
HAL Id: hal-03215118
https://hal.science/hal-03215118v1

Submitted on 3 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial compressibility methods for the incompressible
Navier-Stokes equations using lowest-order face-based

schemes on polytopal meshes
Riccardo Milani, Jérôme Bonelle, Alexandre Ern

To cite this version:
Riccardo Milani, Jérôme Bonelle, Alexandre Ern. Artificial compressibility methods for the incom-
pressible Navier-Stokes equations using lowest-order face-based schemes on polytopal meshes. Com-
putational Methods in Applied Mathematics, 2022, 22 (1), �10.1515/cmam-2021-0089�. �hal-03215118�

https://hal.science/hal-03215118v1
https://hal.archives-ouvertes.fr

Artificial compressibility methods for the incompressible
Navier–Stokes equations using lowest-order face-based schemes on

polytopal meshes

Riccardo Milani∗, † Jérôme Bonelle∗ Alexandre Ern†

Abstract
We investigate artificial compressibility (AC) techniques for the time discretization of the

incompressible Navier–Stokes equations. The space discretization is based on a lowest-order
face-based scheme supporting polytopal meshes, namely discrete velocities are attached to
the mesh faces and cells, whereas discrete pressures are attached to the mesh cells. This
face-based scheme can be embedded into the framework of hybrid mixed mimetic schemes
and gradient schemes, and has close links to the lowest-order version of hybrid high-order
methods devised for the steady incompressible Navier–Stokes equations. The AC time-
stepping uncouples at each time step the velocity update from the pressure update. The
performances of this approach are compared against those of the more traditional monolithic
approach which maintains the velocity-pressure coupling at each time step. We consider both
first-order and second-order time schemes and either an implicit or an explicit treatment of
the nonlinear convection term. We investigate numerically the CFL stability restriction
resulting from an explicit treatment, both on Cartesian and polytopal meshes. Finally,
numerical tests on large 3D polytopal meshes highlight the efficiency of the AC approach
and the benefits of using second-order schemes whenever accurate discrete solutions are to
be attained.

Keywords: incompressible Navier–Stokes, artificial compressibility, polytopal meshes,
lowest-order hybrid schemes

MSC (2010): 65M12, 65M22, 76D05, 76M10

1 Introduction
The goal of this work is to study the accuracy and efficiency of artificial compressibility tech-
niques for the time discretization of the incompressible Navier–Stokes equations. These equa-
tions are encountered in a wide range of industrial applications, ranging from aeronautics to
the simulations of flows in micro-fractures, to cite two salient examples. In this work, the space
discretization is realized by means of lowest-order face-based schemes supporting classical (sim-
plicial or Cartesian) as well as general (polytopal) meshes. The support of polytopal meshes is
motivated by the applications, especially in the industrial context. Indeed, such meshes often
alleviate substantially the burden of mesh generation resulting from the complexity of the ge-
ometry (as, e.g., the shape of industrial equipments) and/or the heterogeneity of the physical
properties (requiring local mesh refinements producing hanging nodes).

The unsteady incompressible Navier–Stokes equations read as follows:
∂u

∂t
− ν∆u+ (u · ∇)u+∇ p = f ,

∇ · u = 0 ,
in Ω× (0, T) , (1)

∗EDF R&D, 6 Quai Watier, 78400 Chatou, France
†CERMICS, Ecole des Ponts, 77455 Marne-la-Vallée 2, France, and Inria, 2 rue Simone Iff, 75589 Paris, France

1

together with suitable boundary and initial conditions on the velocity. Here, Ω ⊂ Rd, d = 2, 3,
is an open, polytopal, bounded, Lipschitz domain and T > 0 denotes the observation time. The
unknowns are the velocity u and the pressure p (by convention, vector-valued quantities are
underlined). The problem data are the viscosity ν > 0, the mass density is normalized to unity,
and the body force is denoted by f . For simplicity, we consider smooth solutions to (1), and we
enforce Dirichlet boundary conditions over the whole boundary ∂Ω at all times. Recall that the
first equation in (1) expresses the momentum balance in the flow, and the second equation the
mass conservation.

Let us briefly describe the time-marching schemes considered in this work without introduc-
ing any space discretization yet. These schemes are either of monolithic form, thereby requiring
to solve a saddle point problem at each time step, or they uncouple the velocity and the pressure
at each time step by means of an artificial compressibility technique. Let ∆t > 0 be the time
step (taken to be constant for simplicity) and let (un, pn) denote the approximate solution at
the discrete time node tn := n∆t for all n ≥ 1. The monolithic approach is the traditional
time-marching scheme for the incompressible Navier–Stokes equations and it reads as follows:
For all n ≥ 1, given un−1 from the initial condition or the previous time node, find (un, pn) by
solving the saddle point problem in Ω,

un − un−1

∆t − ν∆un + (un · ∇)un +∇ pn = fn := f(tn) ,

∇ · un = 0 .
(2)

The monolithic approach is well-known and is considered here as the reference time-stepping
scheme. The only approximation introduced in (2) with respect to (1) is the discretization of
the velocity time-derivative (here, by means of the implicit Euler scheme to fix the ideas). In
contrast, the artificial compressibility (AC) approach introduces an additional approximation
at each time step in that the velocity is first updated and the pressure is then corrected. In its
first-order form, the scheme reads as follows: For all n ≥ 1, given (un−1, pn−1) from the initial
condition or the previous time node, find (un, pn) by solving a parabolic-like problem on the
velocity and then updating the pressure:

un − un−1

∆t − ν(∆un + η∇∇ · un) + (un · ∇)un = fn −∇ pn−1 , (3a)

pn = pn−1 − νη∇ · un , (3b)

where η > 0 is a user-defined adimensional parameter. The AC method was introduced in
the late sixties [23, 56] in the Western literature, although the seminal ideas can be traced
independently in the Russian literature as well [57, 49, 58]. For a recent analysis of the method,
the reader is referred to [45]. Notice the appearance of the additional grad-div term in (3a),
whereas (3b) shows that the time discrete velocity field un is no longer divergence-free. Notice
also that an approximation to the initial pressure is needed. Furthermore, we observe that
higher-order versions of the AC scheme are available; see [45, 44].

The computational study performed in this work considers both the monolithic and the AC
approaches, either in the above form which is first-order accurate in time, or in second-order
form (as described below). Moreover, we examine either the implicit treatment of the convection
term (as above) leading to a nonlinear problem to be solved at each time step, or a (semi-)explicit
treatment leading to a linear problem to be solved at each time step. The natural choice when
using the AC scheme is to resort to an explicit treatment since the goal is to reduce as much
as possible the computational cost per time step. However, for completeness, we also consider
the implicit treatment of the convection term for the first-order AC schemes, but not for the
second-order ones. Indeed, in this latter case, there are two nonlinear problems to be solved at
each time step, which is deemed to be too expensive.

2

Concerning the space discretization, we focus on schemes supporting polytopal meshes. Nu-
merous possibilities are available from the literature. Concerning high-order schemes, we men-
tion (without being exhaustive) discontinuous Galerkin (dG) methods [7, 24, 46], hybridizable
dG (HDG) methods [25, 53, 47, 50], hybrid high-order (HHO) methods [1, 29, 30, 17], weak
Galerkin (WG) methods [52], virtual element methods (VEM) [9, 10, 42], and nonconforming
VEM [20]. As efficient as the above high-order methods can be, it is often preferred in an
industrial context to use lowest-order schemes owing to their relative ease of implementation
and the prominence of legacy codes based on these techniques. Moreover, since the maximal
order of accuracy in time considered here is two, it is reasonable to focus on lowest-order space
discretization schemes. Examples of such schemes for the (Navier–)Stokes equations include
discrete duality finite volume (DDFV) schemes [26, 48, 18, 43], mixed finite volume (MFV)
schemes [32], mimetic finite difference (MFD) schemes [8], compatible discrete operator (CDO)
schemes [15, 12], and gradient schemes [40, 34, 37]. Unifying frameworks bridging a large class of
lowest-order schemes exist, such as the hybrid mixed mimetic (HMM) framework from [35] and
the setting of gradient schemes [35]. In this work, we focus more specifically on CDO schemes.
This is a mild restriction, and we expect that most of our conclusions can be carried out to other
lowest-order schemes owing to the above-mentioned unifying frameworks. Among the various
CDO schemes, we focus on face-based CDO (CDO-Fb) schemes in which the degrees of freedom
(DoFs) for the velocity are vector-valued and attached to the mesh faces and cells, whereas the
pressure DoFs are scalar-valued and attached to the mesh cells only. We refer the reader to [14]
for the analysis of vertex-based and cell-based CDO schemes for elliptic PDEs and to [21, 22]
for edge-based CDO schemes applied to circulations (i.e., differential forms of order one). The
CDO schemes devised in [15] are different since they introduce the vorticity as an additional
unknown. As discussed in [12, Sect. 8.3], CDO-Fb schemes are derived for cell-based schemes
by a hybridization procedure of the flux unknown considered in cell-based schemes. CDO-Fb
schemes can be bridged to lowest-order HHO, HFV, HMM, and gradient schemes, and have
been evaluated numerically to approximate the steady incompressible Navier–Stokes equations
in [16].

