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Abstract

In this paper, we present a conservative cell-centered Lagrangian Finite Volume

scheme for solving the hyperelasticity equations on unstructured multidimensional

grids. The starting point of the present approach is the cell-centered FV discretiza-

tion named EUCCLHYD and introduced in the context of Lagrangian hydrody-

namics. Here, it is combined with the a posteriori Multidimensional Optimal Order

Detection (MOOD) limiting strategy to ensure robustness and stability at shock

waves with piecewise linear spatial reconstruction. The ADER (Arbitrary high or-

der schemes using DERivatives) approach is adopted to obtain second-order of ac-

curacy in time. This strategy has been successfully tested in an hydrodynamics

context and the present work aims at extending it to the case of hyperelasticity.

Here, the hyperelasticty equations are written in the updated Lagrangian frame-

work and the dedicated Lagrangian numerical scheme is derived in terms of nodal

solver, Geometrical Conservation Law (GCL) compliance, subcell forces and com-

patible discretization. The Lagrangian numerical method is implemented in 3D un-

der MPI parallelization framework allowing to handle genuinely large meshes. A

relatively large set of numerical test cases is presented to assess the ability of the

method to achieve effective second order of accuracy on smooth flows, maintaining

an essentially non-oscillatory behavior and general robustness across discontinuities

and ensuring at least physical admissibility of the solution where appropriate. Pure

elastic neo-Hookean and non-linear materials are considered for our benchmark test

problems in 2D and 3D. These test cases feature material bending, impact, com-

pression, non-linear deformation and further bouncing/detaching motions.
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1 Introduction

This work is concerned with the accurate multi-dimensional simulation of hyper-elasticity

models by updated Lagrangian Finite Volume (FV) numerical scheme.

Traditionally displacement-based Finite Element (FE) frameworks are employed when sim-

ulating engineering large strain transient situations, see for instance [34,27,6]. Tetrahedral
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mesh elements are often preferred for the discretization because the mesh generators are eas-

ily available. Nonetheless, such FE approach presents some well reported issues, for instance

a reduced order of convergence for strains and stresses [48], poor performance in nearly in-

compressible bending dominated scenarios [40] and spurious numerical instabilities (shear or

volumetric locking, parasitical hydrostatic pressure fluctuations, etc.) [5], reduction of the

accuracy when artificial stabilization terms are added. Notice that the introduction of high

order schemes usually helps but does not cure all of these issues.

The earliest attempt at solving solid dynamics equations in a FV framework is to be found

in the papers [56,55]. In this seminal approach, the solid dynamics equations are written un-

der Eulerian formalism as a first-order system of conservation laws. Their FV discretization

relies on Godunov-type methods.

In a series of papers [1,8,33,9] an original and promising FV computational framework has

been constructed for solving solid dynamics equations written under total Lagrangian formu-

lation. Impressive three-dimensional simulations of hyperelastic materials undergoing large

deformations are achieved within this framework. The underlying numerical fluxes are ob-

tained employing an acoustic approximate Riemann solver. Further, the total Lagrangian

FV discretization of the physical conservation laws relies on the discretization of the time

rate of change of the deformation gradient, its determinant and its co-factor. Here, the defor-

mation gradient is nothing but the Lagrange-Euler mapping which relates the initial and the

current configuration of the material under consideration. Let us point out that these three

supplementary geometrical conservation laws are redundant and nothing in this numerical

method guarantees their consistency at the discrete level.

The development of cell-centered FV Lagrangian schemes based on nodal solvers [23,42,22]

for gas dynamics has been extended to 2D and 3D updated Lagrangian hyperelasticity [39,14].

Others have explored the used of a mixed velocity-pressure approach using a Variational

Multi-Scale method [53], possibly with stabilized nodal stresses [19].

This work also considers the updated Lagrangian framework like for [39,14] contrarily to

[8,33,9]. Previously in [13] we have presented a second-order accurate cell-centered La-

grangian scheme on unstructured mesh restricted to the hydrodynamics system of conserva-

tion laws. This scheme is constructed upon a subcell discretization, popularized for staggered

Lagrangian schemes [15,16] and later extended to cell-centered ones [45], further associated

with a nodal solver relying on total energy conservation and Geometrical Conservation Law

(GCL) compliance. Second-order of accuracy is usually gained by a MUSCL-like approach

—piecewise linear reconstructions supplemented with limiters— and a predictor-corrector,

Runge-Kutta or a Generalized Riemann Problem (GRP) time discretization.

Contrarily, for the scheme in [13], we have relied on ADER (Arbitrary high order schemes

using DERivatives) methodology developed originally from an Eulerian perspective [54,10].

This approach is further supplemented with an a posteriori MOOD limiting strategy [21] to

stabilize and produce a fail-safe Lagrangian scheme. We have shown in [13] that such a cell-

centered numerical method is able to perform on classical and demanding hydrodynamics

test cases using unstructured mesh made of simplexes in 2D and 3D.

In this work we propose the extension of this numerical method to solve problems involving

2D and 3D elastic materials. We ought to solve an hyperelasticity model of PDEs (Partial
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Differential Equations) [39,12,40,14]. Historically hypoelasticity models [57,7,58] have been

sometimes preferred, see for instance [59,30,47,52,20]. A parallel discussion about hypo- and

hyper-elastic models and their resolution can be found for instance in [49]. Here, we are

interested in simulating the large deformations undergone by isotropic hyperelastic materi-

als. The set of conservation laws under consideration is written under updated Lagrangian

representation and equipped with a constitutive law which satisfies not only the principle of

material frame indifference but is also thermodynamically consistent [35]. In this approach,

the Cauchy stress tensor is the derivative of the free energy with respect to the left Cauchy-

Green tensor which is a relevant measure of deformation. Moreover, one can show that the

Cauchy stress tensor might be expressed uniquely in terms of this deformation tensor. Tak-

ing advantage of the simplicial grid, we introduce a specific discretization of the time rate

of change of the left Cauchy Green tensor to ensure its compatibility with the Geometric

Conservation Law, refer to [28]. In this article are tackled several issues related to the 3D

extension of our ADER Lagrangian scheme, as well as the increase of complexity in the

modeling of hyper-elastic materials. First, the hyperelastic model demands the resolution

of a constitutive law which, in the framework of ADER methodology, requires some adap-

tation. Second, the a posteriori MOOD limiting strategy must consider new admissibility

criteria brought by the model in order to still ensure the robust and fail-safe characteristics

while maintaining an acceptable, if not optimal, accuracy. Third, the boundary conditions

(BCs) must be dealt with care as materials may balistically fly but also impact, bounce,

slide, spread, tear apart onto a wall or different materials. Fourth, in relation to the points

above, 3D Lagrangian numerical code requires extra-care as efficient simulations demand a

well designed parallelization methodology as well as appropriate BCs and robust limiting

strategy.

Numerical results involving materials enduring large deformation (bending, twisting, etc.)

adopted from [40,36,14] will be presented to assess the ability of this updated Lagrangian

numerical scheme to simulate such hyperelastic situations.

For a broad and modern introductions on hypo- or hyper-elasticity we refer the readers in

particular to [39,12,14,49]. For 3D Lagrange updated FV numerical schemes among many

works we refer to [17,43,31,14]. In the forthcoming section the paper presents in details the

hyperelastic model and the governing equations to be solved. Then in the third section, the

Lagrangian numerical scheme is introduced with emphasis on the ADER approach, the nodal

solver, the a posteriori limiting strategy and some discussion on the internal consistency,

boundary conditions and implementation considerations. All numerical tests are gathered in

the fourth section. We propose the numerical results of our simulations for a large set of 2D

and 3D problems involving elastic materials impacting, detaching, compressing, swinging,

twisting, etc. Conclusions and perspectives are finally drawn in the last section.

2 Updated Lagrangian hyperelastic modeling for isotropic materials

In this section, we aim at recalling the conservation laws describing the time evolution of

isotropic solid materials undergoing large deformations. The resulting conservation laws of

mass, momentum and total energy shall be written under the updated Lagrangian form. The

isotropic materials under consideration are characterized by an hyperelastic constitutive law.
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Namely, the Cauchy stress tensor is defined as being the derivative of the free energy with

respect to the deformation tensor. In this framework, the material frame indifference principle

and the thermodynamic consistency are automatically satisfied. The interested reader might

refer for instance to [35] for further developments on these subtle topics. For the sake of

completeness, we recall hereafter some notions of kinematics that shall be useful for writing

the conservation and constitutive laws.

2.1 Kinematics

t=0

t>0

ω (t)

Ω
d

d
xF= ΦX X

xΦ

X

Xd= F

Fig. 1. Sketch of the Lagrangian-Eulerian mapping relating a material Lagrangian point X at t = 0

and a spatial Eulerian one x at t > 0 through Φ, and its Jacobian F(X, t) =
∂Φ

∂X
(X, t).

2.1.1 Lagrange-Euler mapping.

We consider a solid body in the three-dimensional Euclidean space occupying the region Ω

in its initial configuration at time t = 0, and the region ω(t) in its current configuration at

time t > 0. The motion of this body is characterized by the smooth function, Φ, that assigns

to each material point X and time t the spatial point x such that

Ω −→ ω(t)

X 7−→ x = Φ(X, t).

This smooth function is the Lagrange-Euler mapping which relates the Lagrangian (mate-

rial) point X to its Eulerian (spatial) counterpart x. By definition, this mapping satisfies

Φ(X, 0) = X and its Jacobian, also named the deformation gradient, reads

F(X, t) = ∇XΦ(X, t),

where the symbol ∇X denotes the gradient operator with respect to the Lagrangian coordi-

nate. The determinant of the deformation gradient is denoted J(X, t) = det (F(X, t)) and

satisfies J(X, t = 0) = 1 since F(X, t = 0) = Id where Id is the identity tensor. A continuity

argument leads us to assume that J(X, t) > 0 for all t > 0, ensuring as such that Φ is a

one-to-one mapping.

A physical quantity can be expressed both in terms of the Lagrangian coordinate and in

terms of the Eulerian one. More precisely, let G(X, t) denotes the Lagrangian representation

of a physical quantity. Its Eulerian representation reads g(x, t). Obviously, these are two
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representations of the same physical quantity and, as a consequence, they fulfill the identities

g(x, t) = G
[
Φ−1(x, t), t

]
, and, G(X, t) = g [Φ(X, t), t] .

In what follows, the same notation shall be employed for both descriptions.

Time differentiating the mapping, holdingX fixed, allows us to define the kinematic velocity

v(X, t) =
∂Φ

∂t
|X(X, t). (1)

Now, time differentiating the identity g(X, t) = g(Φ(X, t)), holding X fixed and applying

the chain rule, yields

∂g

∂t
|X(X, t) =

∂g

∂t
|x(x, t) + v(X, t) · ∇xg, (2)

where ∇xg is the gradient of g with respect to the Eulerian coordinate, i.e., ∇xg = ∂g
∂x

. Thus,

the Lagrangian time derivative is nothing but the material time derivative which writes

dg

dt
(x, t) =

∂g

∂t
(x, t) + v · ∇xg.

2.1.2 Measures of deformation

Let us consider the infinitesimal material fiber dX in the initial configuration which maps

into dx = FdX through the motion. We express the stretching of this infinitesimal fiber as

follows

dx · dx− dX · dX = (C− Id)dx · dx, (3)

where C = FtF is the right Cauchy-Green tensor. On the other hand, noticing that dX =

F−1dx, we also express the stretching of the infinitesimal fiber as follows

dx · dx− dX · dX = (Id − B−1)dX · dX, (4)

where B = FFt is the left Cauchy-Green tensor. The right and the left Cauchy-Green tensors

are symmetric positive definite and share the same eigenvalues, refer to [35]. These tensors

are relevant measures of deformation since for a rigid rotation they boil down to the identity

tensor.

2.1.3 Geometric conservation law (GCL)

Time differentiating the deformation gradient, F = ∇XΦ, recalling that the partial time

derivative of the mapping is the kinematic velocity v =
∂Φ

∂t
, leads to the Geometric Conser-

vation Law (GCL) written under total Lagrangian form as

∂F
∂t
−∇Xv = 0, (5)

where F(X, 0) = Id. The GCL is supplemented with the compatibility constraint∇X×F = 0,

which ensures that the solution of the foregoing partial differential equation corresponds to

the gradient of a mapping. Here, for any second order tensor T, ∇X × T denotes the curl

of T. It is the tensor defined by (∇X × T)a = ∇X × (Tta) for all constant vector a. We
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note that the compatibility constraint is an involution constraint for the GCL. Namely, if

this constraint is fulfilled initially, it will be satisfied for all time t > 0. The satisfaction

of this compatibility constraint at the discrete level is the cornerstone which any proper

discretization of the conservation laws written in total Lagrangian form should rely on, refer

to [28].

