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Abstract

A fundamental challenge for the theoretical study of neuronal networks is to make the link

between complex biophysical models based directly on experimental data, to progressively

simpler mathematical models that allow the derivation of general operating principles. We

present a strategy that successively maps a relatively detailed biophysical population

model, comprising conductance-based Hodgkin-Huxley type neuron models with connectiv-

ity rules derived from anatomical data, to various representations with fewer parameters, fin-

ishing with a firing rate network model that permits analysis. We apply this methodology to

primary visual cortex of higher mammals, focusing on the functional property of stimulus ori-

entation selectivity of receptive fields of individual neurons. The mapping produces compact

expressions for the parameters of the abstract model that clearly identify the impact of spe-

cific electrophysiological and anatomical parameters on the analytical results, in particular

as manifested by specific functional signatures of visual cortex, including input-output sharp-

ening, conductance invariance, virtual rotation and the tilt after effect. Importantly, qualita-

tive differences between model behaviours point out consequences of various

simplifications. The strategy may be applied to other neuronal systems with appropriate

modifications.

Author summary

A hierarchy of theoretical approaches to study a neuronal network depends on a tradeoff

between biological fidelity and mathematical tractibility. Biophysically-detailed models

consider cellular mechanisms and anatomically defined synaptic circuits, but are often too

complex to reveal insights into fundamental principles. In contrast, increasingly abstract

reduced models facilitate analytical insights. To better ground the latter to the underlying

biology, we describe a systematic procedure to move across the model hierarchy that

allows understanding how changes in biological parameters—physiological, pathophysio-

logical, or because of new data—impact the behaviour of the network. We apply this
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approach to mammalian primary visual cortex, and examine how the different models in

the hierarchy reproduce functional signatures of this area, in particular the tuning of neu-

rons to the orientation of a visual stimulus. Our work provides a navigation of the com-

plex parameter space of neural network models faithful to biology, as well as highlighting

how simplifications made for mathematical convenience can fundamentally change their

behaviour.

1 Introduction

Theoretical modelling of a neural system can be accomplished with different degrees of biolog-

ical detail and, conversely, different degrees of mathematical abstraction. Arguably, including

more biological detail based on experimental data provides a model which is somehow a more

faithful surrogate for the original system. But because detail does not necessarily yield under-

standing, a more abstract description with fewer parameters and thus fewer degrees of freedom

offers the possibility of better insight. It follows that mapping between different categories of

models is necessary to relate analytical results obtained from more abstract models, to simula-

tions from detailed models which can hardly be analyzed in their parameter space. Eventually,

this sort of back and forth process can facilitate understanding about how specific model

assumptions may be linked to detailed model behaviour.

In this paper we address the challenge of parameter reduction and quantitative mapping

from original biophysical quantities to simplified model parameters, using the orientation

hyper-column, or pinwheel, architecture in the visual cortex of higher mammals as a model

system. The orientation hyper-column is a functional unit providing organization of cellular

tuning with respect to stimulus orientation, and many theoretical approaches have been used

to study this neuronal network. At one extreme are simplified population models that retain

only gross features of the modeled system, but allow for systematic analytical and numerical

investigations, and thus a formal understanding of underlying mechanisms to the extent that

the model is reliable. The canonical model in this sense is the firing-rate (FR) ring model with

a single neural population type and a one dimensional ring architecture corresponding to pre-

ferred orientation [1, 2]. At an increased level of complexity, [3, 4] also consider populations

based on rate models in a 2D distributed architecture corresponding to the cortical surface

geometry. Extensions of population models have taken into account different connection pro-

files [4] or delays [5], both excitatory and inhibitory neuronal populations [3], or more elabo-

rate rate models [6].

At the other extreme are biophysically-detailed models which attempt to incorporate

known physiology and synaptic anatomy of the system, giving a coherent description that

bridges established parameters and those which are unknown yet essential. For visual cortex

there is a wealth of experimental data including various neuron types and their intrinsic bio-

physics, the functional architecture of thalamic input to the system, the kinetics of the synaptic

conductances, and the schematic of the intra-cortical synaptic connections. Numerical simula-

tions of such models, for example [7–10], have provided realistic reproductions of experimen-

tal data, and can provide explicit predictions for subsequent experimental studies. In general, a

complex model can incorporate the available data at will, motivated by the fact that a priori we

do not know which details are fundamental for function, e.g. the detailed dynamics of recep-

tive fields.

Here we consider a hierarchy of single layer hyper-column models (Table 1 and Fig 1), at

the top with a reasonably detailed model that considers biophysical membrane properties of
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cortical excitatory and inhibitory neurons with synaptic conductances described by second

order kinetics. The synaptic architecture of this model arises from a 2D anatomical distribu-

tion of the two neuron types over the cortical surface, with spatial interactions defined by iso-

tropic intracortical connections, and thalamic input according to an assumed pinwheel

architecture. This full model has been realized with the help of the conductance-based refrac-

tory density approach [11]. Via step by step simplifications of the synaptic architecture and cel-

lular elements, comprising five intermediate models, we arrive at the canonical firing rate ring

Table 1. Summary of network models. Abbreviations: 2D, 2 dimensional; HH, Hodgkin-Huxley; LIF, leaky integrate-and-fire; FR, firing rate; Multi-Compt E, multiple

compartment excitatory neuron.

Model Equations Architecture Synapse Profile Adaptation Cell Model MultiCompt E # Cell Types Synapse Kinetics Spike / FR Shunt & Noise

A 11–20, 58–65 2D Exponential Yes HH Yes 2 2nd order Spike Yes

B 11–18, 58–65 Ring Cosine

C 11–18 No LIF

D 4, 11, 12, 15–18 No

E 4, 9, 10 n/a 1 0th order

F 5, 8–10 Shunt FR FR

G 1–3 FR No

https://doi.org/10.1371/journal.pcbi.1009007.t001

Fig 1. General characteristics of models, and the mappings between them, including steps for network parameters

(solid arrows) and cellular parameters (dashed arrows). Arrows that arise from, or terminate at, multiple source or

destination models, respectively, indicate a common characteristic of the models specific for a given mapping. For

explanation of model abbreviations, see Table 1.

https://doi.org/10.1371/journal.pcbi.1009007.g001
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model. We require a consistency between nearest-neighbors within the hierarchy of models to

validate each mapping, in the sense that any qualitative or quantitative change in the behaviour

of a given model must be linked to specific assumptions made at each stage of the reduction.

Note that this particular hierarchy is not comprehensive, e.g. an arbitrarily elaborate net-

work architecture may be evaluated with a simple cell model, or vica-versa. Rather, the motiva-

tion for the models studied here is that several are directly linked to previous published results.

Furthermore, the methodology that we develop may be readily adapted to other choices of

hyper-column models, as well as network architectures of other cortical areas.

2 Results

We present the results as follows. We begin by describing the hierarchy of network models

and the relevant cellular models from simplest to most complex, thus progressing from the

abstract current-based firing rate ring model, until the biophysically detailed 2D cortical

model that considers Hodgkin-Huxley membrane channels, synaptic currents and conduc-

tances. Next, we describe the mapping steps at the cellular and network levels, now in the

opposite direction, from the most detailed network and cell models, until the firing rate ring

model. Once the mapping strategy and formulas are described, we present an analysis of the

parameters of the single population ring models, taking into account the significance of vari-

ous biophysical values taken from experiments. Numerical simulations of the different net-

work models are then presented, focusing on the similarities and differences in the response

steady-state and dynamics to a stereotyped visual stimulus sequence.

2.1 Model hierarchy

We consider two geometries of the orientation hyper-column circuit in primary visual cortex,

thus a 2-dimensional geometry that maps the cortical surface to function according to the ori-

entation preference hyper-column map found in higher mammals, and a one dimensional

ring geometry, where orientation preference corresponds to the position along the ring.

Table 1 and Fig 1 present the model hierarchy, emphasizing the basic characteristics of the

models in terms of network architecture and cellular properties. The models are assigned let-

ters according to the presumed hierarchy, ranging from the most elaborate 2-dimensional, bio-

physical, model A at the top, to the simplest version of the ring model, model G, at the bottom.

For clarity, in this section we present the models in order from the simplest to the more com-

plex (model G, model F, model E, etc.).

2.1.1 Current-based firing rate (FR) ring model with instantaneous synapses (Model

G). The simplest network that we consider is the classical FR ring model described by [1]

(see also [2]). The network consists of a ring in orientation space, parameterized by θ, of a sin-

gle population of firing rate neurons whose activity is given by the spike rate ν(t, θ):

tFR
dnðt; yÞ
dt

¼ � nðt; yÞ þ nFRSS ðI
ringðt; yÞÞ ð1Þ

where τFR is a phenomenological time constant of the rate relaxation. The steady-state firing

rate of the population, nFRSS , is given by a threshold-linear transfer function:

nFRSS ðIÞ ¼ ½I�þ � fI; if I � 0; 0 otherwiseg ð2Þ
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The network architecture is fully defined by the expression for the input Iring(t, θ):

Iringðt; yÞ ¼ I0ðtÞ þ I1ðtÞ cos ðy � y0ðtÞÞ

þ
1

2p

Z p

� p

ðJ0 þ J1 cos ðy � xÞÞ nðt; xÞ dx
ð3Þ

where I0 and I1 are amplitudes of non-tuned (stimulus background) and tuned thalamic input,

respectively, and θ0 is the orientation of the input; J0 and J1 are amplitudes of non-tuned and

tuned recurrent intracortical input, respectively. These parameters aggregate the effects of spa-

tial connections, synaptic strengths and dynamics between populations of different types. In

general the thalamic input is a function of time, thus I0(t), I1(t) and θ0(t). Note that this model

incorporates the simplest synapse model, where input current arising from intracortical activ-

ity is directly proportional, and thus instantaneous, with respect to the firing rates of the pre-

synaptic population (which also allows the thalamic firing rates to be implicit in this equation).

In this single population model the effect of inhibitory versus excitatory cortical neurons is

implicit. The original interpretation of J0 and J1 with respect to excitation and inhibition is

given in [1]: “The constant J0 represents a uniform all-to-all inhibition; J1 measures the ampli-

tude of the orientation-specific part of the interaction. Neurons with similar preferred orienta-

tions are more strongly coupled excitatorally than neurons with dissimilar ones.” As originally

formulated by [1] (see also [2]), the values of I0 and I1 were chosen so that the feedforward

input is non-negative, since there is no experimental evidence for inhibitory thalamocortical

pathways [12]. In Section 2.2.4 we will present an alternative interpretation of these coeffi-

cients that arises from the mapping, specifically that takes into account the implicit inhibitory

cortical population of this model.

2.1.2 Conductance-based shunt FR and leaky integrate and fire (LIF) ring models with

instantaneous synapses (Models E, F). We now elaborate the single population current-

based ring by incorporating synaptic conductances as well as currents, and by including a

membrane current noise term. We consider firing rate and spiking versions of the ring, based

on a shunt firing rate neuron (model F), and a leaky integrate and fire neuron (model E),

respectively.

The conductance-based LIF ring model E explicitly considers the effect of spikes on the

membrane potential, V. The current equation for a single compartment LIF neuron at location

θ along the ring is given by:

C
dV
dt
¼ � ðgL þ Sðt; yÞÞðV � V

RestÞ þ Iðt; yÞ þ xðtÞ ð4Þ

where C is the cell capacitance, and gL is the leak conductance. Synaptic input is defined as the

total synaptic conductance, S(t, θ), and the total synaptic current, I(t, θ), the latter measured

with the cell held at the resting potential (note that a current term representing external stimu-

lation may be included without loss of generality). ξ(t) is a Gaussian white current noise pro-

cess characterized by its mean, hξ(t)i = 0, and auto-correlation,

hxðtÞxðt0Þi ¼ s2
I ðC=gLÞ dðt � t

0Þ, and σI is the noise amplitude. When V crosses a defined

threshold voltage VTh, the neuron “fires” and the membrane voltage is immediately reset to a

defined voltage VReset. For simplicity, in particular to allow a direct mapping to a firing rate

model, we neglect an absolute refractory period under the assumption that the evoked firing

rates are well below maximal.

We note that a noisy population of LIF neurons with instantaneous synapses can be evalu-

ated either with Monte-Carlo methods, or with a probabilistic approach based on the Komo-

gorov-Fokker-Planck (KFP) equation. We use the latter approach, described in the Methods
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(Section 4.1), to derive the simulations presented in the Results. Thus, in the presentation

below of the input terms for model E we will refer to specific formulae of the KFP approach.

The average steady-state firing rate of the LIF neuron defined by Eq 4 provides a hybrid

“shunt FR” network model (model F), situated between the previously described current-

based FR model G, and the conductance-based LIF model E, that takes into account noise as

well as the impact of synaptic input on the membrane time constant. For a given input I and S,

the average steady-state firing rate of the LIF model, nLIFSS , is given analytically by [13] (see also

Section 4.2):

nLIFSS ðI; SÞ ¼ tmðSÞ
ffiffiffi
p
p
Z ðVTh � xðI;SÞÞ=ð

ffiffi
2
p

sVðSÞÞ

ðVReset � xðI;SÞÞ=ð
ffiffi
2
p

sVðSÞÞ
exp ðu2Þð1þ erfðuÞÞ du

 !� 1

ð5Þ

where the asymptotic potential, x(I, S), the steady-state voltage dispersion, σV(S), and the effec-

tive membrane time constant of the LIF neuron, τm(S), all depend on the synaptic conductance

S:

xðI; SÞ ¼ VRest þ I=ðgL þ SÞ

s2
VðSÞ ¼ s2

I=ð2gLðgL þ SÞÞ ð6Þ

tmðSÞ ¼ C=ðgL þ SÞ ð7Þ

The shunt FR model F is then defined by using Eq 1 of the current-based FR model G, now

with the steady-state solution given by nLIFSS of the LIF model E:

tFR
dnðt; yÞ
dt

¼ � nðt; yÞ þ nLIFSS ðIðt; yÞ; Sðt; yÞÞ ð8Þ

The form of the synaptic current and conductance network connections of models E and F are

identical; we assume they recapitulate the constant plus cosine form of the current-based FR

ring model G (Eq 3) and behave identically as a function of θ:

Iðt; yÞ ¼ ~I 0ðtÞ þ ~I 1ðtÞ cos ðy � y0ðtÞÞ þ
1

2p

Z p

� p

ð~J 0 þ
~J 1 cos ðy � xÞÞ nðt; xÞ dx ð9Þ

Sðt; yÞ ¼ ~K 0ðtÞ þ ~K 1ðtÞ cos ðy � y0ðtÞÞ þ
1

2p

Z p

� p

ð~L0 þ
~L1 cos ðy � xÞÞ nðt; xÞ dx ð10Þ

Thus, these expressions supply the I and S terms of Eq 8 for the shunt FR ring model F, and

likewise the I and S terms for Eq 4 for the single population LIF ring model E (specifically, for

Eqs 53 and 54 of the KFP evaluation of an infinite LIF population, Section 4.1). As with the

current-based FR ring model, synapses are instantaneous for models F and E, in this case with

the intracortical synaptic current and conductance input terms being directly proportional to

the pre-synaptic firing rate ν(t, ξ), and as before with thalamic firing rates implicit in these

equations. The population firing rate, ν(t, θ), for the shunt FR model is given directly by Eq 8;

for LIF neurons (also the HH neurons discussed below), ν(t, θ) is defined by summing all

spikes in the population at location θ, nact, over a time window Δt, dividing by the number of
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neurons, N, and Δt, as Δt goes to zero:

nðt; yÞ ¼ lim
Dt!0

1

Dt
nactðt; t þ DtÞ

N

2.1.3 Two population LIF and Hodgkin-Huxley (HH) ring models with the second

order synapse kinetics (Models B, C, D). We next consider two population ring models that

include explicit excitatory (E) and inhibitory (I) neuron populations, based either on the LIF

cell model, or more complex Hodgkin-Huxley (HH) type cell models. The two population

LIF-based ring models include a single compartment inhibitory cell model, with either a one

compartment LIF excitatory cell model (model D), or a two compartment LIF excitatory cell

model (model C). Note that by definition, the standard LIF model as used here does not

exhibit adaptation. At a next level beyond the LIF description, HH-type models are the stan-

dard framework for describing cellular dynamics tied to explicit biophysical mechanisms,

including voltage-dependent membrane channels [14]. The HH-based ring model (model B)

includes an adaptive two compartment excitatory cell model and a non-adaptive single com-

partment inhibitory cell model. The intracortical weighting functions for the excitatory and

inhibitory pathways in all three of these two population ring models, fitted to anatomical data,

follow the constant plus cosine form presented above.

