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Abstract

The dispersive characteristics of unidirectional irregular waves propagating and breaking over a mildly

sloping beach are examined using a highly-resolved laboratory dataset. Cross-spectral analyses are used

to determine the cross-shore evolution of (single-valued) dominant wavenumber κ and phase velocity c

spectra, and lead to the identification of four different regimes of propagation: I - a linear regime where

short waves mostly propagate as free components; II - a shoaling regime where non-linear effects at high

harmonics are significant but primary components follow the linear wave dispersion relation; III - a shoaling

regime near the mean breaking point location, where amplitude dispersion effects at primary components

are important; IV - a surf zone regime, where all components propagate slightly faster than non-dispersive

shallow water waves. Bispectral analyses performed onshore of the shoaling region show that the presence of

forced energy at high harmonics, which originate from non-linear interactions between triads of frequencies,

are responsible for the deviations of wavenumber and phase velocity spectral estimates from predictions

by the linear dispersion relation, confirming the findings from previous field-based studies. A Boussinesq

approximation of the non-linear energy exchanges between triads is then used to quantify the relative

amount of forced energy at high harmonics and explain the differences in dispersion properties observed in

the shoaling region between broad and narrow-band spectra. Larger relative amounts of forced energy at

high frequencies, which suggest more efficient non-linear energy transfers, are found to be associated with

larger deviations of dominant κ and c from predictions by the linear dispersion relation.

1. Introduction1

Wind-generated surface gravity waves (hereafter short waves) are the principal driver of nearshore2

dynamics. Close to shore, short waves eventually break and through this process, they enhance the vertical3

and horizontal mixing of the water column (e.g., Ting and Kirby, 1996; Drazen and Melville, 2009; Clark4

et al., 2012), drive a setup near the shoreline (e.g., Longuet-Higgins and Stewart, 1964; Stive and Wind,5

1982) and control the nearshore circulation at various temporal scales (e.g., Svendsen, 1984; Peregrine and6

Bokhove, 1998; Bühler and Jacobson, 2001; Bonneton et al., 2010; Castelle et al., 2016). At first order,7

linear wave theory correctly predicts a number of physical processes associated with the propagation of8

short waves, such as the refraction or shoaling of directionally spread seas (e.g. Longuet-Higgins, 1956;9

Guza and Thornton, 1980; Elgar et al., 1990, and many others). However, as waves shoal and interact10
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with a sloping, mobile bed, non-linear processes become dominant. These are responsible for the changes11

observed in wave shape, from nearly symmetric to more (horizontally) skewed in the shoaling region and12

more (vertically) asymmetric prior to breaking and in the surf zone (e.g. Elgar and Guza, 1985a,b; Doering13

and Bowen, 1995; Michallet et al., 2011; Rocha et al., 2017). Non-linear effects not only affect the sea14

surface elevation but also the near-bottom wave orbital velocities and thus play a crucial role in short- and15

long-term beach morphodynamics (Doering and Bowen, 1986, 1995; Hoefel and Elgar, 2003; Berni et al.,16

2013; van der Zanden et al., 2017).17

Weakly non-linear triad interactions (e.g. Phillips, 1960; Freilich et al., 1984; Elgar and Guza, 1985a)18

occurring as short waves propagate landward over a sloping bottom are responsible for these changes in19

the wave field. The interaction of two primary components of frequencies f1 and f2 excite a secondary20

component f ′ (either sum f1 + f2 or difference f1 − f2), which is bound to the statistically independent21

primary components. As such, the bound wave component f ′ does not follow the linear wave dispersion22

relation (Phillips, 1960; Longuet-Higgins and Stewart, 1962; Freilich et al., 1984). As opposed to non-linear23

resonant interactions between quadruplets in deep water (Hasselmann, 1962), which require very large24

distances to be effective, non-linear coupling between triads in nearshore areas are non- or near-resonant25

and can be very efficient in transforming incident wave spectra over just few typical wavelengths (e.g.,26

see Freilich et al., 1984, and the references therein). As both forced (or ’bound’) and free components27

of directionally spread seas can co-exist in a wave field, there is no longer a unique relation between a28

frequency and wavenumber (e.g. Herbers and Guza, 1994). When forced components dominate over a29

region of the spectrum, large deviations from predictions by the linear wave dispersion relation can be30

observed in (single-valued) dominant wavenumber and phase velocity spectra (Thornton and Guza, 1982;31

Freilich et al., 1984; Elgar and Guza, 1985b). In particular near the breaking point or in the surf zone,32

most wave components of a typical sea-surface spectrum travel at the speed of non-dispersive shallow-water33

waves (e.g., see Thornton and Guza, 1982; Elgar and Guza, 1985b; Catalán and Haller, 2008; Tissier et al.,34

2011), which is due to the dominance of amplitude dispersion effects over frequency ones (Herbers et al.,35

2002). As noted by Laing (1986), the deviations of measured wave phase speed from predictions by the36

linear dispersion relation, discussed here for nearshore waves, are quite analogous to those observed in37

growing seas (e.g., see Ramamonjiarisoa and Coantic, 1976; Mitsuyasu et al., 1979; Crawford et al., 1981;38

Donelan et al., 1985). In such conditions, growing short-wave fields are dominated by modulated trains39

of finite amplitude waves to which high-frequency components are bound (Lake and Yuen, 1978; Coantic40

et al., 1981).41

In practice, knowledge on the spatial structure of the wave field is generally lacking and the presence of42

forced energy is therefore difficult to quantify. As forced components at high harmonics are characterised43

by lower wavenumbers than free components of the same frequency, large errors from depth-inversion algo-44

rithms based on the linear wave dispersion relation can be expected in regions where non-linear effects are45

important (e.g., see Holland, 2001; Brodie et al., 2018). The over-predictions of the dominant wavenumbers46

at high frequencies also explain the commonly reported ’blow-up’ when reconstructing the free surface ele-47

vation from sub-surface pressure measurements with the linear dispersion relation (Bonneton and Lannes,48

2017; Bonneton et al., 2018; Mouragues et al., 2019; Martins et al., 2020b). This is related to the fact49
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that forced high harmonics are much less attenuated across the vertical than free components of the same50

frequency (e.g. Herbers and Guza, 1991; Herbers et al., 1992). Nonetheless, most field-based studies on51

non-linear wave transformation in the shoaling region employed sub-surface hydrodynamic data (whether52

pressure or orbital wave velocity), not corrected or corrected for depth-attenuation using the linear wave53

dispersion relation. Field-based studies on wave non-linearity also suffer from other limitations such as a54

poor spatial resolution and the distance over which waves can be studied. In particular, the cross-shore55

location where non-linear effects at high harmonics become predominant remains largely unknown.56

The present paper uses a high-resolution laboratory dataset (GLOBEX, see Ruessink et al., 2013) to57

study the dispersive properties of irregular waves propagating and breaking over a mildly sloping beach.58