Introducing the material time derivative and applying the chain rule, we express the GCL

under the updated Lagrangian form

dF
dt
− (∇xv)F = 0. (6)

Here, the deformation gradient and the velocity are viewed as functions of the spatial coor-

dinate x. The notation L = ∇xv represents the velocity gradient tensor with respect to the

current configuration. Employing this notation, the updated Lagrangian form of the GCL

reads
dF
dt
− LF = 0. (7)

Bearing this in mind, let us investigate two important consequences of the GCL that will be

useful in the sequel.

The first one is related to the time rate of change of the Jacobian, J = detF, which is

deduced from the GCL thanks to the chain rule

d(detF)

dt
=
∂(detF)

∂F
:

dF
dt
, where

∂(detF)

∂F
= (detF)F−t.

Here, the symbol : denotes the inner product between tensors, i.e., A : B = tr(AtB), where tr

is the trace operator. Finally, substitution of the GCL (7) into the foregoing equation yields

the partial differential equation satisfied by the Jacobian of the deformation gradient

dJ

dt
− Jtr(L) = 0.

Because tr(L) = ∇x · v, the time rate of change of the Jacobian can be rewritten as follows

dJ

dt
− J∇x · v = 0. (8)

The second consequence of (7) is related to the computation of the time rate of change of

the left Cauchy-Green tensor, B = FFt, which reads

dB
dt

=
dF
dt

Ft + F
dFt

dt
.

Substituting the expression of the time rate of change of F provided by the GCL into the

foregoing equation leads to
dB
dt
− LB− BLt = 0. (9)

The left-hand side of this equation is nothing but the Lie derivative of B otherwise named

the Oldroyd rate of B [35].
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2.2 Governing equations

This section aims at briefly recalling the conservation laws and the constitutive law governing

the time evolution of an isotropic material undergoing large deformations. The interested

reader might consult [35] for further details regarding their derivation.

2.2.1 Conservation laws

Under the updated Lagrangian representation, the conservation laws of mass, momentum

and total energy write

ρ
dτ

dt
−∇ · v = 0, (10a)

ρ
dv

dt
−∇ · T = 0, (10b)

ρ
de

dt
−∇ · (Tv) = 0. (10c)

Here, the symbol
d

dt
denotes the material derivative defined by (2), ρ > 0 is the mass density

and τ = 1
ρ

the specific volume. The specific total energy is e = ε + 1
2
v2 where ε denotes

the specific internal energy. The Cauchy stress tensor, T, is symmetric, i.e., T = Tt, which

ensures the conservation of angular momentum. Let us note that the nabla operator employed

in the foregoing equations is expressed in terms of the Eulerian coordinate x. This system

of conservation laws written under updated Lagrangian representation is supplemented by

the trajectory equation already introduced in (1), which is rewritten under the form

dx

dt
= v(x(t), t), x(0) = X. (11)

It is worth pointing out that (10a) is obtained by combining the Lagrangian mass conser-

vation equation,
d(ρJ)

dt
= 0, and the GCL (8). To close the system of conservation laws,

it remains to provide a constitutive law for expressing the Cauchy stress tensor in terms of

the deformation and a thermodynamic variable. This will be achieved in the next paragraph

introducing the free energy Ψ. This thermodynamic potential is related to the specific en-

ergy, the absolute temperature θ > 0, and the specific entropy η by means of the classical

thermodynamic relation

Ψ = ε− θη. (12)

2.2.2 Constitutive law for isotropic materials

The constitutive law is derived invoking the frame indifference principle and the compatibility

with thermodynamics. This means that the constitutive equations should be invariant under

changes of frame and satisfy the second law of thermodynamics [35]. Here, the material under

consideration is characterized by the free energy expressed in terms of the left Cauchy-Green

tensor and the absolute temperature

Ψ ≡ Ψ(B, θ).
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Moreover, since this material is isotropic, its constitutive law is invariant under the group

of all rotations acting in the spatial configuration. Thus, the theorem of representation of

isotropic scalar function [35] leads to the following expression of the free energy

Ψ ≡ Ψ(I1(B), I2(B), I3(B), θ). (13)

Here, Ii(B) for i = 1, 2, 3 are the principal invariants of the left Cauchy-Green tensor which

write

I1(B) = tr(B), I2(B)) =
1

2

[
tr2(B)− tr(B2)

]
, I3(B) = det(B).

Finally, the constitutive law provides the expressions of the Cauchy stress tensor and the

specific entropy in terms of the free energy

T(B, θ) = 2ρ

(
∂Ψ

∂B

)
θ

B, and η(B, θ) = −
(
∂Ψ

∂θ

)
B
, (14)

where
∂Ψ

∂B
is the tensor whose ij component is

∂Ψ

∂Bij
. Thanks to (12), we observe that

the specific internal energy ε is also a function of the left Cauchy Green tensor and the

temperature, i.e., ε(B, θ) = Ψ(B, θ) + θ η(B, θ).
The foregoing generic expression of the Cauchy stress tensor might be further investigated

exploiting the isotropy of the material. Indeed, differentiating (13) with respect to B and

applying the chain rule yields(
∂Ψ

∂B

)
θ

=

(
∂Ψ

∂I1

)
θ

Id +

(
∂Ψ

∂I2

)
θ

(I1Id − B) +

(
∂Ψ

∂I3

)
θ

I3B−1,

where the derivative of the principal invariants of B with respect to B are recalled in Ap-

pendix A. Substituting the foregoing equation into the constitutive law results in

T = 2ρ

{
I3

(
∂Ψ

∂I3

)
θ

Id +

[(
∂Ψ

∂I1

)
θ

+ I1

(
∂Ψ

∂I2

)
θ

]
B−

(
∂Ψ

∂I2

)
θ

B2

}
. (15)

This is the general expression of the Cauchy stress tensor for an isotropic hyperelastic ma-

terial. It is quadratic with respect to the left Cauchy-Green tensor. Let us point out that

the Cauchy stress tensor and the left Cauchy-Green tensor commute, i.e. TB = BT. This

important property is the consequence of the material isotropy.

It remains to check the consistency of this constitutive law with the second law of thermo-

dynamics. First, differentiation of the definition of the free energy (12) yields

θdη = dε− dΨ− ηdθ,

= dε− ∂Ψ

∂B
: dB− ∂Ψ

∂θ
dθ − ηdθ, since Ψ = Ψ(B, θ).

Substituting the constitutive law (14) in the above equation and recalling that ε = e− 1
2
v2,

we arrive at the fundamental Gibbs relation

θdη = − 1

2ρ
TB−1 : dB− v · dv + de. (16)
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The Gibbs relation enables us to compute the time rate of change of entropy as follows

ρθ
dη

dt
= −1

2
TB−1 :

dB
dt
− ρv · dv

dt
+ ρ

de

dt
. (17)

On the one hand, substituting the GCL (9) into the first term of the right-hand side of (17)

leads to

1

2
TB−1 :

dB
dt

=
1

2
TB−1 : (LB− BLt)

=T : L, since T and B commute.

On the other hand, substituting the conservation laws (10b) and (10c) into the remaining

terms of the right-hand side of (17) yields

−ρv · dv

dt
+ ρ

de

dt
=− v · ∇ · (T) +∇ · (Tv),

=T : ∇v.

Here, we have employed the identity ∇ · (Ttv) = v · ∇ · (T) + T : ∇v. Finally, gathering the

foregoing results and observing that L = ∇v we arrive at

ρθ
dη

dt
= 0. (18)

This shows that the system of conservation laws (10) is equipped with a supplementary con-

servation law which states that entropy is conserved along flow trajectories. Thus, constitu-

tive law (14) for isotropic materials is consistent with the second law of thermodynamics. Let

us point out that the algebraic manipulations which led to this result have been completed

under the smoothness assumption of the flow variables. In the presence of discontinuities

such as shock waves, the entropy conservation law turns into the entropy inequality

ρθ
dη

dt
≥ 0. (19)

2.2.3 Volumetric shear strain decomposition

We want to study materials that can sustain only limited shear strain but respond elastically

to large change in volume. Following [50], we introduce the additive decomposition of the free

energy into a volumetric part and a shear part. This also provides the additive decomposition

of the Cauchy stress into a spherical part, which is nothing but the pressure, and a deviatoric

part. To construct this additive decomposition, we start by introducing the multiplicative

decomposition of the deformation gradient tensor, F, into a volumetric and an isochoric

parts. The volumetric part is equal to J
1
3 Id, whereas its isochoric part reads F = J−

1
3F.

This part of the deformation gradient is volume preserving since det(F) = 1. This in turn

implies that the isochoric part of the left Cauchy-Green tensor reads B = J−
2
3B. Bearing

this decomposition in mind, the expression of the free energy (13) turns into

Ψ ≡ Ψ(J, I1(B), I2(B), θ). (20)
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The dependence of the free energy on I3 is held by J since I3(B) = det(B) = 1. Now, we

decompose this latter expression of the free energy into

Ψ = Ψv(J, θ) + Ψs(I1, I2, θ), (21)

where Ψv and Ψs denote respectively the volumetric and the shear part of the free energy

knowing that I1 = I1(B) and I2 = I2(B) are the principal invariants of the isochoric part

of the left Cauchy-Green tensor B (refer to Appendix A for the definition of the principal

invariants of a tensor).

Finally, substituting the volumetric/shear decomposition of the free energy into the consti-

tutive law (14) and after some algebra we arrive at

T = ρJ

(
∂Ψv

∂J

)
θ

Id + 2ρ

[(
∂Ψs

∂I1

)
θ

B0 −
(
∂Ψs

∂I2

)
θ

(B−1
)0

]
. (22)

Here, for a tensor, the superscript 0 denotes its deviatoric part. Thus, T0 is the deviatoric

part of the Cauchy stress tensor defined by T0 = T − 1
3
tr(T)Id and obviously tr(T0) = 0.

Let us note that the foregoing expression of Cauchy stress tensor in terms of B−1
has been

obtained thanks to the Cayley-Hamilton theorem, refer to Appendix A, which allows to write

B−1
= B2 − I1B + I2Id. Observing (22), we arrive at the conclusion that the Cauchy stress

decomposes into a spherical and a deviatoric part which are respectively defined by

p =− ρJ
(
∂Ψv

∂J

)
θ

, spherical part (23a)

T0 =2ρ

(
∂ΨS

∂I1

)
θ

B0 − 2ρ

(
∂ΨS

∂I2

)
θ

(B−1
)0, deviatoric part. (23b)

Here, p = p(J, θ) is nothing but the pressure and we point out that T0 = T0(I1, I2, θ).

Remark 1 (Hyper-elasticity versus hypo-elasticity.) Hyperelasticity relies on the def-

inition of a free energy which allows to express the deviatoric part of the Cauchy stress in

terms of the deviatoric part of the left Cauchy-Green tensor. This framework provides a

constitutive law fulfilling

• the material frame indifference principle;

• the thermodynamic consistency with the second law.

On the other hand, for hypo-elasticity, refer for instance to [47], the constitutive law is written

under incremental form. Namely, the time rate of change of the deviatoric stress is expressed

in terms of the deviatoric part of the strain rate tensor. The enforcement of the principle of

material frame indifference relies on the use of a somewhat arbitrary objective stress rate such

as the Jaumann rate, refer to [35]. Moreover, the use of objective stress rate makes appearing

non conservative terms which render the mathematical analysis of discontinuous solutions

quite delicate. This framework does not allow the fulfillment of thermodynamic consistency.

Indeed, for smooth elastic flows the entropy is not conserved.

According to the constitutive law (14) the volumetric/shear decomposition of the free energy
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also induces a similar additive decomposition of the specific entropy η = ηv + ηs where

ηv(J, θ) =−
(
∂Ψv

∂θ

)
J

, volumetric part, (24a)

ηs(I1, I2, θ) =−
(
∂Ψs

∂θ

)
I1,I2

, shearing part. (24b)

Gathering the foregoing results and recalling that, ε = Ψ + θη, leads to

ε = Ψv + Ψs + θ(ηv + ηs) = (Ψv + θηv) + (Ψs + θηs).

Thus, it is natural to introduce the volumetric and the shearing parts of the specific internal

energy as follows

εv(J, θ) =Ψv(J, θ) + θηv(J, θ), (25a)

εs(I1, I2, θ) =Ψs(I1, I2, θ) + θηs(I1, I2, θ). (25b)

Remark 2 (About other thermodynamic potentials.) The thermoelastic response of

the material could have been defined choosing internal energy, ε ≡ ε(B, η), as a thermody-

namic potential to further derive the constitutive law, refer for instance to [30,39]. However,

as noticed in [50], such a choice is inappropriate because it would imply that the absolute

temperature θ (which is an intensive thermodynamic quantity) is a sum of volumetric/shear

contributions. Moreover, the choice of the absolute temperature as an independent variable is

more convenient since the notion of stress depending on temperature is more familiar, mostly

because the temperature can easily be measured with classical devices.

