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In this paper, we give a dual Laplace representation for the Jacobi-Dunkl kernel. We exploit this representation to define a pair of dual integral transforms χ α,β and its transposed t χ α,β . Next we give some spaces of functions on which χ α,β and t χ α,β are isomorphisms and we establish inversion formulas for these transforms.

Introduction

We consider the Jacobi operator on ]0, +∞[, for α > -1 2 and β ∈ R, given by (see [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Flensted-Jensen | The convolution structure for Jacobi function expansions[END_REF][START_REF] Flensted-Jenson | Jacobi functions: The addition formula and the positivity of the dual convolution structure[END_REF][START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF][START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF]) ∆ α,β u(x) := d 2 dx 2 u(x) + (2α + 1) coth x + (2β + 1) tanh x d dx u(x).

It can also be written in the form

∆ α,β u(x) = 1 A α,β (x) d dx A α,β (x) d dx u(x) ,
with A α,β (x) := 2 2ρ (sinh x) 2α+1 (cosh x) 2β+1 , ρ := α + β + 1.

The Jacobi function ϕ (α,β) µ (x), µ ∈ C, is defined by

∀x ∈ R, ϕ (α,β) µ (x) := 2 F 1 ρ + iµ 2 , ρ -iµ 2 ; α + 1; -(sinh x) 2 ,
where 2 F 1 is the Gauss hypergeometric function (see [START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF] Rainville | Special functions[END_REF][START_REF] Luke | The special functions and their approximations[END_REF][START_REF] Luke | Mathematical functions and their approximations[END_REF][START_REF] Temme | Special functions: An introduction to the classical functions of mathematical physics[END_REF][START_REF] Dunkl | Orthogonal polynomials of several variables[END_REF]).

For each µ ∈ C, the Jacobi function ϕ (α,β) µ (x) is the unique even C ∞ -solution on R of the differential equation

     ∆ α,β u(x) = -(µ 2 + ρ 2 )u(x), x > 0, u(0) = 1, u (0) = 0.
It also checks the following estimates (see [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF]):

• ∀n ∈ N, ∃ k n > 0; ∀µ ∈ C, ∀x ≥ 0,

d n dx n ϕ (α,β) µ (x) ≤ k n (1 + x)(1 + |µ|) n e (| µ|-ρ)x . ( 1 
)
• ∃ c > 0; ∀n ∈ N, ∀µ ∈ C, ∀x ≥ 0,

d n dµ n ϕ (α,β) µ (x) ≤ c(1 + x) n+1 e (| µ|-ρ)x .
For more details, the interested reader in the study of Jacobi functions can see [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Flensted-Jensen | The convolution structure for Jacobi function expansions[END_REF][START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF][START_REF] Flensted-Jenson | Jacobi functions: The addition formula and the positivity of the dual convolution structure[END_REF][START_REF] Kalla | Integrals of Jacobi functions[END_REF][START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF][START_REF] Salem | Convolution semigroups and central limit theorem associated with a dual convolution structure[END_REF][START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Zh.-K. Li | Some representations of translations of the product of two functions for Hankel transforms and Jacobi transforms[END_REF][START_REF] Mejjaoli | Some new recurrence relations concerning Jacobi functions[END_REF][START_REF] Grundmann | Moment functions and central limit therorem for Jacobi hypergroups on [0, +∞[END_REF][START_REF] Salem | On support properties of functions and their Jacobi transform[END_REF][START_REF] Platonov | Fourier-Jacobi harmonic analysis and some problems of approximation of functions on the half-axis in L 2 metric: Jackson's type direct theorems[END_REF].

In [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF], N. Ben Salem and K. Trimèche have proved that the function ϕ (α,β) µ (x) possesses the following dual Mehler representation:

∀µ ∈ R, ∀x ≥ 0, ϕ (α,β) µ (x) = 2 π +∞ 0 b α,β (µ, δ) cos(δx) dδ, (2) 
where b α,β (µ, δ) := F 0 ϕ (α,β)

µ (δ), (3) 
with F 0 is the Fourier-cosine transform defined on L 1 ([0, +∞[, dx) by (see [START_REF] Erdélyi | Table of integral transforms[END_REF])

∀λ ∈ R, F 0 (f )(λ) := +∞ 0 f (x) cos(λx) dx.
Note that the functions δ -→ b α,β (µ, δ) (µ ∈ R) and µ -→ b α,β (µ, δ) (δ ∈ R), are even on R (see [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]).