This paper is organized as follows. The CDO-Fb scheme for the space discretization is
presented in Section 2. The fully discrete schemes are introduced in Section 3 using either
the monolithic or the AC approaches and either an implicit or an explicit treatment of the
convective term. Numerical results are discussed in Section 4 on two- and three-dimensional
test cases. Finally, conclusions are drawn in Section 5.

2 Space discretization by the CDO-Fb scheme
In this section, we recall the CDO-Fb scheme for the space discretization of the steady incom-
pressible Navier–Stokes equations introduced in [16]. In weak form, and considering homoge-
neous Dirichlet conditions for simplicity (and fixing the pressure mean value to zero), one seeks
(u, p) ∈ H1

0(Ω)× L2
0(Ω) (standard notation for Lebesgue and Sobolev spaces is employed) such

that {
νa(u, v) + t(u;u, v) + b(v, p) = l(v) , ∀v ∈ H1

0(Ω) ,
b(u, q) = 0 , ∀q ∈ L2

0(Ω) ,
(4)

with the bilinear and trilinear forms

a(u, v) :=
∫

Ω
∇u : ∇ v , b(v, p) := −

∫
Ω

(∇ ·v)p , t(w;u, v) :=
∫

Ω

(
(w·∇)u

)
·v , (5)

and the linear form l(v) :=
∫

Ω f ·v.

3

xc

pf,c

xf
nfc

= vector
(velocity)

= scalar
(pressure)

Figure 1: Mesh, notation and DoFs. Left: Example of a polyhedral cell with a hanging node.
Center: The barycenter xc of the cell c and a face f ∈ Fc with its barycenter, xf , its normal nfc
and its sub-pyramid pf,c. Right: Full set of velocity and pressure DoFs for the considered cell
(dashed arrows are used for velocity DoFs on hidden faces).

2.1 Mesh entities and degrees of freedom

The mesh discretizing Ω is a finite collection C := {c} of nonempty, disjoint, open, polytopal
subsets of Rd, usually referred to as cells. The mesh faces are assumed to be planar and are
gathered in the set F := {f} which can be subdivided in the two disjoint sets Fb := {f | f ⊂ ∂Ω}
collecting the mesh boundary faces and Fi := F\Fb collecting the mesh interfaces. One associates
with each mesh face f a normal vector nf such that if f ∈ Fb, nf points outward Ω and, if f ∈ Fi,
the direction is chosen arbitrarily and fixed once and for all. For a generic mesh entity z = c
or z = f, xz denotes its barycenter, |z| its measure and hz := maxx1,x2∈z |x1 − x2| its diameter.
Moreover, h := maxc∈C hc is called the size of the mesh. We consider the shape-regularity setting
of [28] for polytopal mesh families, and we additionally require that every mesh entity z = c or
z = f is star-shaped with respect to its barycenter xz. The faces composing the boundary of a
cell c ∈ C are collected in the set Fc := {f ∈ F | f ⊂ ∂c}. For each face f ∈ Fc, a unit normal
vector pointing outward c is denoted by nfc = ±nf , depending on the orientation chosen for nf .
We are going to make use of a subdivision of the cell c as Pc := {pf,c}f∈Fc , where the subsets
pf,c are the nonempty, disjoint subpyramids (or subtriangles if d = 2) obtained by considering
the cell barycenter xc as apex, and a face f ∈ Fc as basis.

For a generic mesh entity z = c or z = f, Pq(z) (resp., Pq(z) and Pq(z)) is composed of the
restriction to z of the scalar-valued (resp., Rd-valued and Rd×d-valued) polynomials of degree at
most q. Moreover, for a collection Z of mesh entities, Pq(Z), Pq(Z), and Pq(Z) refer to piecewise-
polynomial functions; for instance, P1(Fc) :=×f∈Fc

P1(f). Notice also that for z = c or z = f,
P0(z) ≡ R.

In the CDO-Fb framework, the velocity is hybrid, meaning that it has cell- and face-based
DoFs. Hence, the global velocity space is

Ûh :=×
f∈F

P0(f)××
c∈C

P0(c) . (6)

A generic element of Ûh is denoted by v̂h :=
(
(vf)f∈F, (vc)c∈C

)
. Notice that the velocity DoFs at

the interfaces are uniquely defined. Moreover, the velocity DoFs associated with a generic cell
c ∈ C are denoted by

v̂c :=
(
(vf)f∈Fc , vc

)
∈ Ûc :=×

f∈Fc

P0(f)× P0(c) . (7)

4

The pressure has only cell-based DoFs, so that the global pressure space is

Ph :=×
c∈C
Pc 3 ph := (pc)c∈C , Pc := P0(c) . (8)

In order to account for the velocity boundary conditions and the constraint on the pressure
average, we consider the subspaces

Ûh,0 := {v̂h ∈ Ûh | vf = 0 ∀f ∈ Fb}, Ph,∗ := {ph ∈ Ph |
∑
c∈C
|c| pc = 0}. (9)

Finally, for z = c or z = f, πz (resp., πz) denotes the L2-orthogonal projection onto P0(z)
(resp., P0(z)). The L2-orthogonal projection onto Ph is defined cellwise so that πh(q) :=
(πc(q|c))c∈C for all q ∈ L1(Ω), whereas the projection onto the hybrid discrete space Ûh is
defined such that π̂h(v) :=

(
(πf(v|f))f∈F, (πc(v))c∈C

)
for all v ∈ Hs(Ω), s > 1

2 . Similarly, for the
local hybrid space Ûc, we set π̂c(v) :=

(
(πf(v|f))f∈Fc , πc(v)

)
for all v ∈ Hs(c).

2.2 Discrete diffusion-like bilinear form

Consider a cell c ∈ C and the velocity DoFs Ûc associated with c. We define locally in the mesh
cell c a velocity gradient reconstruction operator, Gc : Ûc → P0(Pc), i.e., for all v̂c ∈ Ûc, Gc(v̂c)
is a piecewise constant tensor-valued field on the subpyramids collected in Pc. In the context
of CDO schemes, this type of operator was introduced in [12]; see also [13]. It is composed of a
consistent part, G0

c , plus a stabilization part, Gs
c, so that

Gc(v̂c) := G0
c(v̂c) + Gs

c(v̂c) , (10)

where G0
c(v̂c) ∈ P0(c) ⊂ P0(Pc) and Gs

c(v̂c) ∈ P0(Pc) are defined as follows:

G0
c(v̂c) := 1

|c|
∑
f∈Fc

|f| (vf − vc)⊗ nfc ,

Gs
c(v̂c)|pf,c := θ

|f|
|pf,c|

(
(vf − vc)−G0

c(v̂c)(xf − xc)
)
⊗ nfc , ∀f ∈ Fc .

(11)

The positive stabilization parameter θ is user-defined (with the only requirement of being pos-
itive): choosing θ := 1 recovers the generalized Crouzeix–Raviart scheme from [31], whereas
θ := 1√

d
leads to the HFV scheme from [38].

