗ d (+) (t) 2 ⟩ ↔ ∑ αβ p α ⟨ ⟨β| ⃗ d(t)|α⟩ 2 ⟩
. Defining the spectrum P (ω) through the identity P = ∫ dωP (ω) and using the Parseval theorem, one obtains equation [START_REF] Griem | Spectral Line Broadening by Plasmas[END_REF].
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 1 Figure 1: Plot of the Ar XVIII Lyman α line calculated in high density plasma conditions with 10 and 1000 simulated microfield histories. For the sake of clarity, only ion Stark broadening has been retained. The noise present in the spectrum is a feature of the random number generation involved in the algorithm. It decreases with the number of histories.
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 234 Figure 2: Plot of the Ar XVIII Lyman α line calculated with the same conditions as in Fig. 1, with error bars at 3σ. The amplitude of error bars decreases with the number of histories.

∫ d 3

 3 r ′ ∫ dt ′ G(⃗ r -⃗ r ′ , t -t ′ ) ⃗ j(⃗ r ′ , t ′ ). (A.2)This relation is obtained by solving the Maxwell equation set. The Green function G is defined byG(⃗ r, t) = δ(t -r/c) 4πr . (A.3)In practice, since the atom's spatial extent is neglected, only the first-order expansion in r of the delta function contributes to the integrals in Eqs. (A.1) and (A.2); the following substitution holdsG(⃗ r, t) ↔ -δ ′ (t) 4πc . (A.4)Inserting this expression into Eq. (A.2), and putting the resulting field in Eq. (A.1), one gets the following relation
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Appendix B.

We estimate the four-time averages in Eqs. ( 16) and ( 17) by separating them into product of two-time averages; this property strictly holds in the case of Gaussian process. The average ⟨z(t ′ )z * (t ′ +t)z * (t ′′ )z(t ′′ +t)⟩ factorizes as

The first and second terms are identical to the square module of C 1,2 (t), C 1,2 (t ′ -t ′′ ), respectively, and the last term is identically zero. The first variance reads

It reduces to a single integral at the T → ∞ limit and equation ( 18) is obtained. The second variance is obtained directly by formally setting t ′ = 0 = t ′′ in Eq. (B.1).