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Abstract

A fundamental challenge for the theoretical study of neuronal networks is to
make the link between complex biophysical models based directly on experimental
data, to progressively simpler mathematical models that allow the derivation of
general operating principles. We present a strategy that successively maps a
relatively detailed biophysical population model, comprising conductance-based
Hodgkin-Huxley type neuron models with connectivity rules derived from
anatomical data, to various representations with fewer parameters, finishing with a
firing rate network model that permits analysis. We apply this methodology to
primary visual cortex of higher mammals, focusing on the functional property of
stimulus orientation selectivity of receptive fields of individual neurons. The
mapping produces compact expressions for the parameters of the abstract model
that clearly identify the impact of specific electrophysiological and anatomical
parameters on the analytical results, in particular as manifested by specific
functional signatures of visual cortex, including input-output sharpening,
conductance invariance, virtual rotation and the tilt after effect. Importantly,
qualitative differences between model behaviours point out consequences of various
simplifications. The strategy may be applied to other neuronal systems with
appropriate modifications.

Author summary

A hierarchy of theoretical approaches to study a neuronal network depends on a
tradeoff between biological fidelity and mathematical tractibility.
Biophysically-detailed models consider cellular mechanisms and anatomically
defined synaptic circuits, but are often too complex to reveal insights into
fundamental principles. In contrast, increasingly abstract reduced models facilitate
analytical insights. To better ground the latter to the underlying biology, we
describe a systematic procedure to move across the model hierarchy that allows
understanding how changes in biological parameters - physiological,
pathophysiological, or because of new data - impact the behaviour of the network.
We apply this approach to mammalian primary visual cortex, and examine how
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the different models in the hierarchy reproduce functional signatures of this area,
in particular the tuning of neurons to the orientation of a visual stimulus. Our
work provides a navigation of the complex parameter space of neural network
models faithful to biology, as well as highlighting how simplifications made for
mathematical convenience can fundamentally change their behaviour.

1 Introduction 1

Theoretical modelling of a neural system can be accomplished with different 2

degrees of biological detail and, conversely, different degrees of mathematical 3

abstraction. Arguably, including more biological detail based on experimental data 4

provides a model which is somehow a more faithful surrogate for the original 5

system. But because detail does not necessarily yield understanding, a more 6

abstract description with fewer parameters and thus fewer degrees of freedom 7

offers the possibility of better insight. It follows that mapping between different 8

categories of models is necessary to relate analytical results obtained from more 9

abstract models, to simulations from detailed models which can hardly be 10

analyzed in their parameter space. Eventually, this sort of back and forth process 11

can facilitate understanding about how specific model assumptions may be linked 12

to detailed model behaviour. 13

In this paper we address the challenge of parameter reduction and quantitative 14

mapping from original biophysical quantities to simplified model parameters, using 15

the orientation hyper-column, or pinwheel, architecture in the visual cortex of 16

higher mammals as a model system. The orientation hyper-column is a functional 17

unit providing organization of cellular tuning with respect to stimulus orientation, 18

and many theoretical approaches have been used to study this neuronal network. 19

At one extreme are simplified population models that retain only gross features of 20

the modeled system, but allow for systematic analytical and numerical 21

investigations, and thus a formal understanding of underlying mechanisms to the 22

extent that the model is reliable. The canonical model in this sense is the 23

firing-rate (FR) ring model with a single neural population type and a one 24

dimensional ring architecture corresponding to preferred orientation [1] and [2]. At 25

an increased level of complexity, [3] and [4] also consider populations based on rate 26

models in a 2D distributed architecture corresponding to the cortical surface 27

geometry. Extensions of population models have taken into account different 28

connection profiles [4] or delays [5], both excitatory and inhibitory neuronal 29

populations [3], or more elaborate rate models [6]. 30

At the other extreme are biophysically-detailed models which attempt to 31

incorporate known physiology and synaptic anatomy of the system, giving a 32

coherent description that bridges established parameters and those which are 33

unknown yet essential. For visual cortex there is a wealth of experimental data 34

including various neuron types and their intrinsic biophysics, the functional 35

architecture of thalamic input to the system, the kinetics of the synaptic 36

conductances, and the schematic of the intra-cortical synaptic connections. 37

Numerical simulations of such models, for example [7], [8], [9] and [10], have 38

provided realistic reproductions of experimental data, and can provide explicit 39

predictions for subsequent experimental studies. In general, a complex model can 40

incorporate the available data at will, motivated by the fact that a priori we do 41

not know which details are fundamental for function, e.g. the detailed dynamics of 42

receptive fields. 43

Here we consider a hierarchy of single layer hyper-column models (Table 1 and 44

Figure 1), at the top with a reasonably detailed model that considers biophysical 45

membrane properties of cortical excitatory and inhibitory neurons with synaptic 46

conductances described by second order kinetics. The synaptic architecture of this 47

model arises from a 2D anatomical distribution of the two neuron types over the 48

cortical surface, with spatial interactions defined by isotropic intracortical 49
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connections, and thalamic input according to an assumed pinwheel architecture. 50

This full model has been realized with the help of the conductance-based 51

refractory density approach [11]. Via step by step simplifications of the synaptic 52

architecture and cellular elements, comprising five intermediate models, we arrive 53

at the canonical firing rate ring model. We require a consistency between 54

nearest-neighbors within the hierarchy of models to validate each mapping, in the 55

sense that any qualitative or quantitative change in the behaviour of a given model 56

must be linked to specific assumptions made at each stage of the reduction. 57

Note that this particular hierarchy is not comprehensive, e.g. an arbitrarily 58

elaborate network architecture may be evaluated with a simple cell model, or 59

vica-versa. Rather, the motivation for the models studied here is that several are 60

directly linked to previous published results. Furthermore, the methodology that 61

we develop may be readily adapted to other choices of hyper-column models, as 62

well as network architectures of other cortical areas. 63

2 Results 64

We present the results as follows. We begin by describing the hierarchy of network 65

models and the relevant cellular models from simplest to most complex, thus 66

progressing from the abstract current-based firing rate ring model, until the 67

biophysically detailed 2D cortical model that considers Hodgkin-Huxley membrane 68

channels, synaptic currents and conductances. Next, we describe the mapping 69

steps at the cellular and network levels, now in the opposite direction, from the 70

most detailed network and cell models, until the firing rate ring model. Once the 71

mapping strategy and formulas are described, we present an analysis of the 72

parameters of the single population ring models, taking into account the 73

significance of various biophysical values taken from experiments. Numerical 74

simulations of the different network models are then presented, focusing on the 75

similarities and differences in the response steady-state and dynamics to a 76

stereotyped visual stimulus sequence. 77

2.1 Model hierarchy 78

We consider two geometries of the orientation hyper-column circuit in primary 79

visual cortex, thus a 2-dimensional geometry that maps the cortical surface to 80

function according to the orientation preference hyper-column map found in higher 81

mammals, and a one dimensional ring geometry, where orientation preference 82

corresponds to the position along the ring. Table 1 and Figure 1 present the model 83

hierarchy, emphasizing the basic characteristics of the models in terms of network 84

architecture and cellular properties. The models are assigned letters according to 85

the presumed hierarchy, ranging from the most elaborate 2-dimensional, 86

biophysical, model A at the top, to the simplest version of the ring model, 87

model G, at the bottom. For clarity, in this section we present the models in order 88

from the simplest to the more complex (model G, model F, model E, etc.). 89
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Model Equations
Archi-
tecture

Synapse
Profile

Adapt-
ation

Cell
Model

Multi-
Compt E

# Cell
Types

Synapse
Kinetics

Spike /
FR

Shunt
& Noise

A 11-20,58-65 2D Exponential
Yes HH

Yes
2 2nd order

Spike
Yes

B 11-18,58-65

Ring Cosine

C 11-18

No
LIFD 4,11,12,15-18 No

E 4,9,10
n/a 1 0th orderF 5,8-10 Shunt FR

FR
G 1-3 FR No

Table 1. Summary of Network Models. Abbreviations: 2D, 2 dimensional; HH,
Hodgkin-Huxley; LIF, leaky integrate-and-fire; FR, firing rate; Multi-Compt E, multiple
compartment excitatory neuron
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2.1.1 Current-based firing rate (FR) ring model with 90

instantaneous synapses (Model G) 91

The simplest network that we consider is the classical FR ring model described 92

by [1] (see also [2]). The network consists of a ring in orientation space, 93

parameterized by θ, of a single population of firing rate neurons whose activity is 94

given by the spike rate ν(t, θ): 95

τFR
dν(t, θ)

dt
= −ν(t, θ) + νFR

SS (Iring(t, θ)) (1)

where τFR is a phenomenological time constant of the rate relaxation. The 96

steady-state firing rate of the population, νFR
SS , is given by a threshold-linear 97

transfer function: 98

νFR
SS (I) = [I]+ ≡ {I, if I ≥ 0; 0 otherwise} (2)

The network architecture is fully defined by the expression for the input Iring(t, θ): 99

Iring(t, θ) = I0(t) + I1(t) cos(θ − θ0(t))

+
1

2π

∫ π

−π
(J0 + J1 cos(θ − ξ)) ν(t, ξ) dξ (3)

where I0 and I1 are amplitudes of non-tuned (stimulus background) and tuned 100

thalamic input, respectively, and θ0 is the orientation of the input; J0 and J1 are 101

amplitudes of non-tuned and tuned recurrent intracortical input, respectively. 102

These parameters aggregate the effects of spatial connections, synaptic strengths 103

and dynamics between populations of different types. In general the thalamic 104

input is a function of time, thus I0(t), I1(t) and θ0(t). Note that this model 105

incorporates the simplest synapse model, where input current arising from 106

intracortical activity is directly proportional, and thus instantaneous, with respect 107

to the firing rates of the pre-synaptic population (which also allows the thalamic 108

firing rates to be implicit in this equation). 109

In this single population model the effect of inhibitory versus excitatory 110

cortical neurons is implicit. The original interpretation of J0 and J1 with respect 111

to excitation and inhibition is given in [1]: “The constant J0 represents a uniform 112

all-to-all inhibition; J1 measures the amplitude of the orientation-specific part of 113

the interaction. Neurons with similar preferred orientations are more strongly 114

coupled excitatorally than neurons with dissimilar ones.” As originally formulated 115

by [1] (see also [2]), the values of I0 and I1 were chosen so that the feedforward 116

input is non-negative, since there is no experimental evidence for inhibitory 117

thalamocortical pathways [12]. In Section 2.2.4 we will present an alternative 118

interpretation of these coefficients that arises from the mapping, specifically that 119

takes into account the implicit inhibitory cortical population of this model. 120

2.1.2 Conductance-based shunt FR and leaky integrate and fire 121

(LIF) ring models with instantaneous synapses (Models E, F) 122

We now elaborate the single population current-based ring by incorporating 123

synaptic conductances as well as currents, and by including a membrane current 124

noise term. We consider firing rate and spiking versions of the ring, based on a 125

shunt firing rate neuron (model F), and a leaky integrate and fire neuron 126

(model E), respectively. 127

The conductance-based LIF ring model E explicitly considers the effect of 128

spikes on the membrane potential, V . The current equation for a single 129

compartment LIF neuron at location θ along the ring is given by: 130

C
dV

dt
= −(gL + S(t, θ))(V − V Rest) + I(t, θ) + ξ(t) (4)
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Model A
HH 2E EI
Exp 2D

Model B
HH 2E EI
Cos Ring

Model C
LIF 2E EI
Cos Ring

Model D
LIF 1E EI
Cos Ring

Model E
LIF

Cos Ring

Model F
Shunt FR
Cos Ring

Model G
FR

Cos Ring

Network Mappings

2D exponential connectivity to 1D cosine
connectivity architecture

Two population (EI) to single population;
2nd order to instantaneous synapse

I,S to I input

Cell Mappings

2 compartment HH to 2 compartment
LIF excitatory neuron model

1 compartment HH to 1 compartment
LIF interneuron model

2 to 1 compartment LIF excitatory neuron model

2D (I,S) LIF to 1D (I) threshold-linear (Elimination
of I population; Shunt FR to FR model)

HH adaptive cell model FR cell modelLIF cell model

One Population, Instantaneous SynapsesTwo Population, 2nd-order Synapses

Current (I) InputCurrent (I) & Conductance (S) Input

Ring architecture,
cosine connectivity

2D architecture,
exponential connectivity

Fig 1. General characteristics of models, and the mappings between them, including
steps for network parameters (solid arrows) and cellular parameters (dashed arrows).
Arrows that arise from, or terminate at, multiple source or destination models,
respectively, indicate a common characteristic of the models specific for a given
mapping. For explanation of model abbreviations, see Table 1.
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where C is the cell capacitance, and gL is the leak conductance. Synaptic input 131

is defined as the total synaptic conductance, S(t, θ), and the total synaptic 132

current, I(t, θ), the latter measured with the cell held at the resting potential 133

(note that a current term representing external stimulation may be included 134

without loss of generality). ξ(t) is a Gaussian white current noise process 135

characterized by its mean, 〈ξ(t)〉 = 0, and auto-correlation, 136

〈ξ(t)ξ(t′)〉 = σ2
I (C/gL) δ(t− t′), and σI is the noise amplitude. When V crosses a 137

defined threshold voltage V Th, the neuron ”fires” and the membrane voltage is 138

immediately reset to a defined voltage V Reset. For simplicity, in particular to allow 139

a direct mapping to a firing rate model, we neglect an absolute refractory period 140

under the assumption that the evoked firing rates are well below maximal. 141

We note that a noisy population of LIF neurons with instantaneous synapses 142

can be evaluated either with Monte-Carlo methods, or with a probabilistic 143

approach based on the Komogorov-Fokker-Planck (KFP) equation. We use the 144

latter approach, described in the Methods (Section 4.1), to derive the simulations 145

presented in the Results. Thus, in the presentation below of the input terms for 146

model E we will refer to specific formulae of the KFP approach. 147

The average steady-state firing rate of the LIF neuron defined by Eq 4 provides 148

a hybrid “shunt FR” network model (model F), situated between the previously 149

described current-based FR model G, and the conductance-based LIF model E, 150

that takes into account noise as well as the impact of synaptic input on the 151

membrane time constant. For a given input I and S, the average steady-state 152

firing rate of the LIF model, νLIF
SS , is given analytically by [13] (see also Figure 14): 153

νLIF
SS (I, S) =

(
τm(S)

√
π

∫ (V Th−x(I,S))/(
√

2 σV(S))

(V Reset−x(I,S))/(
√

2 σV(S))

exp(u2)(1+erf(u)) du

)−1

(5)

where the asymptotic potential, x(I, S), the steady-state voltage dispersion, 154

σV(S), and the effective membrane time constant of the LIF neuron, τm(S), all 155

depend on the synaptic conductance S: 156

x(I, S) = V Rest + I/(gL + S)

σ2
V(S) = σ2

I /(2gL(gL + S)) (6)

τm(S) = C/(gL + S) (7)

The shunt FR model F is then defined by using Eq 1 of the current-based FR 157

model G, now with the steady-state solution given by νLIF
SS of the LIF model E: 158

τFR
dν(t, θ)

dt
= −ν(t, θ) + νLIF

SS (I(t, θ), S(t, θ)) (8)