In this paper, we establish for the Jacobi-Dunkl kernel ψ (α,β) λ (x) (see [START_REF] Chouchane | Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R[END_REF]), the following dual Laplace representation:

∀λ ∈ R ] -ρ, ρ[, ∀x ∈ R, ψ (α,β) λ (x) = 1 2π R K α,β (λ, δ) e iδx dδ, (4) 
where

K α,β (λ, δ) := 2 1 + δ λ b α,β (µ, δ), ( 5 
)
with b α,β is defined by formula (3), and

λ 2 = µ 2 + ρ 2 . ( 6 
)
Note that from [START_REF] Chouchane | Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R[END_REF], ψ

(α,β) λ (x) is related to Jacobi functions by ψ (α,β) λ (x) = ϕ (α,β) µ (x) + iλ 4(α + 1) sinh(2x)ϕ (α+1,β+1) µ (x).
We can also write ψ

(α,β) λ (x) as ψ (α,β) λ (x) =    ϕ (α,β) µ (x) - i λ d dx ϕ (α,β) µ (x) if λ ∈ C {0}, 1 if λ = 0. (7) 
For all n ∈ N, there exists c n > 0 such that for all λ ∈ C {0} and x ∈ R, we have

d n dx n ψ (α,β) λ (x) ≤ c n (1 + |λ|) n+1 |λ| (1 + |x|)e (| µ|-ρ)|x| . ( 8 
)
And for all n ∈ N, λ ∈ C, and x ∈ R, we have

d n dλ n ψ (α,β) λ (x) ≤ |x| n e | λ||x| .
We observe that we can write formula (4) as

∀λ ∈ R ] -ρ, ρ[, ∀x ∈ R, ψ (α,β) λ (x) = χ α,β e ix. (λ), (9) 
where

χ α,β (f )(λ) := 1 2π R K α,β (λ, δ)f (δ) dδ, ( 10 
)
with f is a continous and bounded function on R.

Hence this allows us to define a pair of dual integral transforms which we call the dual Laplace integral transform denoted χ α,β and given by the formula [START_REF] Erdélyi | Higher transcendental functions[END_REF], and its transposed

t χ α,β defined on L 1 (R, dσ) by ∀δ ∈ R, t χ α,β (g)(δ) := R K α,β (λ, δ)g(λ) dσ(λ),
where dσ is the spectral measure associated with the Jacobi-Dunkl operator Λ α,β , and given by (see [START_REF] Chouchane | Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R[END_REF][START_REF] Salem | Convolution structure associated with the Jacobi-Dunkl operator on R[END_REF])

dσ(λ) := |λ| 8π λ 2 -ρ 2 c λ 2 -ρ 2 2 1 1 R ]-ρ,ρ[ (λ) dλ, (11) 
with

c(µ) := 2 ρ-iµ Γ(iµ)Γ(α + 1) Γ ρ+iµ 2 Γ α-β+1+iµ 2 , µ ∈ C (iN).
From [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF], we have

1 |c(µ)| 2 ∼ π 2 4α+2β+1 (Γ(α + 1)) 2 |µ| 2α+1 , as |µ| -→ +∞, ( 12 
)
and 1 |c(µ)| 2 ∼ Γ( ρ 2 )Γ( α-β+1 2 ) 2 ρ Γ(α + 1) 2 |µ| 2 , as µ -→ 0.
The transform t χ α,β relates the inverse Jacobi-Dunkl transform F -1 and the inverse of the usual Fourier transform F -1 u . More precisely, we have on S(R) the space of C ∞functions g on R, which are rapidly decreasing together with their derivatives, i.e. such that

∀m, n ∈ N, sup x∈R 0≤k≤n (1 + x 2 ) m d k dx k g(x) < +∞ ,
the following equality

F -1 = F -1 u • t χ α,β , where the usual Fourier transform of a function f ∈ L 1 (R, dx) is defined by ∀λ ∈ R, F u (f )(λ) := R f (x)e -iλx dx, the inverse Fourier transform of a function g ∈ L 1 (R, dx) is defined by ∀x ∈ R, F -1 u (g)(x) := 1 2π R g(λ)e iλx dx,
the Jacobi-Dunkl transform (see [START_REF] Chouchane | Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R[END_REF]) of a function

f ∈ L 1 (R, A α,β (x)dx) is defined by ∀λ ∈ R, Ff (λ) := R f (x)ψ (α,β) λ (x)A α,β (x) dx,
and the inverse Jacobi-Dunkl transform of a function g ∈ L 1 (R, dσ) is defined by

∀x ∈ R, F -1 (g)(x) := R g(λ)ψ (α,β) λ (x) dσ(λ). ( 13 
)
F is related to the Jacobi transform F α,β on D(R), the space of C ∞ -functions with compact supprot, by

∀λ ∈ C, Ff (λ) = 2F α,β (f e )(µ) + 2iλF α,β (J(f o ))(µ), (14) 
where the Jacobi transform of a function g

∈ L 1 ([0, +∞[, A α,β (x)dx) is defined by ∀µ ∈ R, F α,β (g)(µ) := +∞ 0 g(x)ϕ (α,β) µ (x)A α,β (x) dx,
and the inverse Jacobi transform of a function h

∈ L 1 [0, +∞[, dµ 2π|c(µ)| 2 is defined by ∀x ∈ R, F -1 α,β (h)(x) := +∞ 0 h(µ)ϕ (α,β) µ (x) dµ 2π|c(µ)| 2 ,
with f e (resp. f o ) is the even (resp. odd) part of f , and for x ∈ R,

J(f o )(x) := x -∞ f o (y) dy.
Next we define and characterize some spaces of functions on which the transforms χ α,β and t χ α,β are topological isomorphisms. We also establish inversion formulas for these transforms. The content of this paper is as follows: In the second section, we give a dual Laplace representation of ψ (α,β) λ and some properties of the associated kernel K α,β . The third section is devoted to define and study a pair of dual integral transforms χ α,β and t χ α,β . In the last section we give inversion formulas for the transforms χ α,β and t χ α,β between some generalized Schwartz spaces.