2.2.4 Examples of constitutive laws

Let us point out that the volumetric/shear decomposition allows us to define separately the

pressure by introducing an hydrodynamic equation of state characterized by the volumetric

free energy Ψv = Ψv(J, θ). The pressure and the internal energy are expressed by means of

classical thermodynamic relations

p(τ, θ) = −ρ0

(
∂Ψv

∂J

)
θ

, εv(J, θ) = Ψv(J, θ)− θ
(
∂Ψv

∂θ

)
J

, (26)

where ρ0 > 0 denotes the initial mass density of the solid. In what follows, for numerical

applications, we shall make use of the volumetric free energy

Ψv =
µ

4ρ0

(
(J − 1)2 + (log J)2

)
, (27)

which leads to the pressure p = −µ
2
(J−1+ log J

J
) and the volumetric internal energy εv = Ψv.

Apart from this equation of state, we shall also utilize the stiffened gas equation of state,

which writes under the incomplete form

εv =
p+ γp∞
(γ − 1)ρ

, (28)

where γ and p∞ are material-dependent parameters. More generally, one can utilize one’s

favorite equation of state regardless of the shearing free energy choice. However, one shall

12



always choose at least a convex equation of state to ensure the hyperbolicity of the hydro-

dynamic part of the system of conservation laws.

Regarding the shear part of the free energy we use the family of rank-one convex stored

energies proposed in [29]

Ψs(I1, I2) =
µ

4ρ0

[
−2a(I1 − 3) +

(1 + a)

3
(I

2

2 − 9)

]
, (29)

where a is an adjustable parameter. For a ∈ [−1, 1
2
], it is shown in [29] that the resulting

system of conservation laws is hyperbolic. For the numerical applications, we shall consider

the particular case a = −1 which corresponds to neo-Hookean materials. In this case, the

shear part of free energy reads Ψs = µ
2ρ0

(I1 − 3) and thus the deviatoric part of the Cauchy

stress tensor is given by

T0 =
µ

J
B0, (30)

where B0 = B− 1
3
tr(B)Id.

Finally, material mechanical properties are often described in terms of Young modulus E,

Poisson ration ν and shear modulus µ, which also corresponds to the second Lamé coefficient.

These parameters are linked as follows:

µ =
E

2 (1 + ν)
. (31)

In this paper, the numerical simulations will be carried out mainly with the neo-Hookean

hyperelastic constitutive law, however we might also employ the non linear constitutive law

(29) in the case a = 0 for comparison purposes.

2.3 Updated Lagrangian hyperelasticity for isotropic materials

We summarize the set of partial differential equations governing the time evolution of the

isotropic hyperelastic material under consideration. The conservation laws of mass, momen-

tum and total energy read

ρ
dτ

dt
−∇ · v = 0,

ρ
dv

dt
−∇ · T = 0,

ρ
de

dt
−∇ · (Tv) = 0.

This system is supplemented by the trajectory equation

dx

dt
= v(x(t), t), x(0) = X.

The Cauchy stress tensor is symmetric, i.e., T = Tt. It is obtained deriving the free energy

with respect to the left Cauchy-Green tensor B. Assuming a volumetric/shear decomposition

of the free energy, Ψ = Ψv + Ψs, the Cauchy stress tensor reads

T = ρJ

(
∂Ψv

∂J

)
θ

Id + 2ρ

[(
∂Ψs

∂I1

)
θ

B0 −
(
∂Ψs

∂I2

)
θ

(B−1
)0

]
.

13



Here, B = J−
2
3B denotes the isochoric part of the left Cauchy-Green tensor and I1, I2 are

respectively its first and second invariants. We note also that Ψv = Ψv(J, θ) and Ψs =

Ψs(I1, I2, θ). By construction, the foregoing constitutive law satisfies the material frame

indifference principle and is thermodynamically consistent which allows to write the Gibbs

identity

θdη = − 1

2ρ
TB−1 : dB− v · dv + de.

This system of physical conservation laws is completed by the geometrical conservation law

expressing the time rate of change of the left Cauchy-Green tensor

dB
dt
− LB− BLt = 0, (32)

where L = ∇v is the Eulerian velocity gradient tensor.

It is remarkable to note that updated Lagrangian isotropic hyperelasticity requires only the

knowledge of the left Cauchy-Green tensor.

Remark 3 (Physical admissibility.) The physical admissibility property is defined by a

set of so-called admissible states such that the material vector determines a valid state ac-

cording to the conservation and constitutive laws. If the vector of variables is Q = (τ,v, e,B)

supplemented with its relationships with derived variables, ε, L, etc. in the hyperelastic model

considered in this work the physically admissible set A is

A =

{
Q s.t. τ > 0 and ε = e− 1

2
v2 > 0 and θ > 0 and ρθ

dη

dt
≥ 0

}
. (33)

3 Finite volume discretization

Let ω(t) be the computational domain at time t > 0. It is a subset of the three-dimensional

space whose boundary surface ∂ω(t) is characterized by the outward pointing unit normal

vector n.

3.1 Mesh and notation

The computational domain ω(t) is discretized at time t ≥ 0 by a set of non-overlapping

simplicial cells. NE represents the total number of elements/cells in the domain and a cell is

referred to with label c, that is ωc(t). We also refer to a vertex/point with index p. Moreover

the set of points of a cell is denoted by P(c) and the set of cells sharing a given point p is

C(p). Next the set of the faces of a cell is F(c) and the set of faces sharing a node p is F(p).

Likewise the set of edges of a cell is E(c), and the set of those impinging at a common point

is denoted by E(p).

For any discrete time tn, n ∈ N, the union of all elements ωnc := ωc(t
n) paving ω(tn) is called

the current mesh configuration T nω of the domain

T nω =
NE⋃
c=1

ωnc . (34)

Each control volume defined in the physical space x = (x, y, z) can be mapped onto a

reference element ωe in the reference coordinate system ξ = (ξ, η, ζ) in 3D, see figure 2.
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In 2D the third components of x and ξ are maintained constant. We consider that any

polyhedral cell can be split into tetrahedra, as such the method developed in this work is

readily applicable on meshes made of polyhedra.

O

1

1

1

ξ

ζ

η

ωe

px

fx

px

fx

c
x

x
e

y

x

z

ω
c

subce ll
ω

pccell 

nf

n

n

Fig. 2. Left: Reference simplicial element ωe in coordinates ξ = (ξ, η, ζ) — Right: cell ωc, subcell

ωpc and geometrical face/cell/point centers and outward pointing face normal nf to each face f .

3.1.1 Geometrical entities

The volume of the cell ωc(t) is denoted by |ωc(t)|. The cell center, xc, corresponds to its

centroid, that is

xc =
1

|ωc(t)|

∫
ωc(t)

x dv.

The center of a face f is the iso-barycenter of the points defining the face: xf = 1
|P(f)|

∑
p∈P(f)

xp,

where |S| denotes the cardinal of any set S.

Given a cell c and a point p we define a unique object called subcell, referred to with double

index pc which is the unique geometrical object linking the cell center xc, the point xp and

the face centers xf for all face f ∈ F(pc) with F(pc) ≡ F(c) ∩ F(p). In 3D the subcell is

a hexaedron with possibly non-planar faces, in 2D it is a quadrangle, refer to figure 2. A

subcell is further denoted by ωpc, its volume is referred to as |ωpc|, see figure 2. Each face

f ∈ F(pc) of a subcell ωpc is assigned a unique outward pointing unit normal nf and surface

Af > 0. As such any cell ωc is a collection of subcells: ωc =
⋃
p∈P(c) ωpc, each being considered

as a Lagrangian object.

In a Lagrangian framework the mass of a subcell and cell, mpc, mc respectively, are constant

in time and equal to

mpc =
∫

Ωpc

ρ0(X) dV, mc =
∫

Ωc

ρ0(X) dV =
∑

p∈P(c)

mpc, (35)

where Ωpc and Ωc denote the subcell and the cell in the initial configuration, ρ0(X) > 0 is

the initial density distribution, and dV refers to the integral measure over volume.

The cell volume might be expressed in terms of its vertices location, that is

|ωc(t)| =
∣∣∣ωc (x1(t), · · · ,x|P(c)|(t)

)∣∣∣ .
Thus, applying the chain rule of composed derivative, the time rate of change of the cell
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volume writes
d|ωc(t)|

dt
=

∑
p∈P(c)

∂|ωc|
∂xp

· dxp
dt

. (36)

This equation allows us to distinguish the fundamental geometrical object

apcnpc =
∂|ωc|
∂xp

, (37)

known as the corner normal vector. It has been introduced by several authors in the context

of Lagrangian hydrodynamics, refer for instance to [2]. Here, apc represents a (d−1)-measure

(length in 2D, area in 3D) and npc is a unit outward pointing vector. Algebraic manipulations

of (37) may convince the reader that the corner vector is the sum of the face outward pointing

normal vectors for all face f ∈ F(pc) of the current cell c impinging on node p. The cell

ωc being a closed contour, the set of its corner normal vectors satisfies the fundamental

geometrical identity ∑
p∈P(c)

apcnpc = 0. (38)

Let us point out that the corner normal vector relative to the initial Lagrangian cell, Ωc, is

similarly defined by

ApcNpc =
∂|Ωc|
∂Xp

. (39)

3.1.2 Conservative and constitutive discrete variables

The time dependent conserved or constitutive variables are the cell-centered approximate

mass-averaged values gathered into vector Qc(t) = (τc(t),vc(t), ec(t),Bc(t)). For a vector or

a tensor this should be understood as component-wise. We also use in this work a point-wise

velocity field vp which represents the velocity of point p, i.e., vp =
dxp
dt

.

From now on we implicitly assume the dependence on time and to lighten the notation we

omit it.

3.2 Discrete velocity gradient operators

This paragraph aims at presenting a FV approximation of the velocity gradient for the up-

dated Lagrangian representation. This operator is of great importance for deriving moving

grid discretization of Lagrangian hydrodynamics, see for instance [47,42]. The resulting dis-

crete velocity gradient operator shall be useful for the space discretization of the Geometric

Conservation Law which governs the time rate of change of the deformation gradient. Appli-

cation of the divergence theorem leads to write the updated Lagrangian cell-centered velocity

gradient operator

Lc(v) =
1

|ωc|

∫
∂Ωc

v ⊗ n ds.

Let us note that the velocity field is defined by its values at the cell nodes denoted by

vp = v(xp). Now, approximating the foregoing integrals thanks to the corner normal vectors

(37) and the pointwise velocity field we arrive at the approximation of the discrete Lagrangian
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and Eulerian velocity gradient operators

Lc(v) =
1

|ωc|
∑

p∈P(c)

apcvp ⊗ np. (40)

It is worth pointing out that this discrete gradient operator is exact for affine velocity fields.

This property relies on the geometrical identities (38) and

∑
p∈P(c)

apcxp ⊗ npc = |ωc|Id.

The interested reader might refer for instance to [22] for finding the demonstration of this

result.

We end up presenting an important by-product of the discrete Eulerian velocity gradient

operator. Taking the trace of (40) leads to

tr [Lc(v)] =
1

|ωc|
∑

p∈P(c)

apcvp · npc.

This is nothing but the discrete cell-centered divergence operator. Finally, combining the

definition of the Eulerian corner normal vector (37) and the discrete divergence operator

leads to rewrite the time rate of change of the cell volume as follows

1

|ωc|
d|ωc|

dt
= tr [Lc(v)] . (41)

3.3 Semi-discretization in space

3.3.1 Conservation laws - GCL, momentum and total energy

The geometrical conservation law (GCL) is a fundamental consistency property in La-

grangian framework. Indeed it states that the discrete motion of all the points p of a given

cell ωc with the trajectory equations

dxp
dt

= vp, (42)

is consistent with the volume conservation law (10a). Since mc τc = |ωc| and taking into

account (41), we readily infer the discrete version of the volume conservation law which is

compatible with the GCL

mc
dτc
dt
−

∑
p∈P(c)

apcnpc · vp = 0. (43)

The space discretization of the momentum and the total energy equations is performed

introducing the subcell force fpc, which is the traction force exerted on the outer boundary

of the subcell ωpc. More precisely, starting from (10b) further integrated over cell ωc and

invoking Green theorem we formally can get

mc
dvc
dt
−
∫
∂ωc

Tn ds = 0. (44)
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Then, the previous integral over the cell boundary is split over the subcell boundaries and

one gets

mc
dvc
dt
−

∑
p∈P(c)

∫
∂ωpc∩∂ωc

Tnds = 0, (45)

which yields our definition of the subcell force as

fpc =
∫
∂ωpc∩∂ωc

Tn ds. (46)

Next, considering the energy equation (10c) and the same algebraic manipulation yields

mc
dec
dt
−

∑
p∈P(c)

∫
∂ωpc∩∂ωc

Tv · n ds = 0. (47)

Assuming that the velocity along the faces impinging on point xp is the constant point

velocity vp, then the previous integral can be approximated as

∫
∂ωpc∩∂ωc

Tv · n ds '
(∫

∂ωpc∩∂ωc

Tn ds

)
· vp = fpc · vp. (48)

Therefore, using the subcell force definition, the semi-discrete version of the conservation

laws read

mc
dτc
dt
−

∑
p∈P(c)

apcnpc · vp = 0, (49)

mc
dvc
dt
−

∑
p∈P(c)

fpc = 0, (50)

mc
dec
dt
−

∑
p∈P(c)

fpc · vp = 0. (51)

This system of semi-discrete physical conservation laws is supplemented with the semi-

discrete version of (9) expressing the time rate of change of the left Cauchy Green tensor

required for the constitutive law

dBc
dt
− LcBc − BcLtc = 0. (52)

Here, Bc and Lc denote respectively the cell-centered values of the left Cauchy-Green and

the Eulerian velocity gradient tensors. The discretization of this equation, which relies on

geometrical considerations, shall be detailed in section 3.4.2. Let us point out that the

remaining unknowns in the foregoing set of semi-discrete equations are the subcell force and

the node velocity. We shall determine them invoking:

• The thermodynamic consistency of the semi-discrete scheme;

• The conservation of total energy and momentum.

