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ABSTRACT 

The coupling effects affecting the vibrations of two close nanostructures (e.g., two metal nanoplates 

or nanospheres separated by a thin dielectric layer) may considerably alter their vibrational 

eigenfrequencies, as demonstrated by several recent experimental studies. In this work, we present 

theoretical investigations of these coupling processes based on a continuum mechanics approach, 

considering various systems composed by two identical nanostructures mechanically coupled by a 

spacer made of a different material and computing their eigenfrequencies as a function of the spacer 

thickness. We first discuss the vibrations of stacked slabs, a one-dimensional problem which can be 

treated analytically. The more complex configurations of dimers of rods or spheres coupled by a 

finite cylindrical spacer are then treated numerically. In all cases, the frequency shifts occuring for 

thin spacers can be simply interpreted as a modification of the boundary conditions of the problem 

as compared to the single nanostructure case, while those predicted near specific spacer thicknesses 

are ascribed to an avoided crossing effect, happening when the individual building blocks of the 

dimers (nanostructures and spacer) present common eigenfrequencies. 
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INTRODUCTION 

Nano-objects present discrete acoustic vibrational modes, whose intrinsic features 

(frequency and damping rate) are set by the morphological and elastic properties of the nano-objects 

and their environment. Measuring the vibrational response of nano-objects thus constitutes a 

powerful tool to characterize their size, shape or composition. From an experimental point of view, 

the vibrations of nano-objects can be detected using optical spectroscopy techniques working in the 

time (pump-probe time-resolved spectroscopy) or frequency (Raman/Brillouin scattering 

spectroscopies) domains.1–6 

These techniques typically allow the detection of one or a few nano-object modes with 

frequencies in the GHz-THz range, of the order of the ratio between sound velocity and nano-object 

size. The experimental and theoretical investigations performed in the last twenty years have largely 

clarified the dependence of the vibrational frequencies of isolated nano-objects on their size, shape 

and elastic properties,7–12 and shown that they are usually reliably predicted by continuum 

mechanics approaches for nano-objects with sizes down to 1 nm, without having to consider a size-

induced modification of their elastic constants.4,5,13–16 In this context, the interest of nanoacoustics 

researchers is now shifting to less understood aspects of the vibrational response of nano-objects, 

including in particular damping and coupling phenomena, the latter constituting the scope of this 

paper. 

Vibrational coupling between close nano-objects takes place when they are mechanically 

connected, i.e. when the vibrations generated in a nano-object may reach close ones by propagation 

through the medium separating them. This situation may occur in a variety of systems, differing by 

the number of nano-objects (e.g., nanoparticle dimer, oligomer or supracrystal) and the nature and 

strength of their mechanical connections (e.g., via surfactant molecules, a polymer matrix or a 

supporting solid substrate).17–27 For metallic nano-objects, such proximity also simultaneously 

generates plasmonic interactions, which strongly affect their optical response (redshifting for 

instance the surface plasmon resonances of plasmonic homodimers as compared to those of isolated 

nanoparticles).28–32 This effect offers the possibility to selectively probe dimers in optical 

spectroscopy experiments involving ensembles of nanoparticles, by tuning the light wavelength with 

a plasmonic resonance generated by plasmonic interactions.24,25,33 The high sensitivity of the optical 

response of dimers to interparticle distance also makes their inelastic light scattering spectra much 

richer than those of isolated nano-objects.33 

The acoustic interactions between close supported nano-objects only coupled by their 

underlying substrate are typically weak, and initial experiments performed on nanodimers formed by 

two close non-touching nano-objects (pairs of nanoprisms34 and nanocubes35 lithographed on a 
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substrate) showed no clear signature of coupling effects. Nevertheless, coupling-induced frequency 

shifts were later observed in more complex nanoparticle oligomers (decamer of gold nanodisks, 

where a central nanodisk was surrounded by an outer ring of nine smaller nanodisks).26  

In contrast, multiple coupling effects were observed in time-resolved and inelastic light 

scattering experiments involving dimers of nano-objects either in direct contact or separated by a 

nanometric organic layer.19,21,24,25,27,36 In particular, measurements on samples containing nanosphere 

dimers21,24,25  allowed the detection of a low-frequency vibrational mode, associated with periodical 

dimer stretching by opposite quasi-translational motions of the two nanospheres, whose frequency 

was shown by numerical simulations to be much higher (almost double) than that associated with 

the quasi-translational motion of an isolated matrix-embedded nanosphere (labeled (l = 1, n = 0) in 

the framework of Lamb theory).25 The reproduction of inelastic scattering experiments on single 

dimers enabled finer information to be extracted, allowing to distinguish the contributions of two 

distinct vibrational modes in the low-frequency range of inelastic scattering spectra, which were 

ascribed to coupled motions of the nanoparticles parallel or orthogonal to the dimer axis.36 These 

experiments also demonstrated a large (25%) coupling-induced frequency increase for the 

quadrupolar mode (l = 2, n = 0), which dominates the inelastic scattering spectra of isolated 

nanospheres.2,33,37 Observations of similar vibrational coupling effects were made in recent time-

resolved investigations on single dimers of gold nanoplates separated by a thin PVP layer. The 

stacking of two nanoplates with close 50 GHz breathing frequencies19 was seen to produce two 

detectable eigenmodes, with frequencies respectively similar to the initial ones and 15% higher, in 

excellent agreement with the predictions of a simple coupled spring model. A low-frequency mode 

ascribed to a relative motion of stacked plates was also detected. 

