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Abstract This paper proposes and analyses the performance and the vulnerability to attacks of three
algorithms for collecting longitudinal data in a large scale system. A monitoring device is in charge of
continuously collecting measurements from end-devices. The communication graph is connected but not
necessarily complete. For scalability reasons, at each collect, a single end-device is randomly selected among
all the end-devices to send the content of its local buffer of data to the monitoring device. Once sent, the end-
device resets its buffer, and resumes its measurement process. Two of the three algorithms are randomized
algorithms while the third one is deterministic. The difference between the randomized algorithms stems from
the random choice policy: in the first algorithm, choice is uniform while in the second one the random choice
is weighted by the current amount of measurements at end-devices. The third algorithm is deterministic.
End-devices are successively chosen in a round robin way. We study the transient and stationary maximum
load distribution at end-devices when collects are made using the first and third algorithm, and by providing
bounds via a coupling argument when the second algorithm is used. While the third algorithm provides the
best performance, it is highly vulnerable to attacks.

keywords Collecting longitudinal data, coupling technique, balls and urn models.

1 Introduction

The objective of this paper is to conduct a thorough analysis of three distributed algorithms (two rely on
randomness and one is deterministic) dedicated to the collect of data through longitudinal measurements.
A longitudinal study consists, through repeated observations over a long period of time, in collecting infor-
mation of a cohort of individuals in order to observe the evolution of some measurable variables of interest.
Longitudinal studies are highly relevant in epidemiological investigations (including the physiological changes
in pregnancy described by [3, 5], or the follow-up of diabetics of a given age group studied by [8]), the early
childhood educational programs addressed by [11], but also to measure and compare various business and
branding initiatives, product feedback, or customer satisfaction. In longitudinal surveys, measurements
(e.g., temperature, CO2 level, physiological indicators, etc.) are collected over time and are interpreted.
Interpretation is conducted once outliers are detected and possibly corrected (see [2]).

Internet-of-Things (IoT) technology, which is a growing network of interconnected objects, facilitates
developments of such monitoring systems. As described by [4], in most of the IoT architectures, end-devices
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measure data and route them to one or more processing centers through a network. Hence, in this paper,
we consider a processing center that we call the monitoring device, and K end-devices. End-devices do
not necessarily know each other, while the monitoring device knows and communicates with each of the K
end-devices.

The load balancing problem is close to the data collect problem since the former one consists in distribut-
ing tasks among multiple resources (see [1] for more details). The main difference between both is that for
longitudinal data collection, all end-devices perform their measurements at the same time when required
by the monitoring device. In contrast, in the load balancing problem, only few tasks are allocated at the
same time to end-devices and the processing time usually takes a non negligible amount of time. Note that
the Age of Information, initially introduced by [7], is a measure determining whether a set of information is
up-to-date for decision making purpose in communication system.

Providing fine-grain measurements in the data collect problem may require to frequently query end-
devices to cope with characteristics that fluctuate very quickly. However, when the cohort of end-devices
under study is densely populated, i.e. K is in thousands or millions, very frequent collects of all the end-
devices may give rise to vast amount of data that transit towards the monitoring device. This may rapidly
overload this device, preventing it accordingly from correctly handling the input stream of information. To
cope with such critical issue, the monitoring device periodically samples a small subset of end-devices to
collect their measurements instead of collecting data from all the K end-devices. When an end-device is
selected, it sends back the content of its buffer of measurements to the monitoring device, empties its buffer
and resumes its measurement process. In the following, during each collect, a single end-device is queried.

There are several ways to select end-devices, and the objective of this paper is to study in depth three
algorithms that perform this task. The two first algorithms rely on randomization to select end-devices,
while the third one is deterministic. In the first algorithm, called Algorithm A in the following, choice is
random and uniform. In the second one, called Algorithm B, the choice is random but weighted by the
current amount of measurements at end-devices. Finally, in the third algorithm, called Algorithm C, the
choice is deterministic and follows a round-robin strategy: each end-device is successively chosen.

In this paper we are interested in analysing the effect of sampling on the size of the local buffer at each
end-device at the end of each collect. Indeed, since during a collect a single end-device is queried for sending
back its buffer content at the monitoring device, buffers at the other K − 1 end-devices continue to grow.
To evaluate the performance of these algorithms we study the transient and stationary maximum buffer
size distribution at end-devices at the end of the n-th collect, for n ≥ 1. We show that with Algorithm
A, the limiting distribution of the buffer size at any end-device k is geometric with parameter 1/K, the
stationary distribution of the maximal buffer size of the K end-devices is upper bounded by ` ≥ K with
probability K!S(`,K)/K` where S(`,K) are the Stirling numbers of the second kind, and the stationary
average maximal buffer size is Θ(K lnK). For Algorithm B, the impact of the random weighted sampling
policy makes the moments of the buffer size at any end-devices not easy to obtain analytically. Hence by
using a coupling argument, we provide bounds on the maximal and total buffer size. These bounds show
that Algorithm B performs better than Algorithm A. Finally, by an easy argument, we show that Algorithm
C provides better performance than Algorithm B, and thus better than Algorithm A.

Since we are considering large scale distributed architectures, the presence of malicious entities that
devise adversarial strategies to prevent the correct functioning of algorithms is unavoidable (see [6]). In this
work we consider an omniscient entity, called the adversary, that has full knowledge of the code run by the
different devices, and in particular the one of the monitoring device. We focus on Deny-of-Services (DoS)
attacks. A Denial of Service attack tries to take down an Internet resource by flooding this resource with
more requests than it is capable of handling. In this work, we assume that the monitoring device includes
advanced intrusion prevention and threat management systems, which combine firewalls, VPN, anti-spam,
content filtering, load balancing, and other layers of DoS defense techniques. Together they enable constant
and consistent network protection to prevent a DoS attack from happening. This includes everything from
identifying possible traffic inconsistencies with the highest level of precision in blocking the attack. On the
other hand, given the characteristics of end-devices, theses devices are not protected by such mechanisms,
and thus are vulnerable to DoS attacks. One way for the adversary to target some victim is through sniffing.
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Sniffing corresponds to theft or interception of data by capturing the network traffic using a sniffer (an
application aimed at capturing network packets). When data is transmitted across networks, if the data
packets are not encrypted, the data within the network packet can be read using a sniffer. By a simple
argument, we will show that Algorithm C cannot protect end-devices from DoS attack, while randomization
makes Algorithm A less vulnerable than Algorithm B.

The remaining of the paper is organized as follows. Section 2 describes the model of the system in terms
of participating entities, and communication capability, as well as the main principles of the three collect
algorithms. Section 3 describes the dynamic of the stochastic (resp. deterministic) process as an urn and
balls model. Sections 4, 5, and 6 provide an in depth analysis of the algorithms. The trade-off between
their performance and their vulnerability to deny-of-service attacks launched by an omniscient adversary is
discussed in Section 7. Finally, Section 8 concludes.