The global version of the gradient reconstruction operator, Gh : Ûh →×c∈C P0(Pc), is
defined cellwise so that, for any v̂h ∈ Ûh and any c ∈ C, we have Gh(v̂h)|c:= Gc(v̂c). With the
above operators in hand, the discrete diffusion-like bilinear form ah : Ûh× Ûh → R is defined as
follows:

ah(ûh, v̂h) :=
∫

Ω
Gh(ûh) : Gh(v̂h) =

∑
c∈C

∫
c

Gc(ûc) : Gc(v̂c) . (12)

The above-defined gradient reconstruction operators enjoy several important properties.
First, Gc is consistent for affine functions, meaning that

Gc
(
π̂c(v)

)
= ∇v , ∀v ∈ P1(c) . (13)

(More precisely, we have G0
c
(
π̂c(v)

)
= ∇v and Gs

c
(
π̂c(v)

)
= 0.) Moreover, the consistent and

stabilization parts of the reconstructed gradient are L2(c)-orthogonal,∫
c

G0
c(v̂c) : Gs

c(v̂c) = 0 , ∀v̂c ∈ Ûc . (14)

5

Finally, and most importantly, the following stability and boundedness properties hold true:
There is δ > 0 such that for all c ∈ C and all v̂c ∈ Ûc,

δ‖v̂c‖21,c ≤
∥∥Gc(v̂c)

∥∥2
L2(c) ≤ δ

−1‖v̂c‖21,c , (15)

with the discreteH1-like seminorm defined on Ûc such that ‖v̂c‖21,c :=
∑

f∈Fc h
−1
c |f| |vf−vc|2. The

lower bound (15) is the main reason for introducing the stabilization part of the reconstructed
gradient. Notice that ‖v̂h‖21,h :=

∑
c∈C ‖v̂c‖21,c defines a norm on Ûh,0.

2.3 Discrete velocity-pressure coupling

The discrete velocity-pressure coupling hinges on a discrete divergence operator Dh : Ûh → Ph
that is defined cellwise. For all c ∈ C, the local discrete divergence operator Dc : Ûc → Pc is
such that for all v̂c ∈ Ûc,

Dc(v̂c) := tr
(
G0

c(v̂c)
)

= 1
|c|

∑
f∈Fc

|f| (vf − vc) · nfc . (16)

The global operator is then defined by setting Dh(v̂h)|c= Dc(v̂c) for all v̂h ∈ Ûh and all c ∈ C.
Notice that Dh(v̂h) ∈ Ph,∗ for all vh ∈ Ûh,0.

With the above divergence operator in hand, the discrete bilinear form bh : Ûh × Ph → R
handling the velocity-pressure coupling is defined as follows:

bh(v̂h, qh) := −
∫

Ω
Dh(v̂h)qh = −

∑
c∈C
|c|Dc(v̂c)qc . (17)

The same discrete bilinear form is found in HMM schemes [34, 33] and the lowest-order HHO
scheme [1, 29]. A crucial property is the following discrete inf-sup condition: There is β > 0,
only depending on the mesh shape-regularity, such that

inf
qh∈Ph,∗

sup
v̂h∈Ûh,0

|bh(v̂h, qh)|
‖qh‖h ‖v̂h‖1,h

≥ β , (18)

where ‖v̂h‖1,h is defined above whereas ‖qh‖2h := ‖qh‖2L2(Ω) =
∑

c∈C |c| |qc|2 for all qh ∈ Ph.
Another important property of the discrete divergence operator is its commuting property with
the L2-orthogonal projection in the sense that Dc

(
π̂c(v)

)
= πc(∇ · v) for all c ∈ C and all

v ∈ H1(c).

2.4 Discrete convection operator

Let us finally devise a discrete CDO-Fb counterpart of the trilinear form t defined in (5). To
this purpose, we define the discrete trilinear form th : Ûh × Ûh × Ûh → R such that

th(ŵh; ûh, v̂h) :=
∑
c∈C

tc(ŵc; ûc, v̂c) +
∑
f∈Fb

tf(wf ;uf , vf) , (19)

with
tc(ŵc; ûc, v̂c) := 1

2
∑
f∈Fc

|f| (wf · nfc)(uf − uc) · (vf + vc) ,

tf(wf ;uf , vf) := |f| (wf · nfc)−uf · vf ,

(20)

where (x)− := 1
2(|x| − x) denotes the negative part of any real number x ∈ R. The trilinear

form tf is related to the weak enforcement of inflow boundary conditions and vanishes whenever

6

at least one of the arguments is in Ûh,0. The discrete trilinear form th is inspired from the
lowest-order HHO method for scalar advection-diffusion equations introduced in [27]; see also
[17, Remark 9] for the Navier–Stokes equations.

The first important property of the discrete trilinear form th is its positivity and skew-
symmetry. Indeed, assume that ŵh ∈ Ûh is discretely divergence-free, i.e., Dc(ŵc) = 0 for all
c ∈ C. Then, one readily verifies that

th(ŵh; ûh, ûh) ≥ 0 , ∀ûh ∈ Ûh . (21)

Moreover, if additionally the normal component of ŵh vanishes at the boundary, namely wf ·nf =
0 for all f ∈ Fb, then th(ŵh; ·, ·) is skew-symmetric, i.e.

th(ŵh; ûh, ûh) = 0 , ∀ûh ∈ Ûh . (22)

Property (21) is crucial in the context of the Navier–Stokes equations since it is instrumental
to establish the dissipativity of the discrete problem. Notice also that (22) is reminiscent of
the so-called Temam’s trick on the discrete trilinear form. A further relevant property of the
discrete trilinear form th is its limit-conformity. This notion is described, e.g., in [37], and is
verified for the above CDO-Fb setting in [51, Remark 2.50]; see also [30, Prop. 6].
Remark 1 (Upwinding). An upwinding stabilization can be considered by adding to (19) the
discrete trilinear form tuh(ŵh; ûh, v̂h) := 1

2
∑

f∈Fi

∑
c∈Cf
|f| |wf · nfc| (uf−uc) ·(vf−vc). This option

is not considered further in the present work.

3 Time discretization by monolithic and artificial compressibil-
ity schemes

We present in this section the fully discrete problems obtained by using either a monolithic or
an AC scheme for the time discretization and by considering either an implicit or an explicit
treatment of the convection operator. Moreover, we consider both first-order and second-order
time schemes.

For a hybrid velocity field v̂h :=
(
(vf)f∈F, (vc)c∈C

)
∈ Ûh, we denote its cell-based components

by vC := (vc)c∈C. Then, to discretize the time-derivative of the velocity, we only use the cell-
based components and consider the mass bilinear form such that

m(uC, vC) :=
∑
c∈C
|c|uc·vc . (23)

We also use the cell-based components to discretize the source term and we set ln(vC) :=∑
c∈C

∫
c f

n·vc for all n ≥ 1. For any hybrid velocity field v̂h ∈ Ûh,0, we define its discrete kinetic
energy as

Ekin,h(v̂h) := 1
2 ‖vC‖

2
L2(Ω) = 1

2
∑
c∈C
|c| |vc|

2
2 . (24)

3.1 First-order schemes

3.1.1 Monolithic scheme

Let us first consider an implicit treatment of the convection term which is dealt with by means
of a Picard algorithm. Then, the first-order monolithic time-stepping scheme reads as follows.
For all n = 1, . . . , N , iterate on k ≥ 1 until convergence: Find (ûn,kh , pn,kh) ∈ Ûh,0 × Ph,∗ such
that

1
∆tm(un,kC − un−1

C , vC) + νah(ûn,kh , v̂h) + th(ûn,k−1
h ; ûn,kh , v̂h) + bh(v̂h, p

n,k
h) = ln(vC) ,

bh(ûn,kh , qh) = 0 .
(25)

7

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Here, ûn−1
h denotes the solution given by the Picard algorithm

at the time step n− 1. The time-stepping is initialized with the initial condition û0
h := π̂h(u0).

Moreover, at each time step, the Picard iterations have to be initialized: a suitable choice is to
take the solution at the previous time step, i.e., ûn,0h := ûn−1

h . Taking v̂h = ûn,kh in (25) and
using simple arithmetic manipulations together with th(ûn,k−1

h ; ûn,kh , ûn,kh) = 0 owing to (22), we
obtain the following discrete kinetic energy balance:

Ekin,h(ûn,kh)− Ekin,h(ûn−1
h) + Ekin,h(ûn,kh − ûn−1

h) + ν∆t
∥∥Gh(ûn,kh)

∥∥2
L2(Ω) = ∆t ln(un,kC) . (26)

Notice that the third and fourth terms on the left-hand side are non-negative, i.e., they only
contribute to energy dissipation. Notice also that (26) remains valid as k →∞.