The form of the synaptic current and conductance network connections of models
E and F are identical; we assume they recapitulate the constant plus cosine form
of the current-based FR ring model G (Eq 3) and behave identically as a function
of θ:

I(t, θ) = Ĩ0(t) + Ĩ1(t) cos(θ − θ0(t)) +
1

2π

∫ π

−π
(J̃0 + J̃1 cos(θ − ξ)) ν(t, ξ) dξ (9)

S(t, θ) = K̃0(t) + K̃1(t) cos(θ − θ0(t)) +
1

2π

∫ π

−π
(L̃0 + L̃1 cos(θ − ξ)) ν(t, ξ) dξ

(10)

Thus, these expressions supply the I and S terms of Eq 8 for the shunt FR ring
model F, and likewise the I and S terms for Eq 4 for the single population LIF
ring model E (specifically, for Eqs 53 and 54 of the KFP evaluation of an infinite
LIF population, Section 4.1). As with the current-based FR ring model, synapses
are instantaneous for models F and E, in this case with the intracortical synaptic
current and conductance input terms being directly proportional to the
pre-synaptic firing rate ν(t, ξ), and as before with thalamic firing rates implicit in
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these equations. The population firing rate, ν(t, θ), for the shunt FR model is
given directly by Eq 8; for LIF neurons (also the HH neurons discussed below),
ν(t, θ) is defined by summing all spikes in the population at location θ, nact, over a
time window ∆t, dividing by the number of neurons, N , and ∆t, as ∆t goes to
zero:

ν(t, θ) = lim
∆t→0

1

∆t

nact(t; t+ ∆t)

N

2.1.3 Two population LIF and Hodgkin-Huxley (HH) ring 159

models with the second order synapse kinetics (Models B, C, D) 160

We next consider two population ring models that include explicit excitatory (E) 161

and inhibitory (I) neuron populations, based either on the LIF cell model, or more 162

complex Hodgkin-Huxley (HH) type cell models. The two population LIF-based 163

ring models include a single compartment inhibitory cell model, with either a one 164

compartment LIF excitatory cell model (model D), or a two compartment LIF 165

excitatory cell model (model C). Note that by definition, the standard LIF model 166

as used here does not exhibit adaptation. At a next level beyond the LIF 167

description, HH-type models are the standard framework for describing cellular 168

dynamics tied to explicit biophysical mechanisms, including voltage-dependent 169

membrane channels [14]. The HH-based ring model (model B) includes an adaptive 170

two compartment excitatory cell model and a non-adaptive single compartment 171

inhibitory cell model. The intracortical weighting functions for the excitatory and 172

inhibitory pathways in all three of these two population ring models, fitted to 173

anatomical data, follow the constant plus cosine form presented above. 174

The two population models allow distinct cellular and synaptic properties for 175

excitation and inhibition, which in turn motivates the consideration of more 176

elaborate synaptic kinetics. Each cortical population, therefore, has three types of 177

synapses: those arising from thalamic excitatory (Θ), from intracortical excitatory 178

(E), and from intracortical inhibitory (I) pathways. Accordingly, each connection 179

in the network is denoted by a double index ij where i and j indicate the pre- and 180

post-synaptic population, respectively. The complete synaptic input to a target 181

population of type j is then given by the total synaptic current measured at rest, 182

Iij , and the total synaptic conductance, Sij , summed over the different synapse 183

types arising from pre-synaptic populations i. 184

The excitatory and inhibitory synaptic currents measured at rest for each cell 185

type j at location θ, and the associated synaptic conductances, are thus: 186

IEj(t, θ) = gΘj(t, θ)(VE − V Restj ) + gEj(t, θ)(VE − V Restj )

IIj(t, θ) = gIj(t, θ)(VI− V Restj )

SEj(t, θ) = gΘj(t, θ) + gEj(t, θ)

SIj(t, θ) = gIj(t, θ)

(11)

where VE and VI are the excitatory and inhibitory reversal potentials, and V Rest
j is 187

the resting potential of the target population. 188

For the one compartment LIF and HH cell models (both cell types in model D; 189

the inhibitory cell type in models B and C), we refer to the total input, thus: 190

Ij(t, θ) = IEj(t, θ) + IIj(t, θ)

Sj(t, θ) = SEj(t, θ) + SIj(t, θ)
(12)

The membrane current equation for the single compartment LIF and HH models 191

of cell type j at location θ is then: 192

C
dV

dt
= −(gL + Sj(t, θ))(V − V Rest)− IAct + Ij(t, θ) + ξ(t) (13)

where IAct is the current via active, voltage-gated channels for HH neurons, and 193

ignored for LIF cells. 194
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For the two compartment HH and LIF excitatory cells of models B and C, the 195

post-synaptic sites are pathway specific. Thus we refer directly to Eqs 11 for the 196

excitatory input exclusively on the dendrite, IEE(t, θ) and SEE(t, θ), and for the 197

inhibitory input exclusively on the soma, IIE(t, θ) and SIE(t, θ). The two 198

compartment models are an approximate solution of two boundary problems for a 199

spatially distributed passive dendrite and a point passive soma, following the 200

description in [15] (see also [9] and [16]). The problems correspond to the two 201

cases of, first, dendritic synaptic current estimation under somatic voltage clamp 202

(the reverse voltage-clamp problem) and, second, somatic voltage measurement 203

under current-clamp in response to the previous estimates of the dendritic 204

synaptic current. 205

The membrane current equations for the soma voltage V (t) and the dendrite 206

voltage VD(t) for this excitatory cell model at location θ are: 207

C
dV

dt
= −(gL + SIE(t, θ))(V − V Rest) +

ρD

L2
gL(VD − V )− IAct + IIE(t, θ) + ξ(t)

C
dVD

dt
= −gL(VD − V Rest)− 2 + ρD

L2
gL(VD − V )

+
1

ρD

(
τ0
mL

2 d

dt
+ 2 + L2

)(
−SEE(t, θ)(V − V Rest) + IEE(t, θ)

)

IAct =

{
0 LIF model

IDr + IA + IH + IM + IAHP HH model
(14)

where τ0
m is the resting time constant (= C/g0

tot, where g0
tot is the total 208

conductance at rest), ρD is the ratio of the dendritic to somatic passive membrane 209

conductances, and L is the dendritic length in units of the characteristic length 210

(see Methods, Section 4.3). 211

Notably, spike generation in the HH cell models used here is governed by an 212

explicit threshold mechanism, reminiscent of the LIF model, that replaces the 213

spike generating current INa. This modification, described in detail in the 214

Methods (Section 4.2), allows for efficient evaluation of neuron populations that 215

still considers the impact of the various HH currents that comprise IAct (Eqs 13 216

and 14). It is important to note that this approach was taken for its 217

computational advantage alone; using a standard HH cell model in the framework 218

of the network simulations will give very similar results [17] (see also Section 4.2). 219

The connectivity rules for all the two population models are written in terms of 220

pre-synaptic firing rates, ϕij , to facilitate incorporating synaptic kinetics in the 221

translation of pre-synaptic activity to the post-synaptic conductances gij(t) that 222

figure in Eqs 11. The relation between ϕij(t) and gij(t) is given by a second order 223

kinetic model that implicitly accounts for mechanisms such as axonal delays, 224

receptor dynamics and dendritic integration: 225(
τ r
i τ

d
i
d2

dt2
+ (τ r

i + τd
i )
d

dt
+ 1

)
gij(t) = cij ϕij(t) (15)

with the scaling “synaptic capacity” cij described in Section 4.5. The thalamic 226

inputs driving gΘj(t, θ) of the excitatory and inhibitory cortical populations are 227

taken to be identical, and follow the constant plus cosine form of the single 228

population ring models: 229

ϕΘE(t, θ) = ϕΘI(t, θ) = ϕΘ(t, θ) = ϕ0(t) + ϕ1(t) cos(θ − θ0(t)) (16)

where ϕ0 is the un-tuned stimulation background, ϕ1 is the tuned part of the 230

cortical input, and θ0 is the stimulus orientation angle. As mentioned, the 231

thalamocortical pathway is exclusively excitatory. 232

Intra-cortical connections driving gij(t, θ) of the two populations are given by: 233

ϕij(t, θ) =
1

2π

∫ π

−π
νi(t, ξ) wij(θ − ξ) dξ (17)
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where the weight function, wij(φ), again recapitulates the constant plus cosine 234

form of the single population models, with the parameter qij to take into account 235

the orientation tuning between different types of neurons: 236

wij(φ) = 1 + qij cos(φ) (18)

Note that, implicitly, 0 ≤ qij ≤ 1. This approximation will be developed in 237

Section 2.2.1. 238

2.1.4 Two population, two dimensional HH model with the 239

second order synapse kinetics (Model A) 240

As the most elaborate model, we consider an anatomical 2D cortical network of 241

the two compartment excitatory, and the single compartment inhibitory, HH cell 242

models developed in the previous section. As for the two population ring models, 243

the current and conductance inputs are driven by pre-synaptic firing rates. 244

As opposed to the angular functional index θ of the ring models, in the 2D 245

model each population is parameterized by its position on a cortical surface map 246

of adjacent, radially-symmetric hyper-column pinwheels [3] (Figure 2). The 2D 247

architecture is captured entirely by new expressions for the firing rates ϕΘ and ϕij 248

that are now functions of the x and y coordinates of the target cells. Thus, the 249

inputs of the 2D model recapitulate Eqs 11-15, with arguments (t, θ) of the ring 250

models replaced by (t, x, y). 251

Fig 2. Cortical domain containing 4 hypercolumns that provides the reference
geometry for the 2D model A; the dots mark the pinwheel centers; the colors mark the
orientations coded by bars in the legend. The circle at the lower left quadrant
corresponds to the activity profile of this model shown in the first panel of Figure 8.

An orientation column (Figure 2) corresponds to a hyper-column sector, 252

containing populations with similar preferred orientations at varying distances 253

from the hyper-column center. The functional architecture of each hyper-column 254

pinwheel arises from a thalamic input whose orientation tuning corresponds to the 255

angle of the target location with respect to the center of its hyper-column [8], [3]. 256

Hyper-columns are arranged so that those with a clockwise progression of 257

orientation columns are adjacent to those with counterclockwise progression, thus 258

adjacent orientation columns from different pinwheels have the same orientation 259

preference. The centers of the hyper-column pinwheels are distributed on a 260

rectangular grid with pinwheel radius R and indexed by iPW and jPW . Here we 261

consider a square containing 4 pinwheels on the cortical surface. The coordinates 262

of the pinwheel-centers are xPW = (2iPW − 1)R, yPW = (2jPW − 1)R. The 263

orientation angle for the point (x, y) which belongs to the pinwheel (iPW , jPW ) is 264

defined as θ = arctan((y − yPW )/(x− xPW )). The progression is determined by 265

the factor (−1)iPW +jPW . 266

Thus, the thalamic input in terms of effective firing rate is described with an
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elaboration of Eq 16:

ϕΘ(t, x, y) = ϕ0(t)

+ ϕ1(t) cos

(
θ −

(
θ0 −

3π

2
+
π

2
(−1)iPW + π(−1)jPW

)
(−1)iPW +jPW

)
(19)

It is important to note that, as with the ring models, this constant plus cosine 267

form of the thalamic input constitutes an implicit model of the 268

retino-geniculo-cortical pathway; this is equivalent to each cortical neuron 269

receiving an oriented receptive field corresponding to a single sub-region of a 270

classical simple cell. The orientation dependence of the input in particular 271

characterizes the degree of symmetry breaking at the input stage, parameterized 272

here by ϕ1 and ϕ0. The homogeneous case, where ϕ1 = 0, represents thalamic 273

input with no dependence on stimulus orientation. The maximum selectivity of 274

this model for the input stage, where ϕ1 = ϕ0, is a pure shifted cosine dependence. 275

Intra-cortical connections between populations are local and isotropic with an 276

exponential decay [12], with the effective pre-synaptic firing rate ϕij(t, x, y) given 277

by: 278

ϕij(t, x, y) =

∫ ∫
νi(t, x

′, y′) exp(−
√

(x− x′)2 + (y − y′)2/dij) dx
′ dy′∫ ∫

exp(−
√

(x− x′)2 + (y − y′)2/dij) dx′ dy′
(20)

where, as above, i and j correspond to the cell type (E or I), νi(t, x
′, y′) is the 279

firing rate of pre-synaptic cortical population i at location (x′, y′), and dij is the 280

characteristic anatomic length of the i to j pathway. Note that in contrast to the 281

explicit tuning of intracortical connections in the ring models (parameterized by 282

θ), these connections have an implicit functional orientation tuning since 283

neighboring orientation columns receive similar oriented thalamic inputs. 284

2.2 Mapping of network and cellular parameters 285

We now describe the quantitative mappings between the various models at the 286

network and cellular levels, which allow a path from the parameters of the full HH 287

EI 2D model A, to the different LIF networks models, and finally to the 288

current-based FR ring model G. In contrast to the previous section, we present the 289

mappings from the more complex to the less complex models. The essential goal of 290

these cellular and network mapping steps, as diagrammed in Figure 1, is to 291

systematically map the high-dimensional full model, with multiple non-linearities, 292

to a low-dimensional model with a single threshold non-linearity. 293

2.2.1 Network mapping: 2D cortical architecture to the cosine 294

ring models 295

The first mapping step at the network level is to reduce the 2D geometry of the 296

pinwheel architecture in anatomic space to a 1D ring geometry in orientation 297

space (solid green arrows in Figure 1). We consider the synaptic strength function 298

for the intracortical connection between two points ~r1 and ~r2 on the cortical 299

surface (corresponding to the locations (x, y) and (x′, y′) in Eq 19): 300

fw(|~r1 − ~r2|) = exp(− |~r1 − ~r2| /d)

where d is the characteristic length of the connection. The weight of the
connections of two elementary areas ∆S1 = r1∆θ∆r1 and ∆S2 = r2∆ξ∆r2 at the
points shown in Figure 3A is:

∆w̃(θ, ξ) =
fw(|~r1 − ~r2|) ∆S1 ∆S2

S1 S2
=

fw(|~r1 − ~r2|) r1 r2

R4
∆r1∆r2

where S1 = 1
2
R2∆θ, S2 = 1

2
R2∆ξ are the areas of the sectors corresponding to two 301

radial vectors emanating from the center of a pinwheel with radius R and having 302
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Fig 3. A. Reduction of 2D pinwheel geometry to the ring-geometry requires integration
over the radial vectors with the angle ξ − θ between them. B. Mapping 2D pinwheel
geometry to the ring, showing the weight function w0(φ) according to the Eqs 21 and 22
(solid line), and its approximations of the forms 1 + k cos(φ) (dotted line) and
b+ a exp(−|φ|/φr) (dashed line) for the case of R = d/2.

the orientation angles θ and ξ (Figure 3A). Combining the last two expressions, we 303

integrate over the vectors to obtain the total connection weight w̃: 304

w̃(θ, ξ) =
4d4

R4

∫ R/d

o

dr1

∫ R/d

o

dr2 r1r2 exp
(
−
√

(r1 cos θ − r2 cos ξ)2 + (r1 sin θ − r2 sin ξ)2
)