Plasmonic coupling has been largely investigated from a theoretical point of view, a fruitful 

analogy between the hybridization of plasmonic modes in a dimer of nanoparticles and that of 

atomic orbitals in a molecule having in particular been presented.28,38 In contrast, vibrational coupling 

has been much less explored. Up to now, only a few modeling attempts have been reported, based 

either on empirical coupled spring models or on the use of fully numerical calculations.19,22,25–27,36 The 

goal of this theoretical paper is to clarify the vibrational interactions occurring in a dimer of nano-

objects, by combining analytical tools, which enable an equation-based discussion of coupling 

phenomena for simple systems, and numerical ones which allow addressing more complex 

geometries, using in both cases the framework of continuum mechanics. We considered here 

systems involving a pair of identical nanostructures separated by a finite spacer (the names of 

« nanostructures » and « spacer » being used to designate them throughout the paper), assuming a 

purely elastic response for both materials. The absence of damping for the vibrational modes of such 
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systems facilitates physical interpretations (e.g., regarding mode crossing) as compared to the 

systems including an infinite environment, in which case vibrational modes are damped because of 

the emission of acoustic waves in the environment.25,36 We first consider the vibrational response of 

a dimer of two identical slabs with infinite lateral extension separated by a thin spacer, a problem 

which can be treated analytically due to its one-dimensional character, allowing equation-based 

physical interpretations to be found in both the small and large separation regimes. We then 

numerically investigate the vibrations of another system related to the previous one by its quasi-one-

dimensional character (two nanorods with length much larger than diameter connected by an 

intermediate cylinder of same radius), and show that they are governed by the same phenomena. 

Finally, we numerically address the more complex case of a dumbbell made of two nanospheres 

connected by a cylindrical spacer, and find that its vibrations can still be understood using the same 

considerations as previously. The case of a dimer of gold nanostructures connected by a 

polyvinylpyrrolidone (PVP) spacer was taken as a reference for all these calculations because of its 

experimental relevance. Indeed, this situation was encountered in two recent series of experiments 

which addressed vibrational coupling between pairs of gold nanospheres25,36 and nanoplates19,27 

separated by PVP.  

METHODS 

Continuum mechanics approach. Only elastically isotropic materials were considered in this 

work. Their mechanical properties depend on only three parameters : their density  and a pair of 

elastic constants, which can be for instance the Lamé constants  and , the Young modulus Y= 

(3+2)/(+) and Poisson ratio v=/(2(+)), or the longitudinal and transverse sound velocities 

cL=((+2)/)1/2 and cT=(/)1/2 (prime  notations being used for the spacer in the following). For such 

materials, the displacement field u obeys Navier equation, which writes 

     uu
ru





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t
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       (1) 

Perfect mechanical contact (i.e., continuity of displacement and stress) was assumed here at all 

interfaces between different media. Vibrational modes correspond to harmonic solutions of eq 1 

tiet  )(),( ruru . They depend on the boundary conditions (BCs) specified at the border of the 

system and are characterized by their angular frequency =2f (real for finite systems in the absence 

of internal dissipation processes) and their associated displacement field )(ru . 

Numerical models. The numerical simulations presented in this work were performed using 

the Structural Mechanics module of the COMSOL finite-element modeling commercial software. The 
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axisymmetric vibrational eigenmodes of isolated and coupled nanostructures were computed using 

the boundary conditions indicated in the text, using an Eigenfrequency calculation type.39 

Geometrical symmetries were exploited to perform calculations in 2D rather than in 3D, as discussed 

below. About 10000 mesh elements were used for each calculation.  

Parameters used in the simulations. Y=79 GPa, v=0.44 and =19300 kg.m-3 were used for the 

Young modulus, Poisson ratio and density of gold nanostructures (corresponding to cL=3642 m.s-1 

longitudinal sound velocity and Z=cL=70.3 106 kg.m-2. s-1 acoustic impedance), while Y’=4 GPa, 

v’=0.39 and ‘=1200 kg.m-3 values (corresponding to cL’= 2580 m.s-1 and Z’=3.1 106 kg.m-2. s-1) were 

used for PVP spacers.  

