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Résumé. On propose une approche bayésienne pour résoudre un problème d’assimilation
de données. Dans un premier temps, le modèle direct est approché par un modèle
paramétrique inversible. Dans un deuxième temps, l’information a-priori est intégrée.
Cette division en deux étapes permet de traiter efficacement un nombre important d’inversions.
La méthode est illustrée sur une étude du manteau neigeux, utilisant un modèle de rétro-
diffusion électro-magnétique.

Mots-clés. Assimilation de données, problème inverse, régression, apprentissage
statistique

Abstract.
We propose a Bayesian approach to data assimilation problems, involving two steps.

We first approximate the forward physical model with a parametric invertible model,
and we then use its properties to leverage the availaibility of a priori information. This
approach is particularly suitable when a large number of inversions has to be performed.
We illustrate the proposed methodology on a multilayer snowpack model.

Keywords. Data assimilation, inverse problem, regression, statistical learning

1 Introduction

A data assimilation task aims at retrieving unknown parameters, denoted by x, from
observations y and an initial guess on the parameters x0. The observations and the
parameters are linked by a forward model, denoted by F . This problem is similar to
inverse problems but differs in the sense that the number of observations y is much
smaller than the number of parameters so that the observations y alone are not enough
to predict the parameters. It is then crucial to make full use of an initial guess of the
parameters x0 to avoid an ill-posed problem. One way to formalize this problem is to
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adopt a Bayesian formulation. Our problem is modeled considering two random variables
X ∈ RL and Y ∈ RD , linked by the relation

Y = F (X) + ε (1)

where ε is a centered Gaussian noise, with variance Σ, accounting for the measurement
and model uncertainties. We then account for an initial guess x0 with a prior density on
X, for example the product of a Gaussian distribution with mean x0 and a variance Γ0

and of a uniform distribution on the parameters range, denoted by UP . According to
Bayes’ rule, the posterior distribution has then the following form:

p0(x|Y = y) ∝ UP(x)N (x; x0,Γ0)N (F (x); y,Σ) .

The choice of Γ0 and Σ is crucial. Taking Σ = 0 boils down to solve the inverse
problem alone, without taking into account prior information. In contrast, taking Γ0 = 0
just yields a dirac centered at x0, without exploiting the measurements. When looking
at the maximum a posteriori (MAP) solution, it comes

x̂MAP = arg min
x∈P
||x− x0||Γ0 + ||y − F (x)||Σ ,

where || · ||Σ denotes the Mahalanobis distance. This is a well known consequence of as-
suming Gaussian distributions for the forward and prior models. In this work, we propose
to go beyond the Gaussian assumption by learning the underlying relation between X and
Y, using a regression approach. We first introduce the statistical model and show how
it can be used in an assimilation problem. We then illustrate the method on a realistic
example in remote sensing.

2 Efficient assimilation via regression

We propose to use a two-steps approach: first, we consider the problem without prior
information, and we learn the underlying relation between X and Y, using the so-called
Gaussian Locally-Linear Mapping model (GLLiM) ([Deleforge et al., 2015]). Then, we
adapt the model to take into account prior information.

2.1 Learning an invertible approximation of the forward model

In this first step, the joint distribution of X and Y is approximated by a Gaussian Locally-
Linear Mapping model (GLLiM) which builds upon Gaussian mixture models to capture
non linear relationships ([Deleforge et al., 2015]). A latent variable Z ∈ {1, . . . , K} is
introduced to model Y as piece-wise affine transformation of X:

Y =
K∑
k=1

1I{Z=k}(AkX + bk + εk) (2)

2



where 1I is the indicator function, Ak a D × L matrix and bk a vector of RD that define
an affine transformation. Variable εk corresponds to an error term which is assumed to
be zero-mean and not correlated with X capturing both the observation noise and the
reconstruction error due to the affine approximation.

In order to keep the posterior tractable, we assume that εk ∼ N (0,Σk) and X is a
mixture of K Gaussians : p(x|Z = k) = N (x; ck,Γk) and p(Z = k) = πk. The GLLiM
model is thus characterized by the parameters θ = {πk, ck,Γk,Ak, bk,Σk}k=1:K

This model can be learned from a training set using an EM algorithm. More specifi-
cally, the training set (xn,yn)n=1..N is simulated such that xn are realizations of the prior
UP(x) and yn = F (xn) + εn. We then use the resulting GLLiM distribution denoted by
pG (and depending on θ) as a surrogate model for the pdf of (X,Y). Let’s stress out that
this first step does not use any prior information on X.

The purpose is to exploit the tractable density pG provided by the GLLiM model.
Indeed, from pG, conditional distributions are available in closed form and in particular:

pG(x|Y = y,θ) =
K∑
k=1

w∗k(y)N (x;A∗ky + b∗k,Σ
∗
k) (3)

with w∗k(y) =
πkN (y; c∗k,Γ

∗
k)∑K

j=1 π
∗
jN (y; c∗j ,Γ

∗
j)

where a new parametrization θ∗ = {c∗k,Γ∗k,A∗k, b∗k,Σ∗k}k=1:K is used that can be easily
deduced from θ as follows:

c∗k =Akck + bk

Γ∗k =Σk +AkΓkA
>
k

Σ∗k =
(
Γ−1k +A>k Σ−1k Ak

)−1
A∗k =Σ∗kA

>
k Σ−1k

b∗k =Σ∗k
(
Γ−1k ck −A

>
k Σ−1k bk

)
(4)

The next section shows how to integrate the given prior information on X.