We now find w̃ for the angle difference α = ξ − θ. By rotating the coordinates 305

such that θ = 0 and α = ξ, we obtain: 306

w̃(α) =
4d4

R4

∫ R/d

o

dr1

∫ R/d

o

dr2 r1r2 exp
(
−
√

(r1 − r2 cosα)2 + (r2 sinα)2
)

=
4d4

R2

∫ R/d

o

dr1

∫ R/d

o

dr2 r1r2 exp

(
−
√
r2
1 − 2r1r2 cosα+ r2

2

)
(21)

The resulting normalized weight 307

w0(α) = w̃(α)/

∫ π

−π
w̃(α′) dα′ (22)

is shown in Figure 3B by the black curve. As mentioned in Section 2.1.3, we 308

approximate w0(α) with a constant plus cosine form for models B, C and D 309

(Eq 18, parameterized by qij ; reference Figure 3B, dotted line). We also considered 310

an exponential form wij(φ) = 1 + qij exp(|φ|/φij) (Figure 3B, dashed line), which 311

gives a more precise mapping of the anatomically based 2D cortical geometry to 312

the ring [18], which we will discuss later. 313

2.2.2 Cellular mappings: HH to LIF neurons, and 2 314

compartment to 1 compartment LIF excitatory neuron 315

The mappings of the HH neuron models to their respective LIF models were made 316

as follows. For the population of one compartment HH inhibitory neurons, the 317

steady-state transfer function between current input and firing rate (f/I) of a one 318

compartment LIF model, with the same passive parameters of the HH neuron, was 319

fitted to the f/I curve of the HH model by adjusting the LIF reset potential, while 320

retaining the threshold potential V Th of the HH inhibitory model (dashed purple 321
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Fig 4. Comparative spike train responses of the mapped single neuron models: HH to
LIF, and 2 to 1 compartment LIF. A) The spike train for the non-adaptive
2-compartmental HH pyramidal neuron (solid line), the 2 compartment LIF model
(dashed line) and the 1 compartment LIF model (dotted line), the latter two with
V Reset
LIF,E = −90mV. The input to the dendrite of the two compartment models was
I = 1.2nA and S = 0.035 µS; according to the ratio of the dendritic and somatic input
conductances, Gin,d/Gin, the current and conductance input to the 1-compartmental
neuron was adjusted to 0.62nA and 0.018µS, respectively. B) The spike train for the
HH interneuron (solid line) and the corresponding LIF model with V Reset

LIF,I = −82mV
(dashed line), in response to I = 0.2nA and S = 0.

arrows in Figure 1). A similar fitting procedure was done for the two compartment 322

HH excitatory neurons, but importantly using a non-adapting version of this 323

model. Thus, as a first step, the two adaptation currents of the excitatory neuron, 324

IM (intermediate time-scale voltage-dependent current) and IAHP (slow voltage 325

and calcium-dependent current), were blocked, and the f/I was obtained. The f/I 326

curve of a two compartment LIF model was then fitted to the non-adapting HH 327

f/I curve, with the same passive parameters and threshold potential V Th of the 328

HH excitatory model (dashed green arrow in Figure 1). The comparison of the 329

spike timings in response to constant input is shown in Figure 4. 330

To map the two compartment LIF excitatory cell model to single compartment 331

LIF model (dashed cyan arrow in Figure 1), we fixed the passive input 332

conductance of the latter to the somatic input conductance of the former, and 333

decreased the membrane time constant from 14.4 to 10.3 ms, reflecting the fact 334

that the effective time constant of a two compartment model is smaller than 335

intrinsic membrane τm. Because of different expressions for the input conductance 336

in two and single compartment models, expressed by the ratio of the dendritic and 337

somatic input conductances, ρD = Gin,d/Gin (Eqs 63 in Methods, Section 4.3), the 338

capacitance of the one compartment model changed slightly from 0.25 to 0.27nF. 339

The synaptic input to the dendrite of the two compartment model (excitatory 340

inputs from the thalamus and the excitatory cortical population) were adjusted for 341

the one compartment model by ρD so that the sizes of the synaptic conductances 342

relative to the post-synaptic input conductance were maintained (ref. Figure 4A 343

for a comparison of the spike times of the two models). 344

2.2.3 Cellular mapping: 2-dimensional LIF steady-state to 345

1-dimensional threshold-linear f/I relation 346

We now describe the mapping of the steady-state expression for the current (I) 347

and conductance (S) driven LIF model, νLIF
SS (I, S) (Eq 5 ), to a one dimensional 348

threshold-linear model, thus with the current and conductance inputs combined a 349

priori (dashed orange arrows in Figure 1). This transformation is used twice. 350

First, this is used for eliminating an explicit inhibitory population when going 351
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from the two population LIF ring model D, to the conductance-based single 352

population models E and F (Section 2.2.4). Second, this step is used for mapping 353

from the conductance-based shunt FR model F, to the classical current-based FR 354

model G (Section 2.2.5). 355

We first assume that the square of the noise current amplitude, σ2
I , is 356

marginally proportional to the synaptic conductance: 357

σ2
I = σI

2
0(1 + S/gL) (23)

with the noise level at rest σI0. This approximation reflects the fact that the 358

synaptic current fluctuations typically increase as more synaptic channels are 359

activated. The ionic channels provide independent additive stochastic currents, 360

thus the variation of the total current fluctuations is the sum of variations of the 361

currents from separate channels, which is roughly proportional to the number of 362

activated channels. The later is characterised by the total conductance. 363

Importantly, for the LIF neuron this leads to constant voltage dispersion due to 364

noise, σV(S) (Eq 6): 365

σ2
V(S) = σ2

I /(2gL(gL + S)) = σI
2
0(1 + S/gL)/(2gL(gL + S)) = σI

2
0/(2g

2
L)

Independence of the voltage dispersion on the total conductance corresponds to 366

the case of thermal noise in RC circuits [19]. The scaling Eq 23 and, consequently, 367

the constant σV were derived in the particular case of a balanced excitatory and 368

inhibitory synaptic input by Chance et al. [20]. 369

Given the form of equation (5), this in turn allows a recasting of the 370

steady-state solution νLIF
SS as a one dimensional function: 371

νLIF
SS (I, S) = (1 + S/gL) νLIF

SS

(
I

1 + S/gL
, 0

)
(24)

We note that this reduction of a 2 to 1 dimensional solution is unique for this noise 372

model, and is an important analytical property of the noisy LIF model. In the 373

notations from [20], the formula of Eq 24 corresponds to the relationship 374

r = g f(I/g) with the total conductance g, the input current I and the firing rate 375

r. With respect to the modulation of the f/I curve gain, we see that the shunt g 376

provides a divisive effect on the gain f ′(I/g) only if the second derivative of f is 377

positive. 378

Next, we approximate νLIF
SS (I, S) for S = 0 as a one dimensional 379

threshold-linear function, parameterized by the slope kLIF and the rheobase 380

current ILIF
Off : 381

νLIF
SS (I, 0) ≈ kLIF [I − ILIF

Off

]
+

(25)

The approximation parameters for the LIF models introduced in the previous 382

Section 2.2.2, thus kLIF
E and ILIF

Off,E for the excitatory LIF neuron, kLIF
I and ILIF

Off,I 383

for the inhibitory LIF neuron, are obtained by fitting to νLIF
SS,E(I, 0) and νLIF

SS,I(I, 0), 384

respectively. The precision of this approximation for the excitatory cell type can 385

be seen from Figure 5, which compares the threshold-linear approximations for 386

noisy LIF and HH cell models plotted for parameters given in Section 2.3. 387

Combining the last two expressions obtains an approximate one dimensional 388

threshold-linear dependence of the rate on I and S: 389

νLIF
SS (I, S) = kLIF

[
I − ILIF

Off (1 + S/gL)
]

+
(26)

Thus, the effect of the synaptic conductance is to modulate the threshold current 390

of the LIF neuron ILIF
Th : 391

ILIF
Th = ILIF

Off (1 + S/gL) (27)

A similar approximation was described in [6], in the context of fitting 392

threshold-linear functions to the numerically obtained steady-state transfer 393
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Fig 5. Comparisons of threshold-linear approximations for noisy LIF and HH excitatory
cell models. Threshold-linear approximation (dashed line) of the LIF noisy neuron firing
rate (Eq 5, solid line). To compare, the response of a LIF neuron with no noise is shown
by the dotted line. The steady-state rate of the adaptive neuron described in Section 4.3
is shown by red dots, each dot corresponding to one stimulation current amplitude and
being obtained by Monte-Carlo simulation with explicit noise during 2 seconds. The
dashed-dotted line is the threshold-linear approximation with a gain of 0.026 Hz/pA.

function of a HH neuron with a slow potassium A-current, specifically 394

approximating the impact of the cell conductance as a rightward shift in the 395

transfer function. Brizzi et.al. [21] showed that this approximation was justified for 396

spinal motor neurons in vivo, and Persi et al [22] generalized the approach for HH 397

neuron models with current noise. The difference with our interpretation arises 398

from the application of the similarity law (Eq 24), which is exact for the particular 399

noise model (Eq 23) and the LIF neuron. Note, in the aspect of the f/I curve gain 400

problem, we see from Eq 26 that the channel-to-channel independent noise results 401

in shunt-independent gain of f/I curve, i.e. the shunt provides a pure subtractive 402

effect. 403

As shown in the Section 2.3, the quality of these approximations allows to 404

obtain consistent mapping of the model parameters. Note that the choice of a 405

threshold-linear transfer function approximation for the steady-state is not 406

essential for the mapping from the two population to one-population models, nor 407

between the conductance-based to current-based FR models, and thus a more 408

elaborate one dimensional function may be used. However, the threshold-linear 409

approximation not only simplifies these mappings (e.g. solving for νI in 410

Section 2.2.4), but it is also necessary for the final mapping to the classical 411

threshold-linear FR model that is especially amenable to analytical results. 412

Considering the form of the synaptic current and conductance introduced 413

previously, we can simplify the mapping further. Now we explicitly indicate the 414

LIF cell type j. First, we express the threshold voltage of the LIF neuron in terms 415

of its rheobase current ILIF
Off,j and input conductance gL,j : 416

V Th
j = V Rest

j + ILIF
Off,j/gL,j

We now define ∆V Th
ij as the driving force relative to the target’s threshold 417

potential: 418

∆V Th
ij , V Rev

i − V Th
j

= V Rev
i − V Rest

j − ILIF
Off,j/gL,j (28)

where V Rev
i is the reversal potential of synapse type i. With this definition of 419

∆V Th
ij , we introduce the network input, recalling the definitions of Ij and Sj 420
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(Eqs 11-12), and finally rewrite Eq 26 for νLIF
SS,j : 421

νLIF
SS,j(Ij , Sj) ≈ kLIF

j

[
(gΘj + gEj) (VE − V Restj ) + gIj(VI− V Restj )

−
ILIF
Off,j

gL,j
(gΘj + gEj + gIj) − ILIF

Off,j

]
+

= kLIF
j

[ ∑
i=Θ,E,I

gij∆V
Th
ij − ILIF

Off,j

]
+

(29)

2.2.4 Network mapping: Conductance-based two population 422

ring to single population ring 423

We now map the current and conductance inputs Ij(t, θ) and Sj(t, θ) (Eqs 12) of 424

the two population ring model D, to the I(t, θ) and S(t, θ) inputs (Eqs 9,10) of the 425

single population LIF and FR with shunt ring models (models E and F; ref. solid 426

red arrows in Figure 1). This mapping effectively eliminates the explicit inhibitory 427

population, replacing it by an instantaneous linear function of the excitatory 428

activity. Note that the cell models in models E and F are derived from the single 429

compartment excitatory LIF model of model D. 430

The first step is to replace the 2nd-order synaptic kinetics by instantaneous 431

transfer functions, thus synaptic currents and conductances being directly 432

proportional to the effective pre-synaptic rates, according to the steady-state 433

solution for Eq 15, which is: 434

gij(t) = cij ϕij(t) (30)

Now, the time dependence of the input is implicit: 435

Ij(θ) = (VE − V Restj ) (cΘi ϕΘ(θ) + cEj ϕEj(θ)) + (VI− V Restj ) cIj ϕIj(θ)

Sj(θ) = cΘi ϕΘ(θ) + cEj ϕEj(θ) + cIj ϕIj(θ) (31)

Next, we expand Eq 31 for the current input to excitatory neurons, IE(θ), using 436

the pre-synaptic firing rates of the thalamic (ϕΘ, Eq 16) and intracortical (ϕEE 437

and ϕIE, Eq 17) populations: 438

IE(θ) = (VE − V RestE ) cΘE (ϕ0 + ϕ1 cos(θ − θ0)) + (32)

(VE − V RestE ) cEE
1

2π

∫ π

−π
νE(ξ) (1 + qEE cos(θ − ξ)) dξ +

(VI− V RestE ) cIE
1

2π

∫ π

−π
νI(ξ) (1 + qIE cos(θ − ξ)) dξ

We now replace the inhibitory population rate νI in this equation by the 439

steady-state equation for the inhibitory LIF model expressed as a linear function of 440

the excitatory population rate νE, based on three assumptions. First, we assume 441

that the connections between inhibitory neurons in the cortex are local, thus: 442

ϕII(θ) ≈ νI(θ) (33)

Next, we ignore the intrinsic dynamics of the inhibitory population and consider 443

only its steady-state response, thus νLIF
SS,I(θ), furthermore with the assumption 444

that, on average, the inhibitory neurons around the ring are above threshold 445

during stimulus presentation. Using the one dimensional approximation given by 446

Eq 29 for the LIF inhibitory neuron (importantly neglecting the rectification 447

operation because of the above-threshold assumption), Eq 31 for the current term 448

(subsituting ∆V Th
ij according to Eq 29), and the assumption of 449

inhibitory-inhibitory locality (Eq 33), we obtain: 450

νI(θ) = νLIF
SS,I(θ)

≈ kLIF
I

(
∆V Th

EI cΘ ϕΘ(θ) + ∆V Th
EI cEI ϕEI(θ) + ∆V Th

II cII νI(θ) − ILIF
Off,I

)
(34)
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Eq.(34) may then be solved for νI(θ): 451

νI(θ) ≈ k̃LIF
I

(
∆V Th

EI cΘ ϕΘ(θ) + ∆V Th
EI cEI ϕEI(θ) − ILIF

Off,I

)
(35)

where: 452

k̃LIF
I =

kLIF
I

1− kLIF
I ∆V Th

II cII
(36)

The term k̃LIF
I represents the reduction in the effective gain of the inhibitory 453

population because of self-feedback, as such parameterized by the 454

inhibitory-inhibitory pathway parameter cII. Assuming that the reversal potential 455

of the inhibitory synapses is beneath the spike threshold, we note that ∆V Th
II 456

(Eq 28) must be negative, and therefore k̃LIF
I ≤ kLIF

I . 457

Finally, we need to express the effective pre-synaptic rate of the excitatory 458

input to the inhibitory population, ϕEI(θ), in Eq 35 as a linear function of νE(θ). 459

For this we assume that the excitatory activity over the ring can be reasonably 460

approximated by a shifted cosine centered at the stimulus orientation θ0: 461

νE(θ) ≈ νE

(
1 + cos(θ − θ0)

)
where νE = (1/2π)