The two population models allow distinct cellular and synaptic properties for excitation

and inhibition, which in turn motivates the consideration of more elaborate synaptic kinetics.

Each cortical population, therefore, has three types of synapses: those arising from thalamic

excitatory (Θ), from intracortical excitatory (E), and from intracortical inhibitory (I) pathways.

Accordingly, each connection in the network is denoted by a double index ij where i and j
indicate the pre- and post-synaptic population, respectively. The complete synaptic input to a

target population of type j is then given by the total synaptic current measured at rest, Iij, and

the total synaptic conductance, Sij, summed over the different synapse types arising from pre-

synaptic populations i.
The excitatory and inhibitory synaptic currents measured at rest for each cell type j at loca-

tion θ, and the associated synaptic conductances, are thus:

IEjðt; yÞ ¼ gYjðt; yÞðVE � VRest
j Þ þ gEjðt; yÞðVE � VRest

j Þ

IIjðt; yÞ ¼ gIjðt; yÞðVI � VRest
j Þ

SEjðt; yÞ ¼ gYjðt; yÞ þ gEjðt; yÞ

SIjðt; yÞ ¼ gIjðt; yÞ

ð11Þ

where VE and VI are the excitatory and inhibitory reversal potentials, and VRest
j is the resting

potential of the target population.

For the one compartment LIF and HH cell models (both cell types in model D; the inhibi-

tory cell type in models B and C), we refer to the total input, thus:

Ijðt; yÞ ¼ IEjðt; yÞ þ IIjðt; yÞ

Sjðt; yÞ ¼ SEjðt; yÞ þ SIjðt; yÞ
ð12Þ

The membrane current equation for the single compartment LIF and HH models of cell type j
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at location θ is then:

C
dV
dt

¼ � ðgL þ Sjðt; yÞÞðV � VRestÞ � IAct þ Ijðt; yÞ þ xðtÞ ð13Þ

where IAct is the current via active, voltage-gated channels for HH neurons, and ignored for

LIF cells.

For the two compartment HH and LIF excitatory cells of models B and C, the post-synaptic

sites are pathway specific. Thus we refer directly to Eq 11 for the excitatory input exclusively

on the dendrite, IEE(t, θ) and SEE(t, θ), and for the inhibitory input exclusively on the soma,

IIE(t, θ) and SIE(t, θ). The two compartment models are an approximate solution of two bound-

ary problems for a spatially distributed passive dendrite and a point passive soma, following

the description in [15] (see also [9] and [16]). The problems correspond to the two cases of,

first, dendritic synaptic current estimation under somatic voltage clamp (the reverse voltage-

clamp problem) and, second, somatic voltage measurement under current-clamp in response

to the previous estimates of the dendritic synaptic current.

The membrane current equations for the soma voltage V(t) and the dendrite voltage VD(t)
for this excitatory cell model at location θ are:

C
dV
dt

¼ � ðgL þ SIEðt; yÞÞðV � VRestÞ þ
rD
L2

gLðVD � VÞ � IAct þ IIEðt; yÞ þ xðtÞ

C
dVD
dt

¼ � gLðVD � VRestÞ �
2þ rD
L2

gLðVD � VÞ

þ
1

rD
t0

mL
2 d
dt
þ 2þ L2

� �

� SEEðt; yÞðV � V
RestÞ þ IEEðt; yÞð Þ

IAct ¼
0 LIF model

IDr þ IA þ IH þ IM þ IAHP HHmodel

8
<

:

ð14Þ

where t0
m is the resting time constant (¼ C=g0

tot, where g0
tot is the total conductance at rest), ρD

is the ratio of the dendritic to somatic passive membrane conductances, and L is the dendritic

length in units of the characteristic length (see Methods, Section 4.3).

Notably, spike generation in the HH cell models used here is governed by an explicit thresh-

old mechanism, reminiscent of the LIF model, that replaces the spike generating current INa.
This modification, described in detail in the Methods (Section 4.2) as the conductance-based

refractory density (CBRD) approach, allows for efficient evaluation of neuron populations that

still considers the impact of the various HH currents that comprise IAct (Eqs 13 and 14). It is

important to note that this approach was taken for its computational advantage alone; using a

standard HH cell model in the framework of the network simulations will give very similar

results [17] (see also Section 4.2).

The connectivity rules for all the two population models are written in terms of pre-synap-

tic firing rates, φij, to facilitate incorporating synaptic kinetics in the translation of pre-synaptic

activity to the post-synaptic conductances gij(t) that figure in Eq 11. The relation between φij(t)
and gij(t) is given by a second order kinetic model that implicitly accounts for mechanisms

such as axonal delays, receptor dynamics and dendritic integration:

trit
d
i
d2

dt2
þ ðtri þ t

d
i Þ
d
dt
þ 1

� �

gijðtÞ ¼ cij φijðtÞ ð15Þ
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with the scaling “synaptic capacity” cij described in Section 4.5. The thalamic inputs driving

gΘj(t, θ) of the excitatory and inhibitory cortical populations are taken to be identical, and fol-

low the constant plus cosine form of the single population ring models:

φ
YEðt; yÞ ¼ φYIðt; yÞ ¼ φYðt; yÞ ¼ φ0

ðtÞ þ φ
1
ðtÞ cos ðy � y0ðtÞÞ ð16Þ

where φ0 is the un-tuned stimulation background, φ1 is the tuned part of the cortical input,

and θ0 is the stimulus orientation angle. As mentioned, the thalamocortical pathway is exclu-

sively excitatory.

Intra-cortical connections driving gij(t, θ) of the two populations are given by:

φijðt; yÞ ¼
1

2p

Z p

� p

niðt; xÞ wijðy � xÞ dx ð17Þ

where the weight function, wij(ϕ), again recapitulates the constant plus cosine form of the sin-

gle population models, with the parameter qij to take into account the orientation tuning

between different types of neurons:

wijð�Þ ¼ 1þ qij cos ð�Þ ð18Þ

Note that, implicitly, 0� qij� 1. This approximation will be developed in Section 2.2.1.

2.1.4 Two population, two dimensional HH model with the second order synapse kinet-

ics (Model A). As the most elaborate model, we consider an anatomical 2D cortical network

of the two compartment excitatory, and the single compartment inhibitory, HH cell models

developed in the previous section. As for the two population ring models, the current and con-

ductance inputs are driven by pre-synaptic firing rates.

As opposed to the angular functional index θ of the ring models, in the 2D model each pop-

ulation is parameterized by its position on a cortical surface map of adjacent, radially-symmet-

ric hyper-column pinwheels [3] (Fig 2). The 2D architecture is captured entirely by new

expressions for the firing rates φΘ and φij that are now functions of the x and y coordinates of

the target cells. Thus, the inputs of the 2D model recapitulate Eqs 11–15, with arguments (t, θ)

of the ring models replaced by (t, x, y).

Fig 2. Cortical domain containing 4 hypercolumns that provides the reference geometry for the 2D model A; the

dots mark the pinwheel centers; the colors mark the orientations coded by bars in the legend. To obtain an activity

profile in orientation space the 2D model activity is projected to the ring shown at the lower left quadrant.

https://doi.org/10.1371/journal.pcbi.1009007.g002
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An orientation column (Fig 2) corresponds to a hyper-column sector, containing popula-

tions with similar preferred orientations at varying distances from the hyper-column center.

The functional architecture of each hyper-column pinwheel arises from a thalamic input

whose orientation tuning corresponds to the angle of the target location with respect to the

center of its hyper-column [8, 3]. Hyper-columns are arranged so that those with a clockwise

progression of orientation columns are adjacent to those with counterclockwise progression,

thus adjacent orientation columns from different pinwheels have the same orientation prefer-

ence. The centers of the hyper-column pinwheels are distributed on a rectangular grid with

pinwheel radius R and indexed by iPW and jPW. Here we consider a square containing 4 pin-

wheels on the cortical surface. The coordinates of the pinwheel-centers are xPW = (2iPW − 1)R,

yPW = (2jPW − 1)R. The orientation angle for the point (x, y) which belongs to the pinwheel

(iPW, jPW) is defined as θ = arctan((y − yPW)/(x − xPW)). The progression is determined by the

factor ð� 1Þ
iPWþjPW .

Thus, the thalamic input in terms of effective firing rate is described with an elaboration of

Eq 16:

φ
Y
ðt; x; yÞ ¼ φ

0
ðtÞ

þφ
1
ðtÞ cos y � y0 �

3p

2
þ
p

2
ð� 1Þ

iPW þ pð� 1Þ
jPW

� �

ð� 1Þ
iPWþjPW

� �
ð19Þ

It is important to note that, as with the ring models, this constant plus cosine form of the tha-

lamic input constitutes an implicit model of the retino-geniculo-cortical pathway; this is equiv-

alent to each cortical neuron receiving an oriented receptive field corresponding to a single

sub-region of a classical simple cell. The orientation dependence of the input in particular

characterizes the degree of symmetry breaking at the input stage, parameterized here by φ1

and φ0. The homogeneous case, where φ1 = 0, represents thalamic input with no dependence

on stimulus orientation. The maximum selectivity of this model for the input stage, where

φ1 = φ0, is a pure shifted cosine dependence.

Intra-cortical connections between populations are local and isotropic with an exponential

decay [12], with the effective pre-synaptic firing rate φij(t, x, y) given by:

φijðt; x; yÞ ¼

R R
niðt; x0; y0Þ exp ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ2 þ ðy � y0Þ2
q

=dijÞ dx0 dy0

R R
exp ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ2 þ ðy � y0Þ2
q

=dijÞ dx0 dy0
ð20Þ

where, as above, i and j correspond to the cell type (E or I), νi(t, x0, y0) is the firing rate of pre-

synaptic cortical population i at location (x0, y0), and dij is the characteristic anatomic length of

the i to j pathway. Note that in contrast to the explicit tuning of intracortical connections in

the ring models (parameterized by θ), these connections have an implicit functional orienta-

tion tuning since neighboring orientation columns receive similar oriented thalamic inputs.

2.2 Mapping of network and cellular parameters

We now describe the quantitative mappings between the various models at the network and

cellular levels, which allow a path from the parameters of the full HH EI 2D model A, to the

different LIF networks models, and finally to the current-based FR ring model G. In contrast

to the previous section, we present the mappings from the more complex to the less complex

models. The essential goal of these cellular and network mapping steps, as diagrammed in Fig

1, is to systematically map the high-dimensional full model, with multiple non-linearities, to a

low-dimensional model with a single threshold non-linearity.
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2.2.1 Network mapping: 2D cortical architecture to the cosine ring models. The first

mapping step at the network level is to reduce the 2D geometry of the pinwheel architecture in

anatomic space to a 1D ring geometry in orientation space (solid green arrows in Fig 1). We

consider the synaptic strength function for the intracortical connection between two points~r1

and~r2 on the cortical surface (corresponding to the locations (x, y) and (x0, y0) in Eq 19):

fwðj~r1 � ~r2jÞ ¼ exp ð� j~r1 � ~r2j=dÞ

where d is the characteristic length of the connection. The weight of the connections of two

elementary areas ΔS1 = r1ΔθΔr1 and ΔS2 = r2ΔξΔr2 at the points shown in Fig 3A is:

D~wðy; xÞ ¼
fwðj~r1 � ~r2jÞ DS1 DS2

S1 S2

¼
fwðj~r1 � ~r2jÞ r1 r2

R4
Dr1Dr2

where S1 ¼
1

2
R2Dy, S2 ¼

1

2
R2Dx are the areas of the sectors corresponding to two radial vectors

emanating from the center of a pinwheel with radius R and having the orientation angles θ
and ξ (Fig 3A). Combining the last two expressions, we integrate over the vectors to obtain the

total connection weight ~w:

~wðy; xÞ ¼
4d4

R4

Z R=d

o
dr1

Z R=d

o
dr2 r1r2 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1 cosy � r2 cosxÞ
2
þ ðr1 siny � r2 sinxÞ

2

q� �

We now find ~w for the angle difference α = ξ − θ. By rotating the coordinates such that θ = 0

and α = ξ, we obtain:

~wðaÞ ¼
4d4

R4

Z R=d

o
dr1

Z R=d

o
dr2 r1r2 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1 � r2 cosaÞ
2
þ ðr2 sin aÞ

2

q� �

¼
4d4

R2

Z R=d

o
dr1

Z R=d

o
dr2 r1r2 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1
� 2r1r2 cosaþ r2

2

p� �
ð21Þ

The resulting normalized weight

w0ðaÞ ¼ ~wðaÞ=
Z p

� p

~wða0Þ da0 ð22Þ

is shown in Fig 3B by the black curve. As mentioned in Section 2.1.3, we approximate w0(α)

with a constant plus cosine form for models B, C and D (Eq 18, parameterized by qij; reference

Fig 3B, dotted line). We also considered an exponential form wij(ϕ) = 1 + qijexp(|ϕ|/ϕij) (Fig

3B, dashed line), which gives a more precise mapping of the anatomically based 2D cortical

geometry [18] to the ring. This relationship between the exponential profile in 2D plane and

the constant-plus-exponential profile in the ring of orientations is novel.

2.2.2 Cellular mappings: HH to LIF neurons, and 2 compartment to 1 compartment

LIF excitatory neuron. The mappings of the HH neuron models to their respective LIF mod-

els were made as follows. For the population of one compartment HH inhibitory neurons, the

steady-state transfer function between current input and firing rate (f/I) of a one compartment

LIF model, with the same passive parameters of the HH neuron, was fitted to the f/I curve of

the HH model by adjusting the LIF reset potential, while retaining the threshold potential VTh

of the HH inhibitory model (dashed purple arrows in Fig 1). A similar fitting procedure was

done for the two compartment HH excitatory neurons, but importantly using a non-adapting

version of this model. Thus, as a first step, the two adaptation currents of the excitatory neu-

ron, IM (intermediate time-scale voltage-dependent current) and IAHP (slow voltage and cal-

cium-dependent current), were blocked, and the f/I was obtained. The f/I curve of a two
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compartment LIF model was then fitted to the non-adapting HH f/I curve, with the same pas-

sive parameters and threshold potential VTh of the HH excitatory model (dashed green arrow

in Fig 1). The comparison of the spike timings in response to constant input is shown in Fig 4.