2 Assumptions on the system and data collect algorithm

We consider a set of K ≥ 1 end-devices, 1, 2, . . .K with both measurement and communication capabilities.
These K end-devices are monitored by another device, called monitoring device, whose role is to periodically
collect measurements from these end-devices. The time needed for each end-device to make a measurement is
negligible with respect to the collect periodicity. Those K+1 devices are interconnected through a connected
but not necessarily complete communication network.

The monitoring device communicates with the end-devices by invoking a reliable broadcast primitive.
Such a primitive guarantees that if the monitoring device broadcasts some message then all the end-devices
will eventually receive this message. The end-devices communicate with the monitoring device by invoking a
reliable send primitive. This primitive ensures that the sent message is eventually received by the monitoring
device. Note that from an implementation point of view, since the communication graph is not necessarily
complete, messages may need to be forwarded by intermediate end-devices before being received by the
monitoring device.

All the devices have access to public key cryptography (PKC). PKC employs two keys, the private and
public keys, that are mathematically related although knowledge of one key does not allow someone to easily
determine the other key. Public keys (pk) are publicly known, while private keys (sk) are kept private by their
owner. One key is used to encrypt the plaintext into something that appears to be random and meaningless
(the ciphertext) and the other key is used to decrypt the ciphertext back to the plaintext. Let skk and
pkk be respectively the secret and public keys of device k. We rely on encryption to keep some pieces of
information secret during transmission between the monitoring device and end-devices (this will be detailed
later). In the following, encryption of message m is done with the public key of the recipient k of data m
and is denoted by encpkk(m), while decryption at k is done with k’s secret key and is denoted by decskk(m).

2.1 Main principles of the collect algorithms

We propose three algorithms to collect measurements from a set of K ≥ 1 end-devices. Only new measure-
ments are collected, that is, once an end-device k has sent its buffer of measurements to the monitoring
device, then k resets its buffer, and continues its data measurement process. So the next time end-device k
will be queried by the monitoring device, k will (only) provide measurements it has performed since the last
time it was queried.

2.2 Algorithm A

Algorithm A consists of a potentially infinite sequence of collects. Each collect is triggered by the monitoring
device. At the n-th collect, n ≥ 1, the monitoring device draws at random and uniformly an integer k in
{1, . . . ,K}. Integer k represents the end-device that will provide its buffer of measurements to the monitoring
device during this n-th collect. To prevent the adversary from discovering that end-device k is the one whose
data will be collected, the monitoring device encrypts k’s identifier using k’s public key, i.e encpkk(k), and
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broadcasts a collect query parameterized with encpkk(k) to all the end-devices. Upon receipt of this n-
th collect query, all the K end-devices perform d new data measurements and store them in their buffer.
However, prior to do that, end-device k that successively discovered that it is the one that must send its
buffer of measurements to the monitoring device, i.e., decskk(encpkk(k))= k, sends back its buffer to the
monitoring device, and locally resets its. Thus at the end of collect n, the buffer of end-device k contains
exactly d data, while for all the other end-devices, the size of their buffer is equal to the one after collect
n− 1 plus d. Without loss of generality, we assume in the following that d = 1.

2.3 Algorithm B

Algorithm B differs from Algorithm A only in the way the monitoring device randomly chooses the end-device
from which it collects measurements. Specifically, at the n-th collect, n ≥ 1, the monitoring device draws at
random an integer k in {1, . . . ,K}, with a probability proportional to the size of the buffer of end-device k.
Thus an end-device whose buffer of measurements has not been collected for a long time will be more likely
to be chosen during this collect.

2.4 Algorithm C

Algorithm C queries end-devices according to the round-robin schema: at the n-th collect, n ≥ 1, the chosen
end-device is end-device k = n mod (K)+K{n mod (K)=0}, where K{E} is the function equal to K if E is true
and 0 otherwise. Thus each end-device is chosen in circular order without priority, starting by end-device
k = 1 when n = 1.

3 Modeling Algorithms A, B, and C

We model those three algorithms to determine, at any collect n ≥ 1, the amount of data measurements at
any end-device k, i.e., the size of its buffer, denoted by buffer k, and the total amount of measurements over
all the K buffers.

3.1 Modeling Algorithm A

Let {A(n), n ≥ 0} be a discrete time stochastic process, with A(n) = (A1(n), . . . , AK(n)), where Ak(n)
represents the total amount of data measurements in the buffer of end-device k at the n-th collect. The
dynamic of this stochastic process can be seen as an urn and balls problem. There are K urns, each one
modeling the local buffer of end-devices. Balls represent the number of measurements in the local buffer of
each end-device, i.e., one ball represents one measurement (recall that d = 1). We suppose that initially, i.e.,
at n = 0, all the local buffers contain one data measurement and the collect process start at n ≥ 1. Thus at
n = 0 there is one ball in each of the K urns.

At the n-th collect, end-device k is chosen randomly and uniformly, i.e. with probability 1/K. All the
balls of urn k are withdrawn from it, and one ball is added to each of the K urns (see Section 2.2). For n ≥ 1,
Ak(n) is equal to the number of balls in urn k at collect n (i.e., is equal to the amount of data measurements
in k’s buffer at collect n).

We denote by SA(n) the total number of balls in the K urns at collect n, which thus corresponds to the
total amount of measurements over all the K buffers at the end of the n-th collect. This quantity is defined
by

SA(n) =

K∑
k=1

Ak(n). (1)

Let (Un)n≥0 be a sequence of random variables independent and identically uniformly distributed on interval
[0, 1]. This sequence is used in Relation (2) to determine the urn which is selected at each instant. We suppose
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that, for all k = 1, . . . ,K, random variables Ak(n) and Un are independent. For all n ≥ 0, we define the
sequence of random variables JA(Un) by

JA(Un) =

K∑
k=1

k1{(k−1)/K≤Un<k/K}, (2)

which gives the urn selected by the monitoring device, using Algorithm A, to collect its balls at time n. The
evolution of process {A(n), n ≥ 0} is thus given, for all k = 1, . . . ,K, by Ak(0) = 1 and, for all n ≥ 1, by

Ak(n) =

{
Ak(n− 1) + 1 if JA(Un−1) 6= k

1 if JA(Un−1) = k.
(3)

It is easily checked from this definition that for each n ≥ 1, there exists a unique urn u such that Au(n) = 1
and Ak(n) ≥ 2, for k = 1, . . . ,K, with k 6= u.

To analyse the maximum amount of uncollected measurements at any end-device k, we introduce the
process {A′(n), n ≥ 0}, where A′(n) = (A′1(n), . . . , A′K(n)), which is obtained by reordering the entries of
vector A(n) in the ascending order, that is with A′1(n) = 1 < A′2(n) ≤ · · · ≤ A′K(n). More precisely, for all
k = 1, . . . ,K, we define the A′k(n) by A′k(0) = 1 and, for n ≥ 1, by A′1(n) = 1 and for k = 2, . . . , n, by

A′k(n) =

{
A′k−1(n− 1) + 1 if JA(Un−1) ≥ k
A′k(n− 1) + 1 if JA(Un−1) ≤ k − 1.