∫ π
−π νE(ξ)dξ, thus νE(θ) averaged over the ring. Taking into 462

account that: 463

1

2π

∫ π

−π
cos(θ − ξ) cos(ξ − θ0)dξ =

1

2
cos(θ − θ0) (37)

we obtain the following approximation for ϕEI: 464

ϕEI(θ) =
1

2π

∫ π

−π
νE(ξ)

(
1 + qEIcos(θ − ξ)

)
dξ (refer to Eqs 17 and 18)

≈ 1

2π

∫ π

−π
νE

(
1 + cos(ξ − θ0)

)(
1 + qEIcos(θ − ξ)

)
dξ

=
(

1− qEI

2

)
νE +

qEI

2
νE(θ) (38)

We can now re-write Eq 32 for the current IE(θ) as a function of only the 465

excitatory population activity νE(θ), substituting Eqs 16 and 38 for ϕΘ and ϕEI, 466

respectively: 467

IE(θ) = (VE − V RestE ) cΘE

(
ϕ0 + ϕ1 cos(θ − θ0)) + (39)

(VE − V RestE ) cEE
1

2π

∫ π

−π
νE(ξ) (1 + qEE cos(θ − ξ)) dξ +

(VI− V RestE ) cIE
1

2π

∫ π

−π
k̃LIF

I

(
∆V Th

EI cΘ
(
ϕ0 + ϕ1 cos(ξ − θ0)

)
+

∆V Th
EI cEI

((
1− qEI

2

)
νE +

qEI

2
νE(ξ)

)
−

ILIF
Off,I

)
(1 + qIE cos(θ − ξ)) dξ (40)

Again using the relation of Eq 37, we obtain the coefficients Ĩ0,1 and J̃0,1 by 468

comparing Eq 39 with the expression for I(θ) (ref. Eqs 9, i.e. setting I(θ) = IE(θ), 469

with implicit time dependence) : 470

Ĩ0 = (VE − V RestE ) cΘE ϕ0 + (VI− V RestE ) cIE k̃LIF
I

(
∆V Th

EI cΘ ϕ0 − ILIF
Off,I

)
Ĩ1 = (VE − V RestE ) cΘE ϕ1 + (VI− V RestE ) cIE qIE k̃LIF

I ∆V Th
EI cΘ

ϕ1

2

J̃0 = (VE − V RestE ) cEE + (VI− V RestE ) cIE k̃LIF
I ∆V Th

EI cEI

J̃1 = (VE − V RestE ) cEE qEE + (VI− V RestE ) cIE qIE k̃LIF
I ∆V Th

EI cEI
qEI

2
(41)
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These equations provide the current terms in Eq 9, with the corresponding 471

conductance terms in Eq 10 given by: 472

K̃0 = cΘE ϕ0 + cIE k̃LIF
I

(
∆V Th

EI cΘ ϕ0 − ILIF
Off,I

)
K̃1 = cΘE ϕ1 + cIE qIE k̃LIF

I ∆V Th
EI cΘ

ϕ1

2

L̃0 = cEE + cIE k̃LIF
I ∆V Th

EI cEI

L̃1 = cEE qEE + cIE qIE k̃LIF
I ∆V Th

EI cEI
qEI

2

(42)

Note that the CIE term in the above expression for Ĩ0 is not, in fact, driven by 473

thalamic input (i.e. the thalamic firing rate term ϕ0), but rather is constant. 474

Nevertheless, the formats of the defining equations for the inputs (Eqs 9 and 10) 475

that distinguish between terms integrated with the network activity, from those 476

that are “external”, oblige the inclusion of the CIE in the “thalamic” component. 477

In comparison to the thalamic terms, the input “driven” by intracortical activity is 478

proportional to both J̃0,1 and L̃0,1, i.e. there is no non-driven, constant component. 479

To conclude, Eqs 41 and 42 constitute the mapping between the 480

conductance-based two population ring models with 2nd-order synapses (models B, 481

C and D) to the conductance-based single population ring models with 482

instantaneous synapses (LIF model E, and shunt FR model F). 483

2.2.5 Network mapping: Conductance-based single population 484

ring to current-based FR ring 485

The final mapping is between the current and conductance inputs I(t, θ) and 486

S(t, θ) of the conductance-based ring models E and F, to the current input I(t, θ) 487

(Eq 3) of the current-based FR ring model G (dashed blue arrows in Figure 1) 488

As before we exploit the mapping of the two-dimensional steady-state 489

expression for the LIF neuron, νLIF
SS (I, S), to the one dimensional threshold-linear 490

approximation (Eq 26). Here, this step allows the elimination of the explicit 491

conductance input, therefore to obtain the stationary solution νFR
SS (I(t, θ)) of the 492

current-based FR model (Eq 1). As mentioned earlier, the conductance-based 493

single population ring models reference the single compartment excitatory LIF 494

model parameterized by kLIF
E and ILIF

Off,E (Section 2.2). Thus, recalling the 495

expression for νFR
SS given by Eq 26, and expanding I(t, θ) and S(t, θ) (ref. Eqs 9 496

and 10) we obtain 497

νFR
SS (I(t, θ)) ≈ kLIF

E

[
I(t, θ) − ILIF

Off,E

(
1 + S(t, θ)/gE

L

)]
+

= kLIF
E

[
Ĩ0(t) + Ĩ1(t) cos(θ − θ0(t)) +

1

2π

∫ π

−π
(J̃0 + J̃1 cos(θ − ξ)) ν(t, ξ) dξ −

ILIF
Off,E − ILIF

Off,E/g
E
L

(
K̃0(t) + K̃1(t) cos(θ − θ0(t)) +

1

2π

∫ π

−π
(L̃0 + L̃1 cos(θ − ξ)) ν(t, ξ) dξ

)]
+

(43)

Note that, unlike the previous use of the one-dimensional transfer function 498

approximation for eliminating an explicit inhibitory population, here there is no 499

assumption that the input is suprathreshold. Comparing Eq 3 for I(t, θ) with 500

Eq 43, we obtain: 501

I0 = kLIF
E (Ĩ0 − K̃0 I

LIF
Off,E/g

E
L − ILIF

Off,E)

I1 = kLIF
E (Ĩ1 − K̃1 I

LIF
Off,E/g

E
L )

J0 = kLIF
E (J̃0 − L̃0 I

LIF
Off,E/g

E
L )

J1 = kLIF
E (J̃1 − L̃1 I

LIF
Off,E/g

E
L )

(44)
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with the I and S terms on the right-hand side defined by Eqs 41 and 42. 502

These relationships complete the mapping to the current-based FR ring 503

model G. 504

2.3 Simulations 505

We now present comparative simulations of the different models described in 506

Section 2.1 and responding to to the same input. These simulations demonstrate 507

the consistency of the mapping expressions, show how different behaviours of the 508

models reveal implications of each step of the reduction, and highlight essential 509

mechanisms for certain signatures of responses in the visual cortex. 510

We first set the parameters of the most complex model with excitatory and 511

inhibitory populations distributed in 2D cortical space (model A), according to the 512

experimental literature on single neuron properties, synaptic kinetics and 513

connectivity (Section 4.6). The parameters of the remaining models (Section 4.6) 514

are then calculated according to the formulas derived in Section 2.2. 515

2.3.1 Overall transient dynamics 516

We compared responses of the models to a specific visual stimulus, focusing on the 517

excitatory population firing rate. The initial conditions were the steady-state in 518

response to a homogeneous background input of “contrast” or strength ϕ0. The 519

visual stimulus of contrast ϕ1 is presented at t = 0ms with a time-dependent 520

orientation (e.g. oriented bar, grating, edge, or more complicated scene) of 0◦ at 521

t = 0ms, shifting to 45◦ at t = 100ms. For model A, we simulated the response of 522

4 identical hyper-columns (Figure 2), with an identical input for each. This 523

stimulus provides the fundamental ”step response” of the system from the 524

background state, followed by a step response in the orientation domain, for 525

example following an abrupt change in the visual scene during a saccade. 526

We now consider the overall dynamics of the responses of the 2D model A. The 527

spatial distributions of the excitatory population firing rate at different times are 528

shown in Figure 6. Initially, the modeled cortical domain responds with a firing 529

activity in the orientation columns that correspond to maximal stimulus (frames 530

at 5-20 ms). The maximum response appears at about 20 ms; its location 531

corrsponding to the stimulus orientation. The activity is homogeneously 532

distributed along a radius of a hypercolumn. At later stages, the firing rate 533

decreases (frames at 30-50 ms) with a peak located near the pinwheel center 534

(frames at 50-90 ms). The input changes its orientation at 100 ms from 0◦ to 45◦. 535

The activity rapidly rotates toward the column preferring the orientation of the 536

stimulus (frames at 105-110 ms), and even beyond (frames at 120-130 ms; see also 537

Section 2.3.5). Later, the activity settles again in the column preferring the 538

orientation of the stimulus with a peak near the pinwheel center (frames at 539

150-190 ms), similar to the activity in response to initial stimulus (compare to 540

frames at 50-90 ms). The time-dependent profiles of the rate and voltage for the 541

populations on a ring of radius 2/3 R centered on a pinwheel (marked as a circle 542

in Figure 6), thus as a function of preferred orientation, are shown in Figure 7 543

(excitatory and inhibitory populations) and Figure 8A (excitatory population). 544

The activity of the interneuron population is stronger and more widely distributed 545

in orientation space than that of principal cells, as seen from comparison of 546

Figure 7B to A, and Figure 7C to the first panel of Figure 8. This activity 547

provides broad cortical inhibition by shunting the excitatory neurons. As a result, 548

the excitatory activity localizes in small cortical zones as shown in frames at 50, 549

90, 150 and 190 ms in Figure 6, as well in the snapshots of the voltage and rate as 550

a function of distance from the pinwheel center, shown in Figures 7D and 7E, 551

respectively. Importantly, the steady-state location of the maximum activity in 552

each hypercolumn corresponds to the orientation of the stimulus, and the firing is 553

localized in 2D and orientation coordinates, i.e. the cortical response is tuned. 554
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Fig 6. The response of model A (HH 2E EI Exp 2D) over the cortical surface (1mm2

containing 4 hypercolumns; the dots mark the pinwheel centers) to a 0◦ oriented
stimulus presented at t = 0, and shifting to the 45◦ orientation at t = 100ms. The circle
at the lower left quadrant of the input maps correspond to the activity profile of this
model shown in the first panel of Figure 8.
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Fig 7. Evolution of voltage and firing rate profiles of model A (HH 2E EI Exp 2D) as a
function of preferred orientation, in response to the stimulus sequence described in
Figure 6. A, sub-threshold voltage for the excitatory population; B, sub-threshold
voltage for the inhibitory population; C, inhibitory population firing rate; D, excitatory
population membrane potential across horizontal line across the cortical surface passing
through two pinwheel centers at two time moments t = 90 and 190ms, corresponding to
the snapshots in Figure 6; E, excitatory population firing rate across the same line at
the same time moments.
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Fig 8. Responses of a hypercolumn as a function of preferred orientation to the
stimulus sequence described in Figure 6, for the excitatory population of the various
models listed in Table 1 (ref. ”Thalamic“ input panel). The activity for model A
corresponds to the circle indicated in Figure 6.
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The population rate as function of orientation and time for the remaining 555

models is given in Figure 8. When considered along a ring centered on a pinwheel, 556

the dynamics of the 2D adaptive, two population model A, is similar to the 557

adaptive ring geometry model B, although the full dynamics of the 2D model 558

depend on the radius of the ring, as will be discussed below. This similarity is 559

achieved due to the mapping performed in Section 2.2.1. Both exponential and 560

cos-shaped profiles of connection spread on a ring (Figure 3B) result in similar 561

solutions (data not shown) seen in Figure 8 for model B. In contrast, the transient 562

responses change significantly between the adaptive HH models A and B, and the 563

non-adaptive LIF model C, primarily due to an overall increase in the activity in 564

the latter model. Damped oscillations are observed to varying degrees for 565

models A-D, being strongest for the adaptive models, and quite weak for the 1 566

compartment LIF EI model D. Thus, steady-state-like behaviour in the adaptive 567

models A and B is seen only after 200ms. The non-adaptive models C and D show 568

steady-state-like behaviour within approximately 100ms, thus observable for both 569

stimulus orientations. 570

The reduction step from the 2-compartment LIF neurons of model C to the 571

1-compartment LIF neurons of model D, which reduces the order of the system of 572

equations, has a more striking effect on the transient response. In particular, as 573

noted above, oscillations following stimulus transitions are substantially reduced 574

for the 1-compartment LIF model. A larger propensity to oscillations of the higher 575

order model C in comparison to the lower order model D is consistent with the 576

observation of a faster voltage response of a spatially distributed neuron to changes 577

in synaptic current due to the electrotonic properties of the implicit cable structure. 578

Following the change in the stimulus at 100ms, both models show a continuous 579

shift of the response in orientation space, or a virtual rotation, as discussed below. 580

The subsequent model E incorporates two more simplifications by reducing the 581

number of populations from two to one, and assuming instantaneous synaptic 582

kinetics. These lead to quite different transient behavior, with a much more rapid 583

establishment of the steady states, and the disappearance of oscillations and 584

virtual rotation. Why is the response of model E much more rapid than the 585

previous in models, even though the essential cellular time constant is similar, i.e. 586

given by the membrane time constant which scales the rate of the voltage 587

integration in response to a change in the input current? To explain, we note that 588

the firing rate of model E effectively depends on both the voltage relative to 589

threshold as well as the change in the voltage [23]. The result is a rapid response 590

of the population to an abruptly changing stimulus [24], [25] and explains the 591

near-instantaneous response in our simulations. 592

Further reduction to the FR-model with shunt, model F, with its time constant 593

equal to the membrane time constant, leads to the delays of the responses. The 594

reduction implies the substitution of the statistically precise consideration of 595

neuronal states in each population by a statistically approximate approach. 596

Namely, the Fokker-Planck-based and CBRD-based methods of models A-D (see 597

Methods) are substituted by the FR-model that is strictly valid only at 598

steady-states of a population. For nonstationary regimes the FR-model provides 599

an approximation that filters the firing rate with some characteristic time constant 600

of the filtering. By chance, given the various parameters of the models, the time 601

constant of model F is close to the synaptic time constants, thus the transient 602

solution is again as smooth as the solutions of models A-D. The small residual 603

difference between the responses of the FR-ring models with and without shunt 604

(models F and G) is explained by the approximation of the dependence of the rate 605

on the current and conductance by the piecewise linear function (Eq 26). 606

2.3.2 Sharpening of output tuning vs. input tuning 607

Our analysis continues with the steady-state response of the networks, taken as 608

the activity profiles at t = 300 ms, in terms of the sharpening between input and 609
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output, and of contrast-invariance of the output tuning curves. 610

A fundamental aspect of the orientation selectivity in primary visual cortex is 611

that this functional property is essentially absent in individual inputs from the 612

thalamus. Various theories have been proposed to account for the emergence of 613

tuning in cortical neurons, but a common assumption is that there is an initial 614

bias in the spatial retinotopic footprint of the feedforward pathways of cortical 615

neurons, and this bias is strengthened in terms of a sharper orientation tuning in 616

the cortical receptive fields ( [26], [27], [28]). In the context of the models 617

described here, this bias is encapsulated by the constant plus cosine form of the 618

thalamic input. 619

We consider this input-output sharpening by examining the steady-state 620

solutions of the models (Figure 9). All the models show orientation tuning 621

sharper than the input tuning; furthermore, the sharpening increases as the 622

models simplify. 623
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Fig 9. The tuning curve for the input compared to steady-state solutions for the firing
rate calculated for each of the models of Table 1, obtained as cross-sections at
t = 300ms of the plots shown in Figure 8 (un-scaled in A, and normalized in B). The
profile with the smallest amplitude corresponds to the simulation by the ”adaptive”
firing-rate ring model G as described in the text and indicated in Figure 10. The
half-widths at half-maximums are 38◦ for model A, 36◦ for model B, 31◦ for model C,
28◦ for model D, 27◦ for models E and F, 24◦ for model G, and 22◦ for model G with
the gain rescaled to account for adaptation.