The first requirement allows us to express the subcell force fpc in terms of the node velocity

vp. The second one provides a linear system at each node satisfied by the node velocity.

The interested reader might refer to [45,13] for a detailed presentation of this particular

discretization.
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3.3.2 The subcell force expression ensuring thermodynamic consistency

The constitutive law leads to the definition of the following discrete Cauchy stress tensor:

Tc = 2ρc
∂Ψ

∂B
(Bc, θc)Bc. Starting from the Gibbs identity (16) let us compute the time evolu-

tion of the entropy within cell ωc

mcθc
dηc
dt

= −1

2
|ωc|TcB−1

c :
dBc
dt
−mcvc ·

dvc
dt

+mc
dec
dt
. (53)

Each term of the right hand side can be replaced by a more appropriate form for our analysis

using (50), (51) and

−1

2
TcB−1

c :
dBc
dt

= −Tc : Lc = −Tc :
∑

p∈P(c)

apcvp ⊗ npc,

which after substitution yields

mcθc
dηc
dt

= −Tc :
∑

p∈P(c)

apcvp ⊗ npc +
∑

p∈P(c)

fpc · (vp − vc)

= −
∑

p∈P(c)

(vp − vc) · Tcnpc +
∑

p∈P(c)

fpc · (vp − vc)

=
∑

p∈P(c)

(−apcTcnpc + fpc) · (vp − vc).

Therefore, in order to ensure a proper entropy dissipation, we propose to design the subcell

force as

fpc = apcTcnpc + Mpc(vp − vc), (54)

where the subcell matrix Mpc is symmetric positive definite. We easily verify that

mcθc
dηc
dt

=
∑

p∈P(c)

Mpc(vp − vc) · (vp − vc) ≥ 0, (55)

which expresses the consistency with the second law of thermodynamics at the semi-discrete

level. Now, it remains to determine the subcell matrix Mpc, which genuinely characterizes

the numerical scheme. Several possibilities have already been explored by different authors

in [44,18,52].

3.3.3 The nodal solver ensuring the conservation of total energy and momentum

Ignoring the boundary conditions, the conservation of total energy and momentum at the

semi-discrete level is ensured provided that the sum of the subcell forces impinging at node

xp is equal to zero, that is ∑
c∈C(p)

fpc = 0. (56)

The interested reader might refer for instance to [46,45] for the justification of this result.

Substituting the expression of the subcell force (54) in the foregoing condition leads to the

linear system

Mpvp =
∑
c∈C(p)

Mpcvc −
∑
c∈C(p)

apcTcnpc, where Mp =
∑
c∈C(p)

Mpc. (57)
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Notice that Mp is symmetric positive definite and, thus, invertible. The subcell matrix in

the present work writes

Mpc =
∑

f∈F(pc)

zf Af nf ⊗ nf , (58)

where we remind that Af is the surface of any of the three faces f of the neighbor cells sharing

point p, nf is its outward unit normal and zf ≡ zc = ρc

√
a2
c +

4

3

µc
ρc

is an approximation of the

swept mass flux, where ac is the local isentropic sound-speed and µc the cell shear modulus

(31)). Once the node velocity is determined thanks to (57) then the trajectory equation can

be invoked to update the node position.

3.4 Space-Time discretization — ADER methodology

3.4.1 Physical conservation laws

The time interval [0, T ] is discretized into time-steps such that t ∈ [tn, tn+1],

t = tn + α∆t, α ∈ [0, 1], (59)

where tn and ∆t represent the current time and time-step respectively. For evaluating the

magnitude of ∆t we use a classical CFL condition and a criterion to avoid a too large increase

of cell volume in a single time-step [44], refer to section 3.7 where the time step monitoring

is described. Knowing the state variable and the geometry at time tn we start by computing

the nodal velocity v∗p employing the nodal solver

Mpv
∗
p =

∑
c∈C(p)

Mpcv
∗
c − anpcT∗cnnpc, (60)

where the ∗ values on the right-hand side are obtained by high-accurate space-time recon-

structions detailed below, moreover the discrete subcell matrix Mpc and nodal matrix Mp

read

Mpc =
∑

f∈F(pc)

z∗f A
n
f n

n
f ⊗ nnf , Mp =

∑
c∈C(p)

Mpc. (61)

The knowledge of the node velocity allows us to compute the subcell force

f ∗pc = anpcT∗cnnpc + Mpc(v
∗
p − v∗c ). (62)

Integrating the trajectory equation yields the update node position

xn+1
p = xnp + ∆tv∗p, (63)

Then, it remains to perform the time explicit integration of (49), (50) and (51) to arrive at

the updated values of the physical state variables

τn+1
c = τnc +

∆t

mc

∑
p∈P(c)

ãpcnpc · v∗p, (64)

vn+1
c = vnc +

∆t

mc

∑
p∈P(c)

f ∗pc, (65)

en+1
c = enc +

∆t

mc

∑
p∈P(c)

f ∗pc · v∗p. (66)
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According to (63), the coordinate position xp is a linear function of time, thus the surface

term, ãpcnpc, in (64) exhibits a quadratic time dependency and, as such, must be exactly

integrated in order to ensure the satisfaction of the GCL at the discrete level. Therefore, the

time integral of apcnpc over [tn, tn+1] is computed at the aid of Simpson rule, which is

ãpcnpc =
1

∆t

∫ tn+1

tn
apcnpc dt ≈ 1

6
anpcn

n
pc +

2

3
a
n+ 1

2
pc n

n+ 1
2

pc +
1

6
an+1
pc n

n+1
pc , (67)

that guarantees an exact integration up to third order. Notice that in 2D a midpoint rule

is sufficient to ensure the formal accuracy of the method since the term ãpcnpc is linear in

time.

The first-order time discretization simply considers t∗ = tn and the cell-centered values of the

state vector Qn
c = (τc,vc, ec,Bc)n. To obtain second order of accuracy in space, a piecewise

linear reconstruction of the numerical solution Qc must be carried out, while second-order

time stepping demands that t∗ = tn+1/2 =
1

2
(tn + tn+1), which corresponds to the use of

a midpoint rule to perform the time integration. Classically a predictor-corrector [16] or a

Generalized-Riemann-Problem (GRP) scheme [44,14] are used for this matter. Contrarily, in

this work, the second-order time discretization relies on the concept of the ADER (Arbitrary

high order schemes using DERivatives) methodology following [13].

The ADER procedure aims at computing high order space-time polynomials qh(x, t) which

are defined in terms of a nodal basis constituted of piecewise linear space-time basis functions

θ(ξ, τ), that is

qh =
L∑
l=1

θl(ξ, τ)q̂l,c, (68)

where q̂l,c are the L = 2M degrees of freedom with M = d+ 1. The space-time coordinate

vector (ξ, τ) = (ξ, η, ζ, τ) is defined in the spatial reference element given by the unit tetra-

hedron depicted in figure 2 and in the reference time τ ∈ [0; 1] which maps the time step

[tn; tn+1]. The space-time basis functions explicitly write in 3D for all l ∈ [1;L] as follows:

θl(ξ, τ) =


θ1 = (1− ξ − η − ζ)(1− τ), θ2 = ξ(1− τ), θ3 = η(1− τ), θ4 = ζ(1− τ),

θ5 = (1− ξ − η − ζ)τ, θ6 = ξτ, θ7 = ητ, θ8 = ζτ.

(69)

Spatial reconstruction. First, a piecewise linear spatial reconstruction is carried out

[13], hence providing a second order polynomial approximation of the current numerical

solution, i.e. qh(ξ, 0). This reconstruction is not limited, thus it can be efficiently obtained

following the procedure detailed in [13]. The limiting will be done a posteriori via the MOOD

paradigm. A so-called reconstruction stencil Sc =
ne⋃
j=1

ωnm(j) is needed, where 1 ≤ j ≤ ne is a

local index that counts the elements belonging to the stencil, while m(j) maps the local index

to the global element numbers used in the mesh configuration (34). Notice that neither the

stencil nor the element configuration is symmetric on unstructured meshes, thus, to avoid

ill-conditioned reconstruction matrices, the stencil contains a total number of ne = dM
elements and is filled by the Voronoi neighbors of ωnc , i.e., the neighbor elements sharing

at least one vertex with element ωnc ). The reconstruction relies on integral conservation for

21



each element ωnj ∈ Sc, that is

1

|ωnj |

∫
ωn
j

L∑
l=1

θl(ξ, 0) q̂l,c dv ' Qn
j , ∀ωnj ∈ Sc, (70)

with |ωnj | denoting the volume of element ωnj at time tn. To enforce conservation of the

reconstruction polynomial for the cell under consideration, the above integral conservation

must hold exactly for cell ωnc , hence requiring the additional linear constraint

1

|ωnc |

∫
ωn
c

M∑
l=1

θl(ξ, 0) q̂l,c dv = Qn
c .

The reconstruction system (70) is solved using a constrained least squares technique [11].

Time reconstruction. Once the spatial reconstruction polynomial qh(ξ, 0) is known, the

ADER methodology performs a local time evolution of the governing equations (10)-(11)-

(32). To that aim, a weak formulation is derived by multiplying the PDE with a space-time

test function θk(ξ, τ) that is

tn+1∫
tn

∫
ωc(t)

θk(ξ, τ)

(
dqh
dt
− 1

ρh
∇ · f(qh,∇qh)

)
dv dt = 0, (71a)

tn+1∫
tn

∫
ωc(t)

θk(ξ, τ)
dx

dt
dv dt =

tn+1∫
tn

∫
ωc(t)

θk(ξ, τ)v dv dt, (71b)

with the state vector qh = (τ,v, e,B)h and the flux tensor f(qh,∇qh) = (v,T,Tv,LB −
BLt)h. The trajectory equation (71b) is coupled with the evolution of the governing PDE

(71a), and the local element geometry is defined by xh which is expressed in terms of the

space-time basis functions as

xh =
L∑
l=1

θl(ξ, τ)x̂l,c. (72)

The first L/2 degrees of freedom are known, since they correspond to the spatial recon-

struction polynomial qh(ξ, 0) and to the vertex coordinates of the cell ωc at time tn, that

is

x̂l,c = xp such that p ∈ P(c), ∀l ∈ [1;L/2].

The above nonlinear system (71) can be compactly written in matrix-vector notation and

then solved iteratively up to convergence for both the numerical solution qh and the local

geometry configuration xh, to obtain the remaining unknown L/2 expansion coefficients

for τ > 0. All the details can be found in [10,11,13]. The result of the ADER predictor is

a continuous second order space-time polynomial for both the numerical solution and the

element geometry, which easily allows to evaluate any physical or geometric quantity in the

space-time control volume ωc(t) for any t ∈ [tn; tn+1]. As a consequence, once the predictor

is available, the subcell forces and the node values in (64)-(66) are simply fed with the high

order extrapolated values of the predictor, hence for any variable it holds q∗(x) = qh(x, t
∗)

for any space-time coordinate (x, t).
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3.4.2 Space-time discretization of the left Cauchy-Green tensor equation

The closure of the foregoing discrete system of conservation laws relies on the generic consti-

tutive law (15) which requires the knowledge of the cell-centered left Cauchy-Green tensor

Bc within the cell ωc. This is achieved by discretizing the geometrical conservation law (9)

which is recalled hereafter for the sake of completeness

dB
dt
− LB− BLt = 0,

where L = ∇v is the Eulerian velocity gradient. In this paragraph, we aim at describing a

second-order time discretization of this equation which is compatible with the grid displace-

ment. Since by definition B = FFt, let us investigate the approximation of the deformation

gradient tensor, F, over the Lagrangian cell Ωc employing two complementary approaches.

The first one relies on the introduction of the Finite Element approximation of the Lagrange-

Euler mapping at time t > 0

Φh : Ωc → ωc(t)

X 7→ xh(X, t) =
∑

p∈P(c)

λp(X)xp(t).