In the remainder of the paper we will suppose that α ≥ β ≥ -

1 2 with α = - 1 2 (hence ρ = α + β + 1 > 0)
, and (λ, µ) ∈ C 2 satisfying (6).

A dual Laplace representation of the Jacobi-Dunkl kernel

The Jacobi-Dunkl kernel

ψ α,β λ (x), λ ∈ C, is the unique C ∞ -solution of the differential- difference equation Λ α,β u(x) = iλu(x), u(0) = 1,
where Λ α,β is the Jacobi-Dunkl operator on R studied in [START_REF] Chouchane | Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R[END_REF] and given by

Λ α,β u(x) := d dx u(x) + (2α + 1) coth x + (2β + 1) tanh x u(x) -u(-x) 2 . Theorem 2.1. Let λ ∈ R; |λ| ≥ ρ. The function ψ (α,β) λ (x) possesses the following dual Laplace represen- tation: ∀x ∈ R, ψ (α,β) λ (x) = 1 2π R K α,β (λ, δ)e iδx dδ, ( 15 
)
where K α,β is given by the relation [START_REF] Salem | On support properties of functions and their Jacobi transform[END_REF].

Proof.

Using the relation ( 7) and the Mehler's dual representation of the function ϕ (α,β)

µ
given by the relation (2), we have

ψ (α,β) λ (x) = ϕ (α,β) µ (x) - i λ d dx ϕ (α,β) µ (x) = 2 π +∞ 0 b α,β (µ, δ) cos(δx) dδ - 2i πλ d dx +∞ 0 b α,β (µ, δ) cos(δx) dδ .
According to [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF], δ -→ b α,β (µ, δ) ∈ S * (R) (the subspace of S(R) constituted by even functions). Then

ψ (α,β) λ (x) = 2 π +∞ 0 b α,β (µ, δ) cos(δx) dδ - 2i πλ +∞ 0 b α,β (µ, δ) d dx [cos(δx)] dδ = 2 π +∞ 0 b α,β (µ, δ) cos(δx) dδ + 2i πλ +∞ 0 b α,β (µ, δ) δ sin(δx) dδ = 1 π +∞ 0 b α,β (µ, δ) e iδx + e -iδx dδ + 1 πλ +∞ 0 δb α,β (µ, δ) e iδx -e -iδx dδ = 1 π R b α,β (µ, δ)e iδx dδ + 1 πλ R δb α,β (µ, δ)e iδx dδ = 1 π R 1 + δ λ b α,β (µ, δ)e iδx dδ = 1 2π R K α,β (λ, δ)e iδx dδ.
To establish properties of the kernel K α,β , as indicated in the following theorem, we start by showing the following lemma:

Lemma 2.2. Let (λ, µ) ∈ C 2 satisfying (6), and δ ∈ C such that c := ρ -| δ| > 0. | µ| < c if and only if | λ| > ρ 2 -c 2 and | λ| < c ( λ) 2 -(ρ 2 -c 2 ) ( λ) 2 + c 2 .
Proof.

Put λ := x + iy and µ := a + ib with x, y, a, b ∈ R.

λ 2 = µ 2 + ρ 2 is equivalent to x 2 -y 2 = a 2 -b 2 + ρ 2 , xy = ab. If b = 0, then a = xy b and b 4 + (x 2 -y 2 -ρ 2 )b 2 -x 2 y 2 = 0. Let ∆ := (x 2 -y 2 -ρ 2 ) 2 + 4x 2 y 2 = (x 2 + y 2 + ρ 2 ) 2 -4x 2 ρ 2 . |b| < c is equivalent to -x 2 + y 2 + ρ 2 + √ ∆ 2 < c, because b 2 > 0 and -x 2 + y 2 + ρ 2 + √ ∆ 2 ≤ 0. It means that √ ∆ < 2c 2 + (x 2 -y 2 -ρ 2 ).
In other words

y 2 < c 2 x 2 + c 2 -ρ 2 x 2 + c 2 ; |x| > ρ 2 -c 2 . As well as |y| < c x 2 -(ρ 2 -c 2 ) x 2 + c 2 ; |x| > ρ 2 -c 2 .
Thus, | µ| < ρ -| δ| if and only if

| λ| > | δ|(2ρ -| δ|) and | λ| < (ρ -| δ|) ( λ) 2 -| δ|(2ρ -| δ|) ( λ) 2 + (ρ -| δ|) 2 .
If b = 0, then x = 0, y = 0, and x 2 = a 2 + ρ 2 . So we get the result.