Besides confirming past findings, the GLOBEX dataset stands out from previously-published field observa-59

tions for several reasons. The free surface is directly measured with wave gauges and it is highly-resolved in60

space (several points per wavelength at any stage of propagation). The former aspect removes uncertain-61

ties currently existing on energy levels at high harmonics as measured in the field by sub-surface pressure62

sensors, and where the choice of the surface elevation reconstruction method has a strong influence (Bon-63

neton et al., 2018; Mouragues et al., 2019; Martins et al., 2020b). Furthermore, the experiments considered64

unidirectional irregular waves, which removes uncertainty about directional effects. In section 2, the high65

spatial and temporal resolution experimental dataset collected during GLOBEX is briefly presented. Sec-66

tion 3 introduces the cross-spectral and bispectral analysis techniques and describes the weakly non-linear67

numerical approach employed here for predicting the cross-shore evolution of energy spectra. In Section 4,68

the cross-spectral analysis is performed on the surface elevation data from adjacent wave gauges to extract69

dominant wavenumber spectra κ(f), phase velocity spectra c(f) and their evolution across the entire wave70

flume. From this analysis, we identify four regimes of propagation ranging from a linear up to a surf zone71

situation, where wavenumber and phase velocity spectra display specific characteristics. In section 5, the72

bispectral analysis is used to quantify non-linear energy transfers towards harmonics, which play a funda-73

mental role in the patterns observed at high frequencies in wavenumber and phase velocity spectra. The74

dominant wavenumber is shown to vary with the amount of forced energy at a particular frequency, with75

larger deviations from the linear wave dispersion expected for higher forced-to-free energy ratios. Finally,76

section 6 briefly discusses the results and provides the concluding remarks of this study.77

2. Experimental dataset78

The Gently sLOping Beach Experiment (GLOBEX) project was performed in a 110-m-long, 1-m-wide,79

and 1.2-m-high wave flume, located in the Scheldegoot in Delft, the Netherlands (Ruessink et al., 2013).80

The experiments aimed at collecting high-resolution data of free surface elevation and current velocities81

in order to study infragravity wave dynamics and short-wave propagation and non-linearities (e.g., see82

de Bakker et al., 2015; Tissier et al., 2015; Rocha et al., 2017). A combination of 21 capacitance and83

resistance-type of wave gauges sampling at 128 Hz were deployed along the low-sloping 1:80 concrete beach84

to measure the free surface elevation (see Fig. 1). 18 of these wave gauges were mounted on movable85

trolleys, which were repositioned after the repetition of each wave test in order to reach the desired spatial86

resolution (10 repetitions per test). Similarly, five electromagnetic current meters were fixed to the trolleys87

3



and allowed the collection of current velocities at numerous locations across the wave flume (the data from88

these current meters is not used here). This spatial resolution makes the GLOBEX dataset unique as it89

allows to characterize and quantify non-linearities at various stages of the waves propagation (from a linear90

situation up to the surf zone). The wave paddle steering signals included second-order wave generation and91

the paddle was equipped with an Active Reflection Compensation system to absorb long waves radiated92

from the beach. The water depth at the wave paddle was 0.85 m for all tests.93

The present study uses free surface elevation measurements from the 70-min-long irregular wave tests94

of the A series (A1, A2, A3, see Ruessink et al., 2013). During this series of tests, JONSWAP spectra95

were imposed, covering moderate to energetic and broad to narrow-banded sea wave conditions, see table96

1. The wave conditions along the flume for these runs are displayed in Fig. 2, through a range of second97

and third-order wave parameters. Fig. 2a first shows the root-mean square wave height Hrms computed98

as (8 ζ2)1/2 where ζ is the free surface elevation and the overbar denotes the time-averaged operator. Note99

that ζ was high-pass filtered using a cutoff frequency at 0.6 fp, with fp the peak wave frequency, so that100

the bulk parameters shown in Fig. 2 are computed on the short-wave frequency band only. As conditions101

were more energetic during A2, the mean breaking point was located farther seaward than during A1 and102

A3. In the inner surf zone, waves were found to be depth-limited during all runs, which is also evidenced by103

the near-constant values reached by the non-linearity parameter ε = Hrms/
√

2h in this region of the wave104

flume (ε ∼ 0.3, see Fig. 2b), where h is the mean water depth. Fig. 2c-d show the short-wave skewness Sk105

and asymmetry As computed respectively as106

Sk =
(ζ − ζ)3

(ζ − ζ)2
3/2

. (1)

As = − (H(ζ − ζ))3

(ζ − ζ)2
3/2

, (2)

where H{·} is the Hilbert transform. Sk and As are measures of wave asymmetry along the horizontal and107

vertical axes respectively and also inform on the energy content at high harmonics (Elgar, 1987; Martins108

et al., 2020b; de Wit et al., 2020). For the same imposed wave height, A1 and A3 differed in the shoaling109

region, with a more intense shoaling process noted during A3 (Fig. 2a and 2c), as expected for longer110

waves. This is also explained by the narrower spectrum imposed during A3, which favoured non-linear111

energy transfers to higher harmonics as compared to A1 (de Bakker et al., 2015). Short waves remain112

(vertically) symmetric (As ∼ 0) until the location where the largest waves start breaking. Short-wave113

asymmetry is maximal in the inner surf zone, where short waves pitch forward and display the commonly114

observed sawtooth-like shape. Finally, the Ursell number Ur is shown in Fig. 2e. Here, Ur is defined as the115

ratio between the non-linearity ε and dispersion µ = (κph)2 parameters, where κp is the peak wavenumber116

given by the linear wave dispersion relation.117

3. Methods118

3.1. Computation of wavenumber and phase velocity spectra119

Cross-spectral analysis between adjacent wave gauges is used to compute the dominant wavenumber120

and phase velocity spectra across the wave flume. As this approach provides phase differences (or delay)121
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between two signals in the frequency domain (e.g., see Ochi, 1998), it has been successfully used in the past122

to study, in both the laboratory and field, the dispersive properties of ocean waves propagating in deep123

(e.g., see Ramamonjiarisoa and Coantic, 1976; Mitsuyasu et al., 1979) and intermediate to shallow waters124

(Thornton and Guza, 1982; Freilich et al., 1984; Elgar and Guza, 1985b).125

Let Cx1, x2 denote the cross-spectrum computed with surface elevation timeseries from two gauges126

located at positions x1 and x2. The coherence coh(f) and phase φ(f) spectra computed between x1 and x2127

are then respectively given by128

cohx1, x2
(f) =

[
Cx1, x2(f)C∗x1, x2

(f)

Cx1, x1(f)Cx2, x2(f)

]1/2
(3)

φx1, x2
(f) = arctan

[
Im{Cx1, x2

(f)}
Re{Cx1, x2

(f)}

]
, (4)

where Re{·} and Im{·} are the real and imaginary parts of the cross-spectra respectively and ∗ denotes the129

complex conjugate. As shown in Fig. 3a with an example of cross-spectral analysis performed during A2 in130

the deepest region of the flume (x ∼ 10 m), the phase spectra φ(f) provides a phase lag per frequency that131

is bounded between -π/2 and π/2. The time delay (in sec) per frequency is obtained from the unwrapped132

phase φunw which, in the case of progressive waves propagating in one dimension, is easily retrieved from133

the phase jumps (e.g., see Fig. 3a). The wavenumber κ(f) and (cross-shore) phase velocity c(f) spectra134

are then readily computed as135

κ(f) = φunwx1, x2
(f)
/

∆x (5)

c(f) = 2πf∆x
/
φunwx1, x2

(f), (6)

where ∆x is the spacing between the two wave gauges. As in Herbers et al. (2002), κ refers to the136

single-valued wavenumber modulus, representative of a mixed sea-state composed of both free and forced137

components (i.e., for a given angular frequency ω = 2πf , energy in the (ω, k) space is spread across several138