 

RESULTS AND DISCUSSION 

a) Vibrations of coupled slabs 

We first consider the longitudinal vibrations of two identical slabs of thickness h and infinite 

lateral extension (nanostructures), mechanically coupled by an intermediate slab of thickness d 

(spacer), as shown in Fig. 1a. We note z the longitudinal coordinate, uz the corresponding unit vector 

and choose the origin of the axis O in the symmetry plane of the system, so that the spacer extends 

from z=-d/2 to z=d/2, and the gold ones from z=d/2 to z=(d/2+h) (Fig. 1a). Stress-free BCs are 

considered at the external surfaces of this system, which corresponds to analyzing its vibrations in 

vacuum. This one-dimensional problem can be treated analytically (as fully detailed in the Supporting 

Information). For the purely longitudinal motions considered here (u=u(z) uz), Navier equation (eq 1) 

reduces in each slab to 

2

2
2

2

2 ),(),(

z

tzu
c

t

tzu
L









     (2) 

Therefore, displacement and stress fields are in each slab of the form 
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2
 , respectively, the A and B coefficients in 

adjacent slabs being related by continuity relations, due to the assumption of a perfect mechanical 

contact at internal interfaces (see the Supporting Information for details). Due to the symmetry 

about the z=0 plane of the considered problem, the displacement field associated with vibrational 

modes is either symmetric (u(-z)=-u(z), with thus A=0 in the spacer) or antisymmetric (u(-z)=u(z), with 

thus B=0 in the spacer) relatively to the z=0 plane.  
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The frequencies of eigenmodes are fixed by the stress-free BCs at the external end of the 

nanostructures (t((d/2+h))=0). Introducing dimensionless frequencies defined as 
Lc

h
   

(vibrational periods being proportional to the size of the system in the context of continuum 

mechanics) and 
Z

Z

c

c
p

L

L '''
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


 the ratio of the acoustic impedances of the spacer and of the 

nanostructures, frequencies are given for symmetric modes by 
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and for antisymmetric ones by 
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Fig. 1b presents the lowest reduced vibrational frequencies /=2fh/cL computed for the considered 

Au-PVP three-slabs system (Fig. 1a) as a function of the dimensionless separation parameter d/h 

appearing in eqs 3 and 4 (red and black lines corresponding to symmetric and antisymmetric modes, 

respectively). In order to better understand the evolution with d/h of the vibrational frequencies of 

the full Au-PVP system and the way they originate from inter-slabs mechanical coupling effects, it is 

useful to compare them with those associated with the individual components of the dimers. In the 

case of gold nanostructures separated by a PVP spacer, the acoustic impedance ratio p value at the 

nanostructure/spacer interface is small (p0.044), so that the relevant frequencies of isolated 

nanostructures and spacers to be considered are those obtained by taking the p0 limit in eqs 3 

and 4. They correspond to decoupled vibrations of the nanostructure and spacer slabs with stress-

free and displacement-free BCs on the slab surfaces, respectively ; details on the vibrations of 

isolated slabs are provided in the Supporting Information. The frequencies of an isolated gold slab 

with stress-free BCs are shown as horizontal dashed blue lines in Fig. 1b, and correspond to sin()=0, 

i.e. integer values n of the used reduced frequency /, indicated at the right of Fig. 1b. Those 

computed for an isolated PVP slab of variable thickness d with displacement-free BCs are shown as 

magenta and gray dashed lines, for symmetric and antisymmetric modes, respectively 

(corresponding to the conditions sin(d/(2cL’))=0 and cos(d/(2cL’))=0, respectively). 

Figure 1b shows that the eigenfrequencies of the three-slabs system form continuous, non-

crossing branches. All branches present a similar step-like evolution, consisting of an alternation of 

parts where eigenfrequencies are decaying with d/h and parts where they remain almost constant. In 



7 
 

most cases, the eigenfrequencies of the full Au-PVP system are close to those of isolated Au slabs (in 

the horizontal step parts of the branches) or PVP slabs (in the decaying parts). In particular, the 

frequencies of isolated gold slabs are generally (i.e., for most d/h values) approximately retrieved, 

along the horizontal parts of the branches, by one symmetric mode and one antisymmetric mode of 

the three-slabs system, the displacement field in the gold component being very similar for the 

coupled and uncoupled modes of close frequencies, as demonstrated for instance by the 

hybridization analysis performed in part D of the Supporting Information, in which a comparison with 

plasmon hybridization is also presented. Therefore, for the considered Au-PVP three-slabs system, 

the main effect of vibrational coupling is usually a splitting of each nanostructure mode into two 

modes with close frequencies, corresponding to symmetric and antisymmetric combinations of the 

nanostructure modes (according to the symmetry character defined previously). Such splitting is a 

very general phenomenon occurring when identical oscillators are coupled, already observable in the 

simplest coupled pendulum/spring models.40  

The good overall match between the eigenfrequencies of the three-slabs Au-PVP systems 

and those of their individual components can be ascribed to the large mismatch between the Au and 

PVP acoustic impedances, which leads to moderate coupling effects, reducing in most cases to the 

splitting of gold slab modes discussed above, with frequencies close to those obtained in the p0 

limit. A more general discussion of the dependence on p of the eigenfrequencies of three-slabs 

systems can be found in part E of the Supporting Information. In particular, the larger deviations 

occurring for a reduced acoustic mismatch between the nanostructure and spacer materials are 

illustrated by Fig. S8 of the Supporting Information, in which the spacer density ‘ was numerically 

modified to yield p values of 0.18 and 0.55. However, even in the Au-PVP case, marked deviations 

between the eigenfrequencies of dimerized and isolated gold slabs occur in two distinct cases : near 

points where the eigenfrequencies of the isolated Au and PVP slabs cross each other, and in the 

quasi-contact regime (d/h0). 