With an explicit treatment of the convection term, the first-order monolithic time-stepping
scheme reads as follows: For all n = 1, . . . , N , find (unh , pnh) ∈ Ûh,0 × Ph,∗ such that

1
∆tm(unC − un−1

C , vC) + νah(ûnh , v̂h) + bh(v̂h, p
n
h) = ln(vC)− th(ûn−1

h ; ûn−1
h , v̂h) ,

bh(ûnh , qh) = 0 ,
(27)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Unfortunately, a dissipative discrete kinetic energy balance
cannot be derived for (27) because the term th(ûn−1

h ; ûn−1
h , ûnh) cannot be given an a priori sign.

Thus, the scheme (27) is subject to a first-order CFL restriction on the time step for its stability.
This condition will be investigated numerically in Section 4.

3.1.2 AC scheme

Let us first consider an implicit treatment of the convection term. As in the monolithic approach,
we consider Picard iterations to deal with the resulting nonlinearity. Then, the first-order AC
time-stepping scheme reads as follows. For all n = 1, . . . , N , iterate on k ≥ 1 until convergence:
Find un,kh ∈ Ûh,0 such that for all v̂h ∈ Ûh,0,

1
∆tm(un,kC − un−1

C , vC) + ν
(
ah(ûn,kh , v̂h) + ηdh(ûn,kh , v̂h)

)
+ th(ûn,k−1

h ; ûn,kh , v̂h)

= ln(vC)− bh(v̂h, p
n,k−1
h) , (28)

and then set
pn,kh = pn,k−1

h − νηDh(ûn,kh) , (29)
recalling that η > 0 is a user-defined parameter (choices are discussed in Section 4). In (28), we
introduced the discrete div-div bilinear form such that

dh(ûh, v̂h) :=
∫

Ω
Dh(ûh)Dh(v̂h) =

∑
c∈C
|c|Dc(ûc)Dc(v̂c) . (30)

Notice that in (28)-(29), we took advantage of the Picard iterations to update progressively the
pressure. Letting k → ∞, we observe that the velocity and pressure updates stemming from
the monolithic and the AC schemes are the same. Differently from the monolithic coupling, the
initialization of the Picard iteration requires to specify the velocity and the pressure, which are
here taken from the previous time step or the initial condition.

With an explicit treatment of the convection term, the first-order AC scheme reads as follows:
For all n = 1, . . . , N , find (unh , pnh) ∈ Ûh,0 × Ph,∗ such that for all v̂h ∈ Ûh,0,

1
∆tm(unC − un−1

C , vC) + ν
(
ah(ûnh , v̂h) + ηdh(ûnh , v̂h)

)
= ln(vC)− bh(v̂h, p

n−1
h)− th(ûn−1

h ; ûn−1
h , v̂h) , (31)

8

and then set
pnh = pn−1

h − νηDh(ûnh) . (32)
As for the monolithic scheme, the explicit AC scheme is subject to a first-order CFL restriction
on the time step for its stability. This condition will be investigated numerically in Section 4.
Remark 2 (Initial pressure). As is classical with the AC technique, an initial pressure needs to
be specified. In all the numerical experiments reported in this work, the initial pressure is indeed
known. If this were not the case, a possibility proposed in [45] (see also [36, Remarks 74.4 and
75.7]) is to recover the initial pressure by solving the following steady problem:

∆p0 = ∇ · f0 ,

∂p0

∂n
|∂Ω=

(
f0 − (−ν∆u0 + (u0 · ∇)u0)

)
|∂Ω·n∂Ω .

(33)

Obviously, the initial pressure is zero is the fluid is initially at rest and the source term is
divergence-free and has a zero normal component on the boundary.

3.2 Second-order schemes

3.2.1 Monolithic scheme

One standard technique is to use a second-order backward differentiation formula (BDF2) to
devise second-order time-stepping schemes within the monolithic approach. In general, BDF2
is employed for every time step n ≥ 2, and an implicit Euler step can still be considered for
n = 1. With an implicit treatment of the convection term by means of a Picard algorithm, the
second-order monolithic scheme reads as follows. For all n = 2, . . . , N , iterate on k ≥ 1 until
convergence: Find (ûn,kh , pn,kh) ∈ Ûh,0 × Ph,∗ such that

1
2∆tm(3un,kC − 4un−1

C + un−2
C , vC) + νah(ûn,kh , v̂h)

+ th(ûn,k−1
h ; ûn,kh , v̂h) + bh(v̂h, p

n,k
h) = ln(vC) ,

bh(ûn,kh , qh) = 0 ,

(34)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Recall that ûn−1
h (resp. ûn−2

h) denotes the solution given
by the Picard algorithm at the time step n− 1 (resp. n− 2). The initialization of the iterative
procedure is done with an approximation of the solution, for instance ûn−1

h (as for the first-order
scheme), or by using the second-order extrapolation formula (2ûn−1

h − ûn−2
h). Finally, for the

BDF2 time discretization, it is possible to derive by means of classical algebraic manipulations
(detailed, e.g., in [36, Lemma 68.1] for the heat equation) a time-discrete kinetic energy balance
with dissipation, in the same spirit as in (26).

With an explicit treatment of the convection term, the second-order monolithic scheme reads
as follows: For all n = 2, . . . , N , find (ûnh , pnh) ∈ Ûh,0 × Ph,∗ solving

1
2∆tm(3unC − 4un−1

C + un−2
C , vC) + νah(ûnh , v̂h) + bh(v̂h, p

n
h)

= ln(vC)−
(
2th(ûn−1

h ; ûn−1
h , v̂h)− th(ûn−2

h ; ûn−2
h , v̂h)

)
,

bh(ûnh , qh) = 0 ,

(35)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Notice that a second-order extrapolation formula is used for
the convective term on the right-hand side; here, we applied the extrapolation formula to the
operator, but it is also possible to consider applying the extrapolation formula to the discrete
velocity and then form the convection operator. Finally, as for the first-order time discretization,
a dissipative kinetic energy balance is not available with an explicit treatment of the convection
term, and a CFL restriction on the time step is required for stability.

9

3.2.2 AC scheme

It has been shown in [45] that arbitrary order in time can be achieved by combining the AC
method with a bootstrap technique. In order to obtain the k-th order, k linear systems similar
to (3) have to be solved. An alternative technique to reach arbitrary order in time, which is also
discussed in [45], is based on a defect correction procedure, leading to a similar computational
cost. To avoid the proliferation of variants, we focus only on the bootstrap technique.

As motivated in the introduction, we only consider an explicit treatment of the convec-
tion term. The second-order AC time-stepping scheme reads as follows: For all n ≥ 1, find
(ûn1,h, pn1,h) ∈ Ûh,0 × Ph,∗ such that for all v̂h ∈ Ûh,0,

1
∆tm(un1,C − un−1

1,C , vC) + ν
(
ah(ûn1,h, v̂h) + ηdh(ûn1,h, v̂h)

)
= ln(vC)− bh(v̂h, p

n−1
1,h)− th(ûn−1

1,h ; ûn−1
1,h , v̂h) ,

pn1,h = pn−1
1,h − νηDh(ûn1,h), δpn1,h := pn1,h − pn−1

1,h .

(36a)

(36b)

Then, for all n ≥ 2, find (ûn2,h, pn2,h) ∈ Ûh,0 × Ph,∗ such that for all v̂h ∈ Ûh,0,
1

2∆tm(3un2,C − 4un−1
2,C + un−2

2,C , vC) + ν
(
ah(ûn2,h, v̂h) + ηdh(ûn2,h, v̂h)

)
= ln(vC)− bh(v̂h, p

n−1
2,h + δpn1,h)−

(
2th(ûn−1

2,h ; ûn−1
2,h , v̂h)− th(ûn−2

2,h ; ûn−2
2,h , v̂h)

)
,

pn2,h = pn−1
2,h + δpn1,h − νηDh(ûn2,h) ,

(36c)

(36d)

with the following initialization choice: û1
2,h := û1

1,h, û0
2,h := û0

1,h := û0
h for the velocity and

p1
2,h := p1

1,h for the pressure.