The canonical FR ring model G has provided a semi-analytic framework for 624

accounting for this sharpening in terms of the strength and tuning of intracortical 625

connectivity. In this model the non-tuned inhibition is effectively stronger as J0 626

decreases, whereas the tuned excitation is stronger as J1 increases. As presented 627

above, the derived values for J0 and J1 correspond to the ”marginal” domain 628

(Figure 10) which in turn predicts enhanced output sharpening. In contrast, while 629

the analysis described above suggests that the 2D HH model A is operating in the 630

homogeneous domain, cell thresholds and tuned ”mexican hat” inhibitory and 631

excitatory populations (Figures 7) still allow for input-output sharpening. The 632

prediction that adaptation underlies a shift from the marginal to the homogoneous 633

regime of model A during the response suggests that sharpening of the phasic 634

response should be greater than the tonic response, as reported by measurements 635

of orientation-tuning dynamics in the macaque [29]. 636

The impact of spike threshold is also seen in the simulations. When comparing 637

subthreshold voltage and spikes, experimental investigations have reported that 638

the tuning of the former is broader than the latter [30], [31], [32], [28], [33] et al., 639

which can be explained simply by firing threshold. This behaviour is replicated in 640

the the HH and LIF models which explicitly consider intracellular dynamics and 641

spike threshold (compare for example the first panel in Figure 8, and Figure 7, for 642
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Fig 10. The diagram of the steady-state solutions of the canonical firing-rate ring
model G on the plane of its parameters J0 and J1 (adapted from [2]). Amplitude
instability corresponds to the state where the activity in the ring increases without any
possibility to regulate it. Homogeneous phase (“feedforward” hypothesis) corresponds to
a state of weak interactions. The activity in the ring follows directly from the thalamic
input, apart from a threshold non-linearity. Marginal phase (“recurrent” hypothesis)
corresponds to a state where only a tuned activity profile is stable, partially but not
completely determined by the input shape and dynamics. This state occurs for
sufficiently strong recurrent tuned inputs (J1) and, to a lesser extent, with sufficiently
strong inhibition (J0). The small square marks the parameters found by the mapping
expressions for model G (I0 = −26.5, I1 = 44, J0 = −0.52, J1 = 2.8). The small circle
in the homogeneous state corresponds to a variation of model G where the value of kLIFE

was derived from the adaptive HH excitatory cell model (I0 = −3.55, I1 = 7.4,
J0 = −0.063, J1 = 0.46).

the 2D HH model A). 643

Figure 9 also confirms the sharp increase in the response with the removal of 644

adaptation due to slow M- and AHP-channels, and thus the large increase in 645

excitatory cell gain as discussed earlier (compare models A and B, with models C 646

through G). Indeed, the stationary solutions of the non-adaptive models are quite 647

similar, supporting the assumptions made in Section 2.2.4. 648

Note that the 2D and ring HH adaptive models A and B give small amplitude 649

steady-state profiles in orientation space (Figure 9A) that are qualitatively 650

consistent with the solution for the “adaptive” firing-rate ring model described 651

above. However, quantitative comparison in this case, especially for output 652

sharpening, is problematic, mainly because for the adaptive neuron the 653

rate-current-conductance function is no longer scaled by Eq 24, and is not 654

approximated by Eq 29. 655

2.3.3 Contrast invariance 656

Contrast invariance, which is the qualitative maintenance of the output tuning 657

sharpening with respect to the input tuning over a range of input strengths, is 658

another classical property of neurons in primary visual cortex described by 659

experimental and theoretical studies [34]. Attractor dynamics of the neuronal 660

network have been proposed as the underlying mechanism for this functional 661

property; thus the marginal domain of the canonical FR ring-model model G 662

predicts contrast-invariance, and this property is conserved for the LIF-based 663

ring-models E, D and C. In comparison, the fact that the adaptive version of the 664

G model is in the homogeneous domain suggests that the adaptive models A and 665

B will not show contrast-invariance. Figure 11 confirms these predictions for 666
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models A and D. 667

The models predict therefore that firing adaptation of excitatory neurons is 668

sufficient to cause a dynamic qualitative evolution of the visual response, 669

specifically that contrast-invariance should be observed essentially during the 670

transient phase of visual reponses, being reduced or absent during adapted (long 671

term) responses. Similarly for input-output sharpening, the experimental 672

prediction is thus that the phasic response provides the basis for measured 673

contrast-invariance; on the other hand considering the tonic response alone will 674

show reduced or absent contrast-invariance. 675
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Fig 11. Contrast invariance for the excitatory population firing rate (red) in models D
(left) and A (right), compared with the responses (green) of feed-forward versions of
each model (gEE = gIE = 0) to distinguish the contribution of intracortical pathways.
The “weak” and “high” contrast values were 0.4 and 0.8, respectively. As described in
the text, the higher gain of model D as compared to model A, as seen in the different
response magnitudes, account for the marginal phase behavior of the former, thus
contrast-invariance, and the homogeneous phase behavior of the latter, thus no
contrast-invariance. The intracortical connections serve to increase input-output
sharpening for both models.

2.3.4 Virtual rotation 676

In their analysis of the canonical FR ring-model, Ben-Yishai and co-workers [1] 677

introduced the concept of virtual rotation in the marginal phase regime, defined as 678

the non-instantaneous movement of the peak activity following a new stimulus. 679

They suggested that virtual rotation may be implicated in the psychophysical 680

phenomena of mental rotation, the perception of three dimensional attributes after 681

discrete views of an object from different angles. From the point of view of 682

analysis, virtual rotation is one example of attractor dynamics, which in turn may 683

provide a fundamental signature of different cortical architectures. 684

The stimulus sequence that we use here is particularly appropriate for 685

examining this phenomenon, and can be appreciated in Figure 12, which traces the 686

center of mass of the population firing rate over time. As expected given its 687

position in the marginal domain, the canonical FR ring model G here shows 688

virtual rotation, thus a time constant for the shift of orientation preference of 689

approximately 30ms, as do the LIF and FR-w/shunt models D, E and F. This 690

effect is weaker, thus the shift in orientation faster, in the non-adaptive 2 691
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compartment LIF model C, and is essentally absent in the adaptive HH models A 692

and B. 693
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Fig 12. The traces of the center of mass of the population firing rate over time,
calculated for all models, according to Figures 7 and 8. Note the tilt after-effect, thus
an overshoot of the response tuning, and virtual rotation, thus a lag in the tuning, after
the abrupt shift in stimulus orientation at 100ms.

2.3.5 Tilt after effect 694

The tilt after effect [35], [36], [37] refers to a perceptual bias of an oriented stimulus 695

away from the orientation of a preceding stimulus. Electrophysiological studies 696

indicate that this effect arises, at least in part, from primary visual cortex [38], [39], 697

and this hypothesis has been further studied with models of V1 (e.g. [40]). 698

As the case for virtual rotation above, the stimulus sequence examined here is 699

well suited for studying the tilt after effect. In our models this effect is seen to 700

varying degrees in Figure 8, as an overshoot of the maximum activity beyond the 701

orientation of the second stimulus. Specifically, this effect is seen clearly between 702

roughly t = 110 and 150 ms in the 2D and ring adaptive HH models A and B, 703

whereas removing adaptation in the subsequent LIF ring model C suppresses the 704

effect. The physiological studies of Dragoi and colleagues [41] have confirmed a 705

crucial role of adaptation both for suppressing the response to the new stimulus on 706

the side near the first stimulus, and shifting its peak activity. Inspired by these 707

findings, the modeling study of Jin et al [40] focused in part on the impact of 708

adaptation mechanisms on the time scale of minutes. This can be compared to the 709

adaptation mechanisms used in the present study (M and AHP currents) which 710

have time scales on the order of one second or less; indeed, as Jin et al note, fast 711

adaptation (as studied by [42], [41], [43], [44]) gives a weak tilt after effect [45]. 712

Nevertheless, the qualitative demonstration of the effect in the models examined 713

here is consistent with additional and longer lasting adaptation mechanisms, and 714

provide a basis for exploring this phenomena with biophysically-constrained 715

population models. 716

2.3.6 Spatial distribution effects 717

The consideration of a 2D cortical geometry can be related to two aspects of the 718

model behaviors shown here. First, in the full 2D model A there is a gradient as a 719

function of distance from the pinwheel centers in the steady-state or 720

quasi-steady-state responses to both stimulus orientations, thus at t = 90ms and 721

t = 190ms (Figures 6 and 7). This effect can be explained by the distribution of 722
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inhibition along the vector towards a pinwheel center. Thus, neurons far from the 723

pinwheel center receive nearly circularly symmetric inhibition, whereas those closer 724

to the center receive inhibition increasingly limited to the side away from the 725

center. Of course, as stated this effect derives directly from the assumption of 726

homogenous cortical connectivity in the model, and thus may be altered with a 727

different connection scheme. Thus the model predicts higher activity near 728

pinwheel centers if the input connections are homogeneously distributed along the 729

radius on a scale of a single pinwheel. Second, the tilt after-effect is more 730

pronounced for neurons remote from the pinwheel centers, as seen from curved 731

isolines in the frames at 110, 120, 130 and 150ms. By construction, these features 732

cannot be reproduced in any of the ring models. 733

In summary, the residual differences between the adaptive HH 2D model A at 734

a fixed pinwheel radius, and it’s immediate ring version, the adaptive HH ring 735

model B, are most likely due to the qualitative reduction of the 2D to 1D 736

geometry as well as quantitative approximation of the synaptic projections to the 737

ring by the cosine profile. 738

2.4 Parameter analysis of the ring models 739

We now present an analysis and implications of the mapped parameters of the 740

reduced ring models, especially the canonical ring model G, in terms of the 741

original biophysical parameters of the most detailed 2D model A. 742

2.4.1 Reformulation of the mapping expressions 743

For the sake of analysis, we define several terms to simplify the expressions 744

Eqs 41,42,44, in a manner that collates parameters of the different circuit 745

pathways. 746

We first develop expressions for the Ĩ0,1, J̃0,1, K̃0,1 and L̃0,1 terms in Eqs 9 747

and 10 that define the single population conductance-based rings (models E and F, 748

repeated here for convenience): 749

I(t, θ) = Ĩ0(t) + Ĩ1(t) cos(θ − θ0(t)) +
1

2π

∫ π

−π
(J̃0 + J̃1 cos(θ − ξ)) ν(t, ξ) dξ

S(t, θ) = K̃0(t) + K̃1(t) cos(θ − θ0(t)) +
1

2π

∫ π

−π
(L̃0 + L̃1 cos(θ − ξ)) ν(t, ξ) dξ

Referring to Eq 41, for the thalamic input coefficients Ĩ0 and Ĩ1, we define: 750

AEE , (VE − V RestE ) cΘE

BIE , (VI− V RestE ) cIE k̃LIF
I ∆V Th

EI cΘ

CIE , (VI− V RestE ) cIE k̃LIF
I ILIF

Off,I

(45)

These terms characterize specific paths within the network. First, AEE describes 751

the explicit feedforward excitatory path from the thalamus. Recalling that k̃LIF
I 752

(Eq 36) reflects the effective gain of the inhibitory population (less than the actual 753

gain of these neurons because of inhibitory-inhibitory feedback), BIE describes the 754

concatenation of the implicit inhibitory feedforward and recurrent connections, 755

and CIE characterizes the implicit inhibitory recurrent connections. 756

We define similar terms for the intracortical coefficients J̃0 and J̃1: 757

DEE , (VE − V RestE ) cEE

EIE , (VI− V RestE ) cIE k̃LIF
I ∆V Th

EI cEI

(46)

Note the similarities between DEE and AEE, and between EIE and BIE, 758

respectively, in each case differing only by the final cij term characterizing the 759

source pathway. Thus, DEE describes the explicit recurrent intracortical excitatory 760
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path, and EIE describes the concatenation of the implicit inhibitory and excitatory 761

recurrent connections of the conductance-based single population models. 762

Using these definitions, we now re-arrange Eqs 41: 763

Ĩ0 = ϕ0 (AEE + BIE) − CIE

Ĩ1 = ϕ1

(
AEE +

qIE
2
BIE

)
J̃0 = DEE + EIE

J̃1 = qEE DEE +
qIEqEI

2
EIE

(47)

Likewise, referring to Eq 42, the corresponding conductance terms are given by: 764

K̃0,1 = Ĩ0,1|∆V1

L̃0,1 = J̃0,1|∆V1

(48)

where for convenience, we now introduce the notation “F|∆Vα ” such that all the 765

∆V terms in some function F are set to α. For the case of Eq 48 (and later 766

equations) we set α = 1 (unit-less) to obtain a shorthand expression for the 767

synaptic conductance. 768

We now complete the mapping by expressing the I0,1 and J0,1 terms of the 769

current-based ring (model G) directly in terms of the biophysical parameters 770

(Eq 3, repeated here for convenience): 771

Iring(t, θ) = I0(t) + I1(t) cos(θ − θ0(t))

+
1

2π

∫ π

−π
(J0 + J1 cos(θ − ξ)) ν(t, ξ) dξ

We first introduce variations on the previously defined terms (Eqs 45 and 46) 772

characterizing specific pathways by replacing the leading (V Rev
i − V Rest

j ) terms 773

with corresponding ∆V Th
ij terms: 774

ATh
EE , AEE|∆VTh = ∆V Th

EE cΘE

BTh
IE , BIE|∆VTh = ∆V Th

IE cIE k̃LIF
I ∆V Th

EI cΘ

CTh
IE , CIE|∆VTh = ∆V Th

IE cIE k̃LIF
I ILIF

Off,I

DTh
EE , DEE|∆VTh = ∆V Th

EE cEE

ETh
IE , EIE|∆VTh = ∆V Th

IE cIE k̃LIF
I ∆V Th

EI cEI

(49)

Finally, considering Eqs 44 and 47, we obtain: 775

I0 = kLIF
E

(
ϕ0

(
ATh

EE + BTh
IE

)
−
(
CTh

IE + ILIF
Off,E

))
I1 = kLIF

E

(
ϕ1

(
ATh

EE +
qIE
2
BTh

IE

))
J0 = kLIF

E

(
DTh

EE + ETh
IE

)
J1 = kLIF

E

(
qEED

Th
EE +

qIEqEI

2
ETh

IE

)
(50)