Note that for the definition of process {A′(n), n ≥ 0}, we keep the notation JA(Un) since it does not depend

on the number of balls in each urn but only on urn k. Note in particular that SA′(n)
D
= SA(n), which means

that SA(n) and SA′(n) have the same distribution. This relation can also be written as

A′k(n) = A′k−1(n− 1)1{JA(Un−1)≥k} +A′k(n− 1)1{JA(Un−1)≤k−1} + 1. (4)

3.2 Modeling Algorithm B

Let {B(n), n ≥ 0} be a discrete time stochastic process, with B(n) = (B1(n), . . . , BK(n)), where Bk(n)
represents the total amount of uncollected measurements in the buffer of end-device k at the n-th collect.
Similarly to Algorithm A, the dynamic of the stochastic process {B(n), n ≥ 0} can be represented by an
urn and balls model. There are K urns, each one modeling the local buffer of end-devices. Balls represent
the number of measurements in the local buffer of each end-device. Similarly to Algorithm A, we suppose
that initially, i.e., at n = 0, all the local buffers contain d data measurements and the collect process start
at n ≥ 1. Recall that wlog we assume that d = 1, thus at n = 0 there is one ball in each of the K urns.

We denote by SB(n) the total number of balls in the K urns at collect n, which corresponds to the total
number of uncollected measurements at the n-th collect. This quantity is defined by

SB(n) =

K∑
k=1

Bk(n). (5)

At the n-th collect, a node k is chosen with probability Bk(n)/SB(n), and all the balls of urn k are withdrawn
from that urn, and one ball is added in each of the K urns. For n ≥ 1, Bk(n) is equal to the number of balls
in urn k at collect n.

Let (Vn)n≥0 be a sequence of random variables independent and identically uniformly distributed on
interval [0, 1]. This sequence is used in Relation (7) to determine the urn which is selected at each instant.
We suppose that, for all k = 1, . . . ,K, random variables Bk(n) and Vn are independent. The evolution of
process B is thus given by B(0) = A(0) = (1, . . . , 1) and, for n ≥ 1 and k = 1, . . . ,K, by

Bk(n) =

{
Bk(n− 1) + 1 if JB(Vn−1) 6= k

1 if JB(Vn−1) = k,
(6)
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where JB(Vn) is defined, for all n ≥ 0, by

JB(Vn) =

K∑
k=1

k1{sB(n,k−1)≤Vn<sB(n,k)}, with sB(n, k) =
1

SB(n)

k∑
j=1

Bj(n). (7)

Note that, as for Algorithm A, JB(Vn) is the urn selected by the monitoring device, using Algorithm B, to
collect its balls at time n. As we did for stochastic process {A(n), n ≥ 0}, we reorder the entries of random
vector (B1(n), . . . , BK(n)) in the ascending order. Thus, we introduce the process {B′(n), n ≥ 0}, where
B′(n) = (B′1(n), . . . , B′K(n)), with B′k(0) = 1 and, for n ≥ 1, B′1(n) = 1 < B′2(n) ≤ · · · ≤ B′K(n) is defined
by

B′1(n) = 1 and B′k(n) =

{
B′k−1(n− 1) + 1 for k = 2, . . . , JB(Vn−1)
B′k(n− 1) + 1 for k = JB(Vn−1) + 1, . . . ,K.

(8)

In the same way the distribution of the total number of balls SB′(n) at collect n remains unchanged, that is

SB(n)
D
= SB′(n).

3.3 Modeling Algorithm C

Let {C(n), n ≥ 0} be a discrete time deterministic process, with C(n) = (C1(n), . . . , CK(n)), where Ck(n)
represents the total amount of uncollected measurements in the buffer of end-device k at the n-th collect.
Since Algorithm C queries end-devices according to the round-robin schema, at the n-th collect, n ≥ 1, the
chosen end-device (or the chosen urn) is end-device (or urn) k = n mod (K) + K{n mod (K)=0}. For n ≥ 1,
Ck(n) is equal to the number of balls in urn k at collect n.

The sequence C(n) is thus given by C(0) = (1, . . . , 1), for n = 1, . . .K − 1 by

Ck(n) =


n if k = 1

Ck−1(n− 1) if k = 2, . . . , n− 1
1 if k = n

Ck−1(n− 1) + 1 if k = n+ 1, . . . ,K,

and, for all n ≥ K and k = 1, . . . ,K, by

Ck(n) =

{
n mod (K) +K{n mod (K)=0} if k = 1

Ck−1(n− 1) if k = 2, . . . , n− 1.

For instance, for K = 5, we obtain

C(0) = (1, 1, 1, 1, 1), C(5) = (5, 4, 3, 2, 1), C(10) = (5, 4, 3, 2, 1), · · ·
C(1) = (1, 2, 2, 2, 2), C(6) = (1, 5, 4, 3, 2), C(11) = (1, 5, 4, 3, 2), · · ·
C(2) = (2, 1, 3, 3, 3), C(7) = (2, 1, 5, 4, 3), C(12) = (2, 1, 5, 4, 3), · · ·
C(3) = (3, 2, 1, 4, 4), C(8) = (3, 2, 1, 5, 4), C(13) = (3, 2, 1, 5, 4), · · ·
C(4) = (4, 3, 2, 1, 5), C(9) = (4, 3, 2, 1, 5), C(14) = (4, 3, 2, 1, 5), · · ·

We denote by SC(n) the total number of balls in the K urns at collect n, which corresponds to the total
number of uncollected measurements at the n-th collect. This quantity is defined by

SC(n) =

K∑
k=1

Ck(n). (9)

As we did for stochastic processes {A(n), n ≥ 0} and {B(n), n ≥ 0}, we reorder the entries of random
vector (C1(n), . . . , CK(n)) in the ascending order. Thus, we introduce the process {C ′(n), n ≥ 0}, where
C ′(n) = (C ′1(n), . . . , C ′K(n)), with C ′(0) = (1, . . . , 1) and, for n ≥ 1,

C ′1(n) = 1 and C ′k(n) = C ′k(n− 1) + 1, for k = 2, . . . ,K − 2.
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For K = 5, we easily get C ′(0) = (1, 1, 1, 1, 1), C ′(1) = (1, 2, 2, 2, 2), C ′(2) = (1, 2, 3, 3, 3), C ′(3) =
(1, 2, 3, 4, 4) and C ′(n) = (1, 2, 3, 4, 5), for all n ≥ 4. In the same way the total number of balls SC′(n)
at collect n remains unchanged, that is SC(n) = SC′(n). This quantity is easily obtained by

SC(n) = SC′(n) = (n+ 1)
(
K − n

2

)
1{0≤n≤K−2} +

K(K + 1)

2
1{n≥K−1}. (10)

4 Analysis of Algorithm A

We study in this section the stochastic processes {A(n), n ≥ 0} and {A′(n), n ≥ 0}.