wavenumbers k). In practice, κ and c provide estimates at x = (x1+x2)/2 of the dominant wavenumber (in139

an energy-averaged sense) and the corresponding propagation speed respectively, as shown by the analysis140

on synthetic data in Appendix A. This aspect is also discussed in Section 5. Cross-spectra were computed141

using Welch’s method and 63 Hann-windowed records of 128 seconds, which were overlapping by 50%. This142

resulted in each spectral estimate having approximately 70 equivalent degrees of freedom and a spectral143

resolution of 0.008 Hz.144

As observed by many authors in the past, the coherence spectra at high harmonics were found to be145

quite sensitive to the spacing between the two adjacent wave gauges. This is especially true in the deepest146

parts of the wave flume, where energy levels at these frequencies are quite low and the spacing between147

the two gauges can represent several wavelengths. An example is provided in Fig. 3b, which shows the148

coherence spectra computed over the flat section of the flume during A2 with ∆x = 0.93Lp, Lp being the149

peak wavelength given by linear wave theory. The coherence remains very high (coh > 0.95) at frequencies150

between 0.6 and 1.5 fp, which explain over 86% of the short-wave variance at this location. However, valleys151

in the coherence can be observed around 2.5 fp for this particular spacing configuration and the coherence152

weakens quickly after 2.8 fp (Fig. 3b). Since using a different spacing slightly shifts the coherence ’valleys’,153

several combinations of wave gauges and spacing were used to obtain spectral estimates at a single location154
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with coherence higher than typically 0.5 at all frequencies (similar idea as that used by Herbers et al.,155

2002, with their field observations). After the removal of data associated with a coherence inferior to 0.5156

(coh2 & 0.25 in Fig. 3b), spectral estimates were ensemble-averaged. When non-linearities are strong,157

such as near the breaking point or in the surf zone, the coherence remains high up to 4-5 fp, as long as158

∆x is taken sufficiently small (typically 0.2-0.4Lp in those regions). In such cases the ensemble-averaging159

procedure is not really necessary but it was used all along the flume for consistency in the analysis.160

3.2. Computation of bispectra161

The power bispectrum of discretely sampled data corresponds to a representation in the frequency162

domain of its third-order cumulant or moment. As it provides information on the strength of the phase163

coupling between triads of frequencies f1, f2 and f1 + f2, the bispectrum is a useful and powerful tool for164

studying non-linear phenomena in ocean waves (Hasselmann et al., 1963; Elgar and Guza, 1985a). Here,165

we use the definition given by Kim and Powers (1979):166

B( f1, f2) = E [A(f1)A(f2)A∗(f1 + f2)] , (7)

where A(f) are the complex Fourier coefficients and E is an expected, or ensemble-average, value. Similar167

to the cross-spectrum phase, the biphase is obtained from the bispectrum as168

β( f1, f2) = arctan

[
Im{B( f1, f2)}
Re{B( f1, f2)}

]
. (8)

It is particularly insightful to recast the biphase as a function of the Fourier coefficients phases θ(f):169

β( f1, f2) = θ(f1) + θ(f2)− θ(f1 + f2) (e.g., see Kim et al., 1980; Elgar and Guza, 1985a). The amount of170

energy transfer between near-resonant components depends on their relative phases, whose information is171

contained in the biphase (Hasselmann et al., 1963; Kim et al., 1980).172

Bispectra were computed on the free surface elevation signals down-sampled to 16 Hz by averaging173

estimates from 126 Hann-windowed records of 128 seconds, which were overlapping by 75%. Statistical174

stability was increased by merging estimates over three frequencies (e.g., see Elgar and Guza, 1985a) yielding175

approximately 205 equivalent degrees of freedom, and a spectral resolution of 0.023 Hz. A validation of the176

bispectra computation is provided in Appendix B, which compares surface elevation third-order moments177

computed across the whole wave flume via bispectral (Elgar and Guza, 1985a; Elgar, 1987) and statistical178

definitions (Eq. 1 and 2).179

3.3. Non-linear energy transfers180

In the present study, we are principally interested in the growth of high harmonics due to non-linear181

energy exchanges between triads and the effect of these forced components on the dispersive properties of182

shoaling waves. To quantify the relative importance of forced energy at high harmonics, we represent these183

exchanges with a Boussinesq approximation in a spectral energy balance equation, following a similar ap-184

proach as developed in Herbers et al. (2000). Such Boussinesq approximation has already demonstrated its185

potential to predict, in a very computationally efficient manner, the cross-shore evolution of spectral com-186

ponents in the nearshore (Herbers and Burton, 1997; Norheim et al., 1998; Herbers et al., 2000; de Bakker187

et al., 2015; Padilla and Alsina, 2017). Note that the Boussinesq approximation (detailed below) restricts188

the present modelling approach to A2 and A3 since conditions during A1 are too dispersive.189
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For unidirectional waves propagating shoreward on an alongshore-uniform beach and assuming a weak190

reflection at the shoreline, a balance between the cross-shore gradient of the energy flux spectrum F (f),191

a source term Snl(f) quantifying the non-linear energy exchanges between triads, and a dissipation term192

Sdis(f) reads (e.g., Eq. 1 of Herbers et al., 2000)193

∂F (f)

∂x
= Snl(f) + Sdis(f). (9)

Breaking processes are ignored so that the dissipation term Sdis reduces to the energy losses by bottom194

friction Sfr, here simply modelled after Thornton and Guza (1983):195

Sfr(f) = ρcf
1

6π

(
2πf

sinh |k|h
H

)3

, (10)

where h is the mean water depth and |k| is the wavenumber modulus obtained from the linear wave196

dispersion relation (hereafter denoted κL, see Section 4). The friction coefficient cf was set to 0.0055 after197

calibration in the deepest section of the wave flume.198

Assuming that the wave field is weakly non-linear, weakly dispersive, and that these effects are of similar199

order (Ur ∼ O(1), i.e. Boussinesq regime), the non-linear source term Snl can be approximated with an200

integral of the bispectrum as follows (Herbers and Burton, 1997; Norheim et al., 1998; Herbers et al., 2000):201

Snl(f) =
3πf

h

∫ ∞
−∞

Im{B∗(f ′, f − f ′)}df ′. (11)

Eq. 11 differs from the expression of Herbers et al. (2000) (their Eq. 2) in several points: the conjugate202

of B is taken in order to be consistent with their definition of the bispectrum (conjugate of the present203

definition); Snl is here defined as a function of f (not ω) and the definition with the full integral is kept204

(symmetric properties of the bispectrum are not used to decompose it). Previous studies proposed evolution205

equations for the energy and bispectra (e.g., the stochastic model of Herbers and Burton, 1997) to simulate206

the propagation and transformation of directional seas. As in Herbers et al. (2000), we take advantage of207

the spatial resolution of the present dataset and directly evaluate Snl and Sfr at each available cross-shore208

location using trapezoidal rules for approximating the integrals. Besides removing uncertainties associated209

with its cross-shore prediction, using measured bispectra has for advantage to relax the limitations of the210

stochastic Boussinesq model of Herbers and Burton (1997) (such as the distance over which bispectra can211

be propagated, see Freilich et al., 1984). In order to be consistent with the original equation derived by212

Herbers and Burton (1997, their Eq. 22a), the energy in Eq. 9 is assumed to propagate at the shallow213

water wave speed so that F (f) = ρgE(f)
√
gh, with ρ the water density and g the acceleration of gravity.214