To map the two compartment LIF excitatory cell model to single compartment LIF model

(dashed cyan arrow in Fig 1), we fixed the passive input conductance of the latter to the

somatic input conductance of the former, and decreased the membrane time constant from

14.4 to 10.3 ms, reflecting the fact that the effective time constant of a two compartment model

is smaller than intrinsic membrane τm. Because of different expressions for the input conduc-

tance in two and single compartment models, expressed by the ratio of the dendritic and

somatic input conductances, ρD = Gin,d/Gin (Eqs (63) in Methods, Section 4.3), the capacitance

of the one compartment model changed slightly from 0.25 to 0.27nF. The synaptic input to the

dendrite of the two compartment model (excitatory inputs from the thalamus and the

Fig 3. A. Reduction of 2D pinwheel geometry to the ring-geometry requires integration over the radial vectors with

the angle ξ−θ between them. B. Mapping 2D pinwheel geometry to the ring, showing the weight function w0(ϕ)

according to the Eqs 21 and 22 (solid line), and its approximations of the forms 1 + kcos(ϕ) (dotted line) and b + a
exp(−|ϕ|/ϕr) (dashed line) for the case of R = d/2.

https://doi.org/10.1371/journal.pcbi.1009007.g003

Fig 4. Comparative spike train responses of the mapped single neuron models: HH to LIF, and 2 to 1

compartment LIF. A) The spike train for the non-adaptive 2-compartmental HH pyramidal neuron (solid line), the 2

compartment LIF model (dashed line) and the 1 compartment LIF model (dotted line), the latter two with

VReset
LIF;E ¼ � 90mV. The input to the dendrite of the two compartment models was I = 1.2nA and S = 0.035 μS; according

to the ratio of the dendritic and somatic input conductances, Gin,d/Gin, the current and conductance input to the

1-compartmental neuron was adjusted to 0.62nA and 0.018μS, respectively. B) The spike train for the HH interneuron

(solid line) and the corresponding LIF model with VReset
LIF;I ¼ � 82mV (dashed line), in response to I = 0.2nA and S = 0.

https://doi.org/10.1371/journal.pcbi.1009007.g004

PLOS COMPUTATIONAL BIOLOGY Mapping biological to abstract cortical network models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009007 August 16, 2021 12 / 49

https://doi.org/10.1371/journal.pcbi.1009007.g003
https://doi.org/10.1371/journal.pcbi.1009007.g004
https://doi.org/10.1371/journal.pcbi.1009007


excitatory cortical population) were adjusted for the one compartment model by ρD so that the

sizes of the synaptic conductances relative to the post-synaptic input conductance were main-

tained (ref. Fig 4A for a comparison of the spike times of the two models).

2.2.3 Cellular mapping: 2-dimensional LIF steady-state to 1-dimensional threshold-lin-

ear f/I relation. We now describe the mapping of the steady-state expression for the current

(I) and conductance (S) driven LIF model, nLIFSS ðI; SÞ (Eq 5), to a one dimensional threshold-lin-

ear model, thus with the current and conductance inputs combined a priori (dashed orange

arrows in Fig 1). This transformation is used twice. First, this is used for eliminating an explicit

inhibitory population when going from the two population LIF ring model D, to the conduc-

tance-based single population models E and F (Section 2.2.4). Second, this step is used for

mapping from the conductance-based shunt FR model F, to the classical current-based FR

model G (Section 2.2.5).

We first make a non-standard assumption that the dispersion of noisy current, s2
I , is line-

arly dependent on the synaptic conductance:

s2
I ¼ sI

2
0
ð1þ S=gLÞ ð23Þ

with an only free coefficient, which is the noise level at rest σI0. This approximation reflects the

fact that the synaptic current fluctuations typically increase as more synaptic channels are acti-

vated. The ionic channels provide independent additive stochastic currents, thus the variation

of the total current fluctuations is the sum of variations of the currents from separate channels,

which is roughly proportional to the number of activated channels. The later is characterised

by the total conductance. Importantly, for the LIF neuron this leads to constant voltage disper-

sion due to noise, σV(S) (Eq 6):

s2
VðSÞ ¼ s

2
I=ð2gLðgL þ SÞÞ ¼ sI

2
0
ð1þ S=gLÞ=ð2gLðgL þ SÞÞ ¼ sI20=ð2g

2
LÞ

Independence of the voltage dispersion on the total conductance corresponds to the case of

thermal noise in RC circuits [19]. The scaling Eq 23 and, consequently, the constant σV were

also noted by Chance et al. [20], who considered a balanced excitatory and inhibitory synaptic

input with the synaptic conductance dominated over the leak conductance. The proportional-

ity of s2
I on S holds true for the noise generated by a Poisson process. So either an addition of

the free term sI
2
0

to this proportionality in Eq 23 or the assumption of synaptic conductance

domination, S>>gL, as in [20], lead to constant s2
V.

Given the form of Eq (5), this in turn allows a recasting of the steady-state solution nLIFSS as a

one dimensional function:

nLIFSS ðI; SÞ ¼ ð1þ S=gLÞ n
LIF
SS

I
1þ S=gL

; 0

� �

ð24Þ

We note that this reduction of a 2 to 1 dimensional solution is unique for this noise model,

and is an important analytical property of the noisy LIF model, obtained due to the novel

assumption Eq 23. In the notations from [20], the formula of Eq 24 corresponds to the rela-

tionship r = g f(I/g) with the total conductance g, the input current I and the firing rate r. With

respect to the modulation of the f/I curve gain, we see that the shunt g provides a divisive effect

on the gain f0(I/g) only if the second derivative of f is positive.

Next, we approximate nLIFSS ðI; SÞ for S = 0 as a one dimensional threshold-linear function,

parameterized by the slope kLIF and the rheobase current ILIFOff :

nLIFSS ðI; 0Þ � k
LIF ½I � ILIFOff �þ ð25Þ

The approximation parameters for the LIF models introduced in the previous Section 2.2.2,
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thus kLIFE and ILIFOff;E for the excitatory LIF neuron, kLIFI and ILIFOff;I for the inhibitory LIF neuron, are

obtained by fitting to nLIFSS;EðI; 0Þ and nLIFSS;IðI; 0Þ, respectively. The precision of this approximation

for the excitatory cell type can be seen from Fig 5, which compares the threshold-linear

approximations for noisy LIF and HH cell models plotted for parameters given in Section 2.3.

Combining the last two expressions obtains an approximate one dimensional threshold-lin-

ear dependence of the rate on I and S:

nLIFSS ðI; SÞ ¼ kLIF½I � ILIFOff ð1þ S=gLÞ�þ ð26Þ

A similar to Eq 26 approximation was described in [6], in the context of fitting threshold-

linear functions to the numerically obtained steady-state transfer function of a HH neuron

with a slow potassium A-current, specifically approximating the impact of the cell conductance

as a rightward shift in the transfer function. Brizzi et.al. [21] showed that this approximation

was justified for spinal motor neurons in vivo, and Persi et al [22] generalized the approach for

HH neuron models with current noise. In contrast, our novel interpretation of Eq 26 arises

from the application of the similarity law (Eq 24), which is exact for the particular noise model

(Eq 23) and the LIF neuron.

Thus, the effect of the synaptic conductance is to modulate the threshold current of the LIF

neuron ILIFTh :

ILIFTh ¼ ILIFOff ð1þ S=gLÞ ð27Þ

Note, in the aspect of the f/I curve gain problem, we see from Eq 26 that the channel-to-chan-

nel independent noise results in shunt-independent gain of f/I curve, i.e. the shunt provides a

pure subtractive effect.

As shown in the Section 2.3, the quality of these approximations allows to obtain consistent

mapping of the model parameters. Note that the choice of a threshold-linear transfer function

approximation for the steady-state is not essential for the mapping from the two population to

Fig 5. Comparisons of threshold-linear approximations for noisy LIF and HH excitatory cell models. Threshold-

linear approximation (dashed line) of the LIF noisy neuron firing rate (Eq 5, solid line). To compare, the response of a

LIF neuron with no noise is shown by the dotted line. The steady-state rate of the adaptive neuron described in Section

4.3 is shown by red dots, each dot corresponding to one stimulation current amplitude and being obtained by Monte-

Carlo simulation with explicit noise during 2 seconds. The dashed-dotted line is the threshold-linear approximation

with a gain of 0.026 Hz/pA.

https://doi.org/10.1371/journal.pcbi.1009007.g005
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one-population models, nor between the conductance-based to current-based FR models, and

thus a more elaborate one dimensional function may be used. However, the threshold-linear

approximation not only simplifies these mappings (e.g. solving for νI in Section 2.2.4), but it is

also necessary for the final mapping to the classical threshold-linear FR model that is especially

amenable to analytical results.

Considering the form of the synaptic current and conductance introduced previously, we

can simplify the mapping further. Now we explicitly indicate the LIF cell type j. First, we

express the threshold voltage of the LIF neuron in terms of its rheobase current ILIFOff;j and input

conductance gL,j:

VTh
j ¼ VRest

j þ ILIFOff;j=gL;j

We now define DVTh
ij as the driving force relative to the target’s threshold potential:

DVTh
ij ≜ VRev

i � V
Th
j

¼ VRev
i � V

Rest
j � ILIFOff;j=gL;j

ð28Þ

where VRev
i is the reversal potential of synapse type i. With this definition of DVTh

ij , we intro-

duce the network input, recalling the definitions of Ij and Sj (Eqs 11 and 12), and finally rewrite

Eq 26 for nLIFSS;j:

nLIFSS;jðIj; SjÞ � kLIFj

�

ðgYj þ gEjÞðVE � VRest
j Þ þ gIjðVI � V

Rest
j Þ

�
ILIFOff;j
gL;j

gYj þ gEj þ gIj
� �

� ILIFOff;j

#

þ

¼ kLIFj
X

i¼Y;E;I

gijDV
Th
ij � ILIFOff;j

" #

þ

ð29Þ

2.2.4 Network mapping: Conductance-based two population ring to single population

ring. We now map the current and conductance inputs Ij(t, θ) and Sj(t, θ) (Eq 12) of the two

population ring model D, to the I(t, θ) and S(t, θ) inputs (Eqs 9 and 10) of the single population

LIF and FR with shunt ring models (models E and F; ref. solid red arrows in Fig 1). This map-

ping effectively eliminates the explicit inhibitory population, replacing it by an instantaneous

linear function of the excitatory activity. Note that the cell models in models E and F are

derived from the single compartment excitatory LIF model of model D.

The first step is to replace the 2nd-order synaptic kinetics by instantaneous transfer func-

tions, thus synaptic currents and conductances being directly proportional to the effective pre-

synaptic rates, according to the steady-state solution for Eq 15, which is:

gijðtÞ ¼ cij φijðtÞ ð30Þ

Now, the time dependence of the input is implicit:

IjðyÞ ¼ ðVE � VRest
j ÞðcYi φYðyÞ þ cEj φEjðyÞÞ þ ðVI � V

Rest
j Þ cIj φIjðyÞ

SjðyÞ ¼ cYi φYðyÞ þ cEj φEjðyÞ þ cIj φIjðyÞ
ð31Þ

Next, we expand Eq 31 for the current input to excitatory neurons, IE(θ), using the pre-
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synaptic firing rates of the thalamic (φΘ, Eq 16) and intracortical (φEE and ϕIE, Eq 17) popula-

tions:

IEðyÞ ¼ ðVE � VRest
E Þ cYE ðφ0

þ φ
1
cos ðy � y0ÞÞ þ

ðVE � VRest
E Þ cEE

1

2p

Z p

� p

nEðxÞ ð1þ qEE cos ðy � xÞÞ dx þ

ðVI � VRest
E Þ cIE

1

2p

Z p

� p

nIðxÞ ð1þ qIE cos ðy � xÞÞ dx

ð32Þ

We now replace the inhibitory population rate νI in this equation by the steady-state equation

for the inhibitory LIF model expressed as a linear function of the excitatory population rate νE,

based on three assumptions. First, we assume that the connections between inhibitory neurons

in the cortex are local, thus:

φI IðyÞ � nIðyÞ ð33Þ

Next, we ignore the intrinsic dynamics of the inhibitory population and consider only its

steady-state response, thus nLIFSS;IðyÞ, furthermore with the assumption that, on average, the

inhibitory neurons around the ring are above threshold during stimulus presentation. Using

the one dimensional approximation given by Eq 29 for the LIF inhibitory neuron (importantly

neglecting the rectification operation because of the above-threshold assumption), Eq 31 for

the current term (subsituting DVTh
ij according to Eq 29), and the assumption of inhibitory-

inhibitory locality (Eq 33), we obtain:

nIðyÞ ¼ nLIFSS;IðyÞ

� kLIFI ðDV
Th
EI cY φYðyÞ þ DVTh

EI cEI φEIðyÞ þ DVTh
II cI I nIðyÞ � ILIFOff;IÞ

ð34Þ

Eq (34) may then be solved for νI(θ):

nIðyÞ �
~kLIFI ðDV

Th
EI cY φYðyÞ þ DVTh

EI cEI φEIðyÞ � ILIFOff;IÞ ð35Þ

where:

~kLIFI ¼
kLIFI

1 � kLIFI DVTh
II cI I

ð36Þ

The term ~kLIFI represents the reduction in the effective gain of the inhibitory population because

of self-feedback, as such parameterized by the inhibitory-inhibitory pathway parameter cII.
Assuming that the reversal potential of the inhibitory synapses is beneath the spike threshold,

we note that DVTh
II (Eq 28) must be negative, and therefore ~kLIFI � k

LIF
I .