Note in particular that the pathway identification with the specific terms AEE, 776

BIE, CIE, DEE and EIE of models E and F, as described in Section 2.2.4, hold 777

precisely for the corresponding FR ring terms ATh
EE, BTh

IE , CTh
IE , DTh

EE and ETh
IE of 778

model G. 779
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2.4.2 Feedforward inhibition 780

Conceptually, one can consider distinguishing functional excitatory and inhibitory 781

synaptic pathways in terms of their thalamic, or feedforward, component, versus 782

their intracortical component. In this context, the fact that there are no 783

anatomical inhibitory connections from the thalamus has led to the assumption 784

that a population of cortical inhibitory neurons, driven primarily by thalamic 785

input, act as a surrogate for a true feedforward inhibitory pathway. The mapping 786

to the FR ring model G allows a quantitative interpretation of this assumption. 787

We recall that in the original formulation of the canonical ring model, the I0 788

and I1 terms (Eq 3) describe the thalamic input. The mapping expressions for 789

these terms in Eqs 50, specifically the BTh
IE term for the FR ring, provide an 790

explicit quantitative definition of so-called “feedforward inhibition”: 791

BTh
IE = ∆V Th

IE cIE k̃LIF
I ∆V Th

EI cΘ

Recalling the definition of ∆V Th
ij given by Eq 28, we see that BTh

IE is negative 792

because of ∆V Th
IE . Notably, this characterizes the component of the functional 793

thalamus-driven pathway, allied with cortically-driven inhibition (parameterized by 794

ETh
IE ), that competes against feedforward and intracortical excitation. 795

Finally, as seen in Eqs 50, the relative strength of the un-tuned versus tuned 796

components of the feedforward inhibition depends on the tuning of the 797

intracortical inhibitory-excitatory pathway, parameterized by qIE. 798

2.4.3 Contrast and tuning of thalamic input 799

We now compare the thalamic input across the models, characterizing them in 800

terms of a “contrast” parameter Ω and a tuning parameter Γ. We define Ω as the 801

average strength of the input to the network, thus across orientation space. The 802

response of many visual neurons is strongly related to the visual contrast of the 803

stimulus, e.g. the response scales with the amplitude of a grating, after adaptation 804

to its average value. The tuning parameter Γ characterizes the orientation 805

dependence of the retino-geniculo-cortical, thus thalamic, pathway to the cortex. 806

Indeed, as noted before, this pathway is explicitly established by the constant plus 807

cosine form of thalamic input for all the models. For the two population models 808

driven by thalamic firing rates, we have: 809

Ωϕ = ϕ0

Γϕ = ϕ1/ϕ0

(51)

Given that firing rates must be non-negative, note that the constant plus cosine 810

form (1 + cos(θ)) imposes the constraint 0 ≤ Γϕ ≤ 1. 811

We follow the same form for defining input contrast and tuning of the single 812

population conductance-based ring models, but now introducing separate 813

definitions for the current and conductance inputs: 814

ΩI
I,S = Ĩ0

ΓI
I,S = Ĩ1/Ĩ0

ΩS
I,S = ΩI

I,S|∆V1 = K̃0

ΓS
I,S = ΓI

I,S|∆V1 = K̃1/K̃0

With these definitions, we now establish their relation with the contrast and 815

tuning of the thalamic firing rate input for the two population models. Expanding 816

Ĩ0,1 (ref. Eqs 47), and considering that ϕ1 = ΓϕΩϕ : 817

ΩI
I,S = Ĩ0 = ϕ0 (AEE + BIE) − CIE = Ωϕ (AEE + BIE) − CIE

ΓI
I,S = Ĩ1/Ĩ0 =

ϕ1

(
AEE + qIE

2
BIE

)
ϕ0 (AEE + BIE) − CIE

= Γϕ

(
Ωϕ
(
AEE + qIE

2
BIE

)
Ωϕ (AEE + BIE) − CIE

)
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We see that there is not a one-to-one correspondance between the measures for the 818

different architectures. First, for zero “true” thalamic input defined by firing rates, 819

the equivalent contrast of the current and conductance inputs is −CIE and 820

−CIE|∆V1 , respectively, which reflect the subthreshold constant terms that result 821

from eliminating the inhibitory population. Second, these offsets make the tunings 822

of the current and conductance inputs dependent on the contrast of the thalamic 823

firing rates, whereas in princple tuning is defined purely by anatomical 824

connectivity, regardless of contrast. Finally, the coefficients for the input rates ϕ1 825

and ϕ0 in the tuning expressions are not equal unless BIE = BIE|∆V1 = 0 (e.g. zero 826

thalamic input to the inhibitory population of the two population models, thus 827

cΘ = 0). 828

If we assume that inhibition is purely shunting (VI = V Rest and therefore 829

BIE = CIE = 0), then the contrast and tuning for the current input, at least, 830

simplifies: 831

ΩI
I,S = Ĩ0 = ϕ0AEE = ΩϕAEE

ΓI
I,S = Ĩ1/Ĩ0 =

ϕ1AEE

ϕ0AEE
=

ϕ1

ϕ0
= Γϕ

In this case, compared to the two population models A-D, we see that the 832

“contrast” of the conductance-based single population models E and F are the same 833

apart from a scaling term, and more importantly the tunings are identical. 834

We now consider contrast ΩFR and tuning ΓFR for the canonical FR ring 835

model G, again following the definitions for the other models: 836

ΩFR = I0

ΓFR = I1/I0
(52)

To simplify the previous expressions for I0,1 (ref. Eqs 50), we define: 837

A0 = kLIF
E

(
ATh

EE + BTh
IE

)
B0 = kLIF

E

(
CTh

IE + ILIF
Off,E

)
A2 = kLIF

E

(
ATh

EE +
qIE
2
BTh

IE

)
Applied to the expressions for I0 and I1, we obtain: 838

I0 = ϕ0A0 − B0

I1 = ϕ1A2

We re-express these equations, now in terms of the original definitions of contrast 839

and tuning (Eq 51): 840

I0 = ΩϕA0 − B0

I1 = ΓϕΩϕA2

Given the definitions of contrast and tuning for the canonical FR ring (Eqs 52), we 841

obtain: 842

ΩFR = ΩϕA0 − B0

ΓFR = Γϕ
ΩϕA2

ΩϕA0 −B0

As before with the input terms of the conductance-based single population models 843

(except for the case of pure “shunting” inhibition), the contrast of the input to the 844

FR ring model is a non-linear function of the contrast as defined for the original 845

two population models. 846

April 16, 2021 31/48

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.28.441749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441749
http://creativecommons.org/licenses/by/4.0/


We can supply some constraints on A0 and A2 by asserting that intracortical 847

connection weights are non-negative, thus for the constant plus cosine 848

approximation 0 ≤ qi,j ≤ 1. This gives A0 ≤ A2, and therefore: 849

ΓFR ≥ Γϕ

→ ΓϕA2

A0
, ΩϕA0 >> B0

Note that ΓFR diverges as Ωϕ approaches B0/A0, which in turn is equal to the 850

threshold firing input: 851

B0/A0 =
CTh

IE + ILIF
Off,E

ATh
EE + BTh

IE

= ϕ0,Th
FR

The distortion of the input contrast and tuning when compared to the thalamic 852

firing rates is due to B0, which encapsulates the impact of the original two firing 853

thresholds (of the HH excitatory and inhibitory neurons) on the final mapping. As 854

one exercise, note that since CTh
IE ∝ ILIF

Off,I, at the limit of (ILIF
Off,E, I

LIF
Off,I) = 0, then 855

B0 = 0. 856

Of particular interest are the quantitative values of the input to FR ring 857

model G, specifically that there is a strong negative current away from the 858

preferred orientation. This aspect runs contrary to the general assumption of the 859

canonical FR ring model, thus that the excitatory-only thalamic pathway to the 860

cortex constrains the (current) input to this model to be non-negative. This result 861

arises from the effect of the cortical connections on the thalamic input terms as 862

defined by the mapping. This is first seen in the mapping of the two population 863

conductance models to the single population conductance models, specifically as 864

expressed in the equations describing the cortical input, thus for Ĩ0,1 (Eqs 41) and, 865

by extension, K̃0,1. In particular, these expressions include negative terms that 866

depend on the strength of the intracortical connections between inhibitory and 867

excitatory populations, thus directly proportional to cIE (for both Ĩ0,1 and K̃0,1) 868

and the weighting parameter qIE for the cosine approximation (for Ĩ2 and K̃2). 869

Note that these same dependencies hold for the intracortical connectivity 870

parameters J̃0,1 (ref. Eqs 41) and by extension L̃0,1. This ”crosstalk“ onto the 871

thalamic input is conserved in the final mapping between the single population 872

conductance models and the current-based FR ring, as seen in the equations for 873

I0,1 (ref. Eqs 44) which depend directly on Ĩ0,1 and K̃0,1. As with the single 874

population conductance models, there are similar dependencies for the 875

intracortical parameters J0,1 (Eqs 44), which depend directly on J̃0,1 and L̃0,1. 876

We propose that the quantitative mapping developed here provides a novel 877

explicit interpretation of the concept of “feedforward-inhibition”, as introduced in 878

Section 2.4.2, thus corresponding to the negative input current shown here. 879

2.4.4 Intra-cortical connections and the dynamical steady-state 880

behaviour of the network 881

We have shown that the diagram of the steady-state solutions mapping formulas 882

provide an interpretation of the coefficients J0 and J1 of the FR ring model in 883

terms of quantitative biophysical, thus synaptic and neuronal, parameters. This 884

then allows an analysis in terms of the phase-plane of the FR model, as described 885

by [2], shown in Figure 10. From this plot we see that the parameter values of the 886

derived ring model G place it in the marginal phase, and thus allowing for 887

attractor dynamics. 888

The mapping expressions (Eqs 50) show that all the firing-rate ring model 889

parameters, I0, I1, J0 and J1, are proportional to the gain of the excitatory 890

neuron population, kLIF
E . This underlines the fundamental role of kLIF

E , a purely 891

local cellular, and not network, property, with respect to the phase space of the 892

canonical FR model: a linear trajectory in this space necessarily begins in the 893

homogeneous regime (which includes the origin). Depending on the relative values 894
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of the network components DTh
EE and ETh

IE (parameterizing the recurrent excitatory 895

and inhibitory pathways, respectively, and weighted by the qij parameters in the 896

case of J1), the trajectory subsequently passes either into the marginal or unstable 897

regime and remains there, or first into the marginal and then the unstable regimes. 898

As constrained by the biophysical parameters, this dependence is significant 899

across the model spectrum described here, most crucially on J1. Indeed the 900

removal of adaptation between models B and C significantly increases the 901

excitatory cell gain (from 0.069 Hz/pA for the adaptive neuron to 0.23 Hz/pA for 902

non-adaptive neuron, ref. Figure 5), thus kLIF
E . Derivation of an “adaptive” version 903

of model G underlines this significance, where the value of kLIF
E derived from the 904

adaptive HH excitatory cell model puts the model in the homogeneous state 905

(Figure 10). As presented later, this qualititative difference is manifested in several 906

ways by the simulations. The effect of rate-dependent adaptation can be 907

qualitatively compared to the effect of tuned inhibition which decreases J1, both 908

providing negative contributions to the terms with the rate in the right hand part 909

of Eq 1. The consequences of an increase of the adaptation or the tuned inhibition 910

are similar, however the adaptation is more concentrated than the cosine-like 911

tuned inhibition, and hence is more efficient. 912

We now examine DTh
EE and ETh

IE in more detail. As the case for constraints on 913

the biophysical terms ATh
EE, BTh

IE and CTh
IE described earlier, reasonable assumptions 914

on the reversal potentials for the excitatory and inhibitory synapses imply: 915

ETh
IE ≤ 0 ≤ DTh

EE

Thus, the expressions for J0 and J1 show explicitly the direct competition between 916

the net strengths of excitatory and inhibitory recurrent pathways in determining 917

the behavior in phase space, specifically both the quadrant that the network is 918

restricted to (given by the signs of J0 and J1) and the sensitivity of the location in 919

phase space as a function of the excitatory gain kLIF
E . For J0 the competition 920

between the pathways is independent of the anatomical spread of the various 921

connections. In contrast, for J1 the contribution of the excitatory recurrent 922

network is weighted by its characteristic anatomical tuning parameter qEE, while 923

the inhibitory recurrent network term is weighted by the product of qIE and qEI, 924

reflecting the effective convolution of the recurrent excitatory-inhibitory and 925

inhibitory-excitatory pathways. 926

The sign of J1 establishes the qualitative relation between the intrinsic stable 927

attractor states and the input. Thus, a positive J1 causes the attractor 928

steady-state to line up with the stimulus, while a negative J1 tends to cause the 929

attractor steady-state to be orthogonal to the stimulus. Note that this applies 930

strictly to the limit case of homogenous input, because the actual steady-state of 931

the network is established by both the inherent attractor properties and the 932

quantitative value of the stimulus. For illustration, we consider the limit cases for 933

a network with flat excitatory recurrent connections (i.e. qEE = 0), flat inhibitory 934

recurrent connections (i.e. qEI = 0 or qIE = 0), or both. Noting that J0 is 935

unaffected by these parameters, for the first condition: 936

J1 = kLIF
E

(qIE qEI

2
ETh

IE

)
≤ 0

and thus the network is constrained to the left half of the phase space. 937

For a network with flat inhibitory recurrent connections: 938

J1 = kLIF
E

(
qEED

Th
EE

)
≥ 0

and thus the network is constrained to the right half of the phase space. These 939

limit cases provide a more general interpretation, thus that the effective width of 940

intracortical inhibition must be broader than that for intracortical excitation to 941

allow the attractor properties to complement the input, and vica-versa. 942
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Finally, if both intracortical pathways are flat, then J1 = 0, and the marginal 943

regime is inaccessible. To our knowledge the possible relevance of a negative J1 to 944

actual biological circuits has not been explored. 945

In the present case, the biophysical parameters establish that J0 < 0 and 946

J1 > 0, thus limiting the network to the fourth quadrant of the phase space as a 947

function of kLIF
E . The specific mapping of the canonical FR ring parameters for 948

the intracortical connections predict that the network is operating in the marginal 949

phase, which is of particular interest in the context of attractor networks. More 950

specifically, this has been used to interpret the contrast invariance of the network. 951

However, the distortion of the input parameters of the canonical model described 952

previously, with respect to the original thalamic input parameters ϕ1 and ϕ1, 953

complicate the interpretation. As described earlier, a simple change of contrast 954

Ωϕ = ϕ0 for the full model while maintaining the same tuning (defined as 955

Γϕ = ϕ1/ϕ0), maps to an input for the canonical FR ring model with a different 956

tuning. 957

3 Discussion 958

3.1 Mapping assumptions 959

We can speculate on the implications of the several steps to eliminate specific 960

non-linearities in order to achieve the final linear model (apart from the FR 961

threshold). First, the role of inhibition may be under-estimated for two reasons. 962