4.1 Distribution of Ak(n)

We start by analyzing the amount of uncollected measurements at any end-device k at any collect n ≥ 1.

Theorem 4.1 For all n ≥ 0, k = 1, . . . ,K and ` = 1, . . . , n+ 1, we have

P{Ak(n) = `} =

(
1− 1

K

)`−1 [
1

K
1{`≤n} + 1{`=n+1}

]
.

Proof. Proof. From the definition of Ak(n) in Relation (3), we have, for all k = 1, . . . ,K, Ak(0) = 1 and
for all n ≥ 1,

Ak(n) = (Ak(n− 1) + 1)1{JA(Un−1)6=k} + 1{JA(Un−1)=k} = Ak(n− 1)1{JA(Un−1) 6=k} + 1.

Note that this relation implies that Ak(n) ≤ Ak(n − 1) + 1, which means that the random variable Ak(n)
takes its values in the set {1, . . . , n+ 1}.

By conditioning on Ak(n − 1) and using the fact that Ak(n − 1) and Un−1 are independent, we obtain,
for all `, j ≥ 1,

P{Ak(n) = ` | Ak(n− 1) = j} = P{Ak(n− 1)1{JA(Un−1) 6=k} + 1 = ` | Ak(n− 1) = j}
= P{1{JA(Un−1)6=k} = (`− 1)/j | Ak(n− 1) = j}
= P{1{JA(Un−1)6=k} = (`− 1)/j}

=

 P{JA(Un−1) = k} if ` = 1
P{JA(Un−1) 6= k} if ` ≥ 2 and j = `− 1

0 otherwise.

=

 1/K if ` = 1
1− 1/K if j = `− 1 and ` ≥ 2

0 otherwise.

Unconditioning, we obtain P{Ak(n) = 1} = 1/K and, for ` ≥ 2,

P{Ak(n) = `} =

(
1− 1

K

)
P{Ak(n− 1) = `− 1}.

This simple recurrence relation leads to

P{Ak(n) = `} =


1

K

(
1− 1

K

)`−1

if 1 ≤ ` ≤ n(
1− 1

K

)n

if ` = n+ 1,

which completes the proof.
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Observe that, at each collect instant n, the amount of measurements Ak(n), collected at any device k has
the same distribution for k = 1, . . . ,K. This is due to the fact that the Un are uniformly distributed. Note
that A1(n), . . . , AK(n) are not independent. We get from Theorem 4.1 that, as expected, the uncollected
measurements of any end-device k follows a kind of geometric law with parameter 1/K.

Corollary 4.2 highlights that the expected amount of uncollected measurements in any buffer at collect
n is not exactly K but increases towards K when the number n of collects goes to infinity. It also shows
that the expected total amount of uncollected measurements at collect n, E(SA(n)), converges increasingly
to K2 when the number of collects n goes to infinity.

Corollary 4.2 For all k = 1, . . . ,K, we have

E(Ak(n)) = K

(
1−

(
1− 1

K

)n+1
)

and E(SA(n)) = K2

(
1−

(
1− 1

K

)n+1
)
.

Moreover, limn−→∞E(Ak(n)) = K and limn−→∞E(SA(n)) = K2.

Proof. Proof. From Theorem 4.1, we have, for all ` = 0, . . . , n,

P{Ak(n) > `} =

n+1∑
j=`+1

P{Ak(n) = j} =
1

K

n∑
j=`+1

(
1− 1

K

)j−1

+

(
1− 1

K

)n

=

(
1− 1

K

)`

.

We thus get

E(Ak(n)) =

n∑
`=0

P{Ak(n) > `} =

n∑
`=0

(
1− 1

K

)`

= K

(
1−

(
1− 1

K

)n+1
)
.

The second equality follows immediately from Relation (1) and the limits are trivial.

Corollary 4.3 shows that the limiting distribution of the uncollected measurements of end-device k is
geometric with parameter 1/K.

Corollary 4.3 For all k = 1, . . . ,K and ` ≥ 1, we have

lim
n−→∞

P{Ak(n) = `} =

(
1− 1

K

)`−1
1

K
.

Proof. Proof. The proof is straightforward from Theorem 4.1 and Corollary 4.2.

4.2 Distribution of A′
k(n)

In this section, we study the maximum amount of uncollected measurements distribution of end-devices,
that is the distribution of A′K(n). Recall that A′1(n) = 1 for all n ≥ 0 and that A′2(n) ≤ . . . ≤ A′K(n), with
A′k(0) = 1 for all k = 1, . . . ,K and 2 ≤ A′k(n) ≤ n + 1 for all n ≥ 1. The distribution of A′2(n) is given in
Theorem 4.4.

Theorem 4.4 A′2(0) = 1 and for all n ≥ 1 and ` = 2, . . . , n+ 1, we have

P{A′2(n) = `} =

(
1

K

)`−2 [(
1− 1

K

)
1{`≤n} + 1{`=n+1}

]
.

Proof. Proof. By definition of A′k(n), see Relation (4), we have A′2(0) = 1 and for all n ≥ 1,

A′2(n) = 1{JA(Un−1)≥2} +A′2(n− 1)1{JA(Un−1)=1} + 1.
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By conditioning on A′2(n − 1) and using the fact that A′k(n − 1) and Un−1 are independent, we obtain,
for all ` ≥ 1 and j ≥ 2,

P{A′2(n) = ` | A′2(n− 1) = j} = P{1{JA(Un−1)≥2} + j1{JA(Un−1)=1} + 1 = `}

=

 P{JA(Un−1) ≥ 2} if ` = 2
P{JA(Un−1) = 1} if ` ≥ 3 and j = `− 1

0 otherwise.

=

 1− 1/K if ` = 2
1/K if ` ≥ 3 and j = `− 1

0 otherwise.

Unconditioning, we obtain P{A′2(n) = 2} = 1− 1/K and, for ` ≥ 3,

P{A′2(n) = `} =
1

K
P{A′2(n− 1) = `− 1}.

This simple recurrence relation leads, for ` = 2, . . . , n+ 1, to

P{A′2(n) = `} =

(
1

K

)`−2 [(
1− 1

K

)
1{`≤n} + 1{`=n+1}

]
,

which completes the proof.

The next result gives the expected value of A′2(n).

Corollary 4.5 For all n ≥ 0, we have

E(A′2(n)) = 1 +
K (1− (1/K)

n
)

K − 1
.

Proof. Proof. The relation is true for n = 0. For n ≥ 1, From Theorem 4.4, we have, for all ` = 1, . . . , n,

P{A′2(n) > `} =

n+1∑
j=`+1

P{A′2(n) = j} =

(
1− 1

K

) n∑
j=`+1

(
1

K

)j−2

+

(
1

K

)n−1

=

(
1

K

)`−1

.

We thus get

E(A′2(n)) =

n∑
`=0

P{A′2(n) > `} = 1 +

n∑
`=1

(
1

K

)`−1

= 1 +
K (1− (1/K)

n
)

K − 1
,

which completes the proof.