Finally, we need to express the effective pre-synaptic rate of the excitatory input to the

inhibitory population, φEI(θ), in Eq 35 as a linear function of νE(θ). For this we assume that the

excitatory activity over the ring can be reasonably approximated by a shifted cosine centered at

the stimulus orientation θ0:

nEðyÞ � �nEð1þ cosðy � y0ÞÞ

where �nE ¼ ð1=2pÞ
R p
� p

nEðxÞdx, thus νE(θ) averaged over the ring. Taking into account that:

1

2p

Z p

� p

cos ðy � xÞ cos ðx � y0Þdx ¼
1

2
cos ðy � y0Þ ð37Þ
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we obtain the following approximation for φEI:

φEIðyÞ ¼
1

2p

Z p

� p

nEðxÞ 1þ qEI cos ðy � xÞð Þ dx ðrefer to Eqs 17 and 18Þ

�
1

2p

Z p

� p

�nE 1þ cos x � y0ð Þð Þ 1þ qEI cos ðy � xÞð Þ dx

¼ 1 �
qEI
2

� �
�nE þ

qEI
2
nEðyÞ

ð38Þ

We can now re-write Eq 32 for the current IE(θ) as a function of only the excitatory population

activity νE(θ), substituting Eqs 16 and 38 for φΘ and ϕEI, respectively:

IEðyÞ ¼ ðVE � VRest
E Þ cYEðφ0

þ φ
1
cos ðy � y0ÞÞ þ ð39Þ

ðVE � VRest
E Þ cEE

1

2p

Z p

� p

nEðxÞ ð1þ qEE cos ðy � xÞÞ dx þ

ðVI � VRest
E Þ cIE

1

2p

Z p

� p

~kLIFI

�

DVTh
EI cY φ

0
þ φ

1
cos ðx � y0Þ

� �
þ

DVTh
EI cEI 1 �

qEI
2

� �
�nE þ

qEI
2
nEðxÞ

� �
�

ILIFOff;I

�

ð1þ qIE cos ðy � xÞÞ dx

ð40Þ

Again using the relation of Eq 37, we obtain the coefficients ~I 0;1 and ~J 0;1 by comparing Eq 39

with the expression for I(θ) (ref. Eq 9, i.e. setting I(θ) = IE(θ), with implicit time dependence):

~I 0 ¼ ðVE � VRest
E Þ cYE φ0

þ ðVI � VRest
E Þ cIE ~kLIFI ðDV

Th
EI cY φ0

� ILIFOff;IÞ

~I 1 ¼ ðVE � VRest
E Þ cYE φ1

þ ðVI � VRest
E Þ cIE qIE ~kLIFI DVTh

EI cY
φ

1

2

~J 0 ¼ ðVE � VRest
E Þ cEE þ ðVI � VRest

E Þ cIE ~kLIFI DVTh
EI cEI

~J 1 ¼ ðVE � VRest
E Þ cEE qEE þ ðVI � VRest

E Þ cIE qIE ~kLIFI DVTh
EI cEI

qEI
2

ð41Þ

These equations provide the current terms in Eq 9, with the corresponding conductance

terms in Eq 10 given by:

~K 0 ¼ cYE φ0
þ cIE ~kLIFI ðDV

Th
EI cY φ0

� ILIFOff;IÞ

~K 1 ¼ cYE φ1
þ cIE qIE ~kLIFI DVTh

EI cY
φ

1

2

~L0 ¼ cEE þ cIE ~kLIFI DVTh
EI cEI

~L1 ¼ cEE qEE þ cIE qIE ~kLIFI DVTh
EI cEI

qEI
2

ð42Þ

Note that the CIE term in the above expression for ~I 0 is not, in fact, driven by thalamic input

(i.e. the thalamic firing rate term φ0), but rather is constant. Nevertheless, the formats of the

defining equations for the inputs (Eqs 9 and 10) that distinguish between terms integrated

with the network activity, from those that are “external”, oblige the inclusion of the CIE in the

“thalamic” component. In comparison to the thalamic terms, the input “driven” by
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intracortical activity is proportional to both ~J 0;1 and ~L0;1, i.e. there is no non-driven, constant

component.

To conclude, Eqs 41 and 42 constitute the mapping between the conductance-based two pop-

ulation ring models with 2nd-order synapses (models B, C and D) to the conductance-based sin-

gle population ring models with instantaneous synapses (LIF model E, and shunt FR model F).

2.2.5 Network mapping: Conductance-based single population ring to current-based FR

ring. The final mapping is between the current and conductance inputs I(t, θ) and S(t, θ) of

the conductance-based ring models E and F, to the current input I(t, θ) (Eq 3) of the current-

based FR ring model G (dashed blue arrows in Fig 1).

As before we exploit the mapping of the two-dimensional steady-state expression for the

LIF neuron, nLIFSS ðI; SÞ, to the one dimensional threshold-linear approximation (Eq 26). Here,

this step allows the elimination of the explicit conductance input, therefore to obtain the sta-

tionary solution nFRSS ðIðt; yÞÞ of the current-based FR model (Eq 1). As mentioned earlier, the

conductance-based single population ring models reference the single compartment excitatory

LIF model parameterized by kLIFE and ILIFOff;E (Section 2.2). Thus, recalling the expression for nFRSS

given by Eq 26, and expanding I(t, θ) and S(t, θ) (ref. Eqs 9 and 10) we obtain

nFRSS ðIðt; yÞÞ � kLIFE ½Iðt; yÞ � ILIFOff;Eð1þ Sðt; yÞ=g
E
L Þ�þ

¼ kLIFE

�

~I 0ðtÞ þ ~I 1ðtÞ cos ðy � y0ðtÞÞ þ

1

2p

Z p

� p

ð~J 0 þ
~J 1 cos ðy � xÞÞ nðt; xÞ dx �

ILIFOff;E � I
LIF
Off;E=g

E
L

�

~K 0ðtÞ þ ~K 1ðtÞ cos ðy � y0ðtÞÞ þ

1

2p

Z p

� p

ð~L0 þ
~L1 cos ðy � xÞÞ nðt; xÞ dx

��

þ

ð43Þ

Note that, unlike the previous use of the one-dimensional transfer function approximation for

eliminating an explicit inhibitory population, here there is no assumption that the input is

suprathreshold. Comparing Eq 3 for I(t, θ) with Eq 43, we obtain:

I0 ¼ kLIFE ð~I 0 �
~K 0 ILIFOff;E=g

E
L � ILIFOff;EÞ

I1 ¼ kLIFE ð~I 1 �
~K 1 ILIFOff;E=g

E
L Þ

J0 ¼ kLIFE ð~J 0 �
~L0 ILIFOff;E=g

E
L Þ

J1 ¼ kLIFE ð~J 1 �
~L1 ILIFOff;E=g

E
L Þ

ð44Þ

with the I and S terms on the right-hand side defined by Eqs 41 and 42.

These relationships complete the mapping to the current-based FR ring model G, and thus

constitutes the main analytical result of the work.

2.3 Simulations

We now present comparative simulations of the different models described in Section 2.1 and

responding to to the same input. These simulations demonstrate the consistency of the map-

ping expressions, show how different behaviours of the models reveal implications of each step

of the reduction, and highlight essential mechanisms for certain signatures of responses in the

visual cortex.
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We first set the parameters of the most complex model with excitatory and inhibitory popu-

lations distributed in 2D cortical space (model A), according to the experimental literature on

single neuron properties, synaptic kinetics and connectivity (Section 4.6). The parameters of

the remaining models (Section 4.6) are then calculated according to the formulas derived in

Section 2.2.

2.3.1 Overall transient dynamics. We compared responses of the models to a specific

visual stimulus, focusing on the excitatory population firing rate. The initial conditions were

the steady-state in response to a homogeneous background input of “contrast” or strength φ0.

The visual stimulus of contrast φ1 is presented at t = 0ms with a time-dependent orientation

(e.g. oriented bar, grating, edge, or more complicated scene) of 0˚ at t = 0ms, shifting to 45˚ at

t = 100ms. For model A, we simulated the response of 4 identical hyper-columns (Fig 2), with

an identical input for each. This stimulus provides the fundamental “step response” of the sys-

tem from the background state, followed by a step response in the orientation domain, for

example following an abrupt change in the visual scene during a saccade.

We now consider the overall dynamics of the responses of the 2D model A. The spatial dis-

tributions of the excitatory population firing rate at different times are shown in Fig 6. Initially,

the modeled cortical domain responds with a firing activity in the orientation columns that

correspond to maximal stimulus (frames at 5-20 ms). The maximum response appears at

about 20 ms; its location corrsponding to the stimulus orientation. The activity is homo-

geneously distributed along a radius of a hypercolumn. At later stages, the firing rate decreases

(frames at 30-50 ms) with a peak located near the pinwheel center (frames at 50-90 ms). The

input changes its orientation at 100 ms from 0˚ to 45˚. The activity rapidly rotates toward the

column preferring the orientation of the stimulus (frames at 105-110 ms), and even beyond

(frames at 120-130 ms; see also Section 2.3.5). Later, the activity settles again in the column

preferring the orientation of the stimulus with a peak near the pinwheel center (frames at 150-

190 ms), similar to the activity in response to initial stimulus (compare to frames at 50-90 ms).

The time-dependent profiles of the rate and voltage for the populations on a ring of radius 2/3

R centered on a pinwheel (marked as a circle in Fig 6), thus as a function of preferred orienta-

tion, are shown in Fig 7 (excitatory and inhibitory populations) and Fig 8A (excitatory popula-

tion). The activity of the interneuron population is stronger and more widely distributed in

orientation space than that of principal cells, as seen from comparison of Fig 7B to 7A, and Fig

7C to the first panel of Fig 8. This activity provides broad cortical inhibition by shunting the

excitatory neurons. As a result, the excitatory activity localizes in small cortical zones as shown

in frames at 50, 90, 150 and 190 ms in Fig 6, as well in the snapshots of the voltage and rate as a

function of distance from the pinwheel center, shown in Fig 7D and 7E, respectively. Impor-

tantly, the steady-state location of the maximum activity in each hypercolumn corresponds to

the orientation of the stimulus, and the firing is localized in 2D and orientation coordinates,

i.e. the cortical response is tuned.

All of the constructed hierarchy of models are compared in Fig 8. Common and different

features of the models’ portraits constitute an essentially novel result of the work. The popula-

tion rate as function of orientation and time is shown. When considered along a ring centered

on a pinwheel, the dynamics of the 2D adaptive, two population model A, is similar to the

adaptive ring geometry model B, although the full dynamics of the 2D model depend on the

radius of the ring, as will be discussed below. This similarity is achieved due to the mapping

performed in Section 2.2.1. Both exponential and cos-shaped profiles of connection spread on

a ring (Fig 3B) result in similar solutions, one of which seen in Fig 8 for model B. In contrast,

the transient responses change significantly between the adaptive HH models A and B, and the

non-adaptive LIF model C, primarily due to an overall increase in the activity in the latter

model. Damped oscillations are observed to varying degrees for models A-D, being strongest
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Fig 6. The response of model A (HH 2E EI Exp 2D) over the cortical surface (1mm2 containing 4 hypercolumns; the dots mark the

pinwheel centers) to a 0˚ oriented stimulus presented at t = 0, and shifting to the 45˚ orientation at t = 100ms. The circle at the lower

left quadrant of the input maps correspond to the activity profile of this model shown in the first panel of Fig 8.

https://doi.org/10.1371/journal.pcbi.1009007.g006
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for the adaptive models, and quite weak for the 1 compartment LIF EI model D. Thus, steady-

state-like behaviour in the adaptive models A and B is seen only after 200ms. The non-adaptive

models C and D show steady-state-like behaviour within approximately 100ms, thus observ-

able for both stimulus orientations.

The reduction step from the 2-compartment LIF neurons of model C to the 1-compartment

LIF neurons of model D, which reduces the order of the system of equations, has a more strik-

ing effect on the transient response. In particular, as noted above, oscillations following stimu-

lus transitions are substantially reduced for the 1-compartment LIF model. A larger propensity

to oscillations of the higher order model C in comparison to the lower order model D is con-

sistent with the observation of a faster voltage response of a spatially distributed neuron to

changes in synaptic current due to the electrotonic properties of the implicit cable structure.

Following the change in the stimulus at 100ms, both models show a continuous shift of the

response in orientation space, or a virtual rotation, as discussed below.

The subsequent model E incorporates two more simplifications by reducing the number of

populations from two to one, and assuming instantaneous synaptic kinetics. These lead to

quite different transient behavior, with a much more rapid establishment of the steady states,

and the disappearance of oscillations and virtual rotation. Why is the response of model E

much more rapid than the previous in models, even though the essential cellular time constant

is similar, i.e. given by the membrane time constant which scales the rate of the voltage

Fig 7. Evolution of voltage and firing rate profiles of model A (HH 2E EI Exp 2D) as a function of preferred

orientation, in response to the stimulus sequence described in Fig 6. A, sub-threshold voltage for the excitatory

population; B, sub-threshold voltage for the inhibitory population; C, inhibitory population firing rate; D, excitatory

population membrane potential across horizontal line across the cortical surface passing through two pinwheel centers

at two time moments t = 90 and 190ms, corresponding to the snapshots in Fig 6; E, excitatory population firing rate

across the same line at the same time moments.

https://doi.org/10.1371/journal.pcbi.1009007.g007
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Fig 8. Comparison of models. Responses of a hypercolumn as a function of preferred orientation to the stimulus

sequence described in Fig 6, for the excitatory population of the various models listed in Table 1 (ref. “Thalamic” input

panel). The activity for model A corresponds to the circle indicated in Fig 6.

https://doi.org/10.1371/journal.pcbi.1009007.g008
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integration in response to a change in the input current? To explain, we note that the firing

rate of model E effectively depends on both the voltage relative to threshold as well as the

change in the voltage [23]. The result is a rapid response of the population to an abruptly

changing stimulus [24, 25] and explains the near-instantaneous response in our simulations.

Further reduction to the FR-model with shunt, model F, with its time constant equal to the

membrane time constant, leads to the delays of the responses. The reduction implies the sub-

stitution of the statistically precise consideration of neuronal states in each population by a sta-

tistically approximate approach. Namely, the Fokker-Planck-based and CBRD-based methods

of models A-D (see Methods) are substituted by the FR-model that is strictly valid only at

steady-states of a population. For nonstationary regimes the FR-model provides an approxi-

mation that filters the firing rate with some characteristic time constant of the filtering. By

chance, given the various parameters of the models, the time constant of model F is close to

the synaptic time constants, thus the transient solution is again as smooth as the solutions of

models A-D. The small residual difference between the responses of the FR-ring models with

and without shunt (models F and G) is explained by the approximation of the dependence of

the rate on the current and conductance by the piecewise linear function (Eq 26).

2.3.2 Sharpening of output tuning vs. input tuning. Our analysis continues with the

steady-state response of the networks, taken as the activity profiles at t = 300 ms, in terms of the

sharpening between input and output, and of contrast-invariance of the output tuning curves.

A fundamental aspect of the orientation selectivity in primary visual cortex is that this func-

tional property is essentially absent in individual inputs from the thalamus. Various theories

have been proposed to account for the emergence of tuning in cortical neurons, but a common

assumption is that there is an initial bias in the spatial retinotopic footprint of the feedforward

pathways of cortical neurons, and this bias is strengthened in terms of a sharper orientation

tuning in the cortical receptive fields ([26, 27, 28]). In the context of the models described

here, this bias is encapsulated by the constant plus cosine form of the thalamic input.

We consider this input-output sharpening by examining the steady-state solutions of the

models (Fig 9). All the models show orientation tuning sharper than the input tuning; further-

more, the sharpening increases as the models simplify.