Theorem 2.3.

The kernel K α,β (λ, δ) satisfies the following properties:

1. ∀λ ∈ R ] -ρ, ρ[, ∀δ ∈ R, K α,β (-λ, -δ) = K α,β (λ, δ). 2. ∀λ ∈ R ] -ρ, ρ[, 1 2π R K α,β (λ, δ) dδ = 1. 3. K α,β (λ, δ) ≥ 0 if and only if λ ≥ ρ δ ≥ -λ or λ ≤ -ρ δ ≤ -λ.

K α,β can be extended to an analytic function on the set

U := (λ, δ) ∈ C 2 ; | δ| < ρ, | λ| > | δ|(2ρ -| δ|), | λ| < (ρ -| δ|) ( λ) 2 -| δ|(2ρ -| δ|) ( λ) 2 + (ρ -| δ|) 2 .

For all λ ∈

Ω := z ∈ C ; | z| < ρ | z| ( z) 2 + ρ 2 , the function δ -→ K α,β (λ, δ) is in S(R).
6. For all λ ∈ Ω and δ ∈ R, we have

K α,β (λ, δ) = F u ψ (α,β) λ (δ), ( 16 
)
where F u is the usual Fourier transform defined on L 1 (R, dx) by

∀ξ ∈ R, F u (f )(ξ) := R f (x)e -iξx dx.
7. For all m, n ∈ N, there exists k m,n > 0 such that for all (λ, δ) ∈ U , we have

δ m ∂ n ∂δ n K α,β (λ, δ) ≤ k m,n (1 + |λ|) m+1 |λ| × (ρ -| µ| -| δ| + 1) m (ρ -| µ| -| δ| + n + 1) (ρ -| µ| -| δ|) m+n+2 . ( 17 
)
In particular, there exists k > 0 such that for all λ ∈ Ω and δ ∈ R, we have

|K α,β (λ, δ)| ≤ k 1 + 1 |λ| 1 ρ -| µ| + 1 (ρ -| µ|) 2 . ( 18 
)
Proof.

1. It is obvious from ( 7) and ( 15).

For all λ

∈ R ] -ρ, ρ[, 1 2π R K α,β (λ, δ) dδ = ψ (α,β) λ (0) = 1. 3. It is clear from the nonnegativity of b α,β . 4. Let µ, δ ∈ R. We have b α,β (µ, δ) = +∞ 0 ϕ (α,β) µ (x) cos(δx) dx = F 0 ϕ (α,β) µ (δ)
and Then

K α,β (λ, δ) = 2b α,β (µ, δ) + 2 λ +∞ 0 ϕ (α,β) µ (x)δ cos(δx) dx.
K α,β (λ, δ) = 2b α,β (µ, δ) - 2 λ +∞ 0 d dx ϕ (α,β) µ (x) sin(δx) dx.
By using again (1), there exists k 1 > 0 such that for all µ, δ ∈ C and x ≥ 0, we have

d dx ϕ (α,β) µ (x) sin(δx) ≤ k 1 (1 + x)(1 + |µ|)e (| µ|+| δ|-ρ)x .
Hence we deduce that

+∞ 0 d dx ϕ (α,β) µ (x) sin(δx) dx is well defined on the set E := {(µ, δ) ∈ C 2 ; | µ| + | δ| < ρ}.
According to [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF], the kernel b α,β (µ, δ) is well defined on the set E and the previous lemma shows that the kernel K α,β (λ, δ) is well defined and analytic on the set U .

5. We know that for all µ ∈ C; | µ| < ρ, the even function δ -→ b α,β (µ, δ) is in S * (R)

(see [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]). Then according to [START_REF] Salem | On support properties of functions and their Jacobi transform[END_REF], for all λ ∈ C;

| λ| < ρ | λ| ( λ) 2 + ρ 2 , the function δ -→ K α,β (λ, δ) is in S(R).
6. Since K α,β (λ, .) ∈ S(R), then the relation [START_REF] Grundmann | Moment functions and central limit therorem for Jacobi hypergroups on [0, +∞[END_REF] gives [START_REF] Kalla | Integrals of Jacobi functions[END_REF].