The distribution of A′k(n) for all k is given in Theorem 4.6.

Theorem 4.6 For all k ≥ 2, we have A′k(1) = 2. For all k ≥ 3, n ≥ 2 and ` = 3, . . . , n+ 1, we have

P{A′k(n) = `} =

(
1− k − 1

K

)
P{A′k−1(n− 1) = `− 1}+

k − 1

K
P{A′k(n− 1) = `− 1}.

Proof. Proof. By definition of A′k(n) given in Relation (4), we have A′k(0) = 1, for all k ≥ 1, anf for all
k ≥ 2 and n ≥ 1,

A′k(n) = A′k−1(n− 1)1{JA(Un−1)≥k} +A′k(n− 1)1{JA(Un−1)≤k−1} + 1.

Since A′k−1(0) = 1 and A′k(0) = 1, we obtain A′k(1) = 2.
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Now, for k ≥ 3, by conditioning on A′k−1(n − 1) and A′k(n − 1) and using the fact that A′k(n − 1) and
Un−1 are independent, we obtain, for all n ≥ 2 and `, i, j ≥ 2,

P{A′k(n) = ` | A′k−1(n− 1) = i, A′k(n− 1) = j} = P{i1{JA(Un−1)≥k} + j1{JA(Un−1)≤k−1} = `− 1}

=


0 if ` = 2

1− (k − 1)/K if ` ≥ 3 and i = `− 1
(k − 1)/K if ` ≥ 3 and j = `− 1

0 otherwise.

Unconditioning, we obtain for all n ≥ 2 and ` ≥ 3,

P{A′k(n) = `} =

(
1− k − 1

K

)
P{A′k−1(n− 1) = `− 1}+

k − 1

K
P{A′k(n− 1) = `− 1}.

which completes the proof.

The expected value of A′k(n) is obtained by recurrence in the following result.

Corollary 4.7 For all n ≥ 0, we have E(A′1(n)) = 1. For all k = 1, . . . ,K, we have E(A′k(0)) = 1. For all
n ≥ 1 and k = 2, . . . ,K, we have

E(A′k(n)) =

(
1− k − 1

K

)
E(A′k−1(n− 1)) +

k − 1

K
E(A′k(n− 1)) + 1.

Proof. Proof. Let n ≥ 1 and k ≥ 2. By taking the expectation in Relation (4) and using the fact that
A′k(n− 1) and Un−1 are independent, we obtain

E(A′k(n)) = E(A′k−1(n− 1))P{JA(Un−1) ≥ k}+E(A′k(n− 1))P{JA(Un−1) ≤ k − 1}+ 1

=

(
1− k − 1

K

)
E(A′k−1(n− 1)) +

k − 1

K
E(A′k(n− 1)) + 1,

which completes the proof.

Using Theorem 4.6, we compute in Figure 1, P{A′K(n) ≥ `} for different values of K and n.
We analyze in the following theorem the limiting behavior of the distribution of the A′k(n). We denote

by πk(`), for all k = 1, . . . ,K, this stationnary distribution, that is

πk(`) = lim
n−→∞

P{A′k(n) = `}.

The existence of this limit follows by recurrence as shown in Theorem 4.8.

Theorem 4.8 We have π1(`) = 1{`=1} and, for k = 2, . . . ,K,

πk(`) =

[
k−1∏
r=1

(
1− r

K

)] k−1∑
r=1

ar(k)
( r
K

)`−k
1{`≥k}, (11)

where the coefficients ar(k) are given by a1(2) = 1 and, for k ≥ 3,
ar(k) = − r

k − r − 1
ar(k − 1) for r = 1, . . . , k − 2

ak−1(k) = 1−
k−2∑
r=1

ar(k).
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Figure 1: Using Theorem 4.6, we compute P{A′K(n) ≥ `} for different values of K (K = 100, 200 and 300)
and at different collects n (n = 5K, 8K and 10K). The plain lines represent P{A′5K(n) ≥ `}, the dotted
lines represent P{A′8K(n) ≥ `} and the dashed lines represent P{A′10K(n) ≥ `}.

Proof. Proof. For k = 1, the result is trivial since A′1(n) = 1, for all n ≥ 0. For k = 2, by taking the limit
when n tends to infinity in Theorem 4.4, we easily get

π2(`) =

(
1− 1

K

)(
1

K

)`−2

1{`≥2}, (12)

which is exactly Relation (11) when k = 2.
For k ≥ 3, we take the limit when n tends to infinity in Theorem 4.6. We obtain

πk(`) =
k − 1

K
πk(`− 1) +

(
1− k − 1

K

)
πk−1(`− 1). (13)

It is easily checked by recurrence, using Relation (12), that πk(`) = 0, for ` ≤ k − 1. Using this property in
Relation (13) with ` = k, we get

πk(k) =
k − 1

K
πk(k − 1) +

(
1− k − 1

K

)
πk−1(k − 1) =

(
1− k − 1

K

)
πk−1(k − 1),

which leads to

πk(k) =

(
1− k − 1

K

)
· · ·
(

1− 2

K

)
π2(2).

Since, from Relation (12), we have π2(2) = 1− 1/K, it follows that

πk(k) =

k−1∏
r=1

(
1− r

K

)
.

We now verify that the right hand side of Relation (11) satisfies Relation (13). In order to do that, we denote
by pk(`) the right-hand side of (11), that is

pk(`) =

[
k−1∏
r=1

(
1− r

K

)] k−1∑
r=1

ar(k)
( r
K

)`−k
1{`≥k},

11



where a1(2) = 1 and, for k ≥ 3,

ar(k) = − r

k − r − 1
ar(k − 1) for r = 1, . . . , k − 2 (14)

ak−1(k) = 1−
k−2∑
r=1

ar(k), (15)

For ` = k, we have, using Relation (15),

pk(k) =

[
k−1∏
r=1

(
1− r

K

)] k−1∑
r=1

ar(k) =

k−1∏
r=1

(
1− r

K

)
= πk(k).

For ` ≥ k + 1, we have

k − 1

K
pk(`− 1) = πk(k)

k−1∑
r=1

ar(k)
k − 1

K

( r
K

)`−1−k
= πk(k)

k−1∑
r=1

ar(k)
k − 1

r

( r
K

)`−k
= πk(k)

[
k−2∑
r=1

ar(k)
k − 1

r

( r
K

)`−k
+ ak−1(k)

(
k − 1

K

)`−k
]
.

In the same way, we have, for ` ≥ k + 1,(
1− k − 1

K

)
pk−1(`− 1) = πk(k)

k−2∑
r=1

ar(k − 1)
( r
K

)`−k
.

By adding these two expressions, we obtain

k − 1

K
pk(`− 1) +

(
1− k − 1

K

)
pk−1(`− 1) =

πk(k)

[
k−2∑
r=1

(
ar(k)

k − 1

r
+ ar(k − 1)

)( r
K

)`−k
+ ak−1(k)

(
k − 1

K

)`−k
]
.