Fig 9. The tuning curve for the input compared to steady-state solutions for the firing rate calculated for each of the models of Table 1, obtained as cross-

sections at t = 300ms of the plots shown in Fig 8 (un-scaled in A, and normalized in B). The profile with the smallest amplitude corresponds to the simulation by the

“adaptive” firing-rate ring model G as described in the text and indicated in Fig 10. The half-widths at half-maximums are 38˚ for model A, 36˚ for model B, 31˚ for

model C, 28˚ for model D, 27˚ for models E and F, 24˚ for model G, and 22˚ for model G with the gain rescaled to account for adaptation.

https://doi.org/10.1371/journal.pcbi.1009007.g009
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The canonical FR ring model G has provided a semi-analytic framework for accounting for

this sharpening in terms of the strength and tuning of intracortical connectivity. In this model

the non-tuned inhibition is effectively stronger as J0 decreases, whereas the tuned excitation is

stronger as J1 increases. As presented above, the derived values for J0 and J1 correspond to the

“marginal” domain (Fig 10) which in turn predicts enhanced output sharpening. In contrast,

while the analysis described above suggests that the 2D HH model A is operating in the homo-

geneous domain, cell thresholds and tuned “mexican hat” inhibitory and excitatory popula-

tions (Fig 7) still allow for input-output sharpening. The prediction that adaptation underlies a

shift from the marginal to the homogeneous regime of model A during the response suggests

that sharpening of the phasic response should be greater than the tonic response, as reported

by measurements of orientation-tuning dynamics in the macaque [29].

The impact of spike threshold is also seen in the simulations. When comparing subthresh-

old voltage and spikes, experimental investigations have reported that the tuning of the former

is broader than the latter [30, 31, 32, 28, 33] et al., which can be explained simply by firing

threshold. This behaviour is replicated in the the HH and LIF models which explicitly consider

Fig 10. The diagram of the steady-state solutions of the canonical firing-rate ring model G on the plane of its

parameters J0 and J1 (adapted from [2]). Amplitude instability corresponds to the state where the activity in the ring

increases without any possibility to regulate it. Homogeneous phase (“feedforward” hypothesis) corresponds to a state

of weak interactions. The activity in the ring follows directly from the thalamic input, apart from a threshold non-

linearity. Marginal phase (“recurrent” hypothesis) corresponds to a state where only a tuned activity profile is stable,

partially but not completely determined by the input shape and dynamics. This state occurs for sufficiently strong

recurrent tuned inputs (J1) and, to a lesser extent, with sufficiently strong inhibition (J0). The small square marks the

parameters found by the mapping expressions for model G (I0 = −26.5, I1 = 44, J0 = −0.52, J1 = 2.8). The small circle in

the homogeneous state corresponds to a variation of model G where the value of kLIFE was derived from the adaptive

HH excitatory cell model (I0 = −3.55, I1 = 7.4, J0 = −0.063, J1 = 0.46).

https://doi.org/10.1371/journal.pcbi.1009007.g010
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intracellular dynamics and spike threshold (compare for example the first panel in Fig 8, and

Fig 7, for the 2D HH model A).

Fig 9 also confirms the sharp increase in the response with the removal of adaptation due to

slow M- and AHP-channels, and thus the large increase in excitatory cell gain as discussed ear-

lier (compare models A and B, with models C through G). Indeed, the stationary solutions of

the non-adaptive models are quite similar, supporting the assumptions made in Section 2.2.4.

Note that the 2D and ring HH adaptive models A and B give small amplitude steady-state

profiles in orientation space (Fig 9A) that are qualitatively consistent with the solution for the

“adaptive” firing-rate ring model described above. However, quantitative comparison in this

case, especially for output sharpening, is problematic, mainly because for the adaptive neuron

the rate-current-conductance function is no longer scaled by Eq 24, and is not approximated

by Eq 29.

2.3.3 Contrast invariance. Contrast invariance, which is the qualitative maintenance

of the output tuning sharpening with respect to the input tuning over a range of input

strengths, is another classical property of neurons in primary visual cortex described by

experimental and theoretical studies [34]. Attractor dynamics of the neuronal network have

been proposed as the underlying mechanism for this functional property; thus the marginal

domain of the canonical FR ring-model model G predicts contrast-invariance, and this

property is conserved for the LIF-based ring-models E, D and C. In comparison, the fact

that the adaptive version of the G model is in the homogeneous domain suggests that the

adaptive models A and B will not show contrast-invariance. Fig 11 confirms these predic-

tions for models A and D.

The models predict therefore that firing adaptation of excitatory neurons is sufficient to

cause a dynamic qualitative evolution of the visual response, specifically that contrast-

Fig 11. Contrast invariance for the excitatory population firing rate (red) in models D (left) and A (right), compared with the

responses (green) of feed-forward versions of each model (�g EE ¼ �g IE ¼ 0) to distinguish the contribution of intracortical pathways.

The “weak” and “high” contrast values were 0.4 and 0.8, respectively. As described in the text, the higher gain of model D as compared to

model A, as seen in the different response magnitudes, account for the marginal phase behavior of the former, thus contrast-invariance,

and the homogeneous phase behavior of the latter, thus no contrast-invariance. The intracortical connections serve to increase input-

output sharpening for both models.

https://doi.org/10.1371/journal.pcbi.1009007.g011

PLOS COMPUTATIONAL BIOLOGY Mapping biological to abstract cortical network models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009007 August 16, 2021 25 / 49

https://doi.org/10.1371/journal.pcbi.1009007.g011
https://doi.org/10.1371/journal.pcbi.1009007


invariance should be observed essentially during the transient phase of visual reponses, being

reduced or absent during adapted (long term) responses. Similarly for input-output sharpen-

ing, the experimental prediction is thus that the phasic response provides the basis for mea-

sured contrast-invariance; on the other hand considering the tonic response alone will show

reduced or absent contrast-invariance.

2.3.4 Virtual rotation. In their analysis of the canonical FR ring-model, Ben-Yishai and

co-workers [1] introduced the concept of virtual rotation in the marginal phase regime,

defined as the non-instantaneous movement of the peak activity following a new stimulus.

They suggested that virtual rotation may be implicated in the psychophysical phenomena of

mental rotation, the perception of three dimensional attributes after discrete views of an object

from different angles. From the point of view of analysis, virtual rotation is one example of

attractor dynamics, which in turn may provide a fundamental signature of different cortical

architectures.

The stimulus sequence that we use here is particularly appropriate for examining this phe-

nomenon, and can be appreciated in Fig 12, which traces the center of mass of the population

firing rate over time. As expected given its position in the marginal domain, the canonical FR

ring model G here shows virtual rotation, thus a time constant for the shift of orientation pref-

erence of approximately 30ms, as do the LIF and FR-w/shunt models D, E and F. This effect is

weaker, thus the shift in orientation faster, in the non-adaptive 2 compartment LIF model C,

and is essentally absent in the adaptive HH models A and B.

2.3.5 Tilt after effect. The tilt after effect [35, 36, 37] refers to a perceptual bias of an ori-

ented stimulus away from the orientation of a preceding stimulus. Electrophysiological studies

indicate that this effect arises, at least in part, from primary visual cortex [38, 39], and this

hypothesis has been further studied with models of V1 (e.g. [40]).

As the case for virtual rotation above, the stimulus sequence examined here is well suited

for studying the tilt after effect. In our models this effect is seen to varying degrees in Fig 8, as

an overshoot of the maximum activity beyond the orientation of the second stimulus. Specifi-

cally, this effect is seen clearly between roughly t = 110 and 150 ms in the 2D and ring

Fig 12. The traces of the center of mass of the population firing rate over time, calculated for all models,

according to Figs 7 and 8. Note the tilt after-effect, thus an overshoot of the response tuning, and virtual rotation, thus

a lag in the tuning, after the abrupt shift in stimulus orientation at 100ms.

https://doi.org/10.1371/journal.pcbi.1009007.g012
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adaptive HH models A and B, whereas removing adaptation in the subsequent LIF ring

model C suppresses the effect. The physiological studies of Dragoi and colleagues [41] have

confirmed a crucial role of adaptation both for suppressing the response to the new stimulus

on the side near the first stimulus, and shifting its peak activity. Inspired by these findings,

the modeling study of Jin et al [40] focused in part on the impact of adaptation mechanisms

on the time scale of minutes. This can be compared to the adaptation mechanisms used in

the present study (M and AHP currents) which have time scales on the order of one second

or less; indeed, as Jin et al note, fast adaptation (as studied by [41, 42, 43, 44]) gives a weak

tilt after effect [45]. Nevertheless, the qualitative demonstration of the effect in the models

examined here is consistent with additional and longer lasting adaptation mechanisms, and

provide a basis for exploring this phenomena with biophysically-constrained population

models.

2.3.6 Spatial distribution effects. The consideration of a 2D cortical geometry can be

related to two aspects of the model behaviors shown here. First, in the full 2D model A there is

a gradient as a function of distance from the pinwheel centers in the steady-state or quasi-

steady-state responses to both stimulus orientations, thus at t = 90ms and t = 190ms (Figs 6

and 7). This effect can be explained by the distribution of inhibition along the vector towards a

pinwheel center. Thus, neurons far from the pinwheel center receive nearly circularly symmet-

ric inhibition, whereas those closer to the center receive inhibition increasingly limited to the

side away from the center. Of course, as stated this effect derives directly from the assumption

of homogenous cortical connectivity in the model, and thus may be altered with a different

connection scheme. Thus the model predicts higher activity near pinwheel centers if the input

connections are homogeneously distributed along the radius on a scale of a single pinwheel.

Second, the tilt after-effect is more pronounced for neurons remote from the pinwheel centers,

as seen from curved isolines in the frames at 110, 120, 130 and 150ms. By construction, these

features cannot be reproduced in any of the ring models.

In summary, the residual differences between the adaptive HH 2D model A at a fixed pin-

wheel radius, and it’s immediate ring version, the adaptive HH ring model B, are most likely

due to the qualitative reduction of the 2D to 1D geometry as well as quantitative approxima-

tion of the synaptic projections to the ring by the cosine profile.

2.4 Parameter analysis of the ring models

We now present an analysis and implications of the mapped parameters of the reduced ring

models, especially the canonical ring model G, in terms of the original biophysical parameters

of the most detailed 2D model A.

2.4.1 Reformulation of the mapping expressions. For the sake of analysis, we define sev-

eral terms to simplify the expressions Eqs 41, 42 and 44, in a manner that collates parameters

of the different circuit pathways.

We first develop expressions for the ~I 0;1, ~J 0;1, ~K 0;1 and ~L0;1 terms in Eqs 9 and 10 that define

the single population conductance-based rings (models E and F, repeated here for conve-

nience):

Iðt; yÞ ¼ ~I 0ðtÞ þ ~I 1ðtÞ cos ðy � y0ðtÞÞ þ
1

2p

Z p

� p

ð~J 0 þ
~J 1 cos ðy � xÞÞ nðt; xÞ dx

Sðt; yÞ ¼ ~K 0ðtÞ þ ~K 1ðtÞ cos ðy � y0ðtÞÞ þ
1

2p

Z p

� p

ð~L0 þ
~L1 cos ðy � xÞÞ nðt; xÞ dx
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Referring to Eq 41, for the thalamic input coefficients ~I 0 and ~I 1, we define:

AEE ≜ðVE � VRest
E Þ cYE

BIE ≜ðVI � VRest
E Þ cIE ~kLIFI DVTh

EI cY

CIE ≜ðVI � VRest
E Þ cIE ~kLIFI ILIFOff;I

ð45Þ

These terms characterize specific paths within the network. First, AEE describes the explicit

feedforward excitatory path from the thalamus. Recalling that ~kLIFI (Eq 36) reflects the effective

gain of the inhibitory population (less than the actual gain of these neurons because of inhibi-

tory-inhibitory feedback), BIE describes the concatenation of the implicit inhibitory feedfor-

ward and recurrent connections, and CIE characterizes the implicit inhibitory recurrent

connections.

We define similar terms for the intracortical coefficients ~J 0 and ~J 1:

DEE ≜ðVE � VRest
E Þ cEE

EIE ≜ðVI � VRest
E Þ cIE ~kLIFI DVTh

EI cEI
ð46Þ

Note the similarities between DEE and AEE, and between EIE and BIE, respectively, in each case

differing only by the final cij term characterizing the source pathway. Thus, DEE describes the

explicit recurrent intracortical excitatory path, and EIE describes the concatenation of the

implicit inhibitory and excitatory recurrent connections of the conductance-based single pop-

ulation models.

Using these definitions, we now re-arrange Eq 41:

~I 0 ¼ φ
0
ðAEE þ BIEÞ � CIE

~I 1 ¼ φ
1
AEE þ

qIE
2
BIE

� �

~J 0 ¼ DEE þ EIE

~J 1 ¼ qEE DEE þ
qIEqEI

2
EIE

ð47Þ

Likewise, referring to Eq 42, the corresponding conductance terms are given by:

~K 0;1 ¼
~I 0;1j

DV
1

~L0;1 ¼
~J 0;1j

DV
1

ð48Þ

where for convenience, we now introduce the notation “F jDV
a

” such that all the ΔV terms in

some function F are set to α. For the case of Eq 48 (and later equations) we set α = 1 (unit-

less) to obtain a shorthand expression for the synaptic conductance.

We now complete the mapping by expressing the I0,1 and J0,1 terms of the current-based

ring (model G) directly in terms of the biophysical parameters (Eq 3, repeated here for
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convenience):

Iringðt; yÞ ¼ I0ðtÞ þ I1ðtÞ cos ðy � y0ðtÞÞ

þ
1

2p

Z p

� p

ðJ0 þ J1 cos ðy � xÞÞ nðt; xÞ dx

We first introduce variations on the previously defined terms (Eqs 45 and 46) characteriz-

ing specific pathways by replacing the leading ðVRev
i � V

Rest
j Þ terms with corresponding DVTh

ij

terms:

AThEE ≜ AEEj
DV
Th ¼ DVTh

EE cYE

BThIE ≜ BIEj
DV
Th ¼ DVTh

IE cIE ~kLIFI DVTh
EI cY

CThIE ≜ CIEj
DV
Th ¼ DVTh

IE cIE ~kLIFI ILIFOff;I

DThEE ≜ DEEj
DV
Th ¼ DVTh

EE cEE

EThIE ≜ EIEj
DV
Th ¼ DVTh

IE cIE ~kLIFI DVTh
EI cEI

ð49Þ

Finally, considering Eqs 44 and 47, we obtain:

I0 ¼ kLIFE ðφ0
ðAThEE þ BThIE Þ � ðC

Th
IE þ ILIFOff;EÞÞ

I1 ¼ kLIFE φ
1
AThEE þ

qIE
2
BThIE

� �� �

J0 ¼ kLIFE ðD
Th
EE þ EThIE Þ

J1 ¼ kLIFE qEEDThEE þ
qIEqEI

2
EThIE

� �

ð50Þ

Note in particular that the pathway identification with the specific terms AEE, BIE, CIE, DEE

and EIE of models E and F, as described in Section 2.2.4, hold precisely for the corresponding

FR ring terms AThEE, B
Th
IE , CThIE , DThEE and EThIE of model G.

2.4.2 Feedforward inhibition. Conceptually, one can consider distinguishing functional

excitatory and inhibitory synaptic pathways in terms of their thalamic, or feedforward, compo-

nent, versus their intracortical component. In this context, the fact that there are no anatomi-

cal inhibitory connections from the thalamus has led to the assumption that a population of

cortical inhibitory neurons, driven primarily by thalamic input, act as a surrogate for a true

feedforward inhibitory pathway. The mapping to the FR ring model G allows a quantitative

interpretation of this assumption.