An avoided crossing behavior is observed in Fig. 1b in the eigenfrequency branch pattern of 

the Au-PVP three-slabs system at all (d/h, ) points where one of the spacer eigenfrequencies, which 

decay with d/h, equals that of a nanostructure mode (independent of d/h). Mathematically, the 

impossibility for an eigenmode of the Au-PVP system to have the same frequency as a spacer mode 

of same symmetry/antisymmetry character at the d/h value when it coincides with a nanostructure 

eigenfrequency is a clear consequence of eqs 3 and 4. For instance, eq 3 cannot be satisfied if 

sin()=0 and sin(d/(2cL’))=0 simultaneously, as the left-hand term of the equation (neglected in the 

p0 limit) would equal p in this case. From a more physical perspective, this avoided crossing 

behavior results from the different BCs (stress-free vs displacement free) associated to the 
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nanostructure and spacer modes shown in Fig. 1b, which cannot be juxtaposed to form a coupled 

mode of same frequency. Note that a similar argument was previously used to understand the 

frequencies of the radial modes of core-shell spherical nanoparticles detected in the context of time-

resolved experiments.41,42  

In the quasi-contact regime (d/h0), the crossing effects discussed in the previous 

paragraph cease to affect low-frequency modes of the Au-PVP system as the frequency of spacer 

modes tends to infinity. However, the symmetric and antisymmetric modes to which each gold slab 

mode gives rise present increasingly different eigenfrequencies. Indeed, / shows an increase of 1/2 

as d/h is decreased (on a range decreasing with frequency) for symmetric branches, while for 

antisymmetric ones it remains almost constant. In the situation considered here, vibrational coupling 

effects are thus larger for symmetric combinations of low-frequency modes, leading in particular to a 

50% frequency increase for the n = 1 (breathing) mode. The d/h0 limit can be understood by 

making d/h=0 in eqs 3 and 4, which then reduce to cos() =0 and sin()=0, respectively, or 

equivalently sin(2)=0. The solutions =(n+1/2) and =n correspond to the symmetric and 

antisymmetric modes of a gold slab of thickness 2h with stress-free BCs. The solutions for the 

symmetric coupled modes, namely =(n+1/2), also correspond to the vibrational modes of an 

individual Au slab of thickness h with stress-free BCs at one end and displacement-free ones at the 

other end (see the Supporting Information). Therefore, the increased symmetric mode frequencies of 

two identical slabs induced by their increased coupling through an intermediate slab with decreasing 

thickness can be qualitatively interpreted as the signature of a progressive change of BCs at one end 

of the slab, which has a deep impact on its displacement field (as shown by the hybridization analysis 

presented in Fig. S7 of the Supporting Information). The frequencies obtained in the contact case 

(d/h=0) are thus independent of p for both symmetric and antisymmetric modes. However, their 

values for small but non-vanishing d/h strongly depend on the spacer parameters (thickness, density 

and sound velocity). This dependence is illustrated in Fig. S9 of the Supporting Information in the 

experimentally relevant case of the fundamental (n = 1) breathing mode of gold slabs, where both 

PVP spacers and heavier ones (leading to reduced acoustic impedance mismatch) were considered. It 

can also be highlighted by a first order expansion of eqs 3 and 4 when d/h0, which leads to the 

approximate reduced eigenfrequencies  
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for symmetric modes and  
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for antisymmetric ones.  

The simple slab model presented here can be applied to the analysis of recent vibrational 

measurements performed on gold nanoplates separated by a thin PVP layer.19,27 Indeed, the lateral 

size of the nanoplates used in these studies (10-20 µm) was much larger than their thickness (20-50 

nm), making the use of a 1D model for analyzing their vibrations meaningful. In these works, optical 

pump-probe measurements were performed on single dimers of two partly overlapping stacked 

nanoplates. Close 50 GHz f1 and f2 frequencies were detected for pump and probe beams focused in 

non-overlapping regions, and ascribed to the fundamental (n = 1) frequencies of the two individual 

nanoplates (f1 and f2 being slightly different in most cases, which presumably originates from the 

thickness dispersion of the nanoplates). In overlap regions, two different vibrational frequencies f- 