Observing that Relation (14) can be written, for r = 1, . . . , k − 2, as

ar(k) = ar(k)
k − 1

r
+ ar(k − 1),

we get
k − 1

K
pk(`− 1) +

(
1− k − 1

K

)
pk−1(`− 1) = pk(`),

which proves that πk(`) = pk(`).

Explicit expressions of coefficients ar(k) and properties of these coefficients are given in the following
corollary. Let us first recall that the Stirling numbers of the second kind are defined by S(`, 1) = S(`, `) = 1
for ` ≥ 1 and by S(`, k) = kS(`− 1, k) + S(`− 1, k − 1), for ` ≥ k.

Corollary 4.9 shows that the distribution of all the order statistics of the Ak(n) are easily obtained using
the Stirling numbers of the second kind.
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Corollary 4.9 For all k = 2, . . . ,K and r = 1, . . . , k − 1, we have

ar(k) =
(−1)k−1−rrk−1

r!(k − 1− r)!
. (16)

For all k = 2, . . . ,K and ` ≥ k, we have

lim
n−→∞

P{A′k(n) = `} = πk(`) =
(K − 1)!S(`− 1, k − 1)

(K − k)!K`−1 , (17)

and

lim
n−→∞

P{A′k(n) ≥ `} =

∞∑
m=`

πk(m) =
(K − 1)!

(K − k)!K`−2

k−1∑
r=1

(−1)k−1−rr`−1

r!(k − 1− r)!(K − r)
. (18)

Proof. Proof. It is easily checked that Relation (16) satisfies a1(2) = 1 and the recursive definition of the
ar(k) given in Theorem 4.8, for k ≥ 3 and r = 1, . . . , k − 2. It remains to study the case r = k − 1. In that
case, using the Euler’s finite difference theorem (see for instance Relation (6.19) of [13]), which tells us that

k−1∑
r=1

(−1)k−1−rrk−1

r!(k − 1− r)!
= 1, for k ≥ 2

we get

ak−1(k) = 1−
k−2∑
r=1

ar(k) =
(k − 1)k−1

(k − 1)!
,

which completes the proof of Relation (16).
In order to prove Relation (17), observe first that

k−1∏
r=1

(
1− r

K

)
=

k−1∏
r=1

(
K − r
K

)
=

(K − 1)!

(K − k)!Kk−1 .

Using this relation and the expression of the ar(k) obtained in Relation (16) that we insert in Relation (11),
we obtain, for all k = 2, . . . ,K and ` ≥ k,

πk(`) =
(K − 1)!

(K − k)!Kk−1

k−1∑
r=1

(−1)k−1−rrk−1

r!(k − 1− r)!

( r
K

)`−k
=

(K − 1)!

(K − k)!K`−1

k−1∑
r=1

(−1)k−1−r

r!(k − 1− r)!
r`−1. (19)

The Euler’s finite difference theorem (see for instance Relation (6.20) of [13]) also tells us that for ` ≥ k, we
have

k−1∑
r=1

(−1)k−1−rr`−1

r!(k − 1− r)!
= S(`− 1, k − 1), (20)

where S(`, k) are the Stirling numbers of the second kind defined above. Using this relation, we get

πk(`) =
(K − 1)!S(`− 1, k − 1)

(K − k)!K`−1 .
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To prove Relation (18), we use Relation (19) which leads to

∞∑
m=`

πk(m) =
(K − 1)!

(K − k)!

k−1∑
r=1

(−1)k−1−r

r!(k − 1− r)!

∞∑
m=`

( r
K

)m−1
=

(K − 1)!

(K − k)!

k−1∑
r=1

(−1)k−1−r

r!(k − 1− r)!

( r
K

)`−1 K

K − r

=
(K − 1)!

(K − k)!K`−2

k−1∑
r=1

(−1)k−1−rr`−1

r!(k − 1− r)!(K − r)
,

which completes the proof.

Theorem 4.10 The stationary distribution of the maximal amount of uncollected data over the K end-
devices is upper bounded by ` ≥ K with probability K!S(`,K)/K`. More precisely, we have

lim
n−→∞

P{A′K(n) ≤ `} =
∑̀
m=K

πK(m) =
K!S(`,K)

K`
,

Proof. Proof. By definition of the A′k(n), the maximal amount of uncollected data is obtained by end-device
number K. Thus, applying Relation (18) of Corollary 4.9 with k = K and `+ 1 instead of `, we obtain for
all ` ≥ K,

∞∑
m=`+1

πK(m) =
(K − 1)!

K`−1

K−1∑
r=1

(−1)K−1−rr`

r!(K − r)!
=

(K − 1)!

K`−1

[
−

K∑
r=1

(−1)K−rr`

r!(K − r)!
+
K`

K!

]
.

Using Relation (20), we get

∞∑
m=`+1

πK(m) = 1− (K − 1)!S(`,K)

K`−1 = 1− K!S(`,K)

K`
,

which completes the proof.

Figure 2 illustrates, for Algorithm A, the stationary maximal amount of uncollected data over the K
end-devices (see Theorem 4.10). Specifically, let T (`,K) be defined, for all ` ≥ K, by

T (`,K) =
K!S(`,K)

K`
,

and let `(K, ε) be the smallest value of ` for which T (`,K) is greater than or equal to 1 − ε, for ε ∈ (0, 1),
that is

`(K, ε) = inf{j | T (j,K) ≥ 1− ε}.

Observe that T (`,K) can be computed, for ` ≥ K, as

T (`,K) = T (`− 1,K) +

(
1− 1

K

)`−1

T (`− 1,K − 1)

with T (`, 2) = 1− (1/2)`−1, for ` ≥ 2. For instance, Figure 2 indicates that when K = 3 and ε = 10−3, the
amount of accumulated measurements at any end-device does not exceed 11 with probability greater than
or equal to 0.999. Table 1 gives the values of `(K, ε = 10−3) for some large values of K.

To complete our analysis, we give in Corollary 4.11 the expected value of the stationary maximal amount
of measurements collected at any end-device.
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Figure 2: Illustration of the stationary maximal amount of uncollected data over the K end-devices. For
K = 100, 150 and 200 and for each ` = K, . . . , 2, 800, we compute T (`,K) and thresholds `(K, ε) for ε = 10−3

(i.e., `(100K, ε) = 1171, `(150K, ε) = 1808, and `(200K, ε) = 2462). The purple line represents 1−ε = 0.999.

K 250 500 750 1,000 10,000
`(K, 10−3) 3,101 6,555 10,139 13,809 161,168

Table 1: Thresholds `(K, ε) of the stationary maximal amount of measurements collected at any end-device
for large values of K when ε = 10−3.

Corollary 4.11 For all k = 1, . . . ,K, we have

lim
n−→∞

E(A′k(n)) = K

K∑
`=K−k+1

1

`
.