We recall that in the original formulation of the canonical ring model, the I0 and I1 terms

(Eq 3) describe the thalamic input. The mapping expressions for these terms in Eq 50, specifi-

cally the BThIE term for the FR ring, provide an explicit quantitative definition of so-called “feed-

forward inhibition”:

BThIE ¼ DVTh
IE cIE ~kLIFI DVTh

EI cY

Recalling the definition of DVTh
ij given by Eq 28, we see that BThIE is negative because of DVTh

IE .

Notably, this characterizes the component of the functional thalamus-driven pathway, allied

with cortically-driven inhibition (parameterized by EThIE ), that competes against feedforward

and intracortical excitation.
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Finally, as seen in Eq 50, the relative strength of the un-tuned versus tuned components of

the feedforward inhibition depends on the tuning of the intracortical inhibitory-excitatory

pathway, parameterized by qIE.
2.4.3 Contrast and tuning of thalamic input. We now compare the thalamic input across

the models, characterizing them in terms of a “contrast” parameter O and a tuning parameter

Γ. We define O as the average strength of the input to the network, thus across orientation

space. The response of many visual neurons is strongly related to the visual contrast of the

stimulus, e.g. the response scales with the amplitude of a grating, after adaptation to its average

value. The tuning parameter Γ characterizes the orientation dependence of the retino-geni-

culo-cortical, thus thalamic, pathway to the cortex. Indeed, as noted before, this pathway is

explicitly established by the constant plus cosine form of thalamic input for all the models. For

the two population models driven by thalamic firing rates, we have:

Oφ ¼ φ
0

Gφ ¼ φ
1
=φ

0

ð51Þ

Given that firing rates must be non-negative, note that the constant plus cosine form (1 + cos
(θ)) imposes the constraint 0� Γφ� 1.

We follow the same form for defining input contrast and tuning of the single population

conductance-based ring models, but now introducing separate definitions for the current and

conductance inputs:

O
I
I;S ¼

~I 0

GII;S ¼
~I 1=

~I 0

O
S
I;S ¼ O

I
I;Sj

DV
1
¼ ~K 0

GSI;S ¼ GII;Sj
DV
1
¼ ~K 1=

~K 0

With these definitions, we now establish their relation with the contrast and tuning of the tha-

lamic firing rate input for the two population models. Expanding ~I 0;1 (ref. Eq 47), and consid-

ering that φ1 = ΓφOφ:

O
I
I;S ¼

~I 0 ¼ φ
0
ðAEE þ BIEÞ � CIE ¼ OφðAEE þ BIEÞ � CIE

GII;S ¼
~I 1=

~I 0 ¼
φ

1
AEE þ

qIE
2
BIE

� �

φ
0
ðAEE þ BIEÞ � CIE

¼ Gφ

Oφ AEE þ
qIE
2
BIE

� �

OφðAEE þ BIEÞ � CIE

0

@

1

A

We see that there is not a one-to-one correspondance between the measures for the different

architectures. First, for zero “true” thalamic input defined by firing rates, the equivalent con-

trast of the current and conductance inputs is −CIE and � CIEj
DV
1

, respectively, which reflect the

subthreshold constant terms that result from eliminating the inhibitory population. Second,

these offsets make the tunings of the current and conductance inputs dependent on the con-

trast of the thalamic firing rates, whereas in princple tuning is defined purely by anatomical

connectivity, regardless of contrast. Finally, the coefficients for the input rates φ1 and φ0 in the

tuning expressions are not equal unless BIE ¼ BIEj
DV
1
¼ 0 (e.g. zero thalamic input to the inhib-

itory population of the two population models, thus cΘ = 0).
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If we assume that inhibition is purely shunting (VI = VRest and therefore BIE = CIE = 0),

then the contrast and tuning for the current input, at least, simplifies:

O
I
I;S ¼

~I 0 ¼ φ
0
AEE ¼ OφAEE

GII;S ¼
~I 1=

~I 0 ¼
φ

1
AEE

φ
0
AEE

¼
φ

1

φ
0

¼ Gφ

In this case, compared to the two population models A-D, we see that the “contrast” of the

conductance-based single population models E and F are the same apart from a scaling term,

and more importantly the tunings are identical.

We now consider contrast OFR and tuning ΓFR for the canonical FR ring model G, again

following the definitions for the other models:

OFR ¼ I0

GFR ¼ I1=I0
ð52Þ

To simplify the previous expressions for I0,1 (ref. Eq 50), we define:

A0 ¼ kLIFE ðA
Th
EE þ BThIE Þ

B0 ¼ kLIFE ðC
Th
IE þ ILIFOff;EÞ

A2 ¼ kLIFE AThEE þ
qIE
2
BThIE

� �

Applied to the expressions for I0 and I1, we obtain:

I0 ¼ φ
0
A0 � B0

I1 ¼ φ
1
A2

We re-express these equations, now in terms of the original definitions of contrast and tuning

(Eq 51):

I0 ¼ OφA0 � B0

I1 ¼ GφOφA2

Given the definitions of contrast and tuning for the canonical FR ring (Eq 52), we obtain:

OFR ¼ OφA0 � B0

GFR ¼ Gφ

OφA2

OφA0 � B0

As before with the input terms of the conductance-based single population models (except for

the case of pure “shunting” inhibition), the contrast of the input to the FR ring model is a non-

linear function of the contrast as defined for the original two population models.

We can supply some constraints on A0 and A2 by asserting that intracortical connection

weights are non-negative, thus for the constant plus cosine approximation 0� qi,j� 1. This

gives A0� A2, and therefore:

GFR � Gφ

!
GφA2

A0

; OφA0 >> B0

Note that ΓFR diverges as Oφ approaches B0/A0, which in turn is equal to the threshold firing
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input:

B0=A0 ¼
CThIE þ ILIFOff;E
AThEE þ BThIE

¼ φ0;Th
FR

The distortion of the input contrast and tuning when compared to the thalamic firing rates is

due to B0, which encapsulates the impact of the original two firing thresholds (of the HH

excitatory and inhibitory neurons) on the final mapping. As one exercise, note that since

CThIE / I
LIF
Off;I, at the limit of ðILIFOff;E; I

LIF
Off;IÞ ¼ 0, then B0 = 0.

Of particular interest are the quantitative values of the input to FR ring model G, specifically

that there is a strong negative current away from the preferred orientation. This aspect runs

contrary to the general assumption of the canonical FR ring model, thus that the excitatory-

only thalamic pathway to the cortex constrains the (current) input to this model to be non-

negative. This result arises from the effect of the cortical connections on the thalamic input

terms as defined by the mapping. This is first seen in the mapping of the two population con-

ductance models to the single population conductance models, specifically as expressed in the

equations describing the cortical input, thus for ~I 0;1 (Eq 41) and, by extension, ~K 0;1. In particu-

lar, these expressions include negative terms that depend on the strength of the intracortical

connections between inhibitory and excitatory populations, thus directly proportional to cIE
(for both ~I 0;1 and ~K 0;1) and the weighting parameter qIE for the cosine approximation (for ~I 2

and ~K 2). Note that these same dependencies hold for the intracortical connectivity parameters

~J 0;1 (ref. Eq 41) and by extension ~L0;1. This “crosstalk” onto the thalamic input is conserved in

the final mapping between the single population conductance models and the current-based

FR ring, as seen in the equations for I0,1 (ref. Eq 44) which depend directly on ~I 0;1 and ~K 0;1. As

with the single population conductance models, there are similar dependencies for the intra-

cortical parameters J0,1 (Eq 44), which depend directly on ~J 0;1 and ~L0;1.

We propose that the quantitative mapping developed here provides a novel explicit inter-

pretation of the concept of “feedforward-inhibition”, as introduced in Section 2.4.2, thus cor-

responding to the negative input current shown here.

2.4.4 Intra-cortical connections and the dynamical steady-state behaviour of the net-

work. We have shown that the diagram of the steady-state solutions mapping formulas pro-

vide an interpretation of the coefficients J0 and J1 of the FR ring model in terms of quantitative

biophysical, thus synaptic and neuronal, parameters. This then allows an analysis in terms of

the phase-plane of the FR model, as described by [2], shown in Fig 10. From this plot we see

that the parameter values of the derived ring model G place it in the marginal phase, and thus

allowing for attractor dynamics.

The mapping expressions (Eq 50) show that all the firing-rate ring model parameters, I0, I1,

J0 and J1, are proportional to the gain of the excitatory neuron population, kLIFE . This underlines

the fundamental role of kLIFE , a purely local cellular, and not network, property, with respect to

the phase space of the canonical FR model: a linear trajectory in this space necessarily begins

in the homogeneous regime (which includes the origin). Depending on the relative values of

the network components DThEE and EThIE (parameterizing the recurrent excitatory and inhibitory

pathways, respectively, and weighted by the qij parameters in the case of J1), the trajectory sub-

sequently passes either into the marginal or unstable regime and remains there, or first into

the marginal and then the unstable regimes.

As constrained by the biophysical parameters, this dependence is significant across the

model spectrum described here, most crucially on J1. Indeed the removal of adaptation

between models B and C significantly increases the excitatory cell gain (from 0.069 Hz/pA for
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the adaptive neuron to 0.23 Hz/pA for non-adaptive neuron, ref. Fig 5), thus kLIFE . Derivation

of an “adaptive” version of model G underlines this significance, where the value of kLIFE derived

from the adaptive HH excitatory cell model puts the model in the homogeneous state (Fig 10).

As presented later, this qualititative difference is manifested in several ways by the simulations.

The effect of rate-dependent adaptation can be qualitatively compared to the effect of tuned

inhibition which decreases J1, both providing negative contributions to the terms with the rate

in the right hand part of Eq 1. The consequences of an increase of the adaptation or the tuned

inhibition are similar, however the adaptation is more concentrated than the cosine-like tuned

inhibition, and hence is more efficient.

We now examine DThEE and EThIE in more detail. As the case for constraints on the biophysical

terms AThEE, B
Th
IE and CThIE described earlier, reasonable assumptions on the reversal potentials for

the excitatory and inhibitory synapses imply:

EThIE � 0 � DThEE

Thus, the expressions for J0 and J1 show explicitly the direct competition between the net

strengths of excitatory and inhibitory recurrent pathways in determining the behavior in

phase space, specifically both the quadrant that the network is restricted to (given by the signs

of J0 and J1) and the sensitivity of the location in phase space as a function of the excitatory

gain kLIFE . For J0 the competition between the pathways is independent of the anatomical spread

of the various connections. In contrast, for J1 the contribution of the excitatory recurrent net-

work is weighted by its characteristic anatomical tuning parameter qEE, while the inhibitory

recurrent network term is weighted by the product of qIE and qEI, reflecting the effective con-

volution of the recurrent excitatory-inhibitory and inhibitory-excitatory pathways.

The sign of J1 establishes the qualitative relation between the intrinsic stable attractor states

and the input. Thus, a positive J1 causes the attractor steady-state to line up with the stimulus,

while a negative J1 tends to cause the attractor steady-state to be orthogonal to the stimulus.

Note that this applies strictly to the limit case of homogenous input, because the actual steady-

state of the network is established by both the inherent attractor properties and the quantita-

tive value of the stimulus. For illustration, we consider the limit cases for a network with flat

excitatory recurrent connections (i.e. qEE = 0), flat inhibitory recurrent connections (i.e. qEI =

0 or qIE = 0), or both. Noting that J0 is unaffected by these parameters, for the first condition:

J1 ¼ kLIFE
qIE qEI

2
EThIE

� �
� 0

and thus the network is constrained to the left half of the phase space.

For a network with flat inhibitory recurrent connections:

J1 ¼ kLIFE ðqEED
Th
EEÞ � 0

and thus the network is constrained to the right half of the phase space. These limit cases pro-

vide a more general interpretation, thus that the effective width of intracortical inhibition

must be broader than that for intracortical excitation to allow the attractor properties to com-

plement the input, and vica-versa.

Finally, if both intracortical pathways are flat, then J1 = 0, and the marginal regime is inac-

cessible. To our knowledge the possible relevance of a negative J1 to actual biological circuits

has not been explored.

In the present case, the biophysical parameters establish that J0 < 0 and J1 > 0, thus limiting

the network to the fourth quadrant of the phase space as a function of kLIFE . The specific map-

ping of the canonical FR ring parameters for the intracortical connections predict that the
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network is operating in the marginal phase, which is of particular interest in the context of

attractor networks. More specifically, this has been used to interpret the contrast invariance of

the network. However, the distortion of the input parameters of the canonical model described

previously, with respect to the original thalamic input parameters φ1 and φ1, complicate the

interpretation. As described earlier, a simple change of contrast Oφ = φ0 for the full model

while maintaining the same tuning (defined as Γφ = φ1/φ0), maps to an input for the canonical

FR ring model with a different tuning.

3 Discussion

3.1 Mapping assumptions

We can speculate on the implications of the several steps to eliminate specific non-linearities

in order to achieve the final linear model (apart from the FR threshold). First, the role of inhi-

bition may be under-estimated for two reasons. The experimental evidence on the impact of

synaptic shunting on neuronal transfer functions is mixed, with some studies reporting a pure

subtractive effect [46], while others showing a mixture of a threshold shift and gain reduction

[47, 48]. The linear mapping here necessitates neglecting any gain change, implying that the

gain of the current-based FR ring may be over-estimated, particularly in the face of strong

recurrent inhibition. Furthermore, the anatomical spread of inhibitory-inhibitory connections

in cortex is non-negligible on the scale of the hyper-column. The mapping requires that this

spread be ignored to allow the elimination of the explicit inhibitory population, again with the

result that the impact of inhibition in the final model may be under-estimated.

Second, the role of excitation within cortex may be overestimated for the following reason.

A necessary assumption here is that the inhibitory population is always suprathreshold, allow-

ing the actual threshold of this population to be ignored. However, given the large dynamic

range of cortical dynamics, it is likely that different populations of neurons will be sub-thresh-

old at different moments, especially for relatively small, but realistic, stimuli. In the context of

the single population models, this implies that with small stimuli these models will transform

inhibitory paths to excitatory (e.g. at the tails of the activity profile), effectively equivalent to a

broader anatomical tuning of the excitatory recurrent connections.

Finally, the post-synaptic response in biological neurons to an incoming spike train satu-

rates for several reasons, most importantly because of the reduction in driving force as the

post-synaptic potential approaches the reversal potential, the finite number of post-synaptic

receptor/channel complexes, not to mention mechanisms such as synaptic adaptation [49].

Indeed, only the first mechanism is considered in the two population models (in part in the

single population LIF model for the excitatory population). The net result for the final FR ring

is that the activity in the ring may be overestimated, particularly the peak at the preferred

orientation.

3.2 Interpretations from the mapping

The proposed mapping allows a step-by-step fitting of parameters of increasingly abstract

models to experimental data. At the most abstract level, the mappings allows the interpretation

of the canonical firing-rate ring model in a slightly uncommon but more rigorous way. We

see, for example, that although I0 and I1 are defined as thalamic input, when mapped from the

full model, both parameters depend on the inhibitory-to-excitatory intracortical connections

�g IE (Eqs 50, 49, 66 and 28), and therefore can not be distinguished as pure background and

tuned inputs. On the other hand, study of information processing in the visual cortex by the

means of the detailed model, also requires fitting of the canonical firing-rate ring model to the
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experimental data, in order to limit the domain of physiologically meaningful parameters’ val-

ues. This work exceeds the frame of the present paper and will be done in the future.