The experimental evidence on the impact of synaptic shunting on neuronal transfer 963

functions is mixed, with some studies reporting a pure subtractive effect [46], while 964

others showing a mixture of a threshold shift and gain reduction [47], [48]. The 965

linear mapping here necessitates neglecting any gain change, implying that the 966

gain of the current-based FR ring may be over-estimated, particularly in the face 967

of strong recurrent inhibition. Furthermore, the anatomical spread of 968

inhibitory-inhibitory connections in cortex is non-negligible on the scale of the 969

hyper-column. The mapping requires that this spread be ignored to allow the 970

elimination of the explicit inhibitory population, again with the result that the 971

impact of inhibition in the final model may be under-estimated. 972

Second, the role of excitation within cortex may be overestimated for the 973

following reason. A necessary assumption here is that the inhibitory population is 974

always suprathreshold, allowing the actual threshold of this population to be 975

ignored. However, given the large dynamic range of cortical dynamics, it is likely 976

that different populations of neurons will be sub-threshold at different moments, 977

especially for relatively small, but realistic, stimuli. In the context of the single 978

population models, this implies that with small stimuli these models will transform 979

inhibitory paths to excitatory (e.g. at the tails of the activity profile), effectively 980

equivalent to a broader anatomical tuning of the excitatory recurrent connections. 981

Finally, the post-synaptic response in biological neurons to an incoming spike 982

train saturates for several reasons, most importantly because of the reduction in 983

driving force as the post-synaptic potential approaches the reversal potential, the 984

finite number of post-synaptic receptor/channel complexes, not to mention 985

mechanisms such as synaptic adaptation [49]. Indeed, only the first mechanism is 986

considered in the two population models (in part in the single population LIF 987

model for the excitatory population). The net result for the final FR ring is that 988

the activity in the ring may be overestimated, particularly the peak at the 989

preferred orientation. 990

3.2 Interpretations from the mapping 991

The proposed mapping allows a step-by-step fitting of parameters of increasingly 992

abstract models to experimental data. At the most abstract level, the mappings 993
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allows the interpretation of the canonical firing-rate ring model in a slightly 994

uncommon but more rigorous way. We see, for example, that although I0 and I1 995

are defined as thalamic input, when mapped from the full model, both parameters 996

depend on the inhibitory-to-excitatory intracortical connections gIE (Eqs 50, 49, 997

66 and 28), and therefore can not be distinguished as pure background and tuned 998

inputs. On the other hand, study of information processing in the visual cortex by 999

the means of the detailed model, also requires fitting of the canonical firing-rate 1000

ring model to the experimental data, in order to limit the domain of 1001

physiologically meaningful parameters’ values. This work exceeds the frame of the 1002

present paper and will be done in the future. 1003

3.3 Transient behaviour of the models 1004

After the parameters of the full model A are established, the mapping procedure 1005

provides parameters of the progressively more abstract models that are explicitly 1006

constrained by replicating the steady-state regime. At the same time, we note that 1007

the dynamics of the full model A show a rich variety of the solutions, including 1008

oscillations, waves etc. not seen in the more abstract models. Nevertheless, the 1009

systematic mappings provide constrained reference points in the parameter spaces 1010

of the models, which give essentially similar behaviors between nearest neighbors 1011

among the model hierarchy. 1012

Generally, models with more complex dynamics possess a larger variety of 1013

solutions, like the FR ring model with a delay [5] in comparison to the canonical 1014

ring model [2]. We note that some predictions of the marginal domain of the 1015

canonical FR ring-model are maintained throughout the model hierarchy, 1016

specifically sharpening of the output tuning, while others fail for more complex 1017

models, specifically contrast invariance and virtual rotation. Summarizing the 1018

most significant differences between the models, we underline that the reduced 1019

models do not reproduce the ripples of activity provided by the synchronization of 1020

spikes and refractory effect after stimulus presentation, nor the effects of firing 1021

adaptation. We failed to observe any significant delay in the detailed models due 1022

to virtual rotation effect predicted by the reduced models, instead the reaction was 1023

fast. For the parameter sets corresponding to more prominent virtual rotation in 1024

the canonical FR-ring model we observed oscillations in the detailed models (data 1025

not shown). These observations warn that an oversimplification may lead to 1026

misleading conclusions in regards to transient behaviour of the reduced models. 1027

3.4 Conclusions 1028

We conclude that the consistency of the activity patterns of the considered models 1029

support the validity of the obtained mapping expressions, and thus permits 1030

understanding the significance of the various assumptions made during the 1031

derivation of the models’ equations. The constructed hierarchy of models can 1032

therefore serve as a useful instrument for the fitting of mathematical 1033

models [50], [51], [52] to experimental data and their subsequent analysis. In 1034

particular, the architecture of the visual cortex ring model has been recapitulated 1035

in models of other systems, either generalized [53] or specific, for example head 1036

direction cells [54], [55] and prefrontal working memory [56] in rodents, as well as 1037

navigation circuits in the fly [57], [58]. The methods developed here should be 1038

amenable towards constructing biophysically constrained abstract models of these 1039

systems. 1040

4 Methods 1041

To build a model of interacting populations of neurons we explore the probability 1042

density approach [59], [60], [11]. It is based on the equivalence of the consideration 1043

of a stochastic differential equation for a single neuron to the probabilistic 1044
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consideration of neuronal density evolution in the phase space of neuronal state 1045

variables. In this framewok, simulations of the stochastic model is equivalent to 1046

consideration of a statistical ensemble of similar neurons receiving similar input 1047

signals. 1048

4.1 Kolmogorov-Fokker-Planck (KFP) approach for 1049

LIF neurons with instantaneous synapses 1050

Here we review the probabilistic evaluation of an infinite population of 1051

1-compartment LIF neurons with Gaussian membrane current noise, used to obtain 1052

the simulations of the single population LIF ring model (model E) [60]. Thus, 1053

Eq 4 can be considered as a Langevein equation for a single neuron. This equation 1054

is equivalent to the KFP equation written for the probability density function, or 1055

neuronal density, in the voltage phase-space, ρ(t, V ) (the temporal dependencies of 1056

the synaptic current and conductance input, I and S, are implicit): 1057

τm(S)
∂ρ

∂t
=

∂

∂V

((
V − V Rest − I

gL + S

)
ρ

)
+σ2

V
∂2ρ

∂V 2
+τm(S) νLIF(t)·δ(V−V Reset)

(53)
with the effective membrane time constant of the LIF neuron, τm(S), given earlier 1058

by Eq 7, and the average firing rate, νLIF(t), given by: 1059

νLIF(t) = − σ2
V

τm(S)

∂ρ

∂V

∣∣∣∣
V=V Th

(54)

The set of Eqs 53, 54 is equivalent to an infinite set of Eqs 4. We compare the 1060

current step response of different models (Figure 13), in particular against 1061

simulations of individual LIF type neurons using a Monte-Carlo framework which 1062

provides a ”gold-standard”. The current-based FR model only roughly reproduces 1063

the transient dynamics of the Monte-Carlo simulations of LIF neurons. The KFP 1064

indeed shows convergence to the Monte-Carlo simulation of individual LIF 1065

neurons. 1066

4.2 Conductance-based refractory density (CBRD) 1067

approach for multiple state variable neurons 1068

Because of their multiple state variables, evaluating noisy neural populations with 1069

non-instantaneous synapses, multiple compartments and/or active HH channels 1070

with a KFP-based method, as described above, cannot be evaluated analytically, 1071

and thus a KFP (or Monte-Carlo) approach requires significant computational 1072

resources [61], [11]. To address this problem, we employ a conductance-based 1073

refractory density (CBRD) approach that can evaluate a broad class of models in 1074

a one dimensional phase space parameterized by the refractory time, or time since 1075

the last spike, t∗ [17], [62], [25]. In the present case, this approach is used to 1076

evaluate all the two population models, including the HH models A and B, and 1077

the LIF models C and D. 1078

In conjunction with a given neuron model, the CBRD approach considers a 1079

hazard function H which defines the probability density of firing, and describes 1080

the dynamics of a population as a whole by the probability density of neurons 1081

distributed according to their refractory times, ρ(t, t∗). In particular, the CBRD 1082

model substitutes the phenomenologically derived hazard function developed in 1083

the original refractory density approach [60] by its rigorously derived 1084

expression [17], [62]. The population model for the neuron model is expressed by a 1085

set of transport equations, one for each state variable, in partial derivatives with t∗ 1086

and time t as independent variables, and thus the number of equations is directly 1087

proportional to the complexity of the model. 1088

In order to obtain an expression for H in a probabilistic framework, e.g. in the 1089

presence of noise, the CBRD approach requires that the state variables be well 1090

April 16, 2021 36/48

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.28.441749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441749
http://creativecommons.org/licenses/by/4.0/


Fig 13. The firing of a population of noisy LIF neurons in response to current step
stimulation. From top to bottom: Current step. Spike raster plot for for 4 neurons.
Voltage traces for the 4 neurons. Population firing rate calculated by five models:
Monte-Carlo simulation of 4000 individual trials of a noisy LIF neuron, the firing-rate
(FR) model based on Eq 2, the firing-rate (FR) model with τFR based on Eq 1, an
infinite population of noisy LIF neurons evaluated with the KFP approach (Eqs 53,54)
and the conductance-based refractory density (CBRD) approach (Eqs 55,57). The
response of the FR with shunt cell model (not shown) is identical to the current-based
FR cell model, since in both cases the transient response is fixed by τFR, and the
threshold-linear transfer function of the latter was fit to the steady-state firing rate of
the LIF model, that in turn defines the former.
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described at any given t∗ by a linear model around their mean value. This 1091

constraint holds for most of state variables of the HH model given their 1092

voltage-dependence and a typical dispersion of the membrane voltage of several 1093

millivolts. For the LIF model, this constraint is automatically satisfied. 1094

In contrast, the strong nonlinear properties of sodium channels of the HH 1095

model near threshold do not meet this criterion. To address this problem, and as 1096

mentioned in Section 2.1.3, we use a threshold HH cell model without sodium 1097

channels, with spikes defined by an explicit dynamic threshold and renewal 1098

function. This model is based on three important assumptions: first, that the 1099

probability of firing can be well predicted by the dynamics of a neuron without an 1100

explicit sodium current, that the influence of strongly non-linear channel dynamics, 1101

namely the sodium current, is only significant during the spike, and third, that 1102

there is a fixed (i.e. renewal process) impact of each spike on the state variables. 1103

The last assumption allows imposed conditions on the state variables following a 1104

spike, for example reset values for the voltage and fast potassium channel gating 1105

variables (e.g. for IDR), and increments for slow potassium channel gating 1106

variables (for IAHP and IM), as appropriate. We have shown previously that these 1107

approximations are valid in a range of neuron models [17]. The associated 1108

threshold model compares quite well to the full conductance model with respect to 1109

interspike potentials and spike time moments. 1110

The dynamics of a given population in the CBRD model are thus described by 1111

a set of equations of the form dY (t, t∗)/dt = F (), where Y () includes the 1112

distribution ρ(t, t∗) of neurons with a given value of t∗, the average soma voltage 1113

U(t, t∗), the average dendrite voltage UD(t, t∗) for two compartment models, and 1114

finally the average gating particle states x(t, t∗) for HH cell models. Since the 1115

refractory time t∗ between spikes is proportional to t, the total time derivative 1116

dY (t, t∗)/dt may be replaced by a sum of partial derivatives in t and t∗, i.e. 1117

d/dt = ∂/∂t+ ∂/∂t∗. 1118

The source term in the right-hand side of the equation for ρ(t, t∗) is the 1119

fraction of neurons crossing the threshold, given by ρ(t, t∗), multiplied by the 1120

hazard function H: 1121

∂ρ

∂t
+
∂ρ

∂t∗
= −ρH(U) (55)

The remaining terms consist of the model details. The expressions corresponding 1122

to the cell voltages derive from those presented in Section 2.1.3, specifically the 1123

sets of Eqs 13 and 14, with the following replacements of the average voltages U , 1124

UD and ξ, for V , VD and 0, respectively: 1125

V → U

VD → UD

ξ → 0

dV

dt
→ ∂U

∂t
+
∂U

∂t∗

dVD

dt
→ ∂UD

∂t
+
∂UD

∂t∗

The boundary conditions for ρ (which also defines the population firing rate, ν(t))
and the model voltages are:

ν(t) ≡ ρ(t, 0) =

∞∫
+0

ρHdt∗ (56)

U(t, 0 ≤ t∗ ≤ ∆tAP
j ) = V Reset

UD(t, 0 ≤ t∗ ≤ ∆tAP
j ) = V Rest

j

where ∆tAP
j is the duration of the action potential for cell type j (= 0 for the LIF 1126

model; for the HH cell models see Sections 4.3 and 4.4); likewise, the somatic reset 1127

voltage V Reset
j is defined also for each cell type. 1128
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The CBRD expressions for the gating particle states x(t, t∗) of the HH channel 1129

models, including their boundary conditions, are presented in the next sections 1130

(Sections 4.3 and 4.4), which in turn reference the average somatic voltage U . 1131

The dynamics of the entire neural population are found by the integration of 1132

Eqs 13 and 14, with the replacements indicated above for the average voltages U 1133

and UD, which then defines the distribution of cell voltages across t∗ at each time 1134

t (for the HH models similar equations are solved for the gating particle state 1135

variables). The effect of threshold crossing in response to the input and noise is 1136

then taken into account by the H function, with the integration of Eq 55 giving 1137

the distribution of ρ across t∗ as well as the firing rate ν at time t. 1138

As the source term in the density equation, the H function is the solution of 1139

the classical first-time threshold crossing problem for arbitrary history of 1140

stimulation. The H function has been semi-analytically derived from the KFP 1141

equation for voltage fluctuations, based on the following assumptions: 1142

(i) Away from threshold, voltage fluctuations due to individual noise 1143

realizations can be described by a linear equation given the mean voltage U and 1144

the mean membrane conductance, which are in turn given by the associated 1145

transport equations and the synaptic input. Furthermore, the evolving probability 1146

density distribution of voltage fluctuations about U can be described by a KFP 1147

equation. 1148

(ii) The flux across threshold described by H are due to two additive 1149

underlying processes: diffusion along the voltage axis due to noise, and transfer in 1150

response to the input. 1151

(iii) Diffusion due to noise dominates the firing when U is constant, e.g. when 1152

the input is constant. In this case the problem is described by the KFP equation 1153

with a leak and a constant threshold, denoted here as A. For white noise the 1154

governing equation is reduced to an ordinary differential equation with an 1155

analytical solution for the spike generation probability expressed in Kummer 1156

functions [17]. In the case of correlated (colored) noise, A is obtained numerically 1157

and tabulated for a range of values for U and the time constant of the noise 1158

correlations τ [62]. 1159

iv) Transfer based firing dominates when excitation starts abruptly, i.e. U 1160

increases with infinite rate. The initial condition is a stationary Gaussian 1161

distribution of neurons in terms of their potential V (t)− U(t). This implies that 1162

the state of zero distribution immediately following the previous spike is forgotten 1163

at the time of the next threshold crossing. As U(t) increases, the moving boundary 1164

at the threshold of fluctuations, V Th − U(t), crosses the distribution. The flux 1165

through the boundary determines the probability of spike generation, which we 1166

denote in this case as B, and is obtained algebraically. 1167

In our previous work we formulated an approximation for H for white 1168

Gaussian noise, as a function of the time-varying quantities that characterize the 1169

cell, including U (and its derivative with respect to time t at a given t∗), σV, V Th
1170

and the effective membrane time constant τm = C/gtot, where gtot is the total 1171

membrane conductance: 1172

H(U(t)) =
1

τm

(
A(T (t)) +B(T (t))

)
A(T ) = exp(6.1 · 10−3 − 1.12 T − 0.257 T 2 − 0.072 T 3 − 0.0117 T 4)

B(T ) = −
√

2 τm

[
dT

dt

]
+

F̃ (T ), F̃ (T ) =

√
2

π

exp(−T 2)

1 + erf(T )
, T (t) =

V Th − U(t)√
2 σV

(57)
Note that the hazard function above has no free parameters, because they reflect 1173

the approximation of the first time passage solution. The dynamics of a neural 1174

continuum are thus evaluated at each time step by solving the set of one 1175

dimensional partial differential equations in terms of the refractory time, including 1176

the probability density of neurons, and the population averages of the membrane 1177

potential and channel gating variables. The CBRD model well approximates the 1178
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firing rate of an infinite set of biophysically detailed neurons for an arbitrary 1179

stimulus, e.g. oscillatory input, and recurrent connections, when compared with 1180

Monte-Carlo simulations of individual neurons (see [17] and [62]). Figure 13 1181

compares the response of a population of noisy LIF neurons, evaluated by 1182

Monte-Carlo simulations, a KFP approach (Section 4.1), and the CBRD method, 1183

with the response of the FR model with and without a time constant. Figure 14 1184

compares the steady-state f/I characteristics as a function of synaptic conductance 1185

for a population of LIF neurons, with and without noise (Eq 5), with the result 1186

from the CBRD evaluation. 1187

Fig 14. The steady-state firing rate of a population of LIF neurons as a function of the
strength of the input current stimulation, with synaptic conductance S set to 0 and to
2gL, with and without noise (C =0.1nF, gL = 10nS, V Th − V Rest = 10mV,
V Reset = V Rest, τm = 10ms, σI = 28pA), according to Eq 5, compared with the result
from the CBRD evaluation with noise.