Proof. Proof. In order to simplify the writing we introduce the notation xk = limn−→∞E(A′k(n)). By
taking the limit when n tends to infinity in Corollary 4.7, we get x1 = 1 and, for all k = 2, . . . ,K,

xk =

(
1− k − 1

K

)
xk−1 +

k − 1

K
xk + 1,

which can be written as xk = xk−1 +K, that is

xk = K

K∑
`=K−k+1

1

`
,

which completes the proof.

Taking k = K, we get from Corollary 4.11 that the average of the maximum amount of uncollected measure-
ment A′K(n) converges to K

∑K
`=1 1/` when n goes to infinity. This indicates that the stationary average

maximum uncollected measurements is Θ (K lnK).
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5 Analysis of Algorithm B

This section is devoted to the study of the impact of the “random weighted sampling policy” on the distri-
bution and the moments of the uncollected measurements of any end-devices. Actually both of them are not
easy to obtain analytically, nevertheless we show in this section that stochastic process {A(n), n ≥ 0} is, in
terms of distribution, an upper bound of stochastic process {B(n), n ≥ 0}.

To derive an upper bound of stochastic process {B(n), n ≥ 0} from process {A(n), n ≥ 0}, we apply a
coupling technique consisting in using the same sequences of independent and uniformly distributed random
variables for both processes. In this subsection, we thus assume that the two sequences of independent
and uniformly distributed random variables Un and Vn are equal. We denote by Ã and B̃ the two coupled
stochastic processes constructed from processes {A(n), n ≥ 0} and {B(n), n ≥ 0} respectively.
We first need two lemmas which allow us to compare the quantities sB̃′(n, k) and k/K as well as variables
JB̃(Un) and JÃ(Un). As we did for processes {A(n), n ≥ 0} and {B(n), n ≥ 0}, we introduce the process

Ã′ and B̃′ which are obtained by reordering the entries of vectors Ã(n) and B̃(n) in the ascending order.

Lemma 5.1 For all n ≥ 0 and for all k = 1, . . . ,K, we have sB̃′(n, k) ≤ k/K.

Proof. Proof. Recall that sB̃′(n, k) is defined by

sB̃′(n, k) =
1

SB̃′(n)

k∑
j=1

B̃′j(n) where SB̃′(n) =

K∑
k=1

B̃′k(n).

If, for all k = 1, . . . ,K, B̃′k(n)/SB̃′(n) = 1/K then the result is true since in that case, we have sB̃′(n, k) =
k/K.

Otherwise, the sequence B̃′k(n)/SB̃′(n) being non-decreasing with k and since we have sB̃′(n,K) = 1,
there exists a unique index i ∈ {1, . . . ,K − 1} such that

B̃′1(n)

SB̃′(n)
≤ · · · ≤ B̃′i(n)

SB̃′(n)
< 1/K ≤

B̃′i+1(n)

SB̃′(n)
≤ · · · ≤ B̃′K(n)

SB̃′(n)
.

It follows that, for all k = 1, . . . , i, we have sB̃′(n, k) ≤ k/K. For k = i+ 1, . . . ,K, we have

sB̃′(n, k) =

k∑
j=1

B̃′j(n)

SB̃′(n)
= 1−

K∑
j=k+1

B̃′j(n)

SB̃′(n)
≤ 1− K − k

K
=

k

K
,

which completes the proof.

Lemma 5.2 For all n ≥ 0, we have JÃ(Un) ≤ JB̃′(Un).

Proof. Proof. The definition of JB̃′(Un) given in Relation (7), with B′ instead of B, is

JB̃′(Un) =

K∑
k=1

k1{sB̃′ (n,k−1)≤Un<sB̃′ (n,k)},

in which we set sB̃′(n, 0) = 0, for all n ≥ 0. This relation and the fact that the sB̃′(n, k) are non decreasing
in k imply that

sB̃′(n, JB̃′(Un)− 1) ≤ Un < sB̃′(n, JB̃′(Un)) < sB̃′(n, JB̃′(Un) + 1). (21)

Note that JÃ(Un) = JA(Un). Similarly, from the definition of JA(Un) in Relation (2), we get that

JÃ(Un)− 1

K
≤ Un <

JÃ(Un)

K
<
JÃ(Un) + 1

K
. (22)
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We prove this Lemma by contradiction. Suppose that there exists an index n such that JB̃′(Un) < JÃ(Un).
Using this assumption and applying Lemma 5.1, we have from Relation (21) that

Un < sB̃′(n, JB̃′(Un)) ≤
JB̃′(Un)

K
<
JÃ(Un)

K
.

Using again the assumption JB̃′(Un) < JÃ(Un) or equivalently JB̃′(Un) ≤ JÃ(Un) − 1, we obtain from
Relation (22)

JB̃′(Un)

K
≤
JÃ(Un)− 1

K
≤ Un <

JÃ(Un)

K
.

We thus have both Un < JB̃′(Un)/K and Un ≥ JB̃′(Un)/K, which is a contradiction. We thus have that for
all n ≥ 0, we have JÃ(Un) ≤ JB̃′(Un).

Lemma 5.3 For all n ≥ 0 and k = 1, . . . ,K, we have B̃′k(n) ≤ Ã′k(n) and SB̃′(n) ≤ SÃ′(n).

Proof. Proof. We prove the first result by recurrence on n. When n = 0, we trivially have Ã′(0) = A(0) =

B(0) = B̃′(0). Suppose that for a index n, we have B̃′k(n) ≤ Ã′k(n), for all k = 1, . . . ,K. From Lemma 5.2, we
have JÃ(Un) ≤ JB̃′(Un). We thus distinguish the following four disjoints cases: k = 1, k ∈ {2, . . . , JÃ(Un)},
k ∈ {JÃ(Un) + 1, . . . , JB̃′(Un)} and k ∈ {JB̃′(Un) + 1, . . . ,K}.

Note that if JB̃′(Un) = K then only the first three cases have to be considered and if JÃ(Un) = K then
only the first two cases have to be considered.

For each case, we use Relations (8) and (4) and the recurrence hypothesis.

• For k = 1, we have B̃′1(n+ 1) = Ã′1(n+ 1) = 1.

• For k ∈ {2, . . . , JÃ(Un)}, we have

B̃′k(n+ 1) = B̃′k−1(n) + 1 ≤ Ã′k−1(n) + 1 = Ã′k(n+ 1).

• For k ∈ {JÃ(Un) + 1, . . . , JB̃′(Un)}, we have

B̃′k(n+ 1) = B̃′k−1(n) + 1 ≤ Ã′k−1(n) + 1 ≤ Ã′k(n) + 1 = Ã′k(n+ 1).

• For k ∈ {JB̃′(Un) + 1, . . . ,K}, we have

B̃′k(n+ 1) = B̃′k(n) + 1 ≤ Ã′k(n) + 1 = Ã′k(n+ 1).

This completes the proof of the first inequality. The second one is now trivial since

SB̃′(n) =

K∑
k=1

B̃′k(n) ≤
K∑

k=1

Ã′k(n) = SÃ′(n),

which completes the proof.

We are now able to prove the main result of this section, that is that Algorithm B performs better than
Algorithm A. We first recall the following lemma, see [9].