3.3 Transient behaviour of the models

After the parameters of the full model A are established, the mapping procedure provides

parameters of the progressively more abstract models that are explicitly constrained by repli-

cating the steady-state regime. At the same time, we note that the dynamics of the full model A

show a rich variety of the solutions, including oscillations, waves etc. not seen in the more

abstract models. Nevertheless, the systematic mappings provide constrained reference points

in the parameter spaces of the models, which give essentially similar behaviors between nearest

neighbors among the model hierarchy.

Generally, models with more complex dynamics possess a larger variety of solutions, like

the FR ring model with a delay [5] in comparison to the canonical ring model [2]. We note

that some predictions of the marginal domain of the canonical FR ring-model are maintained

throughout the model hierarchy, specifically sharpening of the output tuning, while others fail

for more complex models, specifically contrast invariance and virtual rotation. Summarizing

the most significant differences between the models, we underline that the reduced models do

not reproduce the ripples of activity provided by the synchronization of spikes and refractory

effect after stimulus presentation, nor the effects of firing adaptation. We failed to observe any

significant delay in the detailed models due to virtual rotation effect predicted by the reduced

models, instead the reaction was fast. For the parameter sets corresponding to more prominent

virtual rotation in the canonical FR-ring model we observed oscillations in the detailed mod-

els. These observations warn that an oversimplification may lead to misleading conclusions in

regards to transient behaviour of the reduced models.

3.4 Comparisons of mean-field descriptions, and limitations with respect

to discrete neuron network models

Refractority. The consideration of refractority is one the most significant factors that lead to

discrepancies between discrete neuron networks and most mean-field approaches [50]. Dis-

crete network models explicitly describe each neuron in the network, and thus all their states

over time. At any instant different neurons are generally in different refractory states, mainly

because of different timing of their last spikes, and hence a discrete model explicitly describes

the distribution of neurons by their refractory states. In contrast, most mean-field models,

including our models Fand G do not, instead assuming that the activity is asynchronous.

While this assumption is violated for most parameter settings, if the networks are not too syn-

chronous such mean-field models are in good agreement with simulations of discrete net-

works [51]. In contrast, the more elaborated KFP and CBRD mean-field approaches, including

our models A—E describe the refractority correctly (and explicitly) for all activity regimes

(Sections 4.1 and 4.2).

Number of synapses. In discrete neuron network simulations, the finite number of neurons

and synaptic connections determine the synaptic current fluctuations. Mean-field models gen-

erally assume a weak coupling limit [52, 53], which can lead to results different from simula-

tions of discrete neurons [54]. The models using the HH or LIF cell model (models A—E)

approximately take into account the scaling of synaptic noise with the number of synapses, by

scaling the noise term by the mean synaptic conductance (Eq 23), thus avoiding the weak cou-

pling limit.
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Number of neurons. The same refractory density framework described here can also take

into account a finite number of neurons per se [55], though this extension is beyond the scope

of the present paper.

Sparse strong connections. By definition, our mean-field framework cannot take into

account the activation for each individual connection. In our experience, as an example, this

can be important for networks with a fraction of strong connections, e.g. those with long-tail

weight distributions, and only for spontaneous activity, not the one driven by stimulus [56]. In

that work, we compared the effects of different connectivity profiles on the population dynam-

ics of discrete neuron networks. For long-tailed synaptic weight distributions, we showed that

both strong sparse and very weak connections play crucial roles for spontaneous activity,

whereas they have little influence on driven population activity. Moreover, neurons with

strong connections form multiple chains which are the core of spontaneous activity, with neu-

rons with weak connections only partially enhancing the population activity. These observa-

tions are in agreement with the other works focused on clustering in networks [57]. Therefore,

the stimulus evoked activity may be reasonably simulated in neglect of the sparse strong con-

nections, assuming that the majority of connections have approximately normally distributed

weights. Because the population equations of the KFP and CBRD models well approximate the

mean firing rate of neurons with most common intermediate connection strengths, and

because we consider only driven activity regimes, we derive the validity of our approaches for

the problems solved in the present paper.

Numerous strong connections. In the case of a sufficiently heavy long-tail synaptic weight

distribution, the mean-field approach requires an extension. For the case of a lognormal distri-

bution, this extension for the CBRD approach was proposed [25], therefore the CBRD models

described here can in principle work with such connection profiles. For the sake of simplicity,

however, heavy long-tail distributions of synaptic weights were not the focus of the present

work.

3.5 Conclusions

We conclude that the consistency of the activity patterns of the considered models support the

validity of the obtained mapping expressions, and thus permits understanding the significance

of the various assumptions made during the derivation of the models’ equations. The con-

structed hierarchy of models can therefore serve as a useful instrument for the fitting of mathe-

matical models [58–60] to experimental data and their subsequent analysis. In particular, the

architecture of the visual cortex ring model has been recapitulated in models of other systems,

either generalized [61] or specific, for example head direction cells [62, 63] and prefrontal

working memory [64] in rodents, as well as navigation circuits in the fly [65, 66]. The methods

developed here should be amenable towards constructing biophysically constrained abstract

models of these systems.

4 Methods

To build a model of interacting populations of neurons we explore the probability density

approach [11, 67, 68]. It is based on the equivalence of the consideration of a stochastic differ-

ential equation for a single neuron to the probabilistic consideration of neuronal density evo-

lution in the phase space of neuronal state variables. In this framewok, simulations of the

stochastic model is equivalent to consideration of a statistical ensemble of similar neurons

receiving similar input signals.
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4.1 Kolmogorov-Fokker-Planck (KFP) approach for LIF neurons with

instantaneous synapses

Here we review the probabilistic evaluation of an infinite population of 1-compartment LIF

neurons with Gaussian membrane current noise, used to obtain the simulations of the single

population LIF ring model (model E) [68]. Thus, Eq 4 can be considered as a Langevein equa-

tion for a single neuron. This equation is equivalent to the KFP equation written for the proba-

bility density function, or neuronal density, in the voltage phase-space, ρ(t, V) (the temporal

dependencies of the synaptic current and conductance input, I and S, are implicit):

tmðSÞ
@r

@t
¼

@

@V
V � VRest �

I
gL þ S

� �

r

� �

þ s2

V

@
2
r

@V2
þ tmðSÞ nLIFðtÞ � dðV � V

ResetÞ ð53Þ

with the effective membrane time constant of the LIF neuron, τm(S), given earlier by Eq 7, and

the average firing rate, νLIF(t), given by:

nLIF tð Þ ¼ �
s2
V

tm Sð Þ

�
�
�
�
@r

@VV¼VTh
ð54Þ

The set of Eqs 53 and 54 is equivalent to an infinite set of Eq 4. We compare the current step

response of different models (Fig 13), in particular against simulations of individual LIF type

neurons using a Monte-Carlo framework which provides a “gold-standard”. The current-

based FR model only roughly reproduces the transient dynamics of the Monte-Carlo simula-

tions of LIF neurons. The KFP indeed shows convergence to the Monte-Carlo simulation of

individual LIF neurons.

4.2 Conductance-based refractory density (CBRD) approach for multiple

state variable neurons

Because of their multiple state variables, evaluating noisy neural populations with non-instan-

taneous synapses, multiple compartments and/or active HH channels with a KFP-based

method, as described above, cannot be evaluated analytically, and thus a KFP (or Monte-

Carlo) approach requires significant computational resources [11, 69]. To address this prob-

lem, we employ a CBRD approach that can evaluate a broad class of models in a one dimen-

sional phase space parameterized by the refractory time, or time since the last spike, t� [17, 25,

70]. In the present case, this approach is used to evaluate all the two population models, includ-

ing the HH models A and B, and the LIF models C and D.

In conjunction with a given neuron model, the CBRD approach considers a hazard func-

tionH which defines the probability density of firing, and describes the dynamics of a popula-

tion as a whole by the probability density of neurons distributed according to their refractory

times, ρ(t, t�). In particular, the CBRD model substitutes the phenomenologically derived haz-

ard function developed in the original refractory density approach [68] by its rigorously

derived expression [17, 70]. The population model for the neuron model is expressed by a set

of transport equations, one for each state variable, in partial derivatives with t� and time t as

independent variables, and thus the number of equations is directly proportional to the com-

plexity of the model.

In order to obtain an expression forH in a probabilistic framework, e.g. in the presence of

noise, the CBRD approach requires that the state variables be well described at any given t� by

a linear model around their mean value. This constraint holds for most of state variables of the

HH model given their voltage-dependence and a typical dispersion of the membrane voltage

of several millivolts. For the LIF model, this constraint is automatically satisfied.
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Fig 13. The firing of a population of noisy LIF neurons in response to current step stimulation. From top to

bottom: Current step. Spike raster plot for for 4 neurons. Voltage traces for the 4 neurons. Population firing rate

calculated by five models: Monte-Carlo simulation of 4000 individual trials of a noisy LIF neuron, the firing-rate (FR)

model based on Eq 2, the firing-rate (FR) model with τFR based on Eq 1, an infinite population of noisy LIF neurons

evaluated with the KFP approach (Eqs 53 and 54) and the conductance-based refractory density (CBRD) approach

(Eqs 55 and 57). The response of the FR with shunt cell model (not shown) is identical to the current-based FR cell

model, since in both cases the transient response is fixed by τFR, and the threshold-linear transfer function of the latter

was fit to the steady-state firing rate of the LIF model, that in turn defines the former.

https://doi.org/10.1371/journal.pcbi.1009007.g013
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In contrast, the strong nonlinear properties of sodium channels of the HH model near

threshold do not meet this criterion. To address this problem, and as mentioned in Section

2.1.3, we use a threshold HH cell model without sodium channels, with spikes defined by an

explicit dynamic threshold and renewal function. This model is based on three important

assumptions: first, that the probability of firing can be well predicted by the dynamics of a neu-

ron without an explicit sodium current, that the influence of strongly non-linear channel

dynamics, namely the sodium current, is only significant during the spike, and third, that

there is a fixed (i.e. renewal process) impact of each spike on the state variables. The last

assumption allows imposed conditions on the state variables following a spike, for example

reset values for the voltage and fast potassium channel gating variables (e.g. for IDR), and incre-

ments for slow potassium channel gating variables (for IAHP and IM), as appropriate. We have

shown previously that these approximations are valid in a range of neuron models [17]. The

associated threshold model compares quite well to the full conductance model with respect to

interspike potentials and spike time moments.

The dynamics of a given population in the CBRD model are thus described by a set of equa-

tions of the form dY(t, t�)/dt = F(), where Y() includes the distribution ρ(t, t�) of neurons with

a given value of t�, the average soma voltage U(t, t�), the average dendrite voltage UD(t, t�) for

two compartment models, and finally the average gating particle states x(t, t�) for HH cell

models. Since the refractory time t� between spikes is proportional to t, the total time deriva-

tive dY(t, t�)/dtmay be replaced by a sum of partial derivatives in t and t�, i.e. d/dt = @/@t +

@/@t�.
The source term in the right-hand side of the equation for ρ(t, t�) is the fraction of neurons

crossing the threshold, given by ρ(t, t�), multiplied by the hazard functionH:

@r

@t
þ
@r

@t�
¼ � rHðUÞ ð55Þ

The remaining terms consist of the model details. The expressions corresponding to the cell

voltages derive from those presented in Section 2.1.3, specifically the sets of Eqs 13 and 14, with

the following replacements of the average voltages U,UD and ξ, for V, VD and 0, respectively:

V ! U

VD ! UD
x ! 0

dV
dt

!
@U
@t
þ
@U
@t�

dVD
dt

!
@UD
@t
þ
@UD
@t�

The boundary conditions for ρ (which also defines the population firing rate, ν(t)) and the

model voltages are:

nðtÞ � rðt; 0Þ ¼
Z1

þ0

rHdt�

Uðt; 0 � t� � DtAPj Þ ¼ VReset

UDðt; 0 � t� � DtAPj Þ ¼ VRest
j

ð56Þ

where DtAPj is the duration of the action potential for cell type j (= 0 for the LIF model; for the
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HH cell models see Sections 4.3 and 4.4); likewise, the somatic reset voltage VReset
j is defined also

for each cell type.

The CBRD expressions for the gating particle states x(t, t�) of the HH channel models,

including their boundary conditions, are presented in the next sections (Sections 4.3 and 4.4),

which in turn reference the average somatic voltage U.

The dynamics of the entire neural population are found by the integration of Eqs 13 and 14,

with the replacements indicated above for the average voltages U and UD, which then defines

the distribution of cell voltages across t� at each time t (for the HH models similar equations

are solved for the gating particle state variables). The effect of threshold crossing in response to

the input and noise is then taken into account by theH function, with the integration of Eq 55

giving the distribution of ρ across t� as well as the firing rate ν at time t.
As the source term in the density equation, theH function is the solution of the classical

first-time threshold crossing problem for arbitrary history of stimulation. TheH function has

been semi-analytically derived from the KFP equation for voltage fluctuations, based on the

following assumptions:

(i) Away from threshold, voltage fluctuations due to individual noise realizations can be

described by a linear equation given the mean voltage U and the mean membrane conduc-

tance, which are in turn given by the associated transport equations and the synaptic input.

Furthermore, the evolving probability density distribution of voltage fluctuations about U
can be described by a KFP equation.

(ii) The flux across threshold described byH are due to two additive underlying processes: dif-

fusion along the voltage axis due to noise, and transfer in response to the input.

(iii) Diffusion due to noise dominates the firing whenU is constant, e.g. when the input is con-

stant. In this case the problem is described by the KFP equation with a leak and a constant

threshold, denoted here asA. For white noise the governing equation is reduced to an ordinary

differential equation with an analytical solution for the spike generation probability expressed

in Kummer functions [17]. In the case of correlated (colored) noise, A is obtained numerically

and tabulated for a range of values forU and the time constant of the noise correlations τ [70].

(iv) Transfer based firing dominates when excitation starts abruptly, i.e. U increases with infi-

nite rate. The initial condition is a stationary Gaussian distribution of neurons in terms of

their potential V(t) − U(t). This implies that the state of zero distribution immediately fol-

lowing the previous spike is forgotten at the time of the next threshold crossing. As U(t)
increases, the moving boundary at the threshold of fluctuations, VTh − U(t), crosses the dis-

tribution. The flux through the boundary determines the probability of spike generation,

which we denote in this case as B, and is obtained algebraically.