7. Since K α,β (λ, .) ∈ S(R), then by [START_REF] Kalla | Integrals of Jacobi functions[END_REF] we get

δ m ∂ n ∂δ n K α,β (λ, δ) = δ m F u (-ix) n ψ (α,β) λ (x) (δ) = (-1) n i n-m F u d m dx m x n ψ (α,β) λ (x) (δ) = (-1) n i n-m m j=max(0,m-n) m!n! j!(m -j)!(n -m + j)! × F u x n-m+j d j dx j ψ (α,β) λ (x) (δ).
From [START_REF] Dunkl | Orthogonal polynomials of several variables[END_REF] and the equality

+∞ 0 t p (1 + t)e -at dt = p!(a + p + 1) a p+2 , p ∈ N, a > 0,
we obtain 2. In view of Theorem 2.4 (iv) of [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF], either we take the parameter λ in R, or we adopt the following inequality: There exists c > 0 such that for all (µ, δ) ∈ E, we have

δ m ∂ n ∂δ n K α,β (λ, δ) ≤ k m,n (1 + |λ|) m+1 |λ| (d + 1) m (d + n + 1) d m+n+2 , with k m,n := 2 max
|b α,β (µ, δ)| ≤ c 1 ρ -| µ| -| δ| + 1 (ρ -| µ| -| δ|) 2 .
Since F u is an automorphism of S(R), so from the property 5. of the previous theorem and the relation ( 16), we can state the following result: Corollary 2.5. For all λ ∈ Ω, the function x -→ ψ (α,β) λ (x) belongs to S(R).

Dual Laplace integral transforms

In this section, by using the dual Laplace representation of the function ψ (α,β) λ (x) given in Theorem 2.1, we shall define integral transforms with the kernel K α,β , which we call the dual Laplace integral transform and its transposed. Next we give some properties of these transforms.

Definition 3.1.

The dual Laplace integral transform denoted by χ α,β , is defined on C b (R) (the space of continous and bounded functions on R), by

∀λ ∈ R ] -ρ, ρ[, χ α,β (f )(λ) := 1 2π R K α,β (λ, δ)f (δ) dδ.
Remarks 3.2.

1. For all λ ∈ R ] -ρ, ρ[ and x ∈ R, we have

ψ (α,β) λ (x) = χ α,β e ix. (λ). 2. ∀λ ∈ R ] -ρ, ρ[, χ α,β (f )(-λ) = χ α,β (f (-x))(λ). 3. If f ∈ C(R) such that y -→ yf (y) is bounded on R, then the function χ α,β (f ) is continuous and bounded on R ] -ρ, ρ[, and for all λ ∈ R ] -ρ, ρ[, we have χ α,β (f )(λ) = χα,β (f e )(µ) + 1 λ χα,β (yf o (y))(µ),
where f e (resp. f o ) is the even (resp. odd) part of f , and χα,β (see [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]) is the dual Mehler integral transform defined on C b, * (R) (the space of even, continous and bounded functions on R), by

∀t ∈ R, χα,β (h)(t) := 2 π +∞ 0 b α,β (t, δ)h(δ) dδ.
From the properties of the kernels K α,β and b α,β , we deduce easily the following results:

Proposition 3.3. 1. If f ∈ C b (R), then the function λ -→ χ α,β (f )(λ) is continuous on R ] -ρ, ρ[. 2. If f ∈ C b (R) such that supp f ⊂ [-(a + 1)ρ, (a -1)ρ],
for some a > 1, then χ α,β (f ) is bounded on [ρ, +∞[ and we have

sup λ≥ρ |χ α,β (f )(λ)| ≤ a f ∞ . 3. If f ∈ L 1 (R, dx), then the function λ -→ χ α,β (f )(λ)
is well defined and analytic on Ω.

4. If f ∈ L 1 (R, dx), then χ α,β (f ) is continuous and bounded on R ] -ρ, ρ[. Definition 3.4. The transposed of χ α,β denoted by t χ α,β , is defined for g ∈ L 1 (R, dσ), by ∀δ ∈ R, t χ α,β (g)(δ) := R K α,β (λ, δ)g(λ) dσ(λ),
where dσ is given by [START_REF] Erdélyi | Table of integral transforms[END_REF].

From the analyticity of the kernel K α,β we deduce the following result:

Proposition 3.5.
For all g ∈ L 1 (R, dσ), the function t χ α,β (g) is analytic on the strip {δ ∈ C ; | δ| < ρ}.

Then we establish a duality relation between the transforms χ α,β and t χ α,β .

Proposition 3.6.

For all f ∈ L 1 (R, dx) and g ∈ L 1 (R, dσ), we have the following duality relation:

R χ α,β (f )(λ)g(λ) dσ(λ) = 1 2π R f (δ) t χ α,β (g)(δ) dδ. ( 19 
)
Proof.

From [START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF],

∀λ ∈ R ] -ρ, ρ[, ∀δ ∈ R, |K α,β (λ, δ)| ≤ k (1 + ρ) 2 ρ 3 .
So the relation ( 19) is obtained by using Definitions 3.1 and 3.4, and Fubini's theorem.

Proposition 3.7.

For all g ∈ S(R), the function t χ α,β (g) belongs to S(R).

Proof.

The inequality [START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF] gives the result.

We can state now a relationship between F -1 , F -1 u and t χ α,β as follows:

Theorem 3.8. For all g ∈ S(R), we have

F -1 (g) = F -1 u • t χ α,β (g).
Proof.