(between f1 and f2) and f+ (15% higher than f- for measurements in which f1 and f2 were almost 

identical) were simultaneously detected. These observations were successfully analyzed through an 

empirical coupled spring model, in which the coupling strength between the nanoplates was left as a 

free parameter. They can be further rationalized by our slab model, which predicts in the near-

contact regime the splitting of each nanostructure mode into an antisymmetric dimer mode with 

almost unchanged frequency (as f-) and a symmetric one with increased frequency (as f+). Moreover, 

a symmetric Au-PVP mode with a frequency 15% larger than that of the n = 1 Au slab mode is 

obtained in our model when d/h≈0.03 (Fig. S9), which corresponds to a plausible d≈1 nm PVP 

thickness for a h=30 nm thick gold nanoplate. Indeed, such ≈1 nm PVP surfactant layer thickness is 

typical in the context of metal nanoparticle synthesis.43 Note however that the deduced d value is 

just an estimation, because vibrational frequencies may be affected by the deposition of the 

nanoplates on a supporting substrate, which is not included in our simple model. The additional low-

frequency mode (with a frequency of about 20 GHz, i.e. 2.5 times lower than f1 and f2) detected in 

the overlap region can be ascribed to the lowest-frequency symmetric mode of the Au-PVP system 

mode, to which the translation mode (n = 0) of the gold slab gives rise, which has a reduced 

frequency of /≈0.35 (i.e., about 0.35 f1, as experimentally observed) for the d/h value of 0.03 

deduced above in the framework of our model (Fig. 1b). Therefore, our simple model appears to be 

able to provide a quantitative description of the mechanical coupling effects arising in these stacked 

plates systems. 

An analytical analysis of vibrational coupling such as that presented in this part is however 

possible only for highly symmetric systems, being straightforward only when the calculation of 

coupled vibrational modes reduces to a 1D problem. Numerical methods have to be employed in 
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other cases, which was done in this work by using the COMSOL finite-element modeling (FEM) 

commercial software to compute the vibrational eigenmodes of coupled nanostructures. The case of 

coupled nanorods was considered first (paragraph b), as the low-frequency vibrational modes of 

cylindrical nanostructures with a length much larger than their diameter display an approximately 

longitudinal displacement field and are thus expected to present the same trends as in the slab case. 

The experimentally relevant case of a dimer of gold nanospheres coupled by a PVP spacer will be 

considered afterwards (paragraph c).  

b) Longitudinal vibrations of coupled nanorods 

The considered coupled nanorod system consists of two identical cylinders with a radius R much 

smaller than their length h (R/h=0.1 was used), connected by a cylindrical spacer of same radius R 

and length d (Fig. 2a left). The symmetries of the considered system were exploited by performing 

FEM simulations on a 2D system consisting of two rectangles of common width R and lengths h and 

d/2, respectively modeling one of the nanostructures and half of the spacer (Fig. 2a right). Indeed, 

the axial symmetry (about the r=0 axis) of the system allows one to use the axisymmetric version of 

the COMSOL Structural Mechanics module, greatly reducing the needed computation times as the 

problem to be solved becomes a 2D one instead of a 3D one. It should however be noted that this 

approach only enables to compute the subset of vibrational modes with a displacement field 

symmetric about the dimer axis (for spheres, such modes are indexed by a m = 0 azimuthal number 

in Lamb’s classification), 3D calculations being still required for other modes (as done e.g. in ref.36). 

Additionally, as the considered 2D system presents a reflection symmetry about the z=0 line (Or axis 

in Fig. 2a right), its vibrational modes are necessarily either symmetric or antisymmetric about this 

axis (similarly to the slab model case). These two types of modes were thus successively computed by 

considering only half of the dimer in the FEM computations and imposing symmetry (antisymmetry) 

BCs on the z=0 axis, which corresponds to imposing a displacement direction on the z=0 axis parallel 

(orthogonal) to it.  

The vibrational frequencies obtained for Au-PVP three-cylinders systems and for isolated gold 

nanostructures and PVP spacers are shown in Fig. 2b (information being presented in the same way 

as in Fig. 1b describing the slab case). Fig. 2b shows the first vibrational reduced eigenfrequencies 

(using the same reduced frequency 2fh/cL as in the slab case, with h representing the rod length 

herecomputed for the symmetric (red lines) and antisymmetric modes (black lines) of PVP-coupled 

gold nanorod dimers. The reduced eigenfrequencies of isolated gold rods of length h, calculated 

using stress-free BCs all over the rod surface are shown by horizontal dashed blue lines. The reduced 

vibrational frequencies of isolated PVP rods of variable length d, calculated using displacement-free 
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BCs at the top and bottom nanorod ends (z=d/2) and stress-free BCs on their lateral surface (r=R), 

are shown by dashed magenta (symmetric modes) and gray (antisymmetric modes) decaying curves.  

The longitudinal vibrational frequencies of a free nanorod with large aspect ratio are 

approximately given by   
 

  
 
 

 
 , with odd and even n corresponding to symmetric and 

antisymmetric modes, respectively.44,45 This corresponds to reduced frequencies of 2fh/cL=
 

  
 
 

 
 ≈ 

0.56 n in the case of pure gold nanorods. Note that these reduced frequencies largely differ from the 

integer slab ones ; this is because the longitudinal deformation of rods with stress-free BCs at their 

lateral surface generates transverse strain because of Poisson effect, conversely to the slab case 

which corresponds to a purely uniaxial strain.46 The lowest FEM-computed reduced frequencies of 

gold nanorods (with R/h=0.1) shown in Fig. 2b are in good agreement with this approximate formula. 