In our previous work we formulated an approximation forH for white Gaussian noise, as a

function of the time-varying quantities that characterize the cell, including U (and its deriva-

tive with respect to time t at a given t�), σV, VTh and the effective membrane time constant τm

= C/gtot, where gtot is the total membrane conductance:

HðUðtÞÞ ¼
1

tm
A T tð Þð Þ þ B T tð Þð Þð Þ

AðTÞ ¼ exp ð6:1 � 10� 3 � 1:12 T � 0:257 T2 � 0:072 T3 � 0:0117 T4Þ

BðTÞ ¼ �
ffiffiffi
2
p

tm
dT
dt

� �

þ

~FðTÞ; ~FðTÞ ¼
ffiffiffi
2

p

r
exp ð� T2Þ

1þ erfðTÞ
; TðtÞ ¼

VTh � UðtÞ
ffiffiffi
2
p

sV

ð57Þ
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Note that the hazard function above has no free parameters, because they reflect the approxi-

mation of the first time passage solution. The dynamics of a neural continuum are thus evalu-

ated at each time step by solving the set of one dimensional partial differential equations in

terms of the refractory time, including the probability density of neurons, and the population

averages of the membrane potential and channel gating variables. The CBRD model well

approximates the firing rate of an infinite set of biophysically detailed neurons for an arbitrary

stimulus, e.g. oscillatory input, and recurrent connections, when compared with Monte-Carlo

simulations of individual neurons (see [17] and [70]). Fig 13 compares the response of a popu-

lation of noisy LIF neurons, evaluated by Monte-Carlo simulations, a KFP approach (Section

4.1), and the CBRD method, with the response of the FR model with and without a time con-

stant. Fig 14 compares the steady-state f/I characteristics as a function of synaptic conductance

for a population of LIF neurons, with and without noise (Eq 5), with the result from the CBRD

evaluation.

4.3 Excitatory two compartment HH neuron model

Here we complete the description of the excitatory neuron model as described by Eq 14, with

the average voltage U substituting for V. As stated earlier, this model incorporates several HH

membrane currents, including the voltage-dependent potassium currents responsible for

spike repolarization, IDR and IA, the voltage-dependent potassium current that contributes

to spike frequency adaptation, IM, the voltage-dependent cation current, IH, and calcium-

dependent potassium current that also contributes to spike frequency adaptation, IAHP. The

Fig 14. The steady-state firing rate of a population of LIF neurons as a function of the strength of the input

current stimulation, with synaptic conductance S set to 0 and to 2gL, with and without noise (C = 0.1nF, gL = 10nS,

VTh − VRest = 10mV, VReset = VRest, τm = 10ms, σI = 28pA), according to Eq 5, compared with the result from the

CBRD evaluation with noise.

https://doi.org/10.1371/journal.pcbi.1009007.g014
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approximating formulas for the currents IDR, IA, IM and IH were adapted from [71]; the

approximation for IAHP was taken from [72]. The descriptions of each current are as follows.

The voltage-dependent potassium current IDR:

IDRðU; t; t�Þ ¼ �gDR xDRðtÞ yDRðtÞ ðUðtÞ � VDRÞ
@xDR
@t
þ
@xDR
@t�
¼
xDR;1ðUÞ � xDR

tDR;xðUÞ
@yDR
@t
þ
@yDR
@t�
¼
yDR;1ðUÞ � yDR

tDR;yðUÞ
tDR;x ¼ 1=ðaDR þ bDRÞ þ 0:8 ms

xDR;1ðUÞ ¼ aDRðUÞ=ðaDRðUÞ þ bDRðUÞÞ
aDRðUÞ ¼ 0:17 exp ððU þ 5Þ � 0:090Þ ms� 1

bDRðUÞ ¼ 0:17 exp ð� ðU þ 5Þ � 0:022Þ ms� 1

tDR;yðUÞ ¼ 300 ms
yDR;1ðUÞ ¼ 1=ð1þ exp ððU þ 68Þ � 0:038ÞÞ

VDR ¼ � 70 mV; �gDR ¼ 0:27 mS

ð58Þ

The voltage-dependent potassium current IA:

IAðU; t; t�Þ ¼ �gA x4
AðtÞ y

3
AðtÞ ðUðtÞ � VAÞ

@xA
@t
þ
@xA
@t�
¼
xA;1ðUÞ � xA
tA;xðUÞ

;
@yA
@t
þ
@yA
@t�
¼
yA;1ðUÞ � yA
tA;yðUÞ

tA;xðUÞ ¼ 1=ðaA;xðUÞ þ bA;xðUÞÞ þ 1 ms

xA;1ðUÞ ¼ aA;xðUÞ=ðaA;xðUÞ þ bA;xðUÞÞ

aA;xðUÞ ¼ 0:08 exp ððU þ 41Þ � 0:089Þ ms� 1

bA;xðUÞ ¼ 0:08 exp ð� ðU þ 41Þ � 0:016Þ ms� 1

tA;yðUÞ ¼ 1=ðaA;yðUÞ þ bA;yðUÞÞ þ 2 ms

yA;1ðUÞ ¼ aA;yðUÞ=ðaA;yðUÞ þ bA;yðUÞÞ

aA;yðUÞ ¼ 0:04 � exp ð� ðU þ 49Þ � 0:11Þ ms� 1

bA;yðUÞ ¼ 0:04 ms� 1

VA ¼ � 70 mV; �gA ¼ 1:55 mS

ð59Þ

The voltage-dependent potassium current IM:

IMðU; t; t�Þ ¼ �gM x2
MðtÞ ðUðtÞ � VMÞ

@xM
@t
þ
@xM
@t�

¼
xM;1ðUÞ � xM
tM;xðUÞ

tM;xðUÞ ¼ 1=ðaMðUÞ þ bMðUÞÞ þ 8 ms

xM;1ðUÞ ¼ aMðUÞ=ðaMðUÞ þ bMðUÞÞ

aMðUÞ ¼ 0:003 exp ððU þ 45Þ � 0:135Þ ms� 1

bMðUÞ ¼ 0:003 exp ð� ðU þ 45Þ � 0:090Þ ms� 1

VM ¼ � 80 mV; �gM ¼ 0:27 mS

ð60Þ
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The cation current IH:

IHðU; t; t�Þ ¼ �gH yHðtÞ ðUðtÞ � VHÞ

@yH
@t
þ
@yH
@t�

¼
yH;1ðUÞ � yH

tH;y

tH;yðUÞ ¼ 180 ms

yH;1ðUÞ ¼ 1=ð1þ exp ððU þ 98Þ � 0:075ÞÞ ms� 1

VH ¼ � 17 mV; �gH ¼ 0:002 mS

ð61Þ

The adaptation current IAHP:

IAHPðU; t; t�Þ ¼ �gAHP wAHPðtÞ ðUðtÞ � VAHPÞ

@wAHP
@t
þ
@wAHP
@t�

¼
wAHP;1ðUÞ � w
tAHP;wðUÞ

tAHP;wðUÞ ¼ 2000=ð3:3 exp ððU þ 35Þ=20Þ þ exp ð� ðU þ 35Þ=20ÞÞ ms

wAHP;1ðUÞ ¼ 1=ð1þ exp ð� ðU þ 35Þ=10ÞÞ

VAHP ¼ � 70 mV; �gAHP ¼ 0:21 mS

ð62Þ

The somatic and dendritic input conductances of the two compartment model (with L = 1),

Gin and Gin,d, respectively, are:

Gin ¼
C
t0
m

3þ 2rD
3þ rD

� �

Gin;d ¼
C
t0
m

1þ
2

3
rD

� � ð63Þ

In comparison, the input conductance for a 1-compartment neuron is simply C=t0
m. The rest-

ing time constant t0
m is given by:

t0
m ¼ C

�

gL þ �gDR xDR;1ðVRestÞ yDR;1ðVRestÞ þ �gA x4
A;1ðV

RestÞ y3
A;1ðV

RestÞ

þ �gM x2
M;1ðV

RestÞ þ �gH yH;1ðVRestÞ þ �gAHP wAHP;1ðVRestÞ

�� 1
ð64Þ

The values of the cell passive parameters were

C ¼ 0:25 nF; rD ¼ 2:85; L ¼ 1; gL ¼ 0:0069 mS; VRest ¼ � 65 mV

The neuron parameters provide t0
m ¼ 14:4 ms. The somatic input conductance Gin = 26 nS

corresponds to the input resistance Rin = 39 MOhm as in [71].

According to the threshold model from [17], the duration of a spike is taken into account

by introducing the time interval 0 � t� � DtAPE when the voltage and gating variables are reset

and then kept constant, thus defining the boundary conditions of the gating particles of IDR, IA
and IH as follows:

for IDR : xDRðt; 0 � t� � DtAPE Þ ¼ 0:262; yDRðt; 0 � t� � DtAPE Þ ¼ 0:473

for IA : xAðt; 0 � t� � DtAPE Þ ¼ 0:743; yAðt; 0 � t� � DtAPE Þ ¼ 0:691

for IH : yHðt; 0 � t� � DtAPE Þ ¼ 0:002
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The reset values for the adaptation currents IM and IAHP are incremented according to their

values at the peak of spike-release distribution in the t�-space:

for IM : xMðt; 0 � t� � DtAPE Þ ¼ xMðt; t
�pÞ þ 0:175 ð1 � xMðt; t�

pÞÞ

for IAHP : wAHPðt; 0 � t� � DtAPE Þ ¼ wAHPðt; t
�pÞ þ 0:018 ð1 � wAHPðt; t�

pÞÞ

where t�p is the value of t� corresponding to the maximum value of ρ(t, t�)H(t, t�), for t� > 0.

VReset
HH ¼ � 40mV, DtAPE ¼ 1:5ms. The spike threshold reference voltage in the hazard func-

tion (Eq 57) was VTh = −57 mV, with a noise amplitude corresponding to the stationary volt-

age dispersion σV = 3 mV.

4.4 Inhibitory single compartment HH neuron model

Here we complete the description of the inhibitory interneuron model, according to [73], as

described by Eq 13, with the average voltage U substituting for V. The membrane current for

this model includes a voltage-dependent potassium current IK according to [74]:

IKðU; t; t�Þ ¼ �gK n4ðtÞ ðUðtÞ � VKÞ

@n
@t
þ
@n
@t�

¼
n1ðUÞ � n

tn

tn ¼ ð0:5þ 2=ð1þ exp ð0:045 ðU � 50ÞÞÞÞ ms

n1 ¼ 1=ð1þ exp ð� 0:045 ðU þ 10ÞÞÞ

VK ¼ � 80mV �gK ¼ 4mS

ð65Þ

The parameters of the model are C = 0.1nF, gL = 0.01μS, with the boundary condition for n
during the spike (DtAPI ¼ 1:4 ms) given by:

nðt; 0 � t� � DtAPI Þ ¼ 0:45

The spike threshold reference voltage, VTh, the reset voltage, VReset
HH , and the voltage noise

parameters, σV, in the hazard function (Eq 57) are identical to those for the excitatory cell

model, above.

4.5 Parameterization of the second order synapse model

As described in Section 2.1.3, we include a scaling term, “synaptic capacity”, cij, in the differen-

tial equation relating synaptic conductance and pre-synaptic firing rate, Eq 15:

cij ¼ �g ijti ð66Þ

where

ti ¼
tri � t

d
i

ðtdi =t
r
iÞ
tdi =ðt

r
i � t

d
i Þ � ðtdi =t

r
iÞ
tri =ðt

r
i � t

d
i Þ

Here �g ij is the maximum conductance for synapse type i (for i = Θ, E, I) onto cell type j (for j =

E, I), tri and tdi are the time constants for synapse type i. The time scaling factor τi allows the

maximum of gij(t) to be independent of tri and tdi when evoked by a short pulse of φij(t) in

Eq 15.
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4.6 Model parameters

4.6.1 Model A (HH 2E EI Exp 2D). Single neuron parameters are given in Sections 4.3

and 4.4. The other parameters were set as follows:

• Synaptic parameters: �gYE ¼ 0:011 mS, �gY ¼ 0:002 mS, �gEE ¼ 0:053 mS, �g EI¼ 0:01 mS,

�g IE ¼ 0:11 mS, �g I I ¼ 0:02 mS, tr
Y
¼ trE ¼ 1:7ms, td

Y
¼ tdE ¼ 8:3ms, tIr ¼ 3ms, tId ¼ 28ms,

VE = 0, VI¼ � 75mV.

• Spatial connections: dEE = 100μm, dEI = 200μm, dIE = 200μm, dII = 200μm.

• Region geometry: cortex region is 1mm × 1mm, R = 250μm.

• Stimulation: φ0 = 116Hz, φ1 = 96Hz, θ0 = 0˚ till t = 100ms, then θ = 45˚.

• Numerical parameters: time step 0.1ms, spatial grid 40 × 40, the t�-space was limited to

100ms and discretized by 100 points. The absolute refractory period was introduced by set-

ting the term A(T) of the hazard function to zero for t� < 6ms.

4.6.2 Ring Models B (HH EI Cos Ring), C (LIF 2E EI Cos Ring), D (LIF 1E EI Cos Ring),

E (LIF Cos Ring).

• Spatial connections: Given the value of R and the values of dij for each synapse type above,

fits to w0 (Eq 22) for the “exp”-profile gave ~qEE ¼ 10:0, αEE = 0.98, ~qEI¼ qIE ¼ 4:62, αEI =

αIE = 1.24, while αII = 0, ~qI I¼ 1 (or φII(t, θ) = νI(t, θ)) were set according to the assumption

made in Section 2.2.4 about concentrated inhibitory re-connections. Analogously, fits to a

“cos”-profile gave qEE = 1 and qEI = qIE = 0.57, and qII =1 (or φII(t, θ) = νI(t, θ)).

• Numerical parameters: ring was discretized by 40 points.

4.6.3 LIF Models C (LIF 2E EI Cos Ring), D (LIF 1E EI Cos Ring), E (LIF Cos Ring).

Excitatory model: The parameters of VReset
LIF;E ¼ � 90mV, CE = 0.27 nF are determined in Section

2.2.2, VReset
LIF;I ¼ � 82mV was obtain by fitting as demonstrated by Fig 4.

For 1-compartmental neuron based model the synaptic parameters were multiplied by the fac-

tors Gin,d/Gin calculated with the Eq 63 and given in the caption to Fig 4 for given value of

ρD, that gave: �gYE ¼ 0:0055 mS, �g EE ¼ 0:027 mS.

4.6.4 Models E (LIF Cos Ring) and F(Shunt FR Cos Ring). Parameters for threshold-lin-

ear f/I approximation of 2-dimensional LIF steady-state curve (ref. Fig 5):

• Excitatory cell model: kLIFE ¼ 0:156Hz=pA, ILIFOff ;E ¼ 0:7pA

• Inhibitory cell model: kLIFI ¼ 0:466Hz=pA, ILIFOff;I¼ � 25pA

4.6.5 Model E (LIF Cos Ring).

• Connections: ~I 0 ¼ � 90pA, ~I 1 ¼ 189pA, ~J 0 ¼ � 1:59pA=Hz, ~J 1 ¼ � 11:8pA=Hz,
~K 0 ¼ 4750pS, ~K 1 ¼ 13000pS, ~L0 ¼ 1800pS=Hz, ~L1 ¼ 480pS=Hz were calculated by Eqs 41

and 42.
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• Numerical parameters: ring was discretized by 40 points, voltage space ranged from -105 (to

be more negative than any expected polarization in neurons) to VTh = −57mV was discre-

tized by 250 points; time step 0.02ms.

4.6.6 Model G (FR Cos Ring).

• The characteristic time constant of the FR model was assumed to be equal to the membrane

time constant of the excitatory neurons, tFR ¼ t
0
m;E given in Section 4.3.

• Connections: I0 = −20pA, I1 = 43pA, J0 = −0.35pA/Hz, J1 = 2.7pA/Hz were calculated by

Eq 44.

• Numerical parameters: ring was discretized by 40 points; time step 0.02ms.
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