After these considerations, Eq. 9 simplifies to215

∂E(f)
√
gh(x)

∂x
=

1

ρg
(Snl(f) + Sfr(f)) . (12)

Integrating this equation (in space) between the location of the first gauge x0 and any location x1 prior216

to the mean breaking point location yields the following expression for the energy density spectrum at x1217

E(x1, f):218

E(x1, f) = E(x0, f)

√
gh(x0)√
gh(x1)

+
1

ρg
√
gh(x1)

∫ x1

x0

(Snl + Sfr) dx. (13)
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Finally, the ratio
∫ x1

x0
Snldx/F (x1), which represents the energy flux received (or lost) via non-linear219

coupling between x0 and x1 over the total energy flux at x1, is used in the following as an approximation220

of the relative amount of forced energy at x1. Outside the surf zone, where dissipative processes dominate,221

this estimation was found to be more reliable than the bicoherence, which is often used as a proxy for such222

an estimation but lacks general consensus upon its definition, see Appendix C for more details.223

4. Wavenumber and phase velocity spectra of shoaling and surf zone waves224

In this section, we present and describe the main results from the cross-spectral and bispectral analyses.225

The computation of dominant wavenumber κ and phase velocity c spectra for varying degrees of non-226

linearity resulted in the identification of four different regimes of propagation, which broadly consist of: a227

linear regime (stage I), a shoaling regime relatively far from the mean breaking point (stage II), a shoaling228

regime near the mean breaking point (stage III) and a surf zone regime (stage IV). The Ursell number Ur229

(Fig. 2e) was used as a reference to define these regimes of propagation, which are characterized by similar230

patterns - between all wave tests considered here - in wavenumber and phase velocity spectra. For all231

stages, κ(f) and c(f) spectra are compared to predictions from the linear wave dispersion relation, which232

links the spatial and temporal information of a linear wave field:233

ω2 = g|k| tanh (|k|h). (14)

In the following, the subscript ’L’ is used throughout the manuscript to refer to κ or c values that are solution234

to Eq. 14 (i.e. κL and cL = ω/κL). For conciseness, the propagation as linear waves is discussed using235

the results from the most non-linear case (A2), already shown in Fig. 3. The other stages of propagation236

focus on the differences between broad and narrow spectra, i.e. between A2 and A3. Note that κ and c237

characteristics during A1 are very similar to those obtained during A2 for similar Ur numbers. Finally,238

given the relatively high spatial resolution, frequency-wavenumber power spectra P (ω, k) (e.g., see Redor239

et al., 2019) were computed using 2D Fourier analysis at four different cross-shore sections corresponding240

to stages I, II, III and IV, by averaging over 63 Hann-windowed time-records of 128 seconds overlapping by241

50% (Fig. 4). The chosen length of the cross-shore section (width of the data window for computing the242

2D Fast-Fourier transform) is a best compromise for reaching a proper resolution in wavenumber k and still243

assuming little change in wave type over the section. The 2D Fourier analysis shown in Fig. 4 provides a244

qualitative information on energy spreading in (ω, k) space and is particularly useful to illustrate what the245

single-valued dominant wavenumber represents in a mixed sea-state. Fig. 4 will be used in the present and246

following sections to analyse the link between non-linear energy exchanges and the dispersive properties of247

the wave field.248

4.1. Propagation as free, linear waves (I)249

Fig. 3 shows for the most non-linear case A2 an almost perfect match for f > 0.6 fp between the250

measured wave phases, wavenumbers and phase velocity spectral estimates with the predictions from the251

linear wave dispersion relation (Fig. 3a, 3c and 3d respectively). The decrease of coherence at high252

frequencies (Fig. 3b) can be explained by the relatively low energy content in the spectrum tail (> 86% of253

the variance is contained between 0.6 fp and 1.5 fp during A2). It also provides an explanation for the slight254
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deviations of measured κ and c from predictions by the linear wave dispersion relation (Fig. 3c-d). However,255

the 2D Fourier analysis performed over the flat section of the flume (Fig. 4a-b) reveals the presence of256

energy along the dispersion relation for bound high-frequency components (e.g., see at f > 2.5fp for A2257

and around 2fp for A3), suggesting that energy transfers towards high harmonics already occur in this258

region. Nonetheless, the energy is mainly distributed along the linear dispersion relation, which indicates259

that short-wave components were mostly propagating as free waves in the deepest regions of the wave flume260

(Ur ∼ O(0.01− 0.1)).261

Data points in the infragravity frequency band (f < 0.6 fp) correspond to wave components generated262

via difference interactions and that are bound to short-wave groups. As such, bound infragravity waves263

propagate at a speed close to the corresponding group velocity, which is lower than their intrinsic phase264

velocity. This is confirmed in Fig. 3d with a good correspondence between measured c values with short-265

wave groups propagation speed (cenv, shown as the orange line), estimated via cross-spectral analysis of266

short-wave groups envelop. The latter was computed following Janssen et al. (2003), as the absolute value267

of the analytical signal of ζ: |ζ + iH{ζ}| (no low-pass filtering is needed for the present application). Note268

that the discrepancies observed at f ∈ [0.3 fp; 0.6 fp] can be explained by the lower levels of energy at these269

frequencies: E(f) ∼ O(10−5) m2/Hz as opposed to E(f) ∼ O(10−4) m2/Hz around f = 0.1 fp.270

4.2. Shoaling of weakly non-linear waves (II)271

At higher Ursell number (Ur ∼ 0.3), wave non-linearities become significant and non-linear energy272

transfers to high harmonics promote the dominance of bound high harmonics (Fig. 4c-d). This is observed273

in the considerable deviation of dominant wavenumbers and phase velocity spectral estimates from the274

predictions of the linear dispersion relation for f > 1.5 fp (see Fig. 5c-f). During A3, the phase velocity275

values at 2fp and 3fp are equal to that of the peak frequency (difference < 1%, c(fp) = 1.95 m/s), while276

during A2 they lie between the value at fp and the predictions of the linear dispersion relation (∼ 7%277

difference from c(fp) = 2.18 m/s). At the second harmonic 2fp, most of the non-linear energy transfers278

occur via sum interactions of components around fp (self-self interactions) as evidenced by the positive279

imaginary part of B∗ around (fp, fp), see Fig. 5g and 5h for tests A2 and A3 respectively. Although less280

evident in the bispectra, the normalised bispectra shown in Fig. C1 indicate that strong coupling involving281

fp and higher harmonics also exist in the shoaling region. These are particularly strong around (2fp, fp)282

for A3, which explains the significant growth of the third harmonic 3fp observed for that test (Fig. 5b).283

Consistent with field observations (e.g. Elgar and Guza, 1985a; Norheim et al., 1998), relatively strong non-284

linear exchanges by sum interactions are observed during A2, despite the broader spectrum conditions (note285

the scale difference between the A2 and A3 cases). Short-wave frequencies distant from fp (e.g. ∼ 1.5fp)286

show a strong coupling with fp, which is the consequence of a broader spectrum for A2 compared to A3.287

A striking result in this regime of propagation is the fact that, despite non-linearities becoming important288

(ε ∼ 0.12 − 0.2, Sk ∼ 1), the principal wave components follow the linear wave dispersion relation. The289

spatial structure of the wave field for f ∈ [0.6 fp; 1.5 fp] is therefore well-described by the linear wave theory290