However, its validity decreases for increasing n, as diameter becomes increasingly comparable to 

longitudinal wavelength h/n, which explains the decreasing spacing between modes as frequency 

increases in Fig. 2b.  

 Fig. 2b present striking similarities with Fig. 1b, and all the qualitative trends observed in Fig. 

1b and discussed in the previous paragraph remain observable in Fig. 2b. In particular, the vibrational 

frequencies computed for Au-PVP rods also form non-crossing branches which present a step-like 

evolution and are generally close to those obtained for isolated Au rods (with stress-free BCs on all 

surfaces) and PVP ones (with displacement-free BCs on the top and bottom surfaces and stress-free 

BCs at the r=R one), deviating from them only near points where the frequencies of a nanostructure 

mode and that of a spacer mode cross each other, and in the quasi-contact regime. In the contact 

limit, the reduced frequencies of a free gold cylinder with length 2h, approximately equal to 0.28 n 

for small n, are retrieved. 

Fig. 2c presents the displacement fields computed (for three d/h values) for dimer modes 

with reduced frequencies near 2fh/cL≈0.56, which corresponds to the frequency of the fundamental 

extensional mode of a free gold rod (whose displacement field is shown on the right of Fig. 2c), 

detectable in the context of optical time-resolved experiments.39,45,47,48 Away from the quasi-contact 

regime and from crossing points (e.g. for d/h=0.5, green box in Fig. 2c), the extensional mode give 

rise to a symmetric dimer mode and an antisymmetric one with close reduced frequencies (≈0.56). 

For both of these dimer modes, displacement in the gold component is close to the displacement 

field of the fundamental mode of an isolated nanorod, and the two modes mostly differ (apart from 

their symmetrical/antisymmetrical character) by their associated displacement field in the PVP 

spacer. The grey box illustrates displacement fields obtained at the vicinity of a crossing point 
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(d/h=0.92), corresponding to one of the d/h values for which a mode of the PVP spacer (in this case 

an antisymmetric one with displacement-free BCs at both ends) presents a 0.56 reduced frequency 

identical to that of the fundamental extensional mode of a single gold cylinder. Avoided crossing of 

the antisymmetric PVP mode with the Au extensional mode leads in this case to two antisymmetric 

dimer modes with reduced frequencies of 0.50 and 0.61, respectively 10% smaller and higher than 

that of the gold nanorod extensional mode. A displacement amplitude larger in the PVP component 

than in the gold one and an assymmetric displacement field in the latter one are observed in both 

cases. Modes obtained for d/h=0.02 are shown to illustrate the quasi-contact regime (blue box in Fig. 

2c). While the antisymmetric dimer mode has a frequency and displacement field very close to those 

of the isolated nanostructure, the symmetric mode displays an increased frequency and a strong 

assymmetry, displacement being much larger at the free end than at that in contact with the PVP 

spacer. 

c) Vibrations of coupled spheres 

The vibrations of a dimer of mechanically coupled spheres have already been the object of a 

few numerical analyses. Saviot and Murray considered both dimers made by overlapping spheres and 

dumbbell ones formed by spheres connected by a thin cylinder of much smaller radius.22 In previous 

models of our inelastic scattering experiments on gold nanoparticles surrounded by PVP, whose 

morphology appears variable in electron microscopy images, we also considered the case of an 

infinite PVP matrix, which induces vibrational damping.25,36  

We focus here on the complementary case of a cylindrical spacer with a radius close to that 

of the nanospheres. The dumbbell geometry considered for the FEM simulations is presented in Fig. 

3a. It consists of two identical gold spheres with a diameter D, connected by a PVP spacer with a 

morphology more complex than in the slab and rod cases, but characterized by two parameters only, 

its diameter (a 0.95 D value was used in the simulations, meshing being facilitated by the use of 

slightly different diameters for the nanosphere and the spacer) and length d, which was defined here 

as the smallest distance separating the two spheres. As in the case of rod systems, only modes 

involving a displacement field symmetric about the dimer axis were computed (corresponding to a m 

= 0 azimuthal number in Lamb mode classification49).  

The lowest vibrational frequencies 2fD/cLcomputed for the symmetric (red lines) and 

antisymmetric modes (black lines) of PVP-coupled gold nanosphere dimers are presented in Fig. 3b, 

an extended part of the eigenfrequency branch pattern being also shown in Fig. S10 of the 

Supporting Information. The reduced vibrational frequencies of free gold spheres of diameter D 

(corresponding to Lamb modes with angular momentum and radial numbers values l and n indicated 
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on the right of the plot) are also shown by horizontal dashed blue lines. Those of the PVP spacers, 

calculated using displacement-free BCs at both hemispherical spacer ends and stress-free BCs over 

the lateral cylindrical surface, are shown by horizontal dashed magenta (symmetric modes) and gray 

(antisymmetric modes) lines.  