2.2 Prediction step using prior information

We now observe that the target posterior (with prior information) can be factored into
the product of the prior and a prior-less posterior:

p0(x|Y = y,θ) ∝ p(x|Y = y)N (x; x0,Γ0)

where
p(x|Y = y) ∝ UP(x)N (F (x); y,Σ)
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Since the GLLiM model has been learned such as to provide an approximation of p(x|Y =
y) through (3), we approximate the target posterior with

p0G(x|Y = y,θ) ∝ N (x; x0,Γ0) pG(x|Y = y,θ) (5)

The key feature is that this density remains in closed form: it actually remains a
Gaussian Mixture, with weights, means and covariances (αk,xk, Sk)K=1...K given by

Sk =
(
Γ−10 + (Σ∗k)−1

)−1
xk = Sk

(
Γ−10 x0 + (Σ∗k)−1m∗k

)
βk =

√
|Sk|

(2π)L|Γ0||Σ∗k|
exp

(
−1

2
(m∗k − x0)

>Bk(m∗k − x0)

)
Bk = (Γ0 + Σ∗k)−1

αk =
w∗k(y)βk∑K
k=1w

∗
k(y)βk

m∗k = A∗ky + b∗k

(6)

This means that, once the first learning step is done, inference on the posterior can be
performed very efficiently: for example one can solve the assimilation problem by com-
puting the mean of p0G(x|Y = y,θ), which is straightforward. An uncertainty estimation
is also available by computing the variance.

Note that the same formulas can be recovered by observing that accounting for an
initial guess x0 amounts to add in the observations y an additional observation x0. Then
when using a Gaussian prior for x0, this combines well with the initial GLLiM model to
lead to an augmented GLLiM model in dimension L × (L + D), defined by (πk, ck,Γk)
being left unchanged and (Ak, bk,Σk) modified into

Ãk =

(
Ak

IL

)
, b̃k =

(
bk
0L

)
, Σ̃k =

(
Σk 0D,L

0L,D Γ0

)

2.3 Extension to a more complex prior

So far, we have only considered a really simple prior distribution on X. However, the result
from the previous section can easily be extended to the case of Gaussian mixtures. Indeed,
we can replace N (x; x0,Γ0) by a Gaussian mixture with parameters (ai, µi,Γi)i=1..I , and
still obtain p0G(x|Y = y,θ) as a Gaussian mixture, this time with K × I components. Its
parameters (αk,i,xk,i, Sk,i) are given by the following equations, which are a generalization
of (6) :
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Sk,i =
(
Γ−1i + (Σ∗k)−1

)−1
xk,i = Sk,i

(
Γ−1i µi + (Σ∗k)−1m∗k

)
βk,i =

√
|Sk,i|

(2π)L|Γi||Σ∗k|
exp

(
−1

2
(m∗k − µi)

>Bk,i(m
∗
k − µi)

)
Bk,i = (Γi + Σ∗k)−1

αk,i =
w∗k(y)aiβk,i∑K

k=1

∑I
i=1w

∗
k(y)aiβk,i

m∗k = A∗ky + b∗k

(7)

This flexibility opens the door to more advanced inference tasks. However, in the
following, we focus on the simpler case of a Gaussian prior, which is sufficient in the real
world scenario we present in the next section.

3 Illustration on a detailed snowpack model

We present an application of our method to an example coming from [Gay et al., 2015],
which study the snowpack composition through an electromagnetic backscattering model
(EBM). More specifically, initial parameters values are coming from measurements per-
formed manually by experts. The goal is then to refine these initial measurements using
information available in the reflectivity measured by a radar. The quantities at stake
relate to the composition of the snow layers, namely the snow diameter di and its density
ρi for each layer i = 1 : L. Thus, given L layers, the parameters of interest x are of length
2 ∗ L. The backscattering measurement y is a scalar related to the parameters through
y = F (x) = FEBM(d1, . . . , dL, ρ1, . . . , ρL). We refer to [Phan et al., 2014] for more details
and the explicit expression of FEBM .

Figure 1 shows the assimilation results for 4 snow carrots. The measurements come
the from NoSREx report (measured at X-band, VV polarized, with an incidence angle of
40°). These results are only preliminary, but exhibit two properties that are consistent
with previous findings. First, the same pattern for the diameters as in [Gay et al., 2015] is
observed: the initial, expert measurements are consistently two high. Second, the density
profiles, after assimilation, are increasing with the depth, which is physically sound.

4 Conclusion

We have proposed a Bayesian inversion approach to solve assimilation tasks. We have
shown that the inverse regression approach GLLiM could be also adapted to account for a
priori knowledge. This framework is especially interesting when we deal when the forward
model is fixed, and assimilation is needed for a high number of observations, initial guesses
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Figure 1: Snow layers properties assimilation. Layers depth is increasing from left to right (that is, the
surface is on the left). Snow flakes diameter is in blue, density in red. Initial guesses are in solid line,
assimilation result in dashed line.

or prior covariance levels, since the same learned GLLiM model can then be reused. In
addition the possibility to use Gaussian mixtures as prior may cover a large range of
physical constraints. Future work also includes the study of the covariance choice impact
on the final assimilation results.
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