(Fig. 5c and 5d). However, this is not the case for f > 1.5 fp, where the overestimation of wavenumbers by291

the linear dispersion relation increases with f (up to a factor 2.5 at 3.5 fp). As the biphase at both (fp, fp)292

and (fp, 2fp) are close to 0, this regime of propagation is consistent with Stokes-like non-linearities (e.g.,293
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see Elgar and Guza, 1985a).294

In the infragravity band, wave components are still bound to short-wave groups as indicated by the295

good match between spectral estimates of phase velocity and the propagation speed of short-wave groups.296

Energy transfers towards the infragravity band concentrate at frequencies around 0.1-0.2fp (Fig. 5a and297

5b) and principally originate from strong difference interactions which transfer energy from fp towards that298

infragravity frequency and components at frequency slightly lower than fp (see the negative imaginary part299

of B∗ along the fp anti-diagonal, Fig. 5g and 5h).300

4.3. Shoaling of non-linear waves in the vicinity of the breaking point (III)301

The next regime analysed in Fig. 6 corresponds to non-linear waves approaching the mean breaking302

point location (Ur ∼ 0.7). At this Ursell number, wavenumber and phase velocity spectra become less303

frequency-dependent at high frequencies. This can be explained by the fact that most of the energy at304

those frequencies is bound to primary components in the range [0.6 fp; 1.5 fp], and that c values display305

little variations at these frequencies (c/cL(fp) is within 5% of c(fp)/cL(fp)). As a result, wavenumbers at306

high frequencies are relatively well described by a simple dispersion relation given by κ(f) = 2πf/c(fp)307

(Fig. 6c-d). Note that at these depths (κph ∼ 0.57 and 0.47 for A2 and A3 respectively), this approximately308

corresponds to the shallow water dispersion relation κsw(f) = 2πf/
√
gh, which explains why most of the309

energy is spread around this dispersion relation in Fig 4e-f. Non-linear amplitude effects become increasingly310

important (ε = 0.25 and Sk = 1.4−1.5) and deviations between c(fp) and predictions by the linear dispersion311

relation are observed (Fig. 6e-f). As noted and observed by Herbers et al. (2002), this is the result of non-312

linear interactions, which alter the wavenumber of all three wave components involved. Indeed, bound high313

harmonics contribute to an increase in skewness and height of principal wave crests, which has for effect314

to enhance their propagation speed. Variations in the strength of non-linear interactions thus explain the315

varying magnitude of the deviations of c(fp) from predictions by the linear dispersion relation as observed316

in both field and laboratory settings (Thornton and Guza, 1982; Herbers et al., 2002; Tissier et al., 2011).317

For this range of Ursell number, overestimations of κ by the linear dispersion relation remain close to a318

factor 2 at f = 3.5 fp.319

In these regions of the wave flume, surface elevation bispectra are still dominated by real values (note the320

x2 in imaginary values, Fig. 6g-h), typical of (horizontally) skewed and nearly symmetric waves (As ∼ 0, see321

Fig. 2c-d and also Masuda and Kuo, 1981; Elgar and Guza, 1985a). The strong coupling between first and322

second harmonics, which for instance explains the energy peak at 3fp in A3 (Fig. 6b) is here evident in the323

imaginary part of the bispectra at (fp,2fp) (see also the bicoherence in Fig. C1). Infragravity frequencies324

between 0.1-0.2fp keep receiving energy via relatively strong difference interactions. As a consequence,325

prior to short-wave breaking infragravity waves are still bound to short-wave groups during both tests (see326

Fig. 6e-f, and also de Bakker et al., 2015).327

4.4. Surf zone waves (IV)328

In the surf zone (Ur taken at 3.2), wavenumber and phase velocity spectra are frequency-independent329

(Fig. 7e-f). The large differences observed between the measured phase velocity at peak frequency and that330

predicted with the linear dispersion relation demonstrate the dominance of amplitude effects over dispersive331
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ones (Herbers et al., 2002). All components travel at a speed slightly larger than that of shallow water332

waves (∼ 10 − 20% depending on the wave test), which is consistent with many past field and laboratory333

observations of wave dispersion in the surf zone (Inman et al., 1971; Svendsen et al., 1978; Stive, 1980;334

Thornton and Guza, 1982, and many others). For both A2 and A3 tests, the relation c =
√
gh(1 + ε) is335

shown in Fig. 7e-f (see also Fig 4g-h, for the corresponding frequency-wavenumber surface elevation power336

spectra). This formula is asymptotic in shallow water to the non-linear dispersion relation given by Hedges337

(1976) with the adjustment of Booij (1981) (see also Catalán and Haller, 2008, for an assessment of these338

relations for depth-inversion applications). In the inner surf zone, where ε ∼ 0.3 during all tests (Fig. 2b),339

this yields c ∼ 1.14
√
gh, a relation also found in the field by Tissier et al. (2011). This relation appears340

as an upper bound, in an average sense (e.g. over several wave groups), for the propagation speed of wave341

components in the inner surf zone.342

In the short-wave frequency range, bispectra display relatively weak and nearly equal real and imaginary343

parts, characteristics of asymmetric (pitched forward) broken waves, with biphases approaching -π/2 (Elgar344

and Guza, 1985a; Doering and Bowen, 1987): for instance during A3, β(fp, fp) ∼ β(fp, 2fp) ∼ −π/3. Since345

these values were still close to 0 during stage III, this indicates that bound high-harmonic components (here346

only shown for 2fp and 3fp) slowly drift out of phase from the principal component starting from the mean347

breaking point location. This is in contrast with short-wave group-forced bound infragravity waves that348

slowly drift out of phase with the short-wave envelope in the shoaling region (e.g., see Elgar and Guza,349

1985a). Since this process occurs over long distances, the differences in phase velocities between fp, 2fp350

and 3fp are not sufficiently large to be observed in the present dataset. Finally, in the inner surf zone,351

intense and complex energy transfers occur within the infragravity band and also between infragravity and352

short-wave components. For more information on these processes during the GLOBEX experiments, the353

reader is referred to the study of de Bakker et al. (2015).354

5. Role of non-linear energy transfers on κ and c355

Most differences observed in wavenumber and phase velocity spectra between broad and narrow-banded356

wave conditions concentrate in the shoaling region (stages II and III). In stage II, c values at 2fp and 3fp357

during A2 lie between c(fp) and the values predicted by linear wave theory while c(fp), c(2fp) and c(3fp) are358

all equal during A3 (Fig. 5e-f). As these differences between broad versus narrow-band spectra are likely359

explained by the relative importance of forced energy at those frequencies (see the cross-spectral analysis360

performed on synthetic data and discussed in Appendix A and also Herbers and Guza, 1992; Herbers et al.,361

2000), we analyse non-linear energy transfers to 2fp and 3fp in more details here.362

Wave amplitudes at fp, 2fp and 3fp (afp , a2fp and a3fp respectively) computed from energy spectra363

modelled with Eq. 13 are compared against observations in Fig. 8. Overall, the Boussinesq approach364

of Herbers and Burton (1997) for the non-linear energy transfers between triads accurately predicts the365

growth of second and third harmonics across the shoaling zone for both broad and narrow-band wave tests.366