Lemma 5.4 [Strassen’s theorem] The real random variable X stochastically dominates Y if and only if there

exists a coupling (X̃, Ỹ ) of X and Y such that P[X̃ ≥ Ỹ ] = 1.

Theorem 5.5 For all n ≥ 0 and k = 1, . . . ,K, we have

B′k(n)
s.t.
� A′k(n) and SB(n)

s.t.
� SA(n).
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Proof. Proof. Combining Lemma 5.4 and Lemma 5.3, we directly deduce that for all n ≥ 0 and k =

1, . . . ,K, we have B′k(n)
s.t.
� A′k(n) and SB′(n)

s.t.
� SA′(n). Then, using the fact that SA′(n)

D
= SA(n) and

SB′(n)
D
= SB(n), we conclude that SB(n)

s.t.
� SA(n).

Theorem 5.5 shows that the amount of accumulated measurements at any end-device is lower for algorithm
B than for Algorithm A, i.e. for any ` ≥ 0

P{B′K(n) ≥ `} ≤ P{A′K(n) ≥ `}.

In other words, the probability that the maximum uncollected measurements exceeds ` with Algorithm B
is greater than or equal to the probability that the maximum uncollected measurements exceeds ` with
Algorithm A. Then, we also get that the total sum of uncollected measurements over all end-devices is also
lower for Algorithm B than for Algorithm A (in the sense that SB(n) is stochastically dominated by SA(n)).

6 Analysis of Algorithm C

We show in this section that Algorithm C performs better than algorithm B. More precisely we show that
deterministic process {C(n), n ≥ 0} is a lower bound of stochastic process {B(n), n ≥ 0}

Theorem 6.1 For any n ≥ 0 and for all k = 1, . . . ,K, we have

C ′k(n) ≤ B′k(n) and SC(n) = SC′(n) ≤ SB′(n).

Proof. Proof. We prove the first inequality by recurrence. The result is clearly true for n = 0, since
C ′k(0) = B′k(0) = 1. Suppose that for a fixed n ≥ 1, we have C ′k(n − 1) ≤ B′k(n − 1), for all k = 1, . . . ,K.
For k = 1, we have C ′1(n) = B′1(n) = 1. From Relation (8) and using the fact that the sequence B′k(n) is
non decreasing in k we obtain

B′k(n) =
(
B′k−1(n− 1) + 1

)
1{k=2,...,JB′ (Vn−1)} + (B′k(n− 1) + 1) 1{k=JB′ (Vn−1)+1,...,K}

≥
(
B′k−1(n− 1) + 1

)
1{k=2,...,JB′ (Vn−1)} +

(
B′k−1(n− 1) + 1

)
1{k=JB′ (Vn−1)+1,...,K}

= B′k−1(n− 1) + 1 ≥ C ′k−1(n− 1) + 1 = C ′k(n).

The second inequality is then immediate by definition of SC′(n) and SB′(n).

7 Discussion : performance and vulnerability to attacks

We have shown in the previous section that Algorithm C performs better than Algorithm B which in turn
performs better than Algorithm A and we have obtained several performance measures for both Algorithms
A and C. This means that from a pure performance criterion it is better to use Algorithm C.

Now let us investigate the capacity of these three algorithms to tolerate the presence of deny-of-service
attacks against end-devices. We model such an attack by an omniscient entity that has a full knowledge of the
code run by both the monitoring devices and end-devices. In particular the adversary knows the distribution
of the random variable used by the monitoring device to select the next end-device to be queried, but not
the values of the random variable.

Let us first consider the randomized algorithms A and B. The random variable used by the monitoring
device to select the end-device from which data is collected at collect n has been denoted by Un, for Algorithm
A and by Vn, for Algorithm B. The distribution of Un is uniform over {1, . . . ,K} and the distribution of Vn
is proportional to the number of balls in each urn at collect n and thus depends on n. The adversary knows
the distributions of Un and Vn and tries to determine using these distributions which urn (i.e., end-user)
is selected by the monitoring device at each collect n. We denote by Y the random variable used by the
adversary at each collect n to mimic the distribution of Un and Vn
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Consider first Algorithm A. By definition of the adversary, random variables Y and Un are independent
and identically uniformly distributed. The adversary will succeed in determining the end-user to be queried
by the monitoring device at collect n with probability P{Y = Un}. We thus define the vulnerability Vu(A)
of algorithm A by the probability P{Y = Un}. It is given by

Vu(A) = P{Y = Un} =

K∑
k=1

P{Y = k,Un = k} =

K∑
k=1

(P{Un = k})2 =
1

K
.

Concerning Algorithm B, again by definition of the adversary, the random variables Y and Vn are in-
dependent and identically distributed, but non uniform. The adversary will succeed in determining the
end-user to be queried by the monitoring device at collect n with probability P{Y = Vn}. The vulnerability
Vu(B) of algorithm B at collect n is then given by

Vu(B) = P{Y = Vn} =

K∑
k=1

(P{Vn = k})2 .

Clearly, Vu(B) is not easy to obtain because the random variables Vn depends on n, but we have the following
bound. The function f(x) = x2 being strictly convex, the Jensen inequality gives easily

1

K

K∑
k=1

(P{Vn = k})2 > 1

K2

(
K∑

k=1

P{Vn = k}

)2

=
1

K2
.

It follows that Vu(A) = P{Y = Un} < P{Y = Vn} = Vu(B), which means that Algorithm A is strictly
less vulnerable than Algorithm B. Observe that since Algorithm C is deterministic, we clearly have Vu(C) = 1.
Finally, the global result of this analysis shows a trade-off between the performance and vulnerability aspects
of these algorithms.
Algorithm C performs better than Algorithm B, which performs better than Algorithm A
Algorithm A is less vulnerable than Algorithm B, which is less vulnerable than Algorithm C to deny-of-service
attacks.

8 Conclusion

In this paper, we have proposed and analyzed the performance of three algorithms for collecting longitudinal
data in a large scale system. A monitoring device is in charge of continuously collecting measurements from
K end-devices. We have studied the transient and stationary distributions of the uncollected data at end-
devices as a function of the collect policy implemented by the monitoring device. We have also compared
their capability to be resilient to deny-of-service attacks launched by an omniscient adversary and have shown
a trade-off between vulnerability and performance.

It would be relevant to explore other collect policies, starting with those proposed to solve the load bal-
ancing problem such as selecting uniformly a end-device among the d end-devices with the most uncollected
measurements (multiple-choice paradigm [1]), the two choice paradigm [10] or the (1 + β)-choice [12].

The algorithms studied in this paper are based on the hypothesis that at each collect, the selected
end-device sends its measurements in time. It would be interesting to challenge these algorithms in an
environment where some end-device may not respond due to transient partitions. By transient partitions,
we mean that among the K end-devices, some of them can be temporarily partitioned from the remaining
of the devices, in the sense that communications between these end-devices and the remaining of the system
are temporarily delayed.
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