4 Numerical results
In this section, we present numerical results to assess the performances of the AC method
together with the CDO-Fb discretization. We first consider the 2D Taylor–Green vortex test
case with the goal to verify the convergence rates in time for the first- and second-order time-
stepping schemes and both treatments of the convection term. We also use this test case to study
the CFL restriction on the time step in the case of an explicit treatment of the convection term.
Then, we consider a modified 3D Taylor–Green vortex to compare all of the above strategies
in terms of efficiency, that is, we compare the reached error thresholds on the velocity and
the pressure with the needed CPU time. All the results are computed with the CDO module
available in the open-source, single-phase CFD solver Code_Saturne [3]. For the 2D test cases,
the linear systems are solved with a sparse direct solver available in the MUMPS [2] library. For
the 3D test cases, iterative solvers are considered and further discussed in Section 4.2.

4.1 2D Taylor–Green vortex

The Taylor–Green vortex [55] is a well-known 2D test case usually considered to evaluate the
performances of an unsteady Navier–Stokes solver. In fact, it constitutes an analytic solution of
the 2D Navier–Stokes given by

uTGV(x, y) := exp(−2νt)
[

sin(x) cos(y)
− cos(x) sin(y)

]
,

pTGV(x, y) := 1
4 exp(−4νt)(cos(2x) + cos(2y)) .

(37)

10

The computational domain is Ω := [0, 2π]2, whereas the observation time T depends on the
numerical experiment. The viscosity ν is uniform but different values are considered in order to
modify the Reynolds number Re. Since the reference length and velocity for this test case can
be set to L := 1 and U := 1, we obtain Re = 1

ν . Cartesian and polygonal meshes are considered.

4.1.1 Convergence results

The convergence in time is first verified for all the schemes presented in Section 3. Let v(t, x)
(resp. q(t, x)) be the analytical velocity (resp. pressure), and {v̂nh}n=1,...,N ∈ [Ûh,0]N (resp. {qnh}n=1,...,N ∈
[Ph,∗]N) its space-time discretization. The following space-time error norms are used:

‖π̂h(v)− {v̂nh}n‖
2
`2(L2) :=

N∑
n=1

∆t ‖π̂h(v(tn, ·))− v̂nh‖
2
C :=

N∑
n=1

∆t
∑
c∈C
|c| |πc(v(tn, ·))− v̂nc |

2 ,

‖π̂h(v)− {v̂nh}n‖
2
`2(H1) :=

N∑
n=1

∆t
∑
c∈C

∑
f∈Fc

|pf,c|
∣∣∣Gc

(
π̂c(v(tn, ·))− v̂nc

)
|pf,c

∣∣∣2 ,

‖πh(q)− {qnh}n‖
2
`2(L2) :=

N∑
n=1

∆t ‖πh(q(tn, ·))− qnh‖
2
C :=

N∑
n=1

∆t
∑
c∈C
|c| (πc(q(tn, ·))− qnc)2 .

(38)

These errors are then normalized by the value obtained for the corresponding norm of the exact
solution.

Figure 2 shows the results for first- (top row) and second-order time-stepping schemes (bot-
tom row) on a Cartesian mesh composed of 5122 cells. The Reynolds number is first set to
Re = 1 (i.e., we take ν = 1), and the AC parameter is set to η = 10. We consider both the
implicit and the explicit treatments of the convection term, and observe that in the present
setting, no instability is observed for the considered values of the time step. This favorable
situation is attributed to the moderate value of the Reynolds number, and we will see below (see
Section 4.1.2) that a CFL stability restriction needs to be enforced for larger Reynolds numbers.
The results presented in Figure 2 show that the monolithic and AC approaches lead to very
similar errors, both for the velocity and the pressure. The convection treatment has an effect
only on the pressure error (right column): the implicit treatment (squares) is more accurate than
the explicit one (circles). Indeed, due to the peculiar construction of the Taylor–Green vortex
for which the pressure gradient and the convection term balance out, a good approximation of
the convection term leads also to an accurate approximation of the pressure.

Additional computations with higher Reynolds numbers are performed to study the depen-
dence of the results delivered by the AC method on the parameter η. The results are reported
in Table 1. As expected, the predictions of the AC method get closer to those of the monolithic
approach when larger values of η are used. However, using larger values also leads to higher
computational costs because it affects the conditioning of the linear system through the pres-
ence of the grad-div term. The results altogether indicate that an appropriate choice is to set
η = 10Re. Indeed, this choice leads to a satisfactory trade-off between the accuracy and the
conditioning of the linear systems.

4.1.2 CFL conditions with explicit convection

We investigate numerically the stability of the monolithic and AC approaches when an explicit
treatment of the convection term is used. For these tests, we consider (i) three Reynolds numbers,
Re ∈ {200, 500, 700}, (ii) an observation time T such that T Re = 104, (iii) η = 10Re whenever
the AC method is considered. We flag a computation as having diverged if, for some n ≥ 1, we
have

Ekin,h(ûnh) > 1.1 Ekin,h(û0
h) = 1.1 Ekin,h(π̂h(u0)) , (39)

11

10−3

10−2 1s
t ord

`2(L2) velocity error

10−3

10−2

10−1

1s
t ord

`2(H1) velocity error

10−2

10−1

100

1s
t ord

`2(L2) pressure error

T
2

T
4

T
8

T
16

T
32

T
64

10−5

10−3

10−1

2n
d ord

∆t

T
2

T
4

T
8

T
16

T
32

T
64

10−4

10−3

10−2

10−1

2n
d ord

∆t

T
2

T
4

T
8

T
16

T
32

T
64

10−4

10−2

100

2n
d ord

∆t

Coupling: Monolithic AC(η = 10)
Convection: Implicit Explicit

Figure 2: 2D Taylor–Green vortex. Convergence results for the space-time velocity and pressure
errors. Re = 1, T = 1.2. Top: first-order schemes; bottom: second-order schemes. Cartesian
mesh composed of 5122 cells.

Table 1: 2D Taylor–Green vortex. Space-time velocity and pressure errors. Explicit convection.
AC method with η ∈ {Re, 10Re, 100Re}. The errors obtained with the monolithic approach are
given in parenthesis as reference. First group of columns: Re ≈ 33, Cartesian mesh composed
of 1282 cells, T = 40, ∆t = T

64 = 0.625. Second group of columns: Re = 100, Cartesian mesh
composed of 5122 cells, T = 120, ∆t = T

64 = 1.875.

Re ≈ 33 Re = 100
η Re 10Re 100Re (MONO) Re 10Re 100Re (MONO)

`2(L2) velocity 1.05e−2 1.41e−3 1.24e−3 (1.24e−3) 2.91e−2 3.92e−3 1.38e−3 (1.14e−3)
`2(H1) velocity 1.26e−2 1.04e−2 1.03e−2 (1.03e−2) 2.01e−2 8.25e−3 7.83e−3 (7.80e−3)
`2(L2) pressure 2.81e−2 1.19e−2 1.03e−2 (1.00e−2) 6.02e−2 1.69e−2 1.25e−2 (1.19e−2)

12

Figure 3: 2D polygonal mesh used for CFL study.

where the definition of the discrete kinetic energy Ekin,h(·) is given in (24). Notice that the
solution (37) goes exponentially towards 0 with respect to time. Thus, a failure to satisfy (39)
is a symptom of stability issues. We denote by ∆ts the critical time-step, that is, the largest ∆t
ensuring that the computation does not diverge. We seek a resolution of 1%, meaning that the
gap between ∆ts and the smallest ∆t leading to divergence is less than 1% of ∆ts. Whenever
∆t > ∆ts, we define the divergence time, Td, as the smallest tn for which (39) is satisfied.

Two meshes have been considered, a Cartesian mesh and a polygonal mesh (illustrated in
Fig. 3), which have, respectively, 16,384 and 15,129 cells. In Fig. 4, we plot the divergence
time, Td, for different time-step values. We observe that the divergence time sharply increases
as the time step is decreased towards the critical value. This confirms that using an observation
time such that T Re = 104 is reasonable to flag stable/unstable computations. Figure 5 shows
the critical time-step values for the various time-stepping schemes and the two meshes. For
each case, a dependence of the critical time-step on the inverse of the Reynolds number is
observed. For convenience, the results are also reported in Tables 2 and 3 for the Cartesian
and the polygonal meshes, respectively, including a quantitative comparison between the first-
and the second-order schemes. Generally speaking, the AC method turns out to be as stable
as the monolithic scheme, and no significant differences on the critical time-step are observed.
Moreover, the first-order schemes are more stable than the second-order ones, and allow one
to choose time-step values more than two times larger than those possible with second-order
schemes. Finally, the use of a polygonal mesh only marginally affects the value of the critical
time-step.