The cross-shore evolution of afp , a2fp and a3fp are very well described up to the mean breaking point, with367

mean absolute percentage errors (MAPE) lower than 5% and 13% for a2fp and a3fp respectively. With368

respect to the amount of (free) energy imposed at the paddle, the narrow-banded conditions during A3369
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promote more efficient energy transfers, with growths of a2fp and a3fp by a factor 3 and 10 respectively,370

while these factors are only between 1.5 and 2 during A2.371

A closer look at the cross-shore evolution of the source terms (Fig. 9) shows that friction effects are372

negligible at high frequencies but not around the peak frequency where the energy dissipated through373

bottom friction is of similar order than the energy lost via non-linear coupling. During A3 (Fig. 9b), the374

steady increase of Snl(2fp) indicates a gradual growth of a2fp in the shoaling region (see also Fig. 8b). This375

growth is most intense right before the mean breaking point location, around the location corresponding376

to stage III. Computations of the ratio
∫ x1

x0
Snldx/F (x1) at the location x1 corresponding to stage II (resp.377

III) suggest that approximately 70% (resp. 80%) of the energy at 2fp is forced during A3. At 3fp, these378

estimations range between 90% and 100% during stage II and III respectively. Although the resolution in379

wavenumbers does not allow a clear separation of forced and free energy at 2fp, the frequency-wavenumber380

power spectra shown in Fig. 4d (II) and 4f (III) corroborate these numbers and clearly indicate that most of381

the energy at 3fp is forced. In contrast, non-linear energy exchanges between triads display a more complex382

picture for the broader conditions of A2. Snl(2fp) oscillates around 0 so that when spatially integrated,383

non-linear energy exchanges explain only 20% (30%) and 30% (50%) of the total energy at 2fp and 3fp384

respectively during stage II (III). These numbers are quite consistent with the bicoherence values shown385

in Appendix C. For both wave tests, b2 values are found to vary little between stage II and III: for A2,386

b2(fp, fp) ∼ 0.3 and b2(fp, 2fp) ∼ 0.2, while these values oscillate between 0.55 and 0.65 for A3. b2(fp, fp)387

and b2(fp, 2fp) can be considered as crude estimates of the relative amount of forced energy at 2fp and 3fp388

respectively (Kim and Powers, 1979).389

The effect of varying relative amounts of forced energy not only explain the differences observed in κ and390

c spectra at high frequencies between A2 and A3 but also their variation across frequencies. During A3 for391

instance, non-linear energy transfers in the short-wave frequency band were predominantly towards 2fp and392

3fp (Fig. 5h and 6h). At these harmonics, energy is predominantly forced (> 70% around 2fp and > 90%393

around 3fp), thus, the dominant κ and corresponding c values are directly related to the values at the peak394

frequency. In contrast, frequencies located in valleys between harmonics (i.e. 1.5fp and 2.5fp) receive very395

little energy through the coupling of triads. This eventually leads to the patterns in c observed in Fig. 5f,396

which are very similar to those obtained by Crawford et al. (1981) with their model for modulated wave397

trains. During A2, lower relative amounts of forced energy are found at high harmonics and dominant398

wavenumbers lie between κ(fp) and the intrinsic value at that frequency predicted by the linear dispersion399

relation. Furthermore, due to the broader spectrum conditions, this forced energy is more spread across400

frequencies, which explains the weaker variations of κ and c across frequencies as compared to A3 (e.g., see401

Fig. 5e-f).402

The present study considers unidirectional wave fields transforming across a mildly sloping beach. A403

typical field situation where incident wave spectra exhibit varying degrees of directional spreading is unclear404

as far as non-linear energy transfers are concerned. According to Boussinesq theory (e.g., Herbers and405

Burton, 1997), directional spreading has only a weak influence on the efficiency of non-linear energy transfers406

by sum interactions, as opposed to difference interactions. For instance, these authors predicted a weaker407

growth of high-harmonic bound wave by 10-20% for very large directional spreads (60◦). For more realistic408
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spreading angles in the nearshore, de Wit et al. (2020) also recently noted variations of approximately 10%.409

Although small, such a decrease in efficiency of non-linear energy transfer towards high harmonics due to410

an increasing directional spreading might lead to lower relative amounts of forced energy, subsequently411

leading to slightly less important deviations of κ and c spectral estimates from predictions by the linear412

wave dispersion relation (see also Appendix A). The larger spectral bandwidth generally associated with413

wave spectra exhibiting a large directional spreading is, however, likely to be the principal reason explaining414

weaker couplings between triads and thus weaker relative amounts of forced energy at high harmonics.415

6. Discussion and concluding remarks416

Cross-spectral and bispectral analyses were employed on a highly-resolved surface elevation dataset417

to study the dispersive properties of waves shoaling and breaking over a mildly sloping beach. For all418

wave tests considered here, four regimes of propagation (I to IV) with specific characteristics in dominant419

wavenumber and phase velocity spectra could be defined using a local Ursell number. Stage II (Ur ∼ 0.3) is420

particularly interesting as it simultaneously shows significant non-linear effects at high harmonics (typically421

f > 1.5fp), which are evidenced by the large deviations of κ and c spectra from predictions by the linear422

wave dispersion relation, and a clearly linear spatial field for the primary components. Although less423

energy was imposed during A3 as compared to A2, the narrow-banded conditions promoted relatively more424

important non-linear energy transfers towards high harmonics such that phase velocity at 2fp and 3fp were425

found equal to those at the peak frequency. For A2, with a broader spectrum imposed, forced energy at426

high frequencies was found in relatively smaller proportion and c spectral estimates lied between values at427

the peak frequency and that given by the linear dispersion relation. Closer to the mean breaking point428

(stage III), non-linear energy transfers were found more intense, which, together with the less dispersive429

conditions compared to stage II explain that κ and c spectra become less frequency dependent. In the surf430

zone (stage IV), wavenumber and phase velocity spectra essentially showed the same characteristics for all431

tests and a modified shallow water dispersion that accounts for non-linearity (c =
√
gh(1 + ε)) accurately432

describes the dispersive properties of the wave field. Some of the results presented here for shoaling and433

breaking waves confirm previous findings obtained in the field (Thornton and Guza, 1982; Elgar and Guza,434

1985b; Herbers et al., 2002, among others), yet the unprecedented level of accuracy obtained with the435

GLOBEX dataset allowed to highlight and quantify the effect of varying levels of forced energy at high436

harmonics on the dispersive properties of the wave field.437

The detailed analysis of the different regimes of propagation highlighted here indirectly provides an438

assessment of the validity of the linear wave dispersion relation at several locations in the nearshore and for439

a range of wave conditions. Two specific regions in the short-wave frequency band can be defined: primary440

components (f ∈ [0.6fp, 1.5fp]) and high harmonics (f > 1.5fp). For the primary components, deviations441

from the linear wave dispersion relation are due to non-linear amplitude effects and concentrate in a region442

near the mean breaking point and in the surf zone. These effects can cause deviations of κ and c from443

predictions by the linear wave dispersion of the order of 10-20%. At high frequencies, deviations are much444

larger (O(100%)) and also occur much farther seaward. For instance, stage II corresponds to κph = 0.71,445

0.70 and 0.62 for wave tests A1, A2 and A3 respectively. The fact that such deviations from predictions446
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by the linear dispersion relation are found in κ and c spectra so far seaward of the surf zone for different447

wave conditions is expected to have strong implications for a wide range of applications, two of which are448

briefly discussed below.449

Depth-inversion algorithms such as cBathy (Holman et al., 2013) estimate the water depth by applying450

the linear wave dispersion relation to the most coherent pairs of wave frequency and wavenumber extracted451

from timeseries of video images (Stockdon and Holman, 2000; Plant et al., 2008). However, due to the452

working principles of video cameras, video data can be more coherent at high harmonics and frequencies453

greater than 1.5 fp are often picked to invert the water depth (Stockdon and Holman, 2000; Bergsma and454