Since Ωc and ωc(t) are simplices, this mapping is well defined and the function λp(X) is

nothing but the barycenter coordinate of X related to point p. It is an affine function of

X which is determined by solving λp(Xq) = δpq for q ∈ P(c), where δpq is the Kroenecker

symbol. The set of λp functions for p ∈ P(c) constitutes the classical P1 Finite Element basis

related to the simplex Ωc. Moreover, the Eulerian coordinate xp is determined by solving

the trajectory equation
dxp
dt

= vp with xp(0) = Xp. The deformation gradient associated to

this Finite Element mapping is readily obtained

Fh =
∂xh(X, t)

∂X
=

∑
p∈P(c)

xp(t)⊗∇Xλp. (73)

It is clear that in this framework the compatibility condition ∇X × Fh = 0 is fulfilled

by construction. Since this mapping is an affine function with respect to X the resulting

deformation gradient is constant over the cell Ωc. Therefore, Fh represents a piecewise con-

stant approximation of the deformation gradient. We observe that xh(X, 0) = X, thus

Fh(X, 0) = Id and Jh(X, 0) = det(Fh(X, 0)) = 1. We assume by a continuity argument that

Jh(X, t) > 0 for all t > 0, which ensures the integrity of the moving simplicial grid. Now,

time differentiating the Finite Element mapping leads to the velocity field representation

vh(X, t) =
∑

p∈P(c)

λp(X)vp(t).

Subtracting the gradient of this velocity field from the time derivative of (73) leads to

∂Fh
∂t

(X, t)−
∑

p∈P(c)

vp(t)⊗∇Xλp = 0. (74)

This shows that the foregoing Finite Element mapping provides a consistent spatial dis-

cretization of the kinematics which is fully compatible with the Geometrical Conservation
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Law (5).

On the other hand, applying the Green formula leads to introduce a cell-centered approxi-

mation of the deformation gradient over Ωc as follows

Fc =
1

|Ωc|

∫
Ωc

∇Xx dV =
1

|Ωc|

∫
∂Ωc

x⊗N dS.

Approximating the second integral by means of the Lagrangian corner normal vector (39)

yields

Fc =
1

|Ωc|
∑

p∈P(c)

Apcxp ⊗Npc. (75)

Now, comparing the Finite Element approximation (73) to the Finite Volume approximation

(75) shows that the Lagrangian corner normal ApcNpc is nothing but the gradient of the basis

function λp times the cell volume:

∇Xλp(X) =
Apc
|Ωc|

Npc. (76)

This remarkable property could have been obtained directly differentiating the explicit ex-

pression of λp with respect to X, refer for instance to [22,28]. We claim that for simplicial

grids the Finite Element approximation (73) and the Finite Volume one (75) of the defor-

mation gradient coincide. Let us point out that the foregoing space discretization of the

deformation gradient are expressed in terms of the Lagrangian grid. This would be relevant

if we were working with a total Lagrangian formulation of the solid dynamics conservation

laws. In our case, we are dealing with an updated Lagrangian formulation of these equations

which requires a space discretization of the deformation gradient over the Eulerian grid. To

this end, we shall express the Eulerian corner normal apcnpc in terms of its Lagrangian coun-

terpart thanks to the foregoing Finite Element mapping. Since the Eulerian corner normal

apcnpc is the gradient of the cell volume ωc with respect to xp, there holds

d|ωc| =
∑

p∈P(c)

∂|ωpc|
∂xp

· dxp =
∑

p∈P(c)

apcnpc · dxp. (77)

Recalling that xp = xp(t) is the image of Xp through the Finite Element mapping, i.e.,

xp(t) = xh(Xp, t) and applying the chain rule leads to

dxp =
∂xh
∂X

(Xp, t) dX = Fh dXp.

Substituting this expression of the differential of xp into (77) and observing that |ωc| = Jh|Ωc|
yields

Jhd|Ωc| =
∑

p∈P(c)

Fthapcnpc · dXp.

Knowing that the Lagrangian corner normal ApcNpc is the gradient of the Lagrangian volume

Ωc with respect to Xp we arrive at the relationship

ApcNpc = apc J
−1
c Ftcnpc. (78)

Here, for the deformation gradient and its Jacobian we have replaced the subscript h by c

since Fh = Fc.

24



Gathering the foregoing results the Lagrangian space discretization of the deformation gra-

dient equation (74) rewrites

dFc
dt
− 1

|Ωc|
∑

p∈P(c)

Apcvp ⊗Npc = 0.

Expressing the Lagrangian corner normal in terms of the Eulerian one thanks to relationship

(78) leads to
dFc
dt
− 1

|ωc|
∑

p∈P(c)

apc(vp ⊗ npc)Fc = 0.

Here, we have used the identity a⊗Qtb = (a⊗ b)Q valid for any vectors a, b and tensor Q.

Finally, recalling the definition of the discrete Eulerian velocity gradient operator, we arrive

at the Eulerian space discretization of the deformation gradient equation

dFc
dt
− LcFc = 0, (79)

where the Eulerian discrete velocity gradient operator is given by (40). This equation is

the semi-discrete counterpart of the updated Lagrangian form of the deformation gradient

equation (7). Let us emphasize the crucial role played by (78). This geometric relation

allows us to maintain the consistency of the geometry of the initial grid with the geometry

of the current grid. Indeed, thanks to (78), we should be able to construct consistent spatial

discretization for both total and updated Lagrangian representations.

We construct the second-order time discretization of (79) employing the classical Crank-

Nicholson integration scheme over the time interval [tn, tn+1]

Fn+1
c − Fnc −

∆t

2
Ln+ 1

2
c (Fn+1

c + Fnc ),

where Ln+ 1
2

c is the time-centered approximation of the discrete velocity gradient operator

defined over ωc, which reads according to (40)

Ln+ 1
2

c =
1

|ωn+ 1
2

c |

∑
p∈P(c)

a
n+ 1

2
pc v

n+ 1
2

p ⊗ nn+ 1
2

pc .

Here, the second-order space time discretization of the system of conservation laws achieved

in section 3.4.1 thanks to the nodal solver (60) provides us the node velocity v
n+ 1

2
p . Employing

this time-centered kinematic velocity field allows us to integrate the trajectory equation up

to second-order (63) and define the corresponding time-centered geometry which is labeled

using the superscript n+ 1
2
.

Performing the Taylor expansion det(Id − ∆t
2
Ln+ 1

2
c ) = 1− ∆t

2
tr(Ln+ 1

2
c ) + O(∆t2) for ∆t→ 0

shows that we can find ∆t > 0 sufficiently small so that det(Id − ∆t
2
Ln+ 1

2
c ) > 0 and thus

Id− ∆t
2
Ln+ 1

2
c is invertible. Under this time step constraint the updated cell-centered value of

the deformation gradient within cell ωc reads

Fn+1
c =

(
Id −

∆t

2
Ln+ 1

2
c

)−1 (
Id +

∆t

2
Ln+ 1

2
c

)
Fnc . (80)
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Let us point out that (80) is particularly interesting since it provides the time increment of

the cell-centered deformation gradient employing uniquely geometrical quantities attached

to the time-centered Eulerian grid. Now, taking the determinant of (80) yields

det(Fn+1
c ) =

det(Id + ∆t
2
Ln+ 1

2
c )

det(Id − ∆t
2
Ln+ 1

2
c )

det(Fnc ).

Performing a Taylor expansion of the above fraction for ∆t→ 0 up to second order leads to

Jn+1
c =

[
1 + ∆tI1(Ln+ 1

2
c ) +

∆t2

2
I2

1 (Ln+ 1
2

c )

]
Jnc +O(∆t3),

where I1(Ln+ 1
2

c ) is the first invariant of the time-centered Eulerian velocity gradient, i.e.,

I1(Ln+ 1
2

c ) = tr(Ln+ 1
2

c ). This formula has been obtained thanks to the use of the Taylor

formula

det(Id + hA) = 1 + hI1(A) + h2I2(A) +O(h3), when h→ 0.

which holds true for any second-order tensor A. Here, I2(A) is the second invariant of A
whose definition is recalled in appendix A. This suggests the alternative time discretization

of the Jacobian equation

Jn+1
c =

(
1 + ∆tI1 +

∆t2

2
I2

1

)
Jnc . (81)

This is a positivity preserving time discretization since the quadratic polynomial between

parenthesis is always strictly positive regardless ∆t. It is also a second-order accurate ap-

proximation of

Jn+1
c = Jnc exp

[
∆t tr(Ln+ 1

2
c )

]
,

which is nothing but the second-order time discretization of the GCL (8), i.e.,
dJ

dt
= Jtr(L).

We observe that (81) could be employed in lieu and place of (64).

Finally, substituting (80) into the definition of the left Cauchy-Green tensor, i.e., B = FFt,
we arrive at

Bn+1
c =

(
Id −

∆t

2
Ln+ 1

2
c

)−1 (
Id +

∆t

2
Ln+ 1

2
c

)
Bnc
(
Id +

∆t

2
Ln+ 1

2
c

)t (
Id −

∆t

2
Ln+ 1

2
c

)−t
. (82)

Performing a Taylor expansion of the foregoing equation for ∆t → 0 allows to show that

it constitutes a second-order accurate approximation of the GCL (9). Moreover, (82) is

consistent with the discretization of the discrete Jacobian equation (81). The proposed time

discretization preserves the symmetry and the positive definiteness of the left Cauchy-Green

tensor. Indeed, denoting Q = (Id−∆t
2
Ln+ 1

2
c )−1(Id+ ∆t

2
Ln+ 1

2
c ) we get Bn+1

c = QBncQt. Assuming

Bnc is symmetric and positive definite, it is clear that Bn+1
c remains symmetric. Regarding

its positive definiteness it holds true since

Bn+1
c a · a = (QBncQt)a · a = Bnc (Qta) · (Qta) ≥ 0, for any vector a.
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3.5 Limiting: a posteriori MOOD loop

While in the original ADER schemes the limiting relies on a priori limited WENO re-

constructions for all variables [26,25], here we adopt an a posteriori MOOD paradigm, see

[21,13]. The technique is a posteriori in the sense that we compute a solution at time tn+1,

and, then, determine if this candidate solution is acceptable, or not and some dissipation is

needed. The candidate solution is first computed with a second-order accurate P1 unlimited

scheme using a centered reconstruction stencil. Then a detection procedure determines the

problematic cells, i.e. the cells where the approximation does not respect some user-given

criteria. For those cells the solution is locally recomputed with a lower-order but more robust

scheme. In this work we consider three schemes forming a cascade, each of them chosen to

comply with one specific objective:

(1) P1: Accuracy is gained with the unlimited piecewise-linear polynomial reconstruction:

maximal second-order of accuracy, possibly oscillating;

(2) Plim
1 : Robustness is gained with the previous reconstruction supplemented with Barth-

Jespersen (BJ) [3] slope limiter: between first- and second-order of accuracy, essentially-

non-oscillatory;

(3) P0: Fail-safe is gained without any polynomial reconstruction: first-order of accuracy,

robust but dissipative.

The cascade is then P1 → Plim
1 → P0, different from [13] which was reduced to P1 → P0.

A cell which does not satisfy all detection criteria is recomputed with the next scheme in

the cascade. This procedure, called the MOOD loop, is repeated until each cell satisfies all

detection criteria or if the latest scheme of the cascade is selected. In this case, the ultra-

robust first order FV parachute scheme is employed. Its role is to produce a meaningful

solution at the price of an excessive numerical dissipation, but, in practice, it is almost never

used. Notice that the BJ slope limiter can be substituted by any other reasonable one. The

process of dropping in the cascade is called decrementing and a numerical solution not yet

valid is referred to as being a candidate solution, see figure 3 for a sketch.

The efficiency of the a posteriori MOOD paradigm is brought by the fact that usually

only few problematic cells need decrementing. In the present implementation, the MOOD

loop simply embraces the main evolution routines of the ADER method and iterates to

recompute those cells with invalid values, detected by the admissibility criteria. In the worst

case scenario all cells in the domain are updated with the parachute scheme, leading to

the true first-order accurate and robust numerical solution. On the other hand, in the best

case scenario, all cells are admissible at the first MOOD iterate leading to a truly second-

order accurate numerical solution. In any other case, the MOOD loop always converges and

produces an acceptable numerical solution, assuming that the parachute scheme does so.

In the case of hyperelasticity the detection/admissible criteria are based on the discrete

version of A, see remark 3, that is, a candidate solution Q∗,n+1
h is physically admissible if

it belongs to Ah = {Qc = (τc,vc, ec,Bc) s.t. τc > 0, εc > 0, θc > 0, }. Notice that we do not

really use the entropy production in each cell, i.e. see (33), because it produces excessive

dissipative numerical solutions without any apparent gain.

Moreover to avoid spurious oscillations we also demand that the candidate density fulfills a
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Relaxed Discrete Maximum Principle (RDMP) that is

−δnc +mn
c ≤ ρ∗,n+1

c ≤Mn
c + δnc , with


δnc = max(δ0, δ1|Mn

c −mn
c |),

mn
c = mind∈Vc(ρ

n
d), Mn

c = maxd∈Vc(ρ
n
d).

(83)

Vc is the von Neumann neighborhood of cell c used to reconstruct the piecewise polynomials.

We fix δ0 = 10−4 and δ1 = 10−3. Any cell which does not belong to Ah or does not fulfill (83)

is declared troubled, and, sent back to tn along with its neighbors for their re-computation

using the next scheme in the cascade, see [13].