Similarly to the two previous systems considered, the vibrational frequencies computed for 

Au-PVP dumbbells are generally close to those obtained for the individual Au and PVP components of 

the full system, deviating from them only near points where the eigenfrequencies of the individual 

components approach and cross each other, and in the quasi-contact regime (Fig. 3b). In the latter 

regime, the frequencies of symmetric modes all increase with decreasing d/D, but in a strongly 

mode-dependent way. For instance, the frequency of the symmetric mode deriving from the 

translation Lamb mode (l = 1, n = 0 mode with 2fD/cL=0) is strongly affected by d/D decrease, while 

that of the symmetric mode deriving from the (l = 1, n = 1) Lamb mode (2fD/cL=0.79) is almost 

unaffected by d/D. The symmetric mode deriving from the fundamental quadrupolar Lamb mode (l = 

2, n = 0, 2fD/cL=0.55) presents an intermediate behavior, its frequency increasing of up to 10 % in the 

quasi-contact regime. 

Fig. 3c presents displacement fields computed for dimer modes with reduced frequencies 

close to that of the fundamental quadrupolar mode of isolated gold spheres, which dominates their 

inelastic light scattering spectra.2,33 Coupling effects similar to those illustrated by Fig. 2c in the 

coupled rod case are observed. Away from the quasi-contact regime and from crossing points (e.g. 

for d/D=0.3, green box in Fig. 2c), the symmetric and antisymmetric dimer modes deriving from the 

quadrupolar sphere mode (whose displacement field is shown on the right of Fig. 3c) display similar 

eigenfrequencies and displacement fields in the gold component. Conversely, these features are 

modified at the vicinity of crossing points (e.g. for d/D=0.64, grey box in Fig. 3c). As in the rod dimer 

case, avoided crossing of an Au mode and an antisymmetric PVP one leads to two antisymmetric 

dimer modes with different (0.51 and 0.59) reduced frequencies, both presenting a displacement 

amplitude larger in the PVP component than in the gold one, as well as an assymetric displacement 

field in gold. In the quasi-contact regime (blue box in Fig. 2c, corresponding to d/D=0.02), the 

quadrupolar sphere mode produces both an antisymmetric dimer mode with a similar frequency and 

displacement field and a symmetric one with a higher frequency and a modified, strongly 

assymmetric field. 

The quasi-contact limit is more complex for sphere dimers than for coupled slabs and 

cylinders, and cannot be related to the vibrational modes of a pure gold nanostructure, because d=0 

corresponds to a situation where PVP is still present. Nevertheless, the frequency increase of 



14 
 

symmetric modes in the quasi-contact regime limit can still be qualitatively interpreted in terms of a 

modification of the BCs at the surface of the gold spheres induced by the presence of the spacer. This 

is demonstrated by Fig. 4, which presents the vibrational frequencies of a gold sphere calculated 

using hybrid BCs on the sphere surface, with displacement-free conditions on a cone of half-angle  

and stress-free BCs elsewhere (Fig. 4a). An increase of  is seen to induce a strongly mode-dependent 

increase of the vibrational frequencies of the sphere (Fig. 4b), which is the same effect as a decrease 

of d/D for the symmetric modes of the Au-PVP system (Fig. 3). For instance,  increase is shown to 

induce strong, weak and intermediate frequency shifts for the (l = 1, n = 0), (l = 1, n = 1) and (l = 2, n = 

0) Lamb modes, respectively, which correspond to the trend observed when decreasing d/D values in 

the quasi-contact regime for Au-PVP dimers (Fig. 3). Fig. 4c shows how the displacement fields of 

Lamb modes (corresponding to =0°) relevant for inelastic light scattering and time-resolved 

experiments on dimers21,25,36 (fundamental l = 0, 1 and 2 modes, corresponding to breathing, 

translation and quadrupolar Lamb modes) evolve when =16° (this value having been chosen as it 

leads to vibrational eigenfrequencies close to those obtained for the Au-PVP system in the contact 

case). For all modes, displacement fields become much less symmetric as in the =0° case, as 

expected from the symmetry loss induced by the hybrid BCs used in this case.  

The main difference between the calculations reported here (involving nanospheres coupled 

by a finite spacer) and those that we previously reported for quasi-translation and quadrupolar 

modes, in which an inifinite PVP matrix was considered,25,36 is the existence of damping in the latter 

case, associated with the emission of acoustic waves in the matrix. Apart from this difference, the 

vibrational frequencies computed for nanosphere dimers in the framework of the finite spacer and 

infinite matrix models do not differ much. For instance, reduced frequencies of 0.20 and 0.62 were 

computed in the contact case for the axisymmetric symmetric quasi-translation and quadrupolar 

dimer modes, respectively,36 to be compared with the 0.17 and 0.61 obtained here. The small 

differences can be ascribed to a slightly stronger coupling for an infinite matrix than for the finite 

spacer configuration. In both cases, the computed reduced frequencies are a bit smaller than the 

experimentally measured ones (0.27 and 0.71),36 which probably results from the simplifications 

made for carrying out the FEM simulations (electron microscopy showing in particular that the 

nanoparticles used were not perfectly spherical). 