Almar, 2018). In such cases, large deviations of the dominant wave phase velocity from linear wave theory455

are expected, which likely explains why Brodie et al. (2018) noted an overestimation in the detected phase456

velocities by 20-100% up to 50 m seaward of the mean breaking point location. In the absence of knowledge457

on the relative amounts of forced energy at high harmonics, pairs of frequencies and wavenumbers around458

the peak frequency should be preferred in regions where non-linearities are expected. Similarly, the large459

overestimation of κ by the linear dispersion relation causes the widely reported blow-up at high harmonics460

when correcting sub-surface pressure signals for depth attenuation (Bonneton and Lannes, 2017; Mouragues461

et al., 2019; Martins et al., 2020b). The use of a cutoff frequency prevents for instance the accurate462

description of third-order parameters and wave height distributions (e.g., see Martins et al., 2020a). In463

shallow water (µ . 0.3), a weakly dispersive formula recently developed allows for an accurate correction of464

the energy levels at high harmonics both seaward of (Bonneton et al., 2018; Mouragues et al., 2019) and in465

the surf zone (Martins et al., 2020b). However in deeper water, a non-linear fully dispersive reconstruction466

requires knowledge on the spatial structure of the wave field, which is generally lacking.467

Acknowledgments468
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Appendix A. Sensitivity analysis of the cross-spectral technique to the presence of forced478

energy479

The situation where both free and forced components exist in a wave field is not entirely clear as far480

as the cross-spectral analysis is concerned. Some studies consider the cross-spectral estimates to be biased481

towards bound harmonics (e.g., see Lake and Yuen, 1978; Thornton and Guza, 1982), arguing that the482

travelling distance between two gauges is reduced for bound components compared to free ones. This is483
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evidently exacerbated when using sub-surface pressure sensors or current meters since bound harmonics484

are much less attenuated and will dominate the spectrum at some depth.485

To analyse the sensitivity of the cross-spectral analysis to different relative levels of forced energy, some486

tests are performed here on synthetic data. Starting at a position x1, a surface elevation timeseries following487

a JONSWAP spectrum with similar parameters to the A3 test is generated (Fig. A1). A Gaussian-shaped488

perturbation around 2 fp is added to represent forced harmonics: for any f around 2 fp, the forced harmonic489

wavenumber is set at κforced = 2κ(f/2), so that we have cforced(f) = c(f/2). For the phases of forced490

harmonics, we choose to impose θforced(f) = θ(f/2) for simplicity. The maximum ratio of forced to free491

harmonic amplitudes a2fp, forced/a2fp, free is set to 6, which corresponds to the maximum ratio of energy492

E(fp)/E(2fp) of approximately 0.4 that was observed in the flume outside the surf zone. Each wave493

component is then propagated using its corresponding wavenumber to a second location x2.494

The results from the cross-spectral analysis performed on the synthetic timeseries at x1 and x2 are pro-495

vided in Fig. A2 as the wavenumber and phase speed at 2 fp shown as a function of a2fp, forced/a2fp, free.496

In the absence of forced components (a2fp, forced/a2fp, free = 0), components around 2 fp follow the dis-497

persion relation given by linear wave theory, i.e. κ(2 fp) = κL(2 fp) and c(2 fp) = cL(2fp). Interestingly,498

when forced and free components are found in equal proportion (a2fp, forced/a2fp, free = 1), the relation499

κ(2 fp) ∼ (κL(2 fp) + 2κL(fp))/2 is verified. For higher ratio of forced to free energy, κ(2 fp) and c(2 fp)500

values rapidly converge towards the values corresponding to the peak frequency. Overall, these results501

suggest that the cross-spectral analysis is not biased towards forced components, but simply provides a502

dominant wavenumber (or averaged in terms of energy) and its corresponding phase velocity.503

Appendix B. Validation of the bispectrum computations using the skewness and asymmetry504

test505

The wave skewness and asymmetry are third-order moments characterizing the wave shape. These506

parameters are directly related to the energy content at high frequencies of the spectra and bispectra507

(Elgar, 1987). The fact that the statistical (see Eq. 1 and 2) and the bispectrum-based definitions are508

theoretically equivalent provide a means to validate the bispectrum’s calculations.509

Due to its symmetry properties, the bispectrum can be uniquely defined in a single octant in the510

frequency-space (Hasselmann et al., 1963; Elgar and Guza, 1985a). If we denote by fN the Nyquist fre-511

quency, the octant with positive frequencies is bounded by the vertices at (0,0), (fN/2, fN/2) and (fN ,0).512

The wave skewness and asymmetry are defined by the sum of the real and imaginary parts of the bispec-513

trum over this octant respectively, normalized by the cube of the free surface elevation standard deviation514

(Elgar, 1987; Elgar and Guza, 1985a). This reads:515

Sk =

[
12
∑
n

∑
l

Re{B(fn, fl)}+ 6
∑
n

Re{B(fn, fn)}

]/
(ζ − ζ)2

3/2
(B.1)

As =

[
12
∑
n

∑
l

Im{B(fn, fl)}+ 6
∑
n

Im{B(fn, fn)}

]/
(ζ − ζ)2

3/2
(B.2)

with n > l and n+ l < N .516

The cross-comparison between statistical and bispectrum-based definitions of the wave skewness and517

asymmetry computed for A3 is provided in Fig. B1 and shows a perfect match between both definitions,518
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thus validating the present computations of the bispectrum. Note that for these comparisons, blocks were519

not tapered and rectangular windows were used for computing the Fast Fourier Transforms. Using any520

other types of windows resulted in small differences between the two definitions of both third-order wave521

parameters.522

Appendix C. Normalised bispectra (bicoherence)523

We generally seek a normalisation of the bispectrum so that it takes 1 as value when there is a full524

coupling between the three components involved and 0 when there is none. In the case of surface gravity525

waves, this would correspond to a situation with the only presence of forced or free energy respectively.526

At present, there does not seem to be a consensus in the literature on what definition of the bicoherence527

should be used to robustly quantify or at least characterize the relative dominance of forced energy (e.g.528

Haubrich, 1965; Kim and Powers, 1979; Elgar and Guza, 1985a; Hinich and Wolinsky, 2005; de Bakker529

et al., 2015, and many others). The normalisation proposed by Haubrich (1965) is frequently used for530

studying non-linearities in the nearshore area but was shown to lead to values greater than 2 (e.g. Elgar531

and Guza, 1985a). In the present study, this was also the case, but only when merging across frequencies532

was performed beforehand. Nonetheless, a slightly different normalisation that was proposed in Hagihira533

et al. (2001) is used in the present case as it seems the most appropriate normalisation (see their Appendix):534

b( f1, f2) =
|B(f1, f2)|

E [|A(f1)| · |A(f2)| · |A∗(f1 + f2)|]
(C.1)

As explained in Hagihira et al. (2001), the bicoherence is 1 only when phase angles of all triple products535

are equal.536

Squared bicoherence values b2 for both II and III regimes of propagation are shown in Fig. C1. As537

frequency merging is inappropriate with this definition of the bicoherence (due to the expected value in the538

denominator), b values were averaged over a 3x3 square in the frequency space.539
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Test Hs [m] fp [Hz] γ