3.6 Internal consistency consideration

The internal consistency of the numerical scheme is related to its ability to maintain some

mathematical equality at a reasonable level of accuracy during the simulation 1 .

The first of such equality is the link between the constant cell mass, the specific volume τ

(or the density ρ = 1/τ) and volume |ω|: m =
|ω|
τ

. The discrete constant mass is computed

initially from the initial specific volume in the cell as mc ≡ m0
c =
|ω0
c |
τ 0
c

. The primary variable

is the specific volume: τn+1
c computed by (64). The new position of the points xn+1

p allows

to deduce the cell volume |ωn+1
c | as a secondary variable. However, we could also deduce the

cell volume consistently with the PDE (49) as being τn+1
c mc. Therefore, from a consistency

point of view, we should monitor that the following equality holds

εω = ||ωn+1
c | − τn+1

c mc|. (84)

This constraint is nothing but the discrete version of the GCL which is fulfilled by con-

struction for modern cell-centered Lagrangian schemes thanks to the exact integration of

the geometry in (67).

For the hyperelasticity model, the identity detB = J2 =

(
τ 0

τ

)2

should be fulfilled through-

out the simulation. For each cell, numerically, τn+1
c is a primary variable computed from (64),

and, a priori , not directly related to τ 0
c /
√

detBn+1
c . We therefore monitor their difference

as an internal consistency criteria as

εB =
∣∣∣√detBn+1

c − τ 0
c

τn+1
c

∣∣∣. (85)

Here εB must be small compared to the accuracy of the scheme, and, in fact, the current

scheme ensures that εB = O(∆t3) due to the use of Simpson’s rule in (67), see section 5.9

for a numerical validation.

1 Such a concern was for instance raised in [4] in the context of hydrodynamics solved by a staggered

Lagrangian scheme where the cell volume can be computed either from the point coordinates or

the PDE for the specific volume τ . The difference between these two “measures” was monitored to

assess the internal consistency of the scheme.
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3.7 Time-step monitoring

The time-step is restricted by the classical CFL condition in our Lagrangian context [44]

∆t = min (∆tvolume, ∆tacoustic, ∆tincrease) , (86)

where we have used a criterion to avoid a too large increase of cell volume in a single time-step

∆tvol. = Cv min
c

 |ωnc |∑
p∈P(c)

apcnpc · vp

 , ∆tacoust. = CCFL min
c

(
Lc
zc/ρc

)
, ∆tincr. = Ci(t

n − tn−1),

(87)

where Lc is the cell characteristics length (smallest diameter of the in-spheres) and zc/ρc =√
a2
c +

4

3

µc
ρc

, and, {Cv, CCFL, Ci} ∈ [0, 1]3. The last constraint is designed to avoid a too large

increase of ∆t. Notice that the a posteriori detection allows to ensure the positivity of the

cell volume and the internal energy provided that the parachute first-order scheme does. As

such the time-step control must be suited for the parachute scheme. In our simulations we

take Cv = 0.2, Ci = 0.1 and CCFL = 0.25 otherwise noticed.

Notice that the a posteriori MOOD loop may also be used to try to exceed the time-step

restrictions (86) at the price of creating more troubled cells, for instance by setting CCFL

closer to one.

3.8 Boundary condition treatments

The Boundary Conditions (BCs) play a crucial role in the time evolution of the numeri-

cal solution. In the context of an hyperelasticity model solved by the Lagrangian numerical

scheme we consider several types of BCs, such as free traction, restricted normal/tangential

displacement and contact/symmetry plans. These classical BCs are described in appendix B

in the context of hyperelastic materials, and all are applied through the nodal solver, differ-

ently from other face-based FV schemes.

To enlarge even further the ability of the code to handle complex situations, we have added

the possibility for a BCs to change its type during the simulation, for instance transitioning

from free-traction to null normal velocity. Generally such BC type evolution is driven by

the nullification of a cost or distance function D. For instance an elastic material balistically

flying, impacting onto a wall, spreading and eventually detaching, demands such type of

evolving BCs, see for instance the test case ’Rebound of a hollow bar’ in section 5.6.

The transition from BC type A (BCA) to B (BCB) can be imposed in two different ways:

• at a prescribed instant t = tBC the type of BCs changes, hence BCA → BCB;

• when the moving medium approaches a prescribed target located at xT , i.e. the distance

function D = |xp − xT | < εD, where εD is a user-given threshold value, and, the velocity

vector points in the direction of the target, then BCA → BCB. Later, if the medium

happens to detach from the target, then the distance function becomes again greater than

the threshold value and the original BC is restored, that is BCB → BCA.

Finally, from a practical point of view a hierarchy between the type of BCs must be imposed.

For instance when two faces sharing the same node must fulfill two different types of BCs,
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then they must be applied in a hierarchical manner, taking into account the most important

one first, possibly relaxing the fulfillment of the other ones. Also at a material corner, a wall

type BC must prevail compared to free traction BC, in such a way it avoids the boundary

node to penetrate into the wall line/plane. Our hierarchy is as follows: 1- wall BC (restricted

normal/tangential displacement), 2- space-dependent BC on velocity or pressure, 3- symme-

try BC, and 4- free-traction BC.

Although it seems at first glance to be “only” implementation issues, the treatment of BCs

is of utmost importance for 3D moving mesh numerical schemes.

4 Implementation considerations

4.1 Algorithm

In this section we recall the main steps of the MOOD loop applied to this cell-centered

Lagrangian scheme sketched in figure 3. First of all, cell-centered unlimited polynomials of

degree d = 1 are reconstructed for any cell c starting from data at tn, Qn
c . Then a nodal solver

and the ADER methodology allow to compute a candidate solution at tn+1, leading to an P1

(unlimited 2nd order accurate) candidate solution. This candidate solution in cell c can be

either acceptable or numerically/physically wrong. This is the purpose of the ’Detection’ box

to determine which cells are troubled, and, on the contrary to accept the admissible ones. For

those troubled cells, the ’Decrement’ box picks the next scheme in the ’cascade’, that is either

one employing a Plim
1 piecewise-limited reconstruction (BJ limiter), or, P0 (no reconstruction

at all, d = 0), i.e. the parachute scheme. Those troubled cells and their Voronoi neighbors are

solely sent back into the Lagrangian FV solver for re-computation. This part of the solution

which has been recomputed is re-tested against the detection criteria. New admissible cells

are accepted, while troubled ones are again sent back for re-computation with a more robust

scheme. Notice that this MOOD loop converges in a finite number of steps because the

number of schemes in the cascade is fixed as well as the number of cells.

Once the slope limiter is chosen, the only parameters of the numerical method are the

thresholds δ0 and δ1 in (83) and the time-step control parameters (87).
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Fig. 3. Sketch of the current Lagrangian numerical method and its associated MOOD loop.
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4.2 Meshing and parallelization

The 3D Lagrangian simulation algorithm is fully coded in FORTRAN and relies on MPI

protocol for the parallelization and the free graph partitioning software METIS [38]. More

precisely the computational domain ω ∈ R3 is first meshed with a genuinely coarse mesh

made of large tetrahedra, say NC , using any classical 3D mesh generator. NC is chosen small

enough for the resulting coarse mesh to be handled by one processor without any difficulty.

This primary mesh is then partitioned among the total number of threads NCPU, see figure 4-

right for NCPU = 4 in 2D and the coarse mesh in black. Each MPI rank locally refines its

portion of the primary mesh by an arbitrary refinement factor ` > 0.

NCPU and ` > 0 are given by the user. A local isotropic recursive refinement is further

applied. The ` = 0th level corresponds to one of the primary tetrahedron, that is N` = 1

cell. The ` = 1st level consists of its division into eight sub-tetrahedra, see remark 4, to get

N` = 8 sub-tetrahedra. The `th level consists of the division of all sub-tetrahedra obtained

at level ` − 1, leading to N` = 8` sub-tetrahedra. In 2D the subdivision of one triangle is

made into 4 sub-triangles. Each thread possesses only a portion of the full mesh and writes

also its own output files. As such the full mesh is never really assembled on a single thread

leading to a reduction of memory storage. Notice that our aim is not to produce a perfectly

scaled and massively parallel code, but rather being able to simulate with large enough 3D

mesh reasonably fast. Nonetheless, a strong scaling up to 64 CPUs is shown in table 1, where

we report the computational time τEU needed for performing one element update at second

order of accuracy and the corresponding speedup for the L-shaped test case from section 5.8.

CPU τEU Measured speedup Ideal speedup

8 2.30714E-05 1.00 1

16 1.28105E-05 1.80 2

32 6.29876E-06 3.66 4

64 2.99938E-06 7.69 8

Table 1

Strong scaling computed for the L-shaped block test case presented in section 5.8.The computa-

tional time needed to perform an element update with second order of accuracy in space and time

is addressed with τEU .

Remark 4 To split one single tetrahedron we insert new vertices at the midpoints of each

edge and connect the vertices together and form four new sub-tetrahedra associated to the

vertices. When removed, it remains one central octahedron which can further be split into

four more sub-tetrahedra by arbitrarily choosing an octahedron diagonal, see figure 4-left.

5 2D and 3D test problems

In the following we present the results for a set of 2D and 3D benchmark test cases. We refer

to the current Lagrangian ADER-MOOD method with the acronym ’LAM’. Moreover two

MOOD cascades are employed: P1 → P0, denoted as ”LAM P0-lim” and P1 → Plim
1 → P0
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Fig. 4. Left: Split of a tetrahedron into sub-tetrahedra by inserting six new midpoint edge vertices

to get four corner sub-tetrahedra (colored ones). After choosing a diagonal (yellow line) to split the

remaining central octahedron into fours more sub-tetrahedra, it yields a total of eight sub-tetrahedra

— Right: example of 2D partitioning on NCPU = 4 threads (colors), the refinement is performed

locally to each thread, only the coarse partition of large black triangles is actually built across the

threads.

denoted ”LAM P1-lim”. The first cascade was employed for the hydrodynamics equations in

[13], the second one is tested in this work. For each test problem the CFL stability coefficient

is assumed to be 0.4 in 2D and 0.25 in 3D. The time-dependent computational domain is

addressed with ω(t), while Q(x, t = 0) ≡ Q0(x) = (1/ρ0,v0, p0,B0) denotes the vector of

initial conservative variables typically used to setup the test problems. B0 is set to the identity

matrix as we only consider initially unloaded materials. The unstructured tetrahedral meshes

are obtained by meshing software, such as GMSH [32] which takes a characteristics target

length h as input parameter.

According to [36], in order to highlight the advantages of adding a second order limited

scheme in the cascade compared to a first order discretization, the numerical dissipation δ

is monitored and here evaluated as

δ =
Ψ + k − E0

E0

, (88)

with the kinetic and total energy at the initial time defined by

k0 =
1

2
v2

0, E0 = Ψ0 + k0.

Finally, if not stated otherwise, the simplified neo-Hookean equation of state (27) is adopted,

while in the last test the stiffened gas EOS (28) is used.

5.1 Swinging plate

The 2D swinging plate test problem, see [40,53], is employed to evaluate the numerical order

of convergence. The computational domain is ω = [0, 2]2 and the analytical solution for the

velocity is given by

vex(x, t) = ωU0 cos(ωt)

− sin
(
π

2
x
)

cos
(
π

2
y
)

cos
(
π

2
x
)

sin
(
π

2
y
)

 , ω =
π

2

√
2µ

ρ0
, (89)

with U0 = 5 ·10−4 m. The material under consideration is characterized by ρ0 = 1100 kg.m−3

with Young’s modulus E = 1.7 · 107 Pa and Poisson ratio ν = 0.45. The velocity and

displacement fields are divergence-free, leading to the exact pressure pex = 0. Space-time
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dependent boundary conditions are prescribed for the normal velocities, according to the

exact solution (89). Notice that the exact solution is a smooth one and the final time is set

to tfinal = π/ω, and the final displacement corresponds to the initial one. In table 2 we report

the L2 errors ε at the final time for the horizontal velocity u, the first component of the

left Cauchy-Green tensor B11 and of the Cauchy stress tensor T11. The unstructured mesh

made of triangles is successively refined and the final characteristics length Lc(ω(tfinal)) is

measured and further used to compute the numerical order of convergence O as reported in

table 2, where one can notice that the numerical scheme is able to retrieve the second-order

of convergence on this regular solution.

Lc(ω(tfinal)) ε(u) O(u) ε(B11) O(B11) ε(T11) O(T11)

7.81E-02 2.144E-03 — 1.581E-04 — 9.681E+02 —

5.21E-02 8.206E-04 2.37 7.072E-05 1.98 4.258E+02 2.03

3.91E-02 4.650E-04 1.97 3.914E-05 2.06 2.343E+02 2.08

3.13E-02 3.085E-04 1.84 2.473E-05 2.06 1.477E+02 2.07

2.60E-02 2.212E-04 1.82 1.699E-05 2.06 1.015E+02 2.06

Expected orders→ 2 2 2

Table 2

Numerical errors in L2 norm and convergence rates for the 2D swinging plate test computed with

second order of accuracy Lagrange ADER scheme at time tfinal = π/ω. The error norms refer to

the variables u (horizontal velocity), B11 (first component of the left Cauchy-Green tensor B) and

T11 (first component of the Cauchy stress tensor T).