4.3 Excitatory two compartment HH neuron model 1188

Here we complete the description of the excitatory neuron model as described by 1189

Eq 14, with the average voltage U substituting for V . As stated earlier, this model 1190

incorporates several HH membrane currents, including the voltage-dependent 1191

potassium currents responsible for spike repolarization, IDR and IA, the 1192

voltage-dependent potassium current that contributes to spike frequency 1193

adaptation, IM, the voltage-dependent cation current, IH, and calcium-dependent 1194

potassium current that also contributes to spike frequency adaptation, IAHP. The 1195

approximating formulas for the currents IDR, IA, IM and IH were adapted 1196

from [63]; the approximation for IAHP was taken from [64]. The descriptions of 1197

each current are as follows. 1198
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The voltage-dependent potassium current IDR: 1199

IDR(U, t, t∗) = gDR xDR(t) yDR(t) (U(t)− VDR) (58)

∂xDR

∂t
+
∂xDR

∂t∗
=
xDR,∞(U)− xDR

τDR,x(U)

∂yDR

∂t
+
∂yDR

∂t∗
=
yDR,∞(U)− yDR

τDR,y(U)

τDR,x = 1/(aDR + bDR) + 0.8 ms

xDR,∞(U) = aDR(U)/(aDR(U) + bDR(U))

aDR(U) = 0.17 exp((U + 5) · 0.090) ms−1

bDR(U) = 0.17 exp(−(U + 5) · 0.022) ms−1

τDR,y(U) = 300 ms

yDR,∞(U) = 1/(1 + exp((U + 68) · 0.038))

VDR = −70 mV; gDR = 0.27 µS

The voltage-dependent potassium current IA: 1200

IA(U, t, t∗) = gA x4
A(t) y3

A(t) (U(t)− VA) (59)

∂xA

∂t
+
∂xA

∂t∗
=
xA,∞(U)− xA

τA,x(U)
;

∂yA

∂t
+
∂yA

∂t∗
=
yA,∞(U)− yA

τA,y(U)

τA,x(U) = 1/(aA,x(U) + bA,x(U)) + 1 ms

xA,∞(U) = aA,x(U)/(aA,x(U) + bA,x(U))

aA,x(U) = 0.08 exp((U + 41) · 0.089) ms−1

bA,x(U) = 0.08 exp(−(U + 41) · 0.016) ms−1

τA,y(U) = 1/(aA,y(U) + bA,y(U)) + 2 ms

yA,∞(U) = aA,y(U)/(aA,y(U) + bA,y(U))

aA,y(U) = 0.04 · exp(−(U + 49) · 0.11) ms−1

bA,y(U) = 0.04 ms−1

VA = −70 mV; gA = 1.55 µS

The voltage-dependent potassium current IM: 1201

IM(U, t, t∗) = gM x2
M(t) (U(t)− VM) (60)

∂xM

∂t
+
∂xM

∂t∗
=

xM,∞(U)− xM

τM,x(U)

τM,x(U) = 1/(aM(U) + bM(U)) + 8 ms

xM,∞(U) = aM(U)/(aM(U) + bM(U))

aM(U) = 0.003 exp((U + 45) · 0.135) ms−1

bM(U) = 0.003 exp(−(U + 45) · 0.090) ms−1

VM = −80 mV; gM = 0.27 µS

The cation current IH: 1202

IH(U, t, t∗) = gH yH(t) (U(t)− VH) (61)

∂yH

∂t
+
∂yH

∂t∗
=

yH,∞(U)− yH

τH,y

τH,y(U) = 180 ms

yH,∞(U) = 1/(1 + exp((U + 98) · 0.075)) ms−1

VH = −17 mV; gH = 0.002 µS
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The adaptation current IAHP: 1203

IAHP(U, t, t∗) = gAHP wAHP(t) (U(t)− VAHP) (62)

∂wAHP

∂t
+
∂wAHP

∂t∗
=

wAHP,∞(U)− w
τAHP,w(U)

τAHP,w(U) = 2000/(3.3 exp((U + 35)/20) + exp(−(U + 35)/20)) ms

wAHP,∞(U) = 1/(1 + exp(−(U + 35)/10))

VAHP = −70 mV; gAHP = 0.21 µS

The somatic and dendritic input conductances of the two compartment model 1204

(with L = 1), Gin and Gin,d, respectively, are: 1205

Gin =
C

τ0
m

(
3 + 2ρD

3 + ρD

)
Gin,d =

C

τ0
m

(
1 +

2

3
ρD

) (63)

In comparison, the input conductance for a 1-compartment neuron is simply C/τ0
m. 1206

The resting time constant τ0
m is given by: 1207

τ0
m = C

(
gL + gDR xDR,∞(V Rest) yDR,∞(V Rest) + gA x4

A,∞(V Rest) y3
A,∞(V Rest)

+ gM x2
M,∞(V Rest) + gH yH,∞(V Rest) + gAHP wAHP,∞(V Rest)

)−1

(64)
The values of the cell passive parameters were

C = 0.25 nF, ρD = 2.85, L = 1, gL = 0.0069 µS, V Rest = −65 mV

The neuron parameters provide τ0
m = 14.4 ms. The somatic input conductance 1208

Gin = 26 nS corresponds to the input resistance Rin = 39 MOhm as in [63]. 1209

According to the threshold model from [17], the duration of a spike is taken 1210

into account by introducing the time interval 0 ≤ t∗ ≤ ∆tAP
E when the voltage and 1211

gating variables are reset and then kept constant, thus defining the boundary 1212

conditions of the gating particles of IDR, IA and IH as follows: 1213

for IDR : xDR(t, 0 ≤ t∗ ≤ ∆tAP
E ) = 0.262, yDR(t, 0 ≤ t∗ ≤ ∆tAP

E ) = 0.473

for IA : xA(t, 0 ≤ t∗ ≤ ∆tAP
E ) = 0.743, yA(t, 0 ≤ t∗ ≤ ∆tAP

E ) = 0.691

for IH : yH(t, 0 ≤ t∗ ≤ ∆tAP
E ) = 0.002

The reset values for the adaptation currents IM and IAHP are incremented 1214

according to their values at the peak of spike-release distribution in the t∗-space: 1215

for IM : xM(t, 0 ≤ t∗ ≤ ∆tAP
E ) = xM(t, t∗

p
) + 0.175 (1− xM(t, t∗

p
))

for IAHP : wAHP(t, 0 ≤ t∗ ≤ ∆tAP
E ) = wAHP(t, t∗

p
) + 0.018 (1− wAHP(t, t∗

p
))

where t∗p is the value of t∗ corresponding to the maximum value of 1216

ρ(t, t∗) H(t, t∗), for t∗ > 0. 1217

V Reset
HH = −40 mV, ∆tAP

E = 1.5 ms. The spike threshold reference voltage in 1218

the hazard function (Eq 57) was V Th = −57 mV, with a noise amplitude 1219

corresponding to the stationary voltage dispersion σV = 3 mV. 1220

4.4 Inhibitory single compartment HH neuron model 1221

Here we complete the description of the inhibitory interneuron model, according 1222

to [65], as described by Eq 13, with the average voltage U substituting for V . The 1223
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membrane current for this model includes a voltage-dependent potassium current 1224

IK according to [66]: 1225

IK(U, t, t∗) = gK n4(t) (U(t)− VK) (65)

∂n

∂t
+
∂n

∂t∗
=

n∞(U)− n
τn

τn = (0.5 + 2/(1 + exp(0.045 (U − 50)))) ms

n∞ = 1/(1 + exp(−0.045 (U + 10)))

VK = −80mV gK = 4µS

The parameters of the model are C = 0.1nF, gL = 0.01µS, with the boundary 1226

condition for n during the spike (∆tAP
I = 1.4 ms) given by: 1227

n(t, 0 ≤ t∗ ≤ ∆tAP
I ) = 0.45

The spike threshold reference voltage, V Th, the reset voltage, V Reset
HH , and the 1228

voltage noise parameters, σV, in the hazard function (Eq 57) are identical to those 1229

for the excitatory cell model, above. 1230

4.5 Parameterization of the second order synapse 1231

model 1232

As described in Section 2.1.3, we include a scaling term, “synaptic capacity”, cij , 1233

in the differential equation relating synaptic conductance and pre-synaptic firing 1234

rate, Eq 15: 1235

cij = gijτi (66)

where 1236

τi =
τ r
i − τd

i(
τd
i /τ

r
i

)τdi /(τri−τdi ) −
(
τd
i /τ

r
i

)τri /(τri−τdi )

Here gij is the maximum conductance for synapse type i (for i = Θ,E, I) onto cell 1237

type j (for j = E, I), τ r
i and τd

i are the time constants for synapse type i. The time 1238

scaling factor τi allows the maximum of gij(t) to be independent of τ r
i and τd

i 1239

when evoked by a short pulse of ϕij(t) in Eq 15. 1240

4.6 Model parameters 1241

4.6.1 Model A (HH 2E EI Exp 2D) 1242

Single neuron parameters are given in Sections 4.3 and 4.4. The other parameters 1243

were set as follows: 1244

• Synaptic parameters: gΘE = 0.011 µS, gΘ = 0.002 µS, gEE = 0.053 µS, 1245

gEI = 0.01 µS, gIE = 0.11 µS, gII = 0.02 µS, τrΘ = τrE = 1.7ms, 1246

τdΘ = τdE = 8.3ms, τI
r = 3ms, τI

d = 28ms, VE = 0, VI = −75mV. 1247

• Spatial connections: dEE = 100µm, dEI = 200µm, dIE = 200µm, 1248

dII = 200µm. 1249

• Region geometry: cortex region is 1mm×1mm, R = 250µm. 1250

• Stimulation: ϕ0 = 116Hz, ϕ1 = 96Hz, θ0 = 0◦ till t = 100ms, then θ = 45◦. 1251

• Numerical parameters: time step 0.1ms, spatial grid 40×40, the t∗-space 1252

was limited to 100ms and discretized by 100 points. The absolute refractory 1253

period was introduced by setting the term A(T ) of the hazard function to 1254

zero for t∗ < 6ms. 1255
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4.6.2 Ring Models B (HH EI Cos Ring), C (LIF 2E EI Cos 1256

Ring), D (LIF 1E EI Cos Ring), E (LIF Cos Ring) 1257

• Spatial connections: Given the value of R and the values of dij for each 1258

synapse type above, fits to w0 (Eq 22) for the “exp”-profile gave q̃EE = 10.0, 1259

αEE = 0.98, q̃EI = qIE = 4.62, αEI = αIE = 1.24, while αII = 0, q̃II =∞ (or 1260

ϕII(t, θ) = νI(t, θ)) were set according to the assumption made in 1261

Section 2.2.4 about concentrated inhibitory re-connections. Analogously, fits 1262

to a “cos”-profile gave qEE = 1 and qEI = qIE = 0.57, and qII =∞ (or 1263

ϕII(t, θ) = νI(t, θ)). 1264

• Numerical parameters: ring was discretized by 40 points. 1265

4.6.3 LIF Models C (LIF 2E EI Cos Ring), D (LIF 1E EI Cos 1266

Ring), E (LIF Cos Ring). 1267

• Excitatory model: The parameters of V Reset
LIF,E = −90mV, CE = 0.27 nF are 1268

determined in Section 2.2.2, V Reset
LIF,I = −82mV was obtain by fitting as 1269

demonstrated by Figure 4. 1270

• For 1-compartmental neuron based model the synaptic parameters were 1271

multiplied by the factors Gin,d/Gin calculated with the Eq 63 and given in 1272

the caption to Figure 4 for given value of ρD, that gave: gΘE = 0.0055 µS, 1273

gEE = 0.027 µS. 1274

4.6.4 Models E (LIF Cos Ring) and F(Shunt FR Cos Ring) 1275

Parameters for threshold-linear f/I approximation of 2-dimensional LIF 1276

steady-state curve (ref. Figure 5): 1277

• Excitatory cell model: kLIF
E = 0.156Hz/pA , ILIF

Off,E = 0.7pA 1278

• Inhibitory cell model: kLIF
I = 0.466Hz/pA, ILIF

Off,I = −25pA 1279

4.6.5 Model E (LIF Cos Ring). 1280

• Connections: Ĩ0 = −90pA, Ĩ1 = 189pA, J̃0 = −1.59pA/Hz, J̃1 = 11.8pA/Hz, 1281

K̃0 = 4750pS, K̃1 = 13000pS, L̃0 = 1800pS/Hz, L̃1 = 480pS/Hz were 1282

calculated by Eqs 41,42. 1283

• Numerical parameters: ring was discretized by 40 points, voltage space 1284

ranged from -105 (to be more negative than any expected polarization in 1285

neurons) to V Th = −57mV was discretized by 250 points; time step 0.02ms. 1286

4.6.6 Model G (FR Cos Ring). 1287

• The characteristic time constant of the FR model was assumed to be equal 1288

to the membrane time constant of the excitatory neurons, τFR = τ0
m,E given 1289

in Section 4.3. 1290

• Connections: I0 = −20pA, I1 = 43pA, J0 = −0.35pA/Hz, J1 = 2.7pA/Hz 1291

were calculated by Eq 44. 1292

• Numerical parameters: ring was discretized by 40 points; time step 0.02ms. 1293
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