CONCLUSIONS 

We have computed the low-frequency acoustic eigenmodes of dimers of identical 

nanostructures with different morphologies (slabs, rods and spheres) mechanically coupled by a 

spacer, and compared them to the eigenmodes of their individual components. In the investigated 

situations, corresponding to a homodimer of gold nanostructures coupled by a PVP spacer (leading to 
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modes of the Au-PVP composite system either symmetric or antisymmetric), coupling effects are 

moderate due to the large acoustic impedance mismatch between gold and PVP, and the vibrational 

frequencies of the coupled systems are in most cases close of those computed for their individual 

components using relevant BCs. Nevertheless, mechanical coupling affects the eigenmode features 

(frequency and displacement field) in two situations when the spacer thickness is varied: in the near-

contact regime, where the symmetric modes of the composite Au-PVP system present 

eigenfrequencies largely modified as compared to those of the individual gold components, which 

can be qualitatively interpreted as a partial change of BCs on the surface of the metal 

nanostructures, and when two modes of the individual components present identical frequencies, in 

which case avoided crossings occur in the eigenfrequency branch pattern. Whereas the frequency 

shifts occurring in the near-contact regime between PVP-coupled gold nanostructures have already 

been experimentally observed, demonstrating avoided crossing effects is more challenging. It would 

require an excellent control and precise knowledge of the morphology of the investigated 

nanosystems, and would be facilitated if the acoustic impedance mismatch between the 

nanostructures and their spacer was reduced as compared to the Au-PVP case considered here. The 

sensitivity of the symmetric eigenmodes of metal nanostructure dimers to the thickness and 

mechanical properties of the spacer makes vibrational measurements a potentially useful tool to 

characterize nanometric spacers. Future work may involve more systematic experimental 

investigations of vibrational frequencies as a function of separating distance, as well as the design of 

more sophisticated analytical models to address the vibrations of dimers or more complex oligomers 

of nanospheres, which could be done by transferring the concepts underlying generalized Mie 

theory, used for the calculation of the electromagnetic response of coupled spheres, to the acoustics 

field. 
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Figure 1. Vibrations of coupled slabs. a) Geometry considered in the calculations. It consists of two 

Au slabs of thickness h (with infinite lateral extension) separated by a PVP slab of thickness d. b) 

Vibrational frequencies computed using the analytical model described in the main text and in the 

Supporting Information for the symmetric (red lines) and antisymmetric modes (black lines) of the 

three-slabs system. The frequencies of isolated slabs (computed using stress-free and displacement-

free BCs for Au and PVP slabs, respectively) are shown as dashed blue horizontal lines (gold slab 

modes, indexed by an integer n shown on the right) and dashed magenta/gray lines 

(symmetric/antisymmetric modes of the PVP spacer). Note that a limited number of branches are 

plotted for the sake of clarity. 
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Figure 2. Vibrations of coupled rods. a) 3D geometry of the considered coupled rod system (left) and 

2D one used for FEM computations of its axisymmetric vibration modes (right). b) Vibrational 

eigenfrequencies computed using FEM for the symmetric (red lines) and antisymmetric modes (black 

lines) of gold dimers. The eigenfrequencies of isolated rods are shown as dashed blue horizontal lines 

(gold rod modes, computed with stress-free BCs) and dashed magenta/gray lines 

(symmetric/antisymmetric modes of the PVP spacer, computed with displacement-free BCs at both 

plane ends and stress-free BCs over the lateral cylindrical surface). c) Associated displacement of the 

modes contained in the boxes shown in b, corresponding to reduced frequencies 2fh/cL0.55 and to 

d/h=0.02, 0.5 and 0.92. In all cases, a 0-Max scale is used for plotting the displacement fields. The 

displacement in one half of the dimer is shown on top (geometry of Fig. 2a right), while the 

displacement in the gold component is shown on the bottom, the different scale used facilitating the 
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comparison between the different situations. The displacement field of a gold cylinder with stress-

free BCs is also shown on the right. 
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Figure 3. Vibrations of coupled spheres. a) 3D geometry of the considered coupled sphere system 

(left) and 2D one used for FEM computations of its axisymmetric vibration modes (right).  b) 

Vibrational eigenfrequencies computed using FEM for the symmetric (red lines) and antisymmetric 

modes (black lines) of gold dimers. The eigenfrequencies of isolated components are shown as 

dashed blue horizontal lines (gold sphere Lamb modes, computed with stress-free BCs on the sphere 

surface) and dashed magenta/gray lines (symmetric/antisymmetric modes of the PVP spacer, 

computed with displacement-free BCs at the spacer hemispherical ends, and stress-free BCs on its 

lateral cylindrical surface). c) Associated displacement of the modes contained in the boxes shown in 

b, corresponding to reduced frequencies 2fD/cL 0.55 and to d/D=0.02, 0.3 and 0.64. The 

displacement field of the fundamental quadrupolar mode of a gold sphere with stress-free BCs is also 

shown on the right.  
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Figure 4. Vibrations of a single gold sphere with hybrid BCs. a) Considered situation : gold sphere 

with displacement-free BCs on a cone of half-angle  and stress-free BCs elsewhere. b) FEM-

computed reduced frequencies. c) Displacement fields computed for =0° (Lamb modes) and =16°. 
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