5.2 Elastic vibration of a Beryllium plate

This test case describes the elastic vibration of a beryllium plate or bar, see [49,14] for

instance. Here we consider the 2D version, that is the vibration of a plate. The computational

domain is ω(t = 0) = [−0.03, 0.03]×[−0.005, 0.005] of length L = 0.06 m. The material under

investigation is characterized by ρ0 = 1845 kg.m−3, E = 3.1827 · 1011 Pa and ν = 0.0539.

The material is initially loaded via a perturbed initial velocity field v0 = (0, v0(x)) of the

form

v0(x) = Aω [a1(sinh(x′) + sin(x′))− a2(cosh(x′) + cos(x′))] , (90)

where x′ = α(x + L/2), α = 78.834 m−1, A = 4.3369 × 10−5 m, ω = 2.3597 × 105 s−1,

a1 = 56.6368 and a2 = 57.6455. The final time is tfinal = 3 · 10−5 s, see figure 5 for a sketch.

Free boundary conditions are applied on the plate faces. The unstructured triangulation

is constituted of Nc = 5344 cells. In figure 6 we present the numerical results obtained

at different output times for the pressure (left panels) and cell orders (right panels). The

pressure field is coherent with results from the literature. On the right panel we plot the cell

order, which is equivalent to record which scheme from the cascade is actually employed.

Yellow cells are dealt with the unlimited second order scheme (maximal order, prone to

oscillation), while the blue ones employ a piecewise reconstruction limited by BJ slope limiter,

via the a posteriori MOOD loop. For this relatively mild problem, no cell is updated with
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Fig. 5. Sketch for the elastic vibration of a beryllium plate in section 5.2 (left) and the finite

deformation of a cantilever thick beam in section 5.3 (right).

the parachute scheme. Moreover no spurious modes nor artificial oscillations are observed.

Fig. 6. Elastic vibration of a beryllium plate — Numerical results at output times t = 10−5 (top),

t = 2 · 10−5 (middle) and t = 3 · 10−5 (bottom) for pressure (left) and cell order map (right), the

cells in yellow are at unlimited order 2, while the blue ones are the BJ limited ones. No first-order

updated cell is observed.

In order to illustrate the reduction of dissipation when the cascade is not P1 → P0, like

in [13], but P1 → Plim
1 → P0 instead, we show in figure 7 two diagnostics. First, on the

left panel, the vertical displacement at the barycenter of the plate as a function of time

is presented for the two cascades. As expected the nominally second order scheme is able
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to follow the barycenter with lower dissipation. On the right panel we enhance the actual

numerical dissipation computed with (88) which confirms that a high order scheme reduces

the numerical viscosity by about 75% at final time.

Fig. 7. Elastic vibration of a beryllium plate — Comparison between the MOOD cascades: P1 → P0

(LAM P0-lim) and P1 → Plim
1 → P0 (LAM P1-lim) for the vertical displacement at the barycenter

of the plate (left) and the computed numerical dissipation (88) as a function of time (right).

5.3 Finite deformation of a cantilever thick beam

In [40] the authors present a test case involving a finite deformation of a 2D cantilever vertical

thick beam of length L having a unit square cross section and initially loaded by a uniform

horizontal velocity u0 = 10 m.s−1 whilst the unit width base is maintained fixed, see figure 5

for a sketch. We consider the initial computational domain ω(t = 0) = [0; 1]× [0; 6] leading to

L = 6 m and material characteristics ρ0 = 1100 kg.m−3, E = 1.7 · 107 Pa and ν = 0.45. Free

boundary conditions are considered apart from the fixed-wall bottom of the bar. The mesh

is made of Nc = 5442 triangles. The simulations are run with the cascade P1 → Plim
1 → P0.

On the left panels of figure 8, we present the pressure distribution along with the deformed

shapes at four different output times. The results are qualitatively in agreement with the

published ones from the literature. Moreover we observe on the right panels that the yellow

cells (unlimited second-order scheme) are massively represented, while only few of them

demand dissipation (blue cells). For comparison purposes we also superimpose in black line

the shapes obtained with the simpler cascade P1 → P0 from [13]. As can be observed, this

latter scheme is genuinely more dissipative, and it numerically justifies the need for using a

second order limited reconstruction within the cascade.

Then in figure 9 we show the computed numerical dissipation (88) as a function of time for

the two cascades, where about 60% less dissipation is obtained by the current scheme with

P1 → Plim
1 → P0 cascade. At last the right panel presents the percentage of troubled cells

encountered as a function of time. On average about 5% of cells are re-computed at each

time step.
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Fig. 8. Cantilever thick beam test case — Pressure distribution with deformed shapes (left column)

and cell order map (right column) with the second-order a posteriori limited Lagrangian scheme at

output times t = 0.375, t = 0.75, t = 1.125 and t = 1.5 (from top to bottom row) — Comparison

of the deformed shape computed using the simpler cascade P1 → P0 in black line on the left panels

only.
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Fig. 9. Cantilever thick beam — Comparison between the MOOD cascades: P1 → P0 (LAM P0-lim)

and P1 → Plim
1 → P0 (LAM P1-lim) for the computed numerical dissipation (88) as a function of

time (left) and percentage of bad cells detected at each time step (right).

5.4 Blake’s problem

Blake’s problem is a classical spherical test derived from the small strain linear elasticity

theory [37]. The domain is a shell of inner radius rin = 0.1 m and outer radius rout = 1 m.

The shell material is isotropic with parameters: ρ0 = 3000 kg.m−3, Young’s modulus E =

62.5 · 109 Pa and Poisson’s ratio ν = 0.25. The inner face of the shell is driven by a pressure

constraint of magnitude 106 Pa whereas the outer face is a stress free boundary condition.

The final time is tfinal = 1.6·10−4 s. In practice, for computational time reasons, the domain is

not a complete shell but a needle-like domain of one degree aperture angle. All the boundary

faces introduced by this geometrical simplification are then symmetry boundary conditions.

As such the computational domain is defined by ω = [r, θ, φ] = [0.9, π/180, π/180] and three

meshes with characteristics length h = 1/Ns are considered (Nc ≡ Ns = 1000s cells with

s = 1, 2, 3). An additional difficulty arises in the context of three-dimensional unstructured

meshes, which is related to the spatial discretization of the needle-like computational domain

for the Blake problem. In order to avoid ill-conditioned reconstruction matrices due to the

high difference in cell size between elements close to the origin of the needle and the ones very

far from that location, the entire computational domain has to be mapped onto a reference

system [r̄, θ̄, ψ̄] such that all coordinates are defined within the interval [0; 1]. This is sufficient

to carry out a second order reconstruction on a more uniform tessellation of the domain with

tetrahedra. In figure 10 we present the mesh of the needle and the pressure distribution at

final time as illustration with Ns = 1000. In order to provide more quantitative analysis,

in figure 11 we display the numerical results for the pressure and radial deviatoric stress

(and zooms) as a function of radius for a sequence of meshes: N1 = 1000, N2 = 2000 and

N3 = 3000. The solution is then compared against the reference solution. We can observe not

only accuracy but also convergence even though some perturbations are present for small

radius on pressure variables.
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Fig. 10. Blake’s problem — Computational mesh of the needle domain

ω = [r, θ, φ] = [0.9, π/180, π/180] with h = 1/1000 (left) and pressure distribution at the

final time tfinal = 1.6 · 10−4 s (right).

5.5 Twisting column

A twisting column test case aims at examining the effectiveness of the proposed methodology

in highly nonlinear scenarios, see [36] and the reference therein. An initial unit squared cross

section column of height H = 6 m is considered, ω = [−0.5; 0.5] × [−0.5; 0.5] × [0; 6]. The

z = 0 face of the column is embedded into a wall. An initial sinusoidal angular velocity field

relative to the origin is given by v0 = 100 sin(π z
2H

)(y,−x, 0)t rad/s, see figure 12. The main

objective of this problem is to assess the capability of the proposed methodology to still

perform when approaching the limit of incompressibility. A neo-Hookean material is used

with material density ρ0 = 1100 kg.m−3, Young’s modulus E = 1.7 · 107 Pa and Poisson’s

ratio ν = 0.45. The simulation is run till time tfinal = 0.3 s. Qualitatively one should observe

at time t ∼ 0.1 s a counter-clockwise rotation and a severe twist of the column which returns

to its initial position at about t ∼ 0.2 s. Driven by its own inertia, the bar twists clockwise

until the final time. The mesh of the column is made of Nc = 119092 tetrahedra with

characteristic length of 1/80. Stress free BCs are imposed everywhere apart from the bottom

face for which we impose a wall type boundary with zero displacement. In figure 13 we plot

the shape of the column colored by the pressure distribution for different output times. The

initial column is represented as a hollow bar for comparison purposes. The main behaviors

are reproduced by the numerical simulation. Notice that there is no spurious oscillations nor

suspicious pressure distribution. In figure 14 we gather several diagnostics of this simulation.

First on the left panel we plot the time evolution of dimensionless height of the column

measured at the point initially located at xT = (0, 0, 6). Next, in the middle panel, we plot

the numerical dissipation of the second-order scheme computed as the percentage of energy

loss computed by means of (88) as a function of time and observe that at final time only 0.5%

is lost. For a numerical simulation recall that the twisting period does not only depend on

the material but also on the numerical dissipation of the scheme. Usually first-order schemes
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Fig. 11. Blake’s problem— Mesh convergence of the second order solution towards the reference

solution (red) for the radial pressure (top row) and radial deviatoric stress (bottom row) at time

tfinal = 1.6 · 10−4 (left) and zoom across the shock (right). Remind that LAM P1-lim corresponds

to cascade: P1 → Plim
1 → P0.

are extremely dissipative and can not perform adequately, i.e. the column barely twists. At

last in the right panel we present the percentage of bad cells detected at each time step

by the a posteriori limiting procedure and observe that on average only 2% of the cells are

recomputed due to spurious numerical issues.

5.6 Rebound of a hollow circular bar

Taken from [36] as the 3D extension of a 2D contact problem found in [24], the impacting bar

test consists in the rebound of a hollow circular bar of outer diameter 6.4 mm, inner diameter

2 mm and height H = 32.4 mm, see figure 12. The bar impacts against a rigid friction-less

wall with an initial velocity of v0 = (0, 0,−100)t m/s and the separation distance between

the bar and wall is 4 mm. Before the impact time at t = 40 µs the bar is on a ballistic flight.

Upon impact, the bar undergoes large compressive deformation until t = 150 µs when all the

kinetic energy of the bar is converted into internal strain energy. Afterwards, tensile forces

develop and a bounce-off motion initiates in such a way that, at approximately t ' 250 µs,
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Fig. 12. Sketch for the twisting column in section 5.5 (left) and the rebound of a hollow circular

bar from section 5.6 (middle), and, L-shaped block test problem from section 5.8 (right).

the bar completely detaches from the wall and moves upwards, still enduring internal milder

deformations. The neo-Hookean constitutive model is chosen with density ρ0 = 8930 kg.m−3,

Young’s modulus E = 585 MPa and Poisson’s ratio ν = 0.45 and the final time is set to

325 µs.

The fixed wall is the x − y plane and is considered as a restricted tangential displacement

type BCs. The rest of the material is subject to free-traction BCs. Special care must be paid

to the points of the inner circle at the bottom of the bar. Indeed for these points the BCs

must evolve from free-traction to slip-wall BCs during the contact time up to detachment.

Specifically, free-traction BCs are used until the velocity of the nodes lying on the bottom

face is downward pointing and the distance to the wall is greater than a prescribed tolerance

of 10−12. As soon as the new node position would exceed the z−coordinate of the wall, i.e.

z = 0, the time step is modified in order to let the bar exactly hit the wall, then the boundary

condition switches to slip wall type from the next time step on. Then, when the velocity of

the bottom face nodes becomes upward pointing because of the rebound of the bar, as soon

as the new node position would detach from the wall, the time step is again modified so

that it exactly matches the time of detachment and finally the boundary condition changes

again to free-traction for the rest of the simulation. One quarter of the hollow bar is meshed

with Nc = 12254 tetrahedra and a characteristics length of 1/128. In figure 15 we present

the time evolution of the deformation and pressure distribution (colors) at times t = 50 µs

then 75, 100, 125, 150, 200, 300 and the final time t = 325 µs. The main behaviors and

deformations are captured by the numerical simulations as compared to the results in [36].

Following [36] (see Fig. 27), we present on the left panel of figure 16 the time evolution of

vertical displacement of the points on the top xT = (1.6, 0, 32.4) · 10−3m (black) and bottom

xB = (1.6, 0, 4) · 10−3m (red) planes. The general behavior is again qualitatively reproduced.