4.2 3D modified Taylor–Green vortex

We consider the 3D modified Taylor–Green vortex solution of [19, Benchmark case 2.2] and
adapt it so that it is a solution to the Navier–Stokes equations. In particular, we make the
solution time-dependent by considering a sinusoidal amplitude. The exact solution reads as

13

5 5.5 6 6.5

2 000

3 000

4 000

∆t Re

T
d

R
e

Cartesian mesh

5 5.5 6 6.5
∆t Re

Polygonal mesh

Re = 200 Re = 500 Re = 700

Figure 4: 2D Taylor–Green vortex. Monolithic approach and explicit convection. Divergence
time Td (scaled by Re), for different choices of ∆t (scaled by Re). Left: Cartesian mesh composed
of 16,384 cells. Right: polygonal mesh composed of 15,129 cells.

200 500 700

10−2.5

10−2

10−1.5

∝ 1/Re

Re

∆
t s

Cartesian mesh

200 500 700

∝ 1/Re

Re

Polygonal mesh

Monolithic - First-order AC(η = 10Re) - First-order
Monolithic - Second-order AC(η = 10Re) - Second-order

Figure 5: 2D Taylor–Green vortex. Critical time-step for stability, ∆ts (up to 1% resolution),
as a function of the Reynolds number, Re, for several time-stepping schemes. Left: Cartesian
mesh composed of 16,384 cells. Right: polygonal mesh composed of 15,129 cells.

Table 2: 2D Taylor–Green vortex. Critical time-step for stability, ∆ts, as a function of the
Reynolds number, Re. Comparison of first- and second-order schemes. Cartesian mesh composed
of 16,384 cells.

Monolithic AC(η = 10Re)
Re 1st 2nd 1st

2nd 1st 2nd 1st

2nd

200 2.98e−2 1.15e−2 2.60 2.98e−2 1.14e−2 2.61
500 1.03e−2 4.16e−3 2.48 1.04e−2 4.16e−3 2.51
700 7.27e−3 2.97e−3 2.45 7.25e−3 2.95e−3 2.46

14

Table 3: 2D Taylor–Green vortex. Critical time-step for stability, ∆ts, as a function of the
Reynolds number, Re. Comparison of first- and second-order schemes. Polygonal mesh com-
posed of 15,129 cells.

Monolithic AC(η = 10Re)
Re 1st 2nd 1st

2nd 1st 2nd 1st

2nd

200 2.71e−2 1.23e−2 2.21 2.71e−2 1.23e−2 2.21
500 1.06e−2 4.55e−3 2.33 1.06e−2 4.55e−3 2.33
700 7.07e−3 3.00e−3 2.36 7.10e−3 3.00e−3 2.37

Figure 6: Coarsest mesh of the PrG sequence of [41] composed of prisms with polygonal basis.

follows:

u(x, y, z) := α(t)u′(x, y, z) ,
p(x, y, z) := α(t)p′(x, y, z) ,

α(t) := sin(8πt) ,

u′(x, y, z) :=

−2 cos(2πx) sin(2πy) sin(2πz)

sin(2πx) cos(2πy) sin(2πz)
sin(2πx) sin(2πy) cos(2πz)

 ,
p′(x, y, z) := − 6π sin(2πx) sin(2πy) sin(2πz) ,

(40)

and the resulting source term is such that

f(x, y, z) := α(t)f ′(x, y, z) + 8π cos(8πt)u′(x, y, z)+

− α2(t)
4

−2 sin(4πx)(cos(4πy) + cos(4πz)− 2)

sin(4πy)(cos(4πx)− 2 cos(4πz) + 1)
sin(4πz)(cos(4πx)− 2 cos(4πy) + 1)

 ,
f ′(x, y, z) := [−36π2 cos(2πx) sin(2πy) sin(2πz), 0, 0]T .

(41)

The domain is the unit cube Ω := (0, 1)3 and the viscosity is ν := 1. Hence, since it is again
reasonable to set L := 1 and U := 1 for the reference length and velocity, respectively, we
obtain a Reynolds number of Re = 1. The observation time is set to T := 2 and the considered
time-step values are ∆t ∈ { T32 ,

T
64 ,

T
128 ,

T
256}. The convection term is always treated explicitly.

A quite refined mesh composed of prisms with polygonal bases is considered. Namely, the mesh
obtained from the PrG sequence proposed in the benchmark [41] by gluing six of the finest
meshes side by side and then rescaling the resulting mesh to the desired dimension (an example
is shown in Fig. 6). The resulting mesh has more than 14M cells and leads to a final coupled
system of more than 170M DoFs (after static condensation).

Only iterative solvers are considered in this 3D test case. In particular, the linear systems

15

T
256

T
128

T
64

T
32

10−3

10−2

10−1

1st ord

2n
d ord

Velocity - `2(L2)

T
256

T
128

T
64

T
32

10−5

10−4

10−3

1st ord

2n
d ord

Velocity - `2(H1)

T
256

T
128

T
64

T
32

10−4

10−3

10−2 1st ord

2n
d ord

Pressure - `2(L2)

Solver: Monolithic AC(η = 10) AC(η = 50)
Time order: 1st 2nd

Figure 7: 3D modified Taylor–Green vortex. Convergence results for the space-time velocity
and pressure errors. Re = 1.

obtained with the AC method are solved by means of a Jacobi-preconditioned Conjugate Gra-
dient (CG) solver. In order to deal with the saddle point systems obtained with the monolithic
approach, an iterative Golub-Kahan Bidiagonalization (GKB) [4, 5] procedure without augmen-
tation is chosen; the internal solver is a Conjugate Gradient with a K-cycle Algebraic Multigrdid
preconditioner [54]. All these solvers are natively available in Code_Saturne. The computations
have been run on the GAIA cluster of EDF1 on up to 700 cores. Two values of the AC parameter
have been considered: η = 10Re and η = 50Re.

Fig. 7 reports the convergence results for the normalized space-time velocity and pressure
errors as defined in (38). These results corroborate the optimal convergence in time for both
first- and second-order schemes. A slight decrease of the convergence rate for the velocity `2(H1)-
error is observed for the finest ∆t and the second-order schemes, which indicates that the space
discretization error tends to become dominant. Moreover, we remark that the higher the value
of η, the more accurate the results obtained with the AC method. Actually, for η = 50Re, the
errors are essentially superimposed to those obtained with the monolithic approach.

Our aim is now to compare the computational efficiency of the monolithic and AC methods
by studying the achieved velocity and pressure errors as a function of the computational cost
(defined as the product between the elapsed time and the number of computing cores). As
a preliminary step, computations are run in order to find reasonably optimized values for the
tolerances of the iterative solvers. The results for the first-order AC and monolithic approaches
are, respectively, gathered in Tables 4 and 5. A tolerance of 10−4 appears to be a reasonable
choice for the CG iterative solver in the AC context, for both considered values of η. In order
to anticipate the greater accuracy of second-order schemes, the tolerance is decreased to 10−5

for the second-order AC time-stepping scheme. Similarly, for the monolithic approach, the
tolerances for the GKB and CG iterative solvers are both set to 10−4 and 10−5, respectively, for
the first- and second-order time-stepping schemes.

We can now proceed to the assessment of the computational efficiency of the various schemes
with the tolerances prescribed as above. The performances of the three strategies (monolithic,
AC(η = 10), and AC(η = 50)), for both first- and second-order schemes, are compared in
Fig. 8. The AC method turns out to be more efficient: having fixed the order in time for
the three compared methods, the AC(η = 10) and AC(η = 50) methods can achieve a given
error threshold (y-axis) in less computation time (x-axis) than the monolithic method. The
performance of AC depends on the parameter η: the higher η, the more numerical effort (hence,

1243rd of the TOP500 list of November 2020

16

Table 4: 3D modified Taylor–Green vortex. Space-time errors for different tolerances of the
CG linear solver. First-order AC time-stepping scheme, ∆t = T

128 . The adopted tolerances for
further calculations are circled.