A1 0.10 0.633 3.3
A2 0.20 0.444 3.3
A3 0.10 0.444 20

Table 1: Significant wave height (Hs) and peak wave frequency (fp) for the three tests considered in this study. The peak
enhancement γ of the JONSWAP spectra characterizes its spectral bandwidth. A value of 3.3 corresponds to broad spectra
while a narrow-band spectra is imposed with γ = 20.
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Figure 1: Elevation z of the 1:80 concrete beach against the cross-shore distance x in the Scheldegoot flume during the
GLOBEX project. The wave paddle is located at x = 0 m. The grey ’+’ symbols show the position of the wave gauges across
the wave flume.
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Figure 2: Second and third-order short-wave parameters during tests A1, A2 and A3: a) root-mean square wave height Hrms

computed as (8 ζ2)1/2; b) corresponding wave amplitude to water depth ratio ε = Hrms/
√

2h; c) wave skewness Sk; d) wave
asymmetry As and e) Ursell number Ur computed as ε/µ. Note that these are short-wave parameters, computed using the
high-pass filtered surface elevation signal (frequency cutoff at 0.6 fp).
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Figure 3: Phase (a), coherence-squared (b), dimensionless wavenumber (c) and phase velocity (d) spectra computed at
x = 10.65 m for case A2. The spacing between the adjacent gauges is ∆x = 0.93Lp, with Lp the peak wavelength given by the
linear wave dispersion relation (Eq. 14). The phase velocity spectrum is normalised by cL(fp), the phase velocity predicted
by linear wave theory at the peak frequency. The red dashed lines in panels a, c and d correspond to the values given by the
linear wave dispersion relation. The separation between infragravity and short wave frequencies (0.6 fp) is shown as dashed
black line. In panel b, the gray dashed line corresponds to the coherence-squared threshold used for computing ensemble
average spectral estimated of κ and c. In panel d, the orange line corresponds to the short-wave envelop propagation speed.
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Figure 4: Frequency-wavenumber surface elevation power spectra P (ω, k) computed for A2 (left) and A3 (right) at the four
stages of propagation described in the paper (I: panels a-b; II: panels c-d; III: panels e-f and IV: panels g-h). For A2, these
power spectra were computed at I: x = 9.8± 2.8 m; II: x = 38.9± 3.6 m; III: x = 54.5± 3.5 m and IV: x = 76± 2.4 m. For A3,
the cross-shore locations were I: x = 9.8± 2.8 m; II: x = 53.4± 2.4 m; III: x = 62.3± 3.5 m and IV: x = 77± 2.4 m. Each black
contour line correspond to a power of 10. The separation between infragravity and short-wave frequencies (0.6 fp) is shown as
the dashed black line. In all panels, the red curves correspond to the linear wave dispersion relation. In panels a-d, the dashed
grey curves correspond to the dispersion relation for the second harmonic, and was computed based on the assumption that
it travels at a similar speed as its principal component. In panels e-f, the grey curve corresponds to the shallow water wave
dispersion relation (c =

√
gh) while the dashed green line in panels g-h refer to the modified one (c =

√
gh(1 + ε)).

25



0 0.6 1 1.5 2 2.5 3 3.5

10 -6

10 -5

10 -4

10 -3

10 -2 a)

A2

95% C.I.

0 0.6 1 1.5 2 2.5 3 3.5

10 -6

10 -5

10 -4

10 -3

10 -2 b)

A3

95% C.I.

0 0.6 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

c)

0 0.6 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

d)

0 0.6 1 1.5 2 2.5 3 3.5

0.4

0.6

0.8

1

1.2

e)

0 0.6 1 1.5 2 2.5 3 3.5

0.4

0.6

0.8

1

1.2

f)

Real part

Imag. part

(x2)

g)

0 0.6 1 1.5 2 2.5 3

0

0.6

1

1.5

2

2.5

3

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
10 -7

Real part

Imag. part

(x2)

h)

0 0.6 1 1.5 2 2.5 3

0

0.6

1

1.5

2

2.5

3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10 -8

Figure 5: From top to bottom: surface elevation energy density spectra, dimensionless wavenumber spectra, phase velocity
spectra normalised by cL(fp) and bispectra computed at Ur ∼ 0.3 (stage II) for wave tests A2 (left panels) and A3 (right
panels). The cross-shore location corresponding to this stage is indicated in panels a and b (cf figure 2e). The wavenumber
and phase velocity spectra were computed with five spacing configurations: each point corresponds to the ensemble-averaged
value and the error bars correspond to the standard deviation. For readability, only one on three data points are shown.
Red lines in panels c-f correspond to values given by the linear wave dispersion relation. The separation between infragravity
and short-wave frequencies (0.6 fp) is shown as the dashed black line. In panels c-d, the red dashed line corresponds to
κ(f) = 2πf/c(fp). In panels e-f, the orange line corresponds to the short-wave envelop propagation speed denoted cenv .
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Figure 6: Similar to figure 5, but with Ur ∼ 0.7 (stage III).
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Figure 7: Similar to figure 5, but with Ur ∼ 3.2 (stage IV). Additionally, the green dashed lines in panels e) and f) correspond

to the modified shallow water dispersion relation c =
√
gh(1 + ε).
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Figure 8: Comparison between observed and predicted (Eq. 13) wave amplitudes at fp, 2fp and 3fp (afp , a2fp and a3fp
respectively). The cross-shore locations corresponding to the regimes of propagation discussed in section 4 are indicated by
the vertical dashed lines for both wave tests. Since the present modelling approach neglects wave breaking-induced energy
dissipation, modelled amplitudes are shown only until the approximate mean breaking point location (slightly after stage III).
The amplitude growth predicted with Green’s law is also shown.
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Figure 9: Cross-shore variation of the source terms for the non-linear energy exchanges between triads and for the bottom
friction, used in Eq. 13. Only values at the peak frequency (fp) and the second harmonic (2fp) are shown. The cross-shore
locations corresponding to the regimes of propagation discussed in section 4 are indicated by the vertical dashed lines for both
wave tests.
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Figure A1: Energy density spectra imposed at a fictive x1 position, with different ratio of forced to free second harmonic
amplitude. In the absence of forced components, the forcing corresponds to a JONSWAP spectrum with parameter similar to
A3 (see Table 1).
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Figure A2: Wavenumber (a) and phase velocity (b) spectra computed on the synthetic surface elevation timeseries for varying
ratio of forced to free second harmonic amplitudes.
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Figure B1: Cross-comparison of third-order wave parameters during A3 computed using the statistical (Eq. 1-2, ’time’
subscript) and the bispectrum (Eq. B.1-B.2, ’B’ subscript) definitions. No separation between infragravity and short wave
frequency bands or between incoming and outgoing wave fields was performed for this comparison.
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Figure C1: Squared bicoherence b2 computed using the definition of Hagihira et al. (2001) for wave test A2 (left) and A3
(right). The octant above the 1:1 diagonal corresponds to the bicoherence for stage II while stage III is that under the
diagonal. Due to the symmetric properties of the bispectrum, only one octant is shown for each stage. The separation
between infragravity and short-wave frequencies (0.6 fp) is shown as the dashed black line. Only bicoherence values greater
than the 95% significance level as defined by Haubrich (1965) (b2

95%
≥ 6/d.o.f., with d.o.f. the equivalent number of degrees

of freedom) are shown.
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