At last, on the right panel of figure 16, we show the percentage of bad cells detected by the

a posteriori limiter and observe that, on average, less than 3% demands limiting at each

iteration. This induces a rather efficient limiting procedure compared to classical a priori

slope limiters.
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Fig. 13. Twisting column — Beam shape and pressure distribution at output times t = 0.00375,

t = 0.075, t = 0.1125, t = 0.15, t = 0.1875, t = 0.225, t = 0.2625 and t = 0.3 (from top left to

bottom right). The shape is compared with respect to the initial configuration (hollow box).
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Fig. 14. Twisting column — Time evolution of non-dimensionalised height of the column measured

at initial point xT = (0, 0, 6) (left) — Numerical dissipation (88) of second order scheme (center)

— Percentage of bad cells detected at each time step (right).

5.7 Impact of a jelly-like droplet

For this test case we consider the impact of a jelly-like material onto a flat rigid horizontal

surface, inspired by the test in [51]. A cylinder of clay (bentonite) of diameter L0 and height

h moves downward with velocity v = (0,−v) m.s−1, and material parameters γ = 2.2,

p∞ = 106, µ = 85 Pa, ρ0 = 1020 kg.m−3. Experiments of such impacts have been carried on in

particular in [41] on different types of surface (smooth glass, hydrophobic). In such situation

we are interested in the final diameter of the impacting droplet L and the experimental results

show a quasi-linear behavior of the maximal spread factor with respect to the impact velocity.

Initially L0 = 12 mm and h = 8 mm, and two impact velocities are considered, v = 2 m.s−1

and 3 m.s−1. The numerical simulation considers a 3D computational domain constituted by

an approximation of 1/4 of the initial bentonite cylinder ω0 and a mesh made of Nc = 717396

tetrahedra with characteristics length 1/100. Two constitutive laws are tested, namely the

neo-Hookean model, a = −1, and the non-linear one a = 0, see section 2.2.3 for details.

Symmetry BCs are imposed for the x = 0 and y = 0 planes, while free-traction BCs are

applied on the top and cylinder boundaries and slip wall type is prescribed on the bottom

side. Figure 17 depicts the shapes of the material for successive times t = 2k × 10−3 s for

0 ≤ k ≤ 5 in the case of a v = 3 m.s−1 impact velocity. The black shape corresponds to

the non-linear model a = 0, while the petroleum shape corresponds to a neo-Hookean one

a = −1. They are put in respect to each other for comparison purposes.

Regardless of the constitutive model, i.e. the value of a, the jelly-like material is compressed

after the impact and deforms back and forth due to its elastic behavior. As expected with the

neo-Hookean model (petroleum shape) the spread of the droplet is much more pronounced

and the droplet retrieves a cylinder-like shape slower compared to the non-linear model

(black shape). In order to quantify this behavior we present in figure 18 the maximum

spreading of the droplet, L/L0, in the case a = −1 (black line) and a = 0 (red line) for the

two impact velocities. The neo-Hookean model produces faster and more pronounced elastic

behaviors compared to the non-linear model which retrieves a ratio closer to one faster. The

experimental results in [41] provide approximate values 2.25 and 2.75, respectively, while our

simulations produce 1.8 and 2.5 in accordance to the numerical results in [51].

42



Fig. 15. Rebound of a hollow circular bar — Time evolution of the deformation and pressure

distribution at output times at times t = 50 µs then 75, 100, 125, 150, 200, 300 and the final time

t = 325 µs (from top left to bottom right).

5.8 L-shaped block

To assess the linear and angular momentum preservation, a specific test case has been

designed in [8,33]. It consists in simulating the motion of a 3D L-shaped block subjected to

initial time-dependent impulse traction forces, F1(t) and F2(t), at two of its sides, creating

de facto an external torque, see figure 12. The traction forces are given by

F1(t) = −F2(t) =


te, 0 ≤ t < 2.5,

(5− t)e, 2.5 ≤ t < 5,

0e, t > 5,

(91)
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Fig. 16. Rebound of a hollow circular bar — Time evolution of vertical displacement of the points

on the top plane xT = (1.6, 0, 32.4) · 10−3m and on the bottom plane xB = (1.6, 0, 4) · 10−3m (left)

and percentage of bad cells detected at each time step (right).

Fig. 17. Impact of a jelly droplet with impact velocity 3 m.s−1 — Time evolution of the droplet

shape at different output times for neo-Hookean model (a = −1, petroleum shade) or non-linear

one (a = 0, black shade).

where e = (150, 300, 450)t. The neo-Hookean material is governed by the following physical

properties: ρ0 = 1000 kg.m−3, Young’s modulus E = 50046 Pa and Poisson ratio ν = 0.3.

The final time is set to 70 s, hence involving a quite long simulation time.

We consider a mesh made of 103811 tetrahedra with characteristic mesh size h = 1/50. In

figure 19 we present the numerical pressure and the shape of the block obtained at different
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Fig. 18. Impact of a jelly droplet — Time evolution of the maximum spreading of the droplet L/L0

in the case neo-Hookean model (a = −1, black line) or non-linear one (a = 0, red line) — The

impact velocity is 2 m.s−1 (left) and 3 m.s−1 (right).

discrete times t = 2.5, 5.0, 7.5, 10.0, 12.5 and 15 s. The results are in agreements with the

ones presented for instance in [8,33]. Next in figure 19 we monitor the cell-centered angular

momentum A with respect of x, y and z axes, computed as

A = (Ax, Ay, Az) =
∫
ω

x×mv dv ≈
∑
c

xc ×mc vc |ωc| = Ac. (92)

In the figure we clearly see that after t = 5, when the boundary forces vanish, the angular

momenta are nicely preserved even if nothing in the method has been designed to ensure so.

Those results are in agreement with the ones from [8,33] for instance. Notice that the linear

momentum is preserved up to machine precision and we omit these results.

5.9 Monitoring of the internal consistency

At last, as explained in section 3.6, we monitor the internal consistency of the scheme by the

computation of εB from (85) for the 2D and 3D tests presented in this work. In figure 21 the

2D tests (left panel) and the 3D ones (right panel) are gathered for the first 75000 time-steps.

In general, in 2D or 3D, the value of εB remains under a small threshold (always less than

10−11), see table 3 for the maximal values. Moreover for the two 2D problems we compare

our results to the ones given by a genuine first order Lagrangian scheme. As expected the

value of εB is larger by 7 orders of magnitude, justifying the use of a higher order scheme

to maintain the error in internal consistency of the simulation at a negligible level. Table 3

reports the maximum error in time through the entire simulations for both 2D and 3D tests,

demonstrating that it remains at machine precision and thus that the internal consistency

of the update of B is satisfied by our second order scheme.
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Fig. 19. L-shaped block test problem — From top-left to bottom-right: time t = 2.5, 5.0, 7.5, 10.0,

12.5 and 15 s.
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Fig. 20. L-shaped block test problem — Angular momentum Ac in x (green), y (red) and z (blue)

directions as a function of time.

Test case Beryllium plate Thick beam Bar rebound Blake Jelly impact Twisting column

max(εB) 5.86×10−13 3.08×10−13 1.12×10−12 9.85×10−12 4.19×10−12 4.81×10−13

Table 3

Maximal value of εB for the first 75000 time-steps of the 2D and 3D tests cases in this paper.
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Fig. 21. Time evolution of the internal consistency condition (85): εB =
∣∣√detBn+1

c − τ0
c

τn+1
c

∣∣ for the

2D (left) and 3D (right) simulations presented in this article — Only the first 75000 time steps are

shown — In 2D a comparison between a classical first order Lagrangian scheme and our current

nominally second order one is shown.

6 Conclusions and perspectives

This paper considers the second-order accurate cell-centered Lagrangian scheme originally

designed for the hydrodynamics system of conservation laws [13], and, extends it to solve the

hyperelasticity model for materials in 2D and 3D. We have focused the first part of the paper

on presenting the hyperelasticity model and its consistency in the Lagrangian frame. The

so-called neo-Hookean model is mostly considered in this work. Then the numerical method

based on a conservative Lagrangian formulation in mass, momentum and total energy is

presented. It is supplemented with a nodal solver allowing the determination of a vertex

velocity used to build a consistent discretization between the trajectory equation and the

geometrical conservation law. Second-order of accuracy in space and time is achieved via an

ADER procedure which generates a predictor solution that can further be used inside the

classical subcell force based Lagrangian scheme with nodal solver. Robustness and stability

are gained by the use of an a posteriori MOOD limiting strategy, that is a second-order

unlimited candidate solution at tn+1 is tested against appropriate detection criteria to deter-

mine troubled cells. The solution in those cells is discarded and re-computed starting again

from valid data at tn but using a second-order TVD like scheme or, ultimately, the fail-safe

first-order parachute scheme. The time evolution of the left-Cauchy Green tensor required

for the isotropic hyperelastic constitutive law is discretized with great care to ensure its

compatibility with the Geometric Conservation Law (GCL) at the discrete level. Moreover

evolving boundary conditions have been implemented to allow for impacting and detaching

of materials onto walls.

This numerical scheme has been further implemented in 2D and 3D under MPI protocol

for the parallelization. It has been then tested on unstructured simplicial meshes on a large

panel of 2D test cases: swinging plate, elastic vibration of a beryllium plate and a finite de-

formation of a cantilever thick beam. Then, in 3D, we have presented the results for Blake’s
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problem, the twisting column, the rebound of a hollow circular bar, the impact of a jelly-like

droplet and at last the L-shaped block test to assess the ability of our FV scheme to con-

serve angular momentum. This test suite covers a large amount of situations involving elastic

materials and the current Lagrangian numerical scheme has proven to be robust, essentially

non-oscillatory and, at the same time maintains an almost optimal precision by a careful

utilization of the high order scheme where appropriate and the low order ones in the vicinity

of problematic zones. Moreover its performance in 2D/3D both in terms of robustness, effi-

ciency and compliance with other published results renders this numerical method appealing

for future uses and possible coupling with more complex physical models.

A plan for future work involves the introduction of plasticity into this hyperelasticity model.

We also plan to investigate the high-order extension over curvilinear simplicial grids of the

present FV discretization. Another direction of evolution would be to add some Arbitrary-

Lagrangian-Eulerian capability and the possibility to let two elastic materials interacting

with each other, for instance impacting, deforming and further detaching from each others.
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A Principal invariants of a tensor

Let us consider an invertible second order tensor A. Its principal invariants are the coefficients

of its characteristic polynomial

det(A− λId) = λ3 − I1(A)λ2 + I2(A)λ− I3(A).

They are defined by

I1(A) = tr(A), (A.1a)

I2(A) =
1

2

[
tr2(A)− tr(A2)

]
, (A.1b)

I3(A) = det(A). (A.1c)

Moreover, the Cayley-Hamilton theorem states that A satisfies its characteristic equation

A3 − I1(A)A2 + I2(A)A− I3(A)Id = 0. (A.2)
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The derivative of the principal invariants of A with respect to itself write

∂I1(A)

∂A
= Id, (A.3a)

∂I2(A)

∂A
= I1(A)Id − A, (A.3b)

∂I3(A)

∂A
= I3(A)A−1. (A.3c)

B Boundary conditions (BCs)

In this cell-centered Lagrangian scheme, boundary conditions are imposed in the nodal solver

(57). Let FBC(p) represent the set of boundary edges (or faces in 3D) surrounding node p.

Three type of BCs are considered in this work.

• Traction: a prescribed traction TBCf on a boundary face f is taken into account as an

additional term on the right hand side as

vp = M−1
p

 ∑
c∈C(p)

Mpcvc −
∑

f∈F(p)/FBC(p)

Tpcfapcfnpcf

− ∑
f∈FBC(p)

TBCpcf apcfnpcf (B.1)

• Velocity : the prescribed velocity vBCpcf := vBCpcf · nnpcf can be interpreted as a traction BCs.

The equivalent traction TBCv is given by

TBCv =

M−1
p

 ∑
f∈F(p)

Tpcf apcfnpcf + Mpup

 · dp − ∑
f∈FBC(p)

vBCpcf apcf

M−1
p dp · dp

, (B.2)

where dp =
∑

f∈FBC(p)

apcfnpcf represents the corner vector associated to the boundary faces.

Then, the node velocity is evaluated by considering

vp = M−1
p

 ∑
c∈C(p)

Mpcvc −
∑

f∈F(p)

Tpcf apcfnpcf

− TBCv dp. (B.3)

• Symmetry : symmetry BC involves geometric considerations; either a symmetry plane de-

fined by an orthonormal basis (τ1, τ2), or a symmetry line along a direction vector τ1, or

even a symmetry point where we simply set vp = 0. In the case of a symmetry plane then

the node velocity writes vp = α1τ1 + α2τ2 and the momentum balance equation becomes

Mpvp = Mp(α1τ1 + α2τ2) =

Mpcfvc −
∑

f∈F(p)

Tpcf apcfnpcf

 , (B.4)

which is solved by successive projection on τ1 and τ2. On a symmetry line one has up =

α1τ1, that is α2 = 0.

For further details and comments on BCs we refer the reader to [46,31] and [13].
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