ε(CG) `2(L2) u `2(H1) u `2(L2) p
η = 10

1e−2 6.58e−2 6.76e−4 3.17e−3
1e−4 5.20e−2 4.91e−4 3.00e−3
1e−6 5.20e−2 4.91e−4 3.00e−3

η = 50
1e−2 3.83e−2 4.22e−4 1.49e−3
1e−4 3.00e−2 2.92e−4 1.27e−3
1e−6 3.00e−2 2.92e−4 1.27e−3

Table 5: 3D modified Taylor–Green vortex. Space-time errors for different tolerances of the GKB
and CG linear solvers. First-order monolithic time-stepping scheme, ∆t = T

128 . The adopted
tolerances for further calculations are circled.

ε(GKB) ε(CG) `2(L2) u `2(H1) u `2(L2) p

1e−2
1e−2 4.27e−2 8.31e−4 2.80e−3
1e−4 2.84e−2 3.21e−4 1.28e−3
1e−6 2.83e−2 3.20e−4 1.28e−3

1e−4 1e−4 2.86e−2 2.80e−4 1.13e−3
1e−6 2.87e−2 2.80e−4 1.13e−3

1e−6 1e−4 2.86e−2 2.80e−4 1.13e−3
1e−6 2.87e−2 2.80e−4 1.13e−3

106 107

10−2

10−1

Elapsed time × cores [s]

Velocity - `2(L2)

106 107

10−4

10−3

Elapsed time × cores [s]

Velocity - `2(H1)

106 107
10−4

10−3

10−2

Elapsed time × cores [s]

Pressure - `2(L2)

Figure 8: 3D modified Taylor–Green vortex. Comparison of computational efficiency for the
various first- and second-order schemes. Legend: see Fig. 7

17

Table 6: 3D modified Taylor–Green vortex. Comparison of accuracy and performance for the
various first- and second-order schemes. Time step set to ∆t = T

128∥∥∥Êh(u)
∥∥∥
`2,C

∥∥∥Gh(Êh(u))
∥∥∥
`2,C

Solver First Second Ratio 1st

2nd First Second Ratio 1st

2nd

Monolithic 2.86e−2 7.84e−3 3.6 2.80e−4 9.96e−5 2.8
AC(10) 5.20e−2 1.14e−2 4.6 4.91e−4 1.28e−4 3.8
AC(50) 3.00e−2 7.93e−3 3.8 2.92e−4 1.00e−4 2.9

‖Eh(p)‖`2,C Elapsed×cores [s]
Solver First Second Ratio 1st

2nd First Second Ratio 1st

2nd

Monolithic 1.13e−3 4.89e−4 2.3 2.00e+7 3.01e+7 0.7
AC(10) 3.00e−3 8.51e−4 3.5 3.91e+6 8.39e+6 0.5
AC(50) 1.27e−3 5.17e−4 2.4 7.73e+6 1.71e+7 0.5

computational time) is required, and altogether the choice η = 10 turns out to be more effective
than the choice η = 50. When considering the second-order schemes, the difference between the
AC and monolithic approaches is somewhat mitigated. One explanation is that the bootstrap
procedure employed in the second-order AC requires two linear system resolutions per time step,
whereas only one is needed with the BDF2 and monolithic coupling. Finally, the results show
an advantage of the second-order schemes over the first-order ones, especially when accurate
calculations are considered. A comparison at the fixed time-step ∆t = T

128 (corresponding to
the finest time step before the space discretization errors tend to become influential, see the
discussion of Fig. 7) is presented in Table 6. Focusing first on the bottom right part of the table
related to the computational times, one can compare the performances of monolithic and AC
methods, with the latter being consistently two times faster than the former, while still providing
satisfactory errors. Moreover, the errors obtained with second-order schemes are more than two
times smaller than those obtained with first-order schemes, while the computation time are less
than two times larger.

5 Conclusions
We have extended the CDO-Fb schemes to the unsteady incompressible Navier–Stokes problem
and investigated the accuracy and efficiency of the artificial compressibility (AC) technique
for the time discretization using either a first-order time-stepping scheme or a second-order
one. The assessment of the AC technique is made by means of systematic comparisons with the
standard monolithic approach, using either a first-order or a second-order version. First, optimal
convergence rates in time have been recovered for all the time-stepping schemes in various norms
for the velocity and the pressure. Moreover, the stability of the time-stepping schemes when the
nonlinear convection term is treated explicitly has been investigated on Cartesian and polygonal
meshes, showing in both cases a linear dependency on the reciprocal of the Reynolds number,
with only a slightly tighter restriction when using polygonal meshes. Finally, an assessment of
the performance of all the schemes has been carried out using large 3D polytopal meshes. The
AC method proved to be an efficient alternative to the classical monolithic approach: it ensures
accuracy levels close to those obtained with the monolithic approach while using only half of
the computational time. Moreover, a comparison between first- and second-order time-stepping
schemes indicates an advantage for the latter: second-order schemes provide errors as much as
four times smaller than those obtained with first-order schemes, while taking only up to twice
the computation time.

As an outlook, the improvement of the preconditioning for large linear systems arising from

18

the AC technique is paramount to achieve scalable and higher efficiency since the presence of the
∇∇· term prevents the usual preconditioners such as algebraic multigrid techniques to perform
well. The construction of a specific preconditioner adapted from the seminal work in [6] along
with the more recent ones in [11] and [39] will be the subject of further investigations.

Acknowledgments
The PhD fellowship of R. Milani was partially supported by EDF R&D and ANRT.

References
[1] J. Aghili, S. Boyaval, and D. A. Di Pietro, Hybridization of mixed high-order methods

on general meshes and application to the Stokes equations, Comput. Methods Appl. Math.,
15 (2015), pp. 111–134.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23
(2001), pp. 15–41.

[3] F. Archambeau, N. Méchitoua, and M. Sakiz, Code Saturne: A Finite Volume Code
for Turbulent flows - Industrial Applications, Int. J. Finite Vol., 1 (2004).

[4] M. Arioli, Generalized Golub–Kahan bidiagonalizationand stopping criteria, SIAM J. Ma-
trix Anal. Appl., 34 (2013), pp. 571–592.

[5] M. Arioli, C. Kruse, R. Ulrich, and N. Tardieu, An iterative generalized Golub-
Kahan algorithm for problems in structural mechanics, Tech. Rep. August, 2018.

[6] D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning in H(div) and applica-
tions, Math. Comp., 66 (1997), pp. 957–984.

[7] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for
the numerical solution of the compressible Navier–Stokes equations, J. Comput. Phys., 131
(1997), pp. 267–279.

[8] L. Beirão da Veiga, V. Gyrya, K. Lipnikov, and G. Manzini, Mimetic Finite Dif-
ference method for the Stokes problem on polygonal meshes, J. Comput. Phys., 228 (2009),
pp. 7215–7232.

[9] L. Beirão da Veiga, C. Lovadina, and G. Vacca, Divergence free Virtual Elements
for the Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal., 51 (2017),
pp. 509–535.

[10] , Virtual Elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer.
Anal., 56 (2018), pp. 1210–1242.

[11] M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian precon-
ditioners for the incompressible Navier–Stokes equations, Int. J. Numer. Meth. Fluids, 66
(2011), pp. 486–508.

[12] J. Bonelle, Compatible Discrete Operator schemes on polyhedral meshes for elliptic and
Stokes equations, PhD thesis, Université Paris-Est, 2014.

19

[13] J. Bonelle, D. A. Di Pietro, and A. Ern, Low-order reconstruction operators on
polyhedral meshes: application to compatible discrete operator schemes, Comput. Aided
Geom. Des., 35 (2015), pp. 27–41.

[14] J. Bonelle and A. Ern, Analysis of Compatible Discrete Operator schemes for elliptic
problems on polyhedral meshes, ESAIMMath. Model. Numer. Anal., 48 (2014), pp. 553–581.

[15] , Analysis of Compatible Discrete Operator schemes for the Stokes equations on poly-
hedral meshes, IMA J. Numer. Anal., 35 (2015), pp. 1672–1697.

[16] J. Bonelle, A. Ern, and R. Milani, Compatible Discrete Operator schemes for the
steady incompressible Stokes and Navier–Stokes equations, in Finite Vol. Complex Appl.
IX; Methods Theor. Aspects, R. Klöfkorn, E. Keilegavlen, F. A. Radu, and J. Fuhrmann,
eds., vol. 323 of Springer Proc. Math. Stat., Bergen, 2020, Springer International Publishing,
pp. 93–101.