Let f ∈ C b (R) and g ∈ S(R). From ( 17) we obtain for |λ| ≥ ρ and δ ∈ R,

|K α,β (λ, δ)f (δ)g(λ)| = (1 + δ 2 )K α,β (λ, δ) |f (δ)||g(λ)| 1 1 + δ 2 ≤ f ∞ k 0,0 (1 + ρ) 2 ρ 3 + k 2,0 (1 + ρ) 4 ρ 5 (1 + |λ|) 2 g(λ) 1 1 + δ 2 .
Using in addition the relations [START_REF] Erdélyi | Table of integral transforms[END_REF] and ( 12), we show that [START_REF] Zh.-K. Li | Some representations of translations of the product of two functions for Hankel transforms and Jacobi transforms[END_REF] 

is also valid for f ∈ C b (R) and g ∈ S(R). If we take f (δ) = e iδx , x ∈ R, we get R χ α,β (e ix. )(λ)g(λ) dσ(λ) = 1 2π R t χ α,β (g)(δ)e iδx dδ.
Now to finish the proof, it suffices to use ( 9) and ( 13).

Inversion formulas

In this section we shall define some functions spaces on which we can invert the operators χ α,β and t χ α,β . We begin by establishing some topological isomorphisms between (generalized and extended) Schwartz spaces. The used method is similar to that given in [START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF][START_REF] Anker | The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan[END_REF].

Notations.

Let ε ≥ 0. We denote by

• S 0 (R), the subspace of S(R) consisting of functions f satisfying

∀n ∈ N, d n dx n f (0) = 0.
• S ⊥ (R), the subspace of S(R) consisting of functions f satisfying ∀n ∈ N, R

x n f (x) dx = 0.

• S ε (R), the generalized Schwartz space defined by

S ε (R) := (cosh x) -ερ S(R).
The topology of this space is given by the semi-norms P ε m,n , (m, n) ∈ N 2 , where

P ε m,n (f ) := sup x∈R 0≤k≤n (cosh x) ερ (1 + x 2 ) m d k dx k f (x) < +∞.
• S ε 0 (R), the subspace of S ε (R) defined by

S ε 0 (R) := (cosh x) -ερ S 0 (R).
•

Ω ε := {µ ∈ C ; | µ| ≤ ερ}. • Ω ε :=            λ ∈ C ; | λ| ≥ ρ 1 -ε 2 , | λ| ≤ ερ 1 - ρ 2 ( λ) 2 + ε 2 ρ 2 if 0 ≤ ε < 1, λ ∈ C ; | λ| ≤ ερ 1 - ρ 2 ( λ) 2 + ε 2 ρ 2 if ε ≥ 1. • H(Ω ε ) (resp. H(Ω ε ))
, the space of functions h that are analytic in the interior of Ω ε (resp. Ω ε ) and such that h together with all its derivatives extend continuously to Ω ε (resp. Ω ε ) and satisfy τ ε m,n (h) < +∞, (m, n) ∈ N 2 , where

τ ε m,n (h) := sup µ∈Ωε (resp. Ω ε ) (1 + |µ|) m d n dµ n h(µ) . • H ⊥ (Ω ε ) (resp. H ⊥ Ω ε ), the subspace of H (Ω ε ) (resp. H Ω ε ), consisting of func- tions h satisfying ∀n ∈ N, R µ n h(µ) dµ = 0. • H u Ω ε , the subspace of H Ω ε consisting of functions g satisfying ∀n ∈ N, R u n (λ)g(λ) dσ(λ) = 0, where ∀λ ∈ R ] -ρ, ρ[, u n (λ) := R K α,β (λ, δ)δ n dδ. ( 20 
)
Proposition 4.1.

For ε ≥ 0, the usual Fourier transform F u is a topological isomorphism from

1. S ε (R) onto H (Ω ε ). 2. S ⊥ (R) onto S 0 (R). 3. S 0 (R) onto S ⊥ (R). 4. S ε 0 (R) onto H ⊥ (Ω ε ). Proof. 1. Let f ∈ S ε (R). There exists g ∈ S(R) such that f (x) = (cosh x) -ερ g(x). Then we have F u (f )(λ) = R (cosh x) -ερ g(x)e -iλx dx and (cosh x) -ερ g(x)(-ix)e -iλx ≤ 2 ερ |xg(x)|e (| λ|-ερ)|x| .
So we deduce that the function λ -→ F u (f )(λ) is holomorphic on {λ ∈ C ; | λ| < ερ}, and C ∞ on Ω ε . Moreover, for all m, n ∈ N and λ ∈ Ω ε , we have

(1 + |λ|) m d n dλ n F u (f )(λ) = m k=0 m k F u d k dx k [x n f (x)] (λ) ≤ m k=0 k j=max(0,k-n) m! (m -k)!j! R d j dx j f (x) n n -k + j |x| n-k+j e | λ||x| dx ≤ m k=0 k j=0 m! (m -k)!j! R d j dx j f (x) (1 + |x|) n e | λ||x| dx ≤ m k=0 k j=0 2 n m! (m -k)!j! R (1 + x 2 ) n+1 d j dx j f (x) (cosh x) ερ × (cosh x) -ερ e | λ||x| dx 1 + x 2 ≤ m j=0 m k=j 2 n+ερ m! j!(m -k)! P ε n+1,j (f ) R e (| λ|-ερ)|x| dx 1 + x 2 ≤ π(m + 1)!2 n+ερ m j=0 P ε n+1,j (f ) < +∞.
Hence F u (S ε (R)) is included continuously in H (Ω ε ). Now let h ∈ H (Ω ε ). We have

F -1 u (h)(x) = 1 2π R h(λ)e iλx dλ
. By Cauchy's integral theorem we get

F -1 u (h)(x) = e -ερx 2π R h(t + iερ)e itx dt.
Thus we obtain that F -1 u (h) ∈ S ε (R).

2. We know that F u is a topological isomorphism from S(R) onto itself. Furthermore for all f ∈ S(R), n ∈ N, and λ ∈ R, we have

d n dλ n F u (f )(λ) = (-i) n R x n f (x)e -iλx dx.
Then we deduce that F u (f ) ∈ S 0 (R) if and only if f ∈ S ⊥ (R).

3. Since F u is a topological automorphism of S(R), then for all f ∈ S(R), n ∈ N, and x ∈ R, we have

d n dx n f (x) = F -1 u F u d n dx n f (x) = i n 2π R λ n F u (f )(λ)e iλx dλ.
Thus we get f ∈ S 0 (R) if and only if F u (f ) ∈ S ⊥ (R).

4. Let f ∈ S ε (R). There exists g ∈ S(R) such that f (x) = (cosh x) -ερ g(x). It is clear that ∀n ∈ N, d n dx n g(0) = 0 if and only if ∀n ∈ N,

d n dx n f (0) = 0. Since F u is a topological isomorphism from S ε (R) onto H (Ω ε ), then for all n ∈ N, d n dx n f (0) = i n 2π R λ n F u (f )(λ) dλ.
Hence we observe that f ∈ S ε 0 (R) if and only if

F u (f ) ∈ H ⊥ (Ω ε ).
The following result is shown in [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF], with S ε+1 * (R) (resp. H * (Ω ε ), S ε+1 * ,0 (R)) denotes the subspace of even functions of S ε+1 (R) (resp. H (Ω ε ), S ε+1 0 (R)).

Proposition 4.2.

For ε ≥ 0, the Jacobi transform F α,β is a topological isomorphism from

1. S ε+1 * (R) onto H * (Ω ε ). 2. S ε+1 * ,0 (R) onto H * ,v (Ω ε ), the subspace of H * (Ω ε ) consisting of functions h satisfying ∀n ∈ N, +∞ 0 v n (µ)h(µ) dµ |c(µ)| 2 = 0, where ∀µ ∈ R, v n (µ) := +∞ 0 b α,β (µ, δ)δ n dδ.
This allows us to state for the Jacobi-Dunkl transform the following theorem:

Theorem 4.3. For ε ≥ 0, the Jacobi-Dunkl transform F is a topological isomorphism from 1. S ε+1 (R) onto H Ω ε . 2. S ε+1 0 (R) onto H ⊥ Ω ε .
Proof.

1. By an argument similar to that given in the proof of Lemma 2.2, we show that

λ ∈ Ω ε if and only if µ ∈ Ω ε . Let f = f e + f o ∈ S ε+1 (R),
where f e (resp. f o ) is the even (resp. odd) part of f . We put

g 1 = F α,β (f e ) ∈ H * (Ω ε ), g 2 = F α,β (J(f o )) ∈ H * (Ω ε ), and g(λ) = 2g 1 (µ) + 2iλg 2 (µ).
Then by [START_REF] Flensted-Jenson | Jacobi functions: The addition formula and the positivity of the dual convolution structure[END_REF] and Proposition 4.2,

Ff (λ) = g(λ), λ ∈ Ω ε and Ff ∈ H Ω ε . If g = g e + g o ∈ H Ω ε . There exist f 1 , f 2 ∈ S ε+1 * (R) such that F α,β (f 1 )(µ) = g e (λ) and F α,β (f 2 )(µ) = g o (λ) λ . If we take f = 1 2 f 1 - i 2 d dx f 2
, we obtain by [START_REF] Flensted-Jenson | Jacobi functions: The addition formula and the positivity of the dual convolution structure[END_REF],

f ∈ S ε+1 (R) and Ff (λ) = g(λ), λ ∈ Ω ε .
2. By using the inversion formula for F which is a topological isomorphism from S ε+1 (R) onto H Ω ε , we get for all f ∈ S ε+1 (R) and n ∈ N,

d n dx n f (0) = R Ff (λ) d n dx n ψ (α,β) λ (x) | x=0 dσ(λ).
From ( 15) and ( 20), we obtain

d n dx n ψ (α,β) λ (x) | x=0 = i n 2π u n (λ). Thus d n dx n f (0) = i n 2π R u n (λ)Ff (λ) dσ(λ),
and we conclude that

f ∈ S ε+1 0 (R) if and only if Ff ∈ H ⊥ Ω ε . Remark 4.4. For ε ≥ 1, let f ∈ S ε+1 (R) and λ ∈ Ω ε-1 . Note that Ω ε-1 ⊂ Ω ε and we have R f (x)ψ (α,β) λ (x)A α,β (x) dx ≤ R (cosh x) (ε+1)ρ (1 + x 2 )|f (x)| × e | λ||x| (cosh x) -(ε+1)ρ A α,β (x) dx 1 + x 2 .
Since for all x ∈ R, (cosh x) -(ε+1)ρ ≤ 2 (ε+1)ρ e -(ε+1)ρ|x| and A α,β (x) ≤ 2 2β+1 e 2ρ|x| , then

R f (x)ψ (α,β) λ (x)A α,β (x) dx ≤ 2 (ε+1)ρ+2β+1 P ε+1 1,0 (f ) R e (| λ|-(ε-1)ρ)|x| dx 1 + x 2 < +∞.
Hence Ff is well defned on Ω ε-1 . Given that the function λ -→ ψ (α,β) λ (x) is analytic on C, we deduce that Ff is analytic in the interior of Ω ε-1 and extends continuously together with all its derivatives to Ω ε-1 . We now prove that F is continuous from S ε+1 (R) into H (Ω ε-1 ). For all m, n ∈ N, Then F maps S ε+1 (R) into H (Ω ε-1 ) continuously. Moreover, the injectivity of the transform F is given by the Plancherel theorem. 

M (f ) = t χ α,β -1 • M 0 • t χ α,β (f ) ∈ H ⊥ Ω ε-2 .
Consequently, we get the following inversion formulas:

Corollary 4.10.

1. If ε ≥ 1, (a) t χ α,β • M • χ α,β = id H ⊥ (Ωε) . (b) χ α,β • M 0 • t χ α,β = id H ⊥ (Ω ε ) . 2. If ε ≥ 2, (a) t χ α,β • χ α,β • M 0 = id H ⊥ (Ωε) . (b) χ α,β • t χ α,β • M = id H ⊥ (Ω ε ) .

By ( 1

 1 sin(δx) dx.

0≤j≤mcRemarks 2 . 4 . 1 .

 241 j n! and d := ρ -| µ| -| δ|. Let a > 1. If λ ≥ ρ and -(a + 1)ρ ≤ δ ≤ (a -1)ρ or λ ≤ -ρ and -(a -1)ρ ≤ δ ≤ (a + 1)ρ , then |K α,β (λ, δ)| ≤ 2a b α,β (µ, δ).

  d n dλ n [λ m Ff (λ)] = d n dλ n R f (x)λ m ψ (α,β) λ (x)A α,β (x) dx = d n dλ n R f (x)Λ m α,β ψ (α,β) λ (x)A α,β (x) dx = d n dλ n R Λ m α,β (f )(x)ψ (α,β) λ (x)A α,β (x) dx = (f )(x)||x| n e | λ||x| A α,β (x) dx ≤ |x|≤1 |Λ m α,β (f )(x)||x| n e | λ||x| A α,β (x) dx + |x|>1 |Λ m α,β (f )(x)||x| n e | λ||x| A α,β (x) dx,Thus from[7, p. 409], there exist positive constants C 1,m and C 2,m such thatsup λ∈Ω ε-1 d n dλ n [λ m Ff (λ)] ≤ C 1,mmj=0 P ε+1 0,j (f ) + C 2,m m j=0 P ε+1 n+1,j (f ).

  Theorem 4.8. For ε ≥ 0, the transform t χ α,β is a topological isomorphism from1. H Ω ε onto H (Ω ε+1 ). 2. H ⊥ Ω ε onto H ⊥ (Ω ε+1). The result is obtained by using Theorem 4.3, Proposition 4.1 and Theorem 3.8. Let ε ≥ 2. From Theorem 4.8 and Proposition 4.6, we obtain for all f ∈ H ⊥ Ω ε ,
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	Remark 4.9.

Definition 4.5.

We define the following operators

These operators realize the following isomorphisms:

u , then the result is deduced from 1. and Proposition 4.1, 4.

3. The result is a consequence of the equality M = F • A α,β • F -1 , the result of 1. and Theorem 4.3, 2. Now, we will eatablish for the transforms χ α,β and t χ α,β , relationships involving Fourier and Jacobi-Dunkl transforms.

Theorem 4.7.

For ε ≥ 0, the dual Laplace transform χ α,β is a topological isomorphism from H ⊥ (Ω ε ) onto H ⊥ Ω ε+1 , and on H ⊥ (Ω ε ), we have the equality

, for some positive constant C independent of x and δ, thus by Fubini's theorem and (15), we get