[17] L. Botti, D. A. Di Pietro, and J. Droniou, A Hybrid High-Order method for the
incompressible Navier–Stokes equations based on Temam’s device, J. Comput. Phys., 376
(2019), pp. 786–816.

[18] F. Boyer, S. Krell, and F. Nabet, Inf-Sup stability of the discrete duality finite volume
method for the 2D Stokes problem, Math. Comput., 84 (2015), pp. 2705–2742.

[19] C. Cancès and P. Omnes, eds., Finite Volumes for Complex Applications VIII - Methods
and Theoretical Aspects, vol. 199 of Springer Proc. Math. Stat., Lille, France, 6 2017,
Springer International Publishing.

[20] A. Cangiani, V. Gyrya, and G. Manzini, The nonconforming Virtual Element Method
for the Stokes equations, SIAM J. Numer. Anal., 54 (2016), pp. 3411–3435.

[21] P. Cantin, Approximation of scalar and vector transport problems on polyhedral meshes,
PhD thesis, Université Paris-Est, 2016.

[22] P. Cantin and A. Ern, An edge-based scheme on polyhedral meshes for vector advection-
reaction equations, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1561–1581.

[23] A. J. Chorin, Numerical Solution of the Navier–Stokes Equations, Math. Comput., 22
(1968), pp. 745–762.

[24] B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab, Local discontinuous
Galerkin methods for the Stokes system, SIAM J. Numer. Anal., 40 (2002), pp. 319–343.

[25] B. Cockburn, N. C. Nguyen, and J. Peraire, A Comparison of HDG Methods for
Stokes Flow, J. Sci. Comput., 45 (2010), pp. 215–237.

[26] S. Delcourte, Développement de méthodes de volumes finis pour la mécanique des fluides,
PhD thesis, Université Paul Sabatier, 2007.

[27] D. A. Di Pietro, J. Droniou, and A. Ern, A discontinuous-skeletal method for
advection-diffusion-reaction on general meshes, SIAM J. Numer. Anal., 53 (2015), pp. 2135–
2157.

[28] D. A. Di Pietro and A. Ern, A Hybrid High-Order locking-free method for linear elas-
ticity on general meshes, Comput. Methods Appl. Mech. Eng., 283 (2015), pp. 1–21.

20

[29] D. A. Di Pietro, A. Ern, A. Linke, and F. Schieweck, A discontinuous skeletal
method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Eng.,
306 (2016), pp. 175–195.

[30] D. A. Di Pietro and S. Krell, A Hybrid High-Order method for the steady incompress-
ible Navier–Stokes problem, J. Sci. Comput., 74 (2018), pp. 1677–1705.

[31] D. A. Di Pietro and S. Lemaire, An extension of the Crouzeix-Raviart space to general
meshes with application to quasi-incompressible linear elasticity and Stokes flow, Math.
Comput., 84 (2015), pp. 1–31.

[32] J. Droniou and R. Eymard, Study of the mixed finite volume method for Stokes and
Navier–Stokes equations, Numer. Methods Partial Differ. Equ., 25 (2009), pp. 137–171.

[33] , Benchmark: Two hybrid mimetic mixed schemes for the lid-driven cavity, in Finite
Vol. Complex Appl. VIII; Methods Theor. Aspects, vol. 199 of Springer Proc. Math. Stat.,
Lille, 2017, Springer International Publishing, pp. 107–124.

[34] J. Droniou, R. Eymard, and P. Feron, Gradient Schemes for Stokes problem, IMA J.
Numer. Anal., 36 (2015), pp. 1636–1669.

[35] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, Gradient schemes: a generic
framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic
equations, Math. Model. Methods Appl. Sci., 23 (2013), pp. 2395–2432.

[36] A. Ern and J.-L. Guermond, Finite Elements III, vol. 74 of Texts in Applied Mathe-
matics, Springer International Publishing, 2021.

[37] R. Eymard, P. Feron, and C. Guichard, Family of convergent numerical schemes for
the incompressible Navier–Stokes equations, Math. Comput. Simul., 144 (2018), pp. 196–
218.

[38] R. Eymard, T. Gallouët, and R. Herbin, Discretisation of heterogeneous and an-
isotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using
stabilisation and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), pp. 1009–1043.

[39] P. E. Farrell, L. Mitchell, and F. Wechsung, An Augmented Lagrangian precon-
ditioner for the 3D stationary incompressible Navier–Stokes equations at high Reynolds
number, SIAM J. Sci. Comput., 41 (2019), pp. 3037–3096.

[40] P. Feron, Gradient Schemes for some elliptic and parabolic, linear and non-linear prob-
lems, PhD thesis, université Paris-Est, 2016.

[41] J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds., Finite Volumes for
Complex Applications VI - Problems & Perspectives, vol. 4 of Springer Proc. Math. Stat.,
Prague, Czech Republic, 6 2011, Springer Science & Business Media.

[42] G. N. Gatica, M. Munar, and F. A. Sequeira, A mixed Virtual Element Method for
the Navier–Stokes equations, Math. Model. Methods Appl. Sci., 28 (2018), pp. 2863–2904.

[43] T. Goudon, S. Krell, and G. Lissoni, DDFV method for Navier–Stokes problem with
outflow boundary conditions, Numer. Math., 142 (2019), pp. 55–102.

[44] J.-L. Guermond and P. Minev, High-order adaptive time stepping for the incompressible
Navier-Stokes equations, SIAM J. Sci. Comput., 41 (2019), pp. A770–A788.

21

[45] J.-L. Guermond and P. D. Minev, High-order time stepping for the incompressible
Navier–Stokes equations, SIAM J. Sci. Comput., 37 (2015), pp. A2656–A2681.

[46] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and
nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg.,
191 (2002), pp. 1895–1908.

[47] Y. Jeon, E.-J. Park, and D. Sheen, A hybridized finite element method for the Stokes
problem, Computers and Mathematics with Applications, 68 (2014), pp. 2222–2232.

[48] S. Krell and G. Manzini, The Discrete Duality Finite Volume method for Stokes equa-
tions on three-dimensional polyhedral meshes, SIAM J. Numer. Anal., 50 (2012), pp. 808–
837.

[49] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, vol. 2,
Gordon and Breach, New York, NY, 1969.

[50] C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous
Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg.,
307 (2016), pp. 339–361.

[51] R. Milani, Compatible Discrete Operator schemes for the unsteady incompressible Navier–
Stokes equations, PhD thesis, Université Paris-Est, 2020.

[52] L. Mu, X. Wang, and X. Ye, A modified weak Galerkin finite element method for the
Stokes equations, J. Comput. Phys., 275 (2015), pp. 79–90.

[53] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable
discontinuous Galerkin method for the incompressible Navier–Stokes equations, J. Comput.
Phys., 230 (2011), pp. 1147–1170.

[54] Y. Notay and P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numer. Linear
Algebra Appl., 15 (2008), pp. 473–487.

[55] G. I. Taylor and A. E. Green, Mechanism of the production of small eddies from large
ones, Proc. R. Soc. Lond. A, 158 (1937), pp. 499–521.

[56] R. Temam, Sur l’Approximation de la Solution des Equations de Navier–Stokes par la
Méthode des Pas Fractionnaires (I), Arch. Ration. Mech. Anlysis, 32 (1969), pp. 135–153.

[57] N. Vladimirova, B. Kuznetsov, and N. N. Yanenko, Numerical calculation of the
symmetrical flow of viscous incompressible liquid around a plate, Some Problems in Com-
putational and Applied Mathematics, Nauka, (1966).

[58] N. N. Yanenko, The method of fractional steps, Springer-Verlag, New York, NY, 1971.

22

	Introduction
	Space discretization by the CDO-Fb scheme
	Mesh entities and degrees of freedom
	Discrete diffusion-like bilinear form
	Discrete velocity-pressure coupling
	Discrete convection operator

	Time discretization by monolithic and artificial compressibility schemes
	First-order schemes
	Monolithic scheme
	AC scheme

	Second-order schemes
	Monolithic scheme
	AC scheme

	Numerical results
	2D Taylor–Green vortex
	Convergence results
	CFL conditions with explicit convection

	3D modified Taylor–Green vortex